机械设计第十章齿轮传动解析

合集下载

第十章 齿轮传动

第十章  齿轮传动
该失效主要出现在低速重载、频繁启动和过载场合。 该失效主要出现在低速重载、频繁启动和过载场合。 齿面较软时,重载下, 齿面较软时,重载下,齿面摩擦力过大 ——材料塑性流动(流动方向沿摩擦力方向) 材料塑性流动( 材料塑性流动 流动方向沿摩擦力方向) 滚压塑变 锤击塑变
主动 被动
相对滑动方向
机械设计
中碳钢:40、45、50、55等 中碳钢:40、45、50、55等 中碳合金钢: 中碳合金钢:40Cr、40MnB、20Cr
机械设计
第十章 齿轮传动
特点:齿面硬度不高,限制了承载能力,但易于制造成本, 特点:齿面硬度不高,限制了承载能力,但易于制造成本, 常用于对尺寸和重量无严格要求的场合 无严格要求的场合。 常用于对尺寸和重量无严格要求的场合。 加工工艺:锻坯 加工毛坯——热处理(正火、调质 热处理( 加工工艺:锻坯——加工毛坯 加工毛坯 热处理 正火、 HBS160-300)——切齿 HBS160-300) 切齿 2)硬齿面:HBS>350 硬齿面:HBS> 低碳、中碳钢:20、45等 低碳、中碳钢:20、45等 低碳、中碳合金钢: 低碳、中碳合金钢:20Cr、20CrMnTi、20MnB等 特点:齿面硬度高、承载能力高、适用于对尺寸、重量有较 特点:齿面硬度高、承载能力高、适用于对尺寸、重量有较 高要求的场合( 高速、重载及精密机械传动 传动)。 高要求的场合(如高速、重载及精密机械传动)。 精度7、8、9级。 精度7
机械设计
第十章 齿轮传动
加工工艺:锻坯 加工毛坯——切齿 切齿——热处理(表面淬火、 热处理( 加工工艺:锻坯——加工毛坯 加工毛坯 切齿 热处理 表面淬火、 渗碳、氮化、氰化) 磨齿( 渗碳、氮化、氰化)——磨齿(表面淬火、渗碳)。 磨齿 表面淬火、渗碳)。 若氮化、氰化:变形小, 若氮化、氰化:变形小,不磨齿 。 专用磨床,成本高,精度可达4、5、6级。 专用磨床,成本高,精度可达4 2、铸铁 主要用于低速和不重要的开式齿轮及传递功率不大 的齿轮 3、非金属材料 用于高速、小功率、 用于高速、小功率、精度不高以及传递运动为主的齿轮传动

第十章_锥齿轮传动

第十章_锥齿轮传动

Fa2 Fr1
各个分力方向的确定: ➢ 对于主动齿轮,切向力方向与节点运动方向 相反;对于从动齿轮,切向力方向与节点运动方向 相同; ➢ 径向力方向均由节点垂直指向各自的轴线; ➢ 轴向力方向均平行于各自轴线且由节点背离 锥顶指向大端。
受力分析简图
各个分力方向的确定:
➢切向力:Ft1 = - Ft2 , Ft1与n1反向, Ft2与n2同向 ➢径向力:Fr1 = - Fa2 , 指向圆心 ➢轴向力:Fa1 = - Fr2 , 指向大端
Ft1
2000T1 d m1
Fr1 Ft1 tan cos1
Fa1 Ft1 tan sin 1
Fbn
Ft1
c os
各分力之间的关系:
Ft2
2000T2 dm2
Fr2 Ft2 tan cos 2
Fa2 Ft2 tan sin 2
Fbn
Ft2
c os
Ft2 Ft1
Fr2 Fa1
受力分析简图
1. 校核公式

