二阶常系数非齐次线性微分方程解法与例题_新

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
yY(x)+y*(x)
一、 f(x)Pm(x)ex 型
设方程y+py+qyPm(x)ex 特解形式为y*Q(x)ex 则得
Q(x)+(2+p)Q(x)+(2+p+q)Q(x)Pm(x) ——(*)
提示 y*+py*+qy*[Q(x)ex]+ p[Q(x)ex]+q[Q(x)ex]
[Q(x)+2Q(x)+2Q(x)]ex+p[Q(x)+Q(x)]ex+qQ(x)ex [Q(x)+(2+p)Q(x)+(2+p+q)Q(x)]ex
提示
此时2+p+q0 2+p0
要使(*)式成立 Q(x)应设为m+2次多项式 Q(x)x2Qm(x) 其中Qm(x)b0xm+b1xm1+ +bm1x+bm
❖结论
二阶常系数非齐次线性微分方程
有形如
y+py+qyPm(x)ex
y*xkQm(x)ex
的特解 其中Qm(x)是与Pm(x)同次的多项式 而k按不是特征
特征方程的根 所以所给方程的特解应设为
y*(ax+b)cos2x+(cx+d)sin2x
把它代入所给方程 得 >>>
(3ax3b+4c)cos2x(3cx+4a+3d)sin2xxcos2x
比较两端同类项的系数 得 a>>> 1 b0 c0 d 4
同类项的系数
得 a1
b0
c0
3 d
4
9
3
9
因此所给方程的特解为 y* 1 x cos 2x + 4 sin 2x
一、 f(x)Pm(x)ex 型
设方程y+py+qyPm(x)ex 特解形式为y*Q(x)ex 则得
Q(x)+(2+p)Q(x)+(2+p+q)Q(x)Pm(x) ——(*) (1)如果不是特征方程r2+pr+q0的根 则 y*Qm(x)ex
提示
此时2+p+q0
要使(*)式成立 Q(x)应设为m次多项式 Qm(x)b0xm+b1xm1+ +bm1x+bm
提示
此时2+p+q0 但2+p0
要使(*)式成立 Q(x)应设为m+1次多项式 Q(x)xQm(x) 其中Qm(x)b0xm +b1xm1+ +bm1x+bm
一、 f(x)Pm(x)ex 型
设方程y+py+qyPm(x)ex 特解形式为y*Q(x)ex 则得
Q(x)+(2+p)Q(x)+(2+p+q)Q(x)Pm(x) ——(*) (1)如果不是特征方程r2+pr+q0的根 则 y*Qm(x)ex (2)如果是特征方程r2+pr+q0的单根 则 y*xQm(x)ex (3)如果是特征方程r2+pr+q0的重根 则 y*x2Qm(x)ex
b11
故 y* x( 1 x 1)e2x 2
因此所给方程的通解为
y
C1e2
x
+
C2e3x
1 2
(
x
2
+
2
x)e
2x
特解形式
首页
二、f(x)ex[Pl(x)coswx+Pn(x)sinwx]型
❖结论
二阶常系数非齐次线性微分方程
有形如
y+py+qyex[Pl(x)coswx+Pn(x)sinwx]
y*xkex[R(1)m(x)coswx+R(2)m(x)sinwx]
特解形式
例2 求微分方程y5y+6yxe2x的通解 解 齐次方程y5y+6y0的特征方程为r25r +60
其根为r12 r23
因为f(x)Pm(x)exxe2x 2是特征方程的单根
所以非齐次方程的特解应设为
y*x(b0x+b1)e2x 把它代入所给方程 得
2b0x+2b0b1x
比较系数

b0
1 2
其根为r12 r23
因为f(x)Pm(x)exxe2x 2是特征方程的单根
所以非齐次方程的特解应设为
y*x(b0x+b1)e2x 把它代入所给方程 得 >>>
2b0x+2b0b1x
比较系数

b0
1 2
b11
故 y* x( 1 x 1)e2x 2
提示 2b01 齐2b次0方b1程0y5y+6y0的通解为YC1e2x+C2e3x
二阶常系数非齐次线性微分方程
一、 f(x)Pm(x)ex型
二、f(x)ex[Pl(x)coswx+Pn(x)sinwx]型
方程y+py+qyf(x)称为二阶常系数非齐次线性 微分方程 其中p、q是常数
二阶常系数非齐次线性微分方程的通解是对应 的齐次方程的通解yY(x)与非齐次方程本身的一个 特解yy*(x)之和
一、 f(x)Pm(x)ex 型
设方程y+py+qyPm(x)ex 特解形式为y*Q(x)ex 则得
Q(x)+(2+p)Q(x)+(2+p+q)Q(x)Pm(x) ——(*) (1)如果不是特征方程r2+pr+q0的根 则 y*Qm(x)ex (2)如果是特征方程r2+pr+q0的单根 则 y*xQm(x)ex
比较两端 x 同次幂的系数
得 b01
b1
1 3
因此所给方程的特解为 y* x + 1 3
提示 [b30bx0+b31]2[b0x+b1]3[b0x+b1] 2b03b0x3b1 2b30b0x3b21b10 3b1
特解形式
例2 求微分方程y5y+6yxe2x的通解
解 齐次方程y5y+6y0的特征方程为r25r +60
的特解 其中R(1)m(x)、R(2)m(x)是m次多项式 mmax{l n} 而k
按+iw(或iw)不是特征方程的根或是特征方程的单根依次
取0或1 >>>
下页
例3 求微分方程y+yxcos2x的一个特解
解 齐次方程y+y0的特征方程为r2+10
因为f(x)ex[Pl(x)coswx+Pn(x)sinwx]xcos2x +iw2i不是
方程的根、是特征方程的单根或是特征方程的的重根依次取
为0、1或2
例1 求微分方程y2y3y3x+来自百度文库的一个特解
解 齐次方程y2y3y0的特征方程为r22r30
因为f(x)Pm(x)ex3x+1 0不是特征方程的根
所以非齐次方程的特解应设为
y*b0x+b1 把它代入所给方程 得
3b0x2b03b13x+1
3
9
特解形式
结束
知识回顾 Knowledge Review
祝您成功
相关文档
最新文档