1.18 KFt1 bmm
YFa YSa Yε
[ F ]
2. 设计公式: 对于一般钢制标准直齿圆柱齿轮,可得钢制标准直 齿锥齿轮齿根弯曲疲劳强度简化设计公式:
m 16.8 3
KT1YFaYSa
R (1 0.5R )2 z12[ ]F u2 1
第四节 结构设计
锥齿轮的结构可分为齿轮轴、整体式、腹板 式、组合式几种。齿轮直径较小时,应该选择整
1. 校核公式:
H ZEZHZεZK
1.18 KFt1 (u2 1) bd m 1u
[ H ]
2. 设计公式: 对一般钢制标准锥齿轮传动,可得钢制标准直齿锥 齿轮齿面接触疲劳强度简化设计公式:

机械设计 齿轮传动

机械设计 齿轮传动
16
5、齿面塑性流动 该失效主要出现在低速重载、频繁启动和过载场合。 齿面较软时,重载下,Ff↑——材料塑性流动(流动方向沿Ff) 主动轮1:摩擦力分别朝向齿顶和齿根 形成凹沟。
17
从动轮2:摩擦力由齿顶和齿根朝向中部 形成凸脊。
改善措施:1)↑材料及齿面硬度 2)采用η↑的润滑油 3)适当磨合(跑合)
需对Fn修正
实际载荷(计算载荷)Fca>Fn
计算载荷: Fca K Fn
K——载荷系数
K
KA
Kv
K
K
齿向载荷分配系数
使用系数
动载系数
齿间载荷分配系数
按照强度计算类别,载荷系数可分为齿根弯曲疲劳强度计算用载荷系数KF
31 和齿面接触疲劳强度计算用载荷系数KH.
1、使用系数KA 考虑原动机、工作机、联轴器等外部因素引起的动载荷而
(对称、非对称、悬臂) 3)合理选择齿宽; 4)↑制造安装精度;
5)采用鼓形齿; 6)齿轮位于远离转矩输入端。
38
0.01-0.025mm
§5 直齿圆柱齿轮传动的强度计算
(一)、齿根弯曲疲劳强度计算(目的:防止齿折断)
进行齿根弯曲强度计算时,将轮齿视为悬臂梁,齿 根危险剖面处,弯矩最大时的齿根弯曲应力也最大。
练习: n1
Fr1
Ft1
Ft2
Fr2
n2
Ft1⊙○FF×rr1F2 t2n1 n2
30
二、计算载荷
根据齿轮传动的额定功率和转速,可得齿轮传递的名义扭矩和轮齿上的名 义法向力。实际传动中,会受各种因素的影响,使名义法向载荷增大。
外部影响:原动机、工作机影响 实际情况:
内部影响:制造、安装误差;受载变形(齿轮、轴等)

10 机械设计作业参考答案_齿轮传动

10 机械设计作业参考答案_齿轮传动
齿轮传动
1、齿轮传动常见的失效形式有哪些?简要说明闭式硬齿面、闭式软齿面和开式齿轮传动的设计准则。
【答】
齿轮传动常见的失效形式有以下几种:(1)轮齿折断;(2)齿面点蚀;(3)齿面磨损;(4)齿面胶合;(5)塑性变形。
闭式硬齿面的设计以保证齿根弯曲疲劳强度为主;闭式软齿面的设计通常以保证齿面接触疲劳强度为主;开式齿轮传动的设计目前仅以保证齿根弯曲疲劳强度作为设计准则。
【答】
齿面接触应力是脉动循环,齿根弯曲应力是对称循环。
在作弯曲强度计算时应将图中查出的极限应力值乘以0.7。
8、计算题
【解】
1)选择齿轮的材料和精度等级
根据教材表10-1选大小齿轮材料均为20CrMnTi渗碳淬火。小齿轮齿面硬度取62HRC,大齿轮齿面硬度取38HRC,芯部300HBS。选精度等级为6级。
⑤校核接触强度
满足接触强度要求,以上所选参数合适。
4、试分析图示斜齿圆柱齿轮所受的力(用受力图表示出各力的作用位置和方向)。
【解】
题5图
5、计算题
【解】
(1)由于中间轴上两齿轮分别为主动和从动轮,且旋转方向相同,因此为使轴向力方向相反,必须使齿轮3的螺旋方向与齿轮2的相同。齿轮2为左旋,故齿轮3必须左旋,齿轮4右旋。
(2)使中间轴上轮2和轮3的轴向力互相完全抵消,需要满足 。
2、简要分析说明齿轮轮齿修缘和做成鼓形齿的目的?
【答】
齿轮轮齿修缘是为了减小齿轮传动过程中由于各种原因引起的动载荷。做成鼓形是为了改善载荷沿接触线分布不均的程度。
3、软齿面齿轮传动设计时BS?
【答】
金属制的软齿面齿轮配对的两轮齿中,小齿轮齿根强度较弱,且小齿轮的应力循环次数较多,当大小齿轮有较大硬度差时,较硬的小齿轮会对较软的大齿轮齿面产生冷作硬化的作用,可提高大齿轮的接触疲劳强度。所以要求小齿轮齿面硬度比大齿轮大30~50HBS。

2024年机械设计基础课件齿轮传动-(带特殊条款)

2024年机械设计基础课件齿轮传动-(带特殊条款)

机械设计基础课件齿轮传动-(带特殊条款) 机械设计基础课件:齿轮传动1.引言齿轮传动是机械设计中的一种基本传动方式,广泛应用于各种机械设备的运动和动力传递。

齿轮传动具有结构简单、传动效率高、可靠性好、寿命长等优点,因此在工业生产和日常生活中得到广泛应用。

本课件将介绍齿轮传动的基本原理、分类、设计方法和应用。

2.齿轮传动的基本原理齿轮传动是利用齿轮副的啮合来传递动力和运动的一种传动方式。

齿轮副由两个或多个齿轮组成,其中主动齿轮通过旋转驱动从动齿轮,从而实现动力和运动的传递。

齿轮副的啮合是通过齿轮齿廓的接触来实现的,齿廓的形状和尺寸决定了齿轮传动的性能和精度。

3.齿轮传动的分类齿轮传动根据齿轮的形状和布置方式可分为直齿圆柱齿轮传动、斜齿圆柱齿轮传动、直齿圆锥齿轮传动和蜗轮蜗杆传动等。

直齿圆柱齿轮传动是应用最广泛的一种齿轮传动方式,具有结构简单、制造容易、精度高等优点。

斜齿圆柱齿轮传动具有传动平稳、噪声低、承载能力强等优点,适用于高速和重载的传动场合。

直齿圆锥齿轮传动适用于空间狭小和角度传动的场合。

蜗轮蜗杆传动具有大传动比、自锁性和精度高等特点,适用于低速、大扭矩的传动场合。

4.齿轮传动的设计方法齿轮传动的设计主要包括齿轮的几何设计、强度设计和精度设计。

齿轮的几何设计是根据传动比、工作条件、材料等因素确定齿轮的齿数、模数、压力角等参数。

强度设计是保证齿轮传动在规定的工作条件下具有足够的承载能力和寿命,主要包括齿面接触强度和齿根弯曲强度的计算。

精度设计是保证齿轮传动的精度和运动平稳性,主要包括齿轮的加工精度和装配精度的控制。

5.齿轮传动的应用齿轮传动在工业生产和日常生活中得到广泛应用。

在机床、汽车、船舶、飞机等机械设备中,齿轮传动用于传递动力和运动,实现各种复杂的运动轨迹和速度变化。

在风力发电、水力发电等能源领域,齿轮传动用于传递高速旋转的动力,实现能源的转换和利用。

在、自动化设备等高科技领域,齿轮传动用于实现精确的运动控制和动力传递,提高设备的性能和效率。

《机械设计基础》教学课件主题10 齿轮传动

《机械设计基础》教学课件主题10 齿轮传动

单元1 齿轮的失效形式和设计准则
一、轮齿常见的失效形式
1、轮齿折断 轮齿就好像一个悬臂梁,在外载荷作用下,在其轮齿根部产生的 弯曲应力最大。同时,在齿根部位过渡尺寸发生急剧变化,以及加工时 沿齿宽方向留下加工刀痕而造成应力集中的作用,当轮齿重复受载,在 脉动循环或对称循环应力作用下,弯曲应力超过弯曲疲劳极限时,在齿 轮根部会产生疲劳裂纹,如图(a)所示。随着裂纹的逐步扩展,最终 引起断裂,如图(b)所示。
轮齿折断都是其弯曲应力超过了材料相应的极限应力,是最危险 的一种失效形式。一旦发生断齿,传动立即失效。
单元1 齿轮的失效形式和设计准则
一、轮齿常见的失效形式
2、齿面点蚀 在润滑良好的闭式齿轮传动中,由于齿面材料在交变接触应力 作用下,因为接触疲劳产生贝壳形状凹坑(麻点)的破坏形式称为点 蚀。点蚀也是常见的一种齿面破坏形式。齿面上最初出现的点蚀随材 料不同而不同,一般出现在靠近节线的齿根面上,如图所示,最初为 细小的尖状麻点。当齿面硬度较低、材料塑性良好,齿面经跑合后, 接触应力趋于均匀,麻点不再继续扩展,这是一种收敛性点蚀,不会 导致传动失效。但当齿面硬度较高、材料塑性较差时,点蚀就会不断 扩大,这是一种破坏性点蚀,是一种危险的失效形式。
单元1 齿轮的失效形式和设计准则
一、轮齿常见的失效形式
3、齿面胶合 对于某些高速重载的齿轮传动(如航空发动机的主传动齿轮), 齿面间的压力大,瞬时温度高,油变稀而降低了润滑效果,导致摩擦增 大,齿面温度升高,将会使某些齿面上接触的点熔合,焊在一起,在两 齿面间相对滑动时,焊在一起的地方又被撕开。于是,在齿面上沿相对 滑动的方向形成伤痕,如图所示,这种现象称为胶合。
机械设计基础
主题10 齿轮传动
单元1 单元2 单元3 单元4 单元5 单元6

机械设计-齿轮传动讲解

机械设计-齿轮传动讲解
当保持齿轮传动的中心距a不变时
重合度e↑ →传动平稳
z1↑
m↓
齿高h,抗弯曲疲劳强度降低
因此,在保证弯曲疲劳强度的前提下,齿数选得多一些好!
一般情况下,闭式齿轮传动(速度高,平稳性差): z1=20~40

Ft
=
2T1 d1
及Φd=b/d1
代入
则齿面接触疲劳强度的校核式:σH =
2K T1 dd13
u±1 u
ZH
ZE
[σH ]
齿面接触疲劳强度的设计式: d1
3
2 KT1

d
u ±1 ( Z H Z E )2
u [s H ]
对于标准直齿轮,ZH=2.5
齿面接触疲劳强度的校核式:
s H
= 2.5
= KFtYFaYsa bm
[s F]
Ysa表
引入齿宽系数后 强度条件公式:
d
=
b,并将Ft=2T1/d1, d1
d1=m
z1代入,可得弯曲
s = 2KT 1 YFaYsa
F φdm3 z12
[s F]

m

3
2KT1
dZ12
×Y[FsaYFs]a
公式中各参数对弯曲强度有什么影响呢?
标准直齿圆柱齿轮强度计算
从上面推出的接触疲劳强度条件公式中可以得出以下结论:
1、分度圆直径越大,接触疲劳强度就越高,也就是说接触
疲劳强度取决于分度圆直径,不单和模数m有关还和齿
数z有关。 2、齿宽系数越大,也就是齿宽越宽,接触疲劳强度就 越高。
3、许用接触应力越大,接触疲劳强度就 越高,
问题:σH1和σH2是否是作用力和反作用力的关系 σH1=σH2 是作用力和反作用力的关系。

机械设计第10章机械传动系统及其传动比

机械设计第10章机械传动系统及其传动比

机械设计第10章机械传动系统及其传动比机械传动系统及其传动比案例导入:在实际的机械工程中,为了满足各种不同的工作需要,仅仅使用一对齿轮是不够的。

本章通过带式输送机、牛头刨床、汽车变速箱和差速器、自动进刀读数装置、滚齿机行星轮系等例子,介绍轮系的概念、分类、传动比的分析计算方法。

第一节定轴轮系的传动比计算在实际应用的机械中,为了满足各种需要,例如需要较大的传动比或作远距离传动等,常采用一系列互相啮合的齿轮来组成传动装置。

这种由一系列齿轮组成的传动装置称为齿轮系统,简称轮系。

一、轮系的分类轮系有两种基本类型:(1)定轴轮系。

如图10-1所示,在轮系运转时各齿轮几何轴线都是固定不变的,这种轮系称为定轴轮系。

(2)行星轮系。

如图10-2所示,在轮系运转时至少有一个齿轮的几何轴线绕另一几何轴线转动,这种轮系称为行星轮系。

图10-1 定轴轮系二、轮系的传动比1.轮系的传动比轮系中,输入轴(轮)与输出轴(轮)的转速或角速度之比,称为轮系的传动比,通常用i表示。

因为角速度或转速是矢量,所以,计算轮系传动比时,不仅要计算它的大小,而且还要确定输出轴(轮)的转动方向。

2.定轴轮系传动比的计算根据轮系传动比的定义,一对圆柱齿轮的传动比为nzi12 1 2 n2z1式中:“±”为输出轮的转动方向符号,图10-2行星轮系第十章机械传动系统及其传动比当输入轮和输出轮的转动方向相同时取“+”号、相反时取“-”号。

如图10-1a) 所示的一对外啮合直齿圆柱齿轮传动,两齿轮旋转方向相反,其传动比规定为负值,表示为:i=n1=n2z2 z1如图10-1b)所示为一对内啮合直齿圆柱齿轮传动,两齿轮的旋转方向相同,其传动比规定为正值,表示为:n1z2 i= =n2z1如图10-3所示的定轴轮系,齿轮1为输入轮,齿轮4为输出轮。

应该注意到齿轮2和2'是固定在同一根轴上的,即有n2=n2′。

此轮系的传图10-3定轴轮系传动比的计算动比i14可写为:nnn ni14 1 123 i12i2 3i***** z2z3z4 312上式表明,定轴轮系的总传动比等于各对啮合齿轮传动比的连乘积,其大小等于各对啮合齿轮中所有从动轮齿数的连乘积与所有主动轮齿数的连乘积之比,即m从1轮到k轮之间所有从动轮齿数n的连乘积i1k 1 1 (10-1) nk从1轮到k轮之间所有从主轮齿数的连乘积式中:m为平行轴外啮合圆柱齿轮的对数,用于确定全部由圆柱齿轮组成的定轴轮系中输出轮的转向。

机械设计 第十章-齿轮传动

机械设计 第十章-齿轮传动

机械设计第十章-齿轮传动齿轮传动是一种常见的动力传递方式,它能够将功率从一个轴传递到另一个轴。

齿轮传动在机械设备中广泛应用,包括车辆、机床、风力发电机等。

齿轮传动的设计涉及到齿轮的几何形状、材料、齿数和模数等因素,需要综合考虑多个因素。

本章将介绍齿轮传动的原理、设计方法和齿轮副的受力分析。

一、齿轮传动的原理齿轮传动是通过齿轮之间的啮合来传递功率的。

齿轮传动一般由两个或多个齿轮组成,其中一个齿轮为主动齿轮,另一个为从动齿轮。

主动齿轮通过电动机或其他驱动装置带动,从动齿轮由这种运动带动,从而实现功率传递。

在齿轮传动中,两个齿轮之间的啮合部分称为齿轮副。

齿轮的外径和齿宽决定了齿轮的大小,齿数和齿形决定了齿轮的几何形状。

齿轮的材料也很重要,一般采用强度高、耐磨损、耐疲劳的材料制造。

在齿轮传动中,齿轮之间的啮合是通过齿轮齿与齿之间的转动摩擦完成的。

当主动齿轮旋转时,它的一侧齿轮齿逐渐接触并推动从动齿轮的齿轮齿转动。

在齿轮齿接触时,齿间间隙必须足够小,齿面必须经过精密磨削处理,以保证齿轮副的传动精度和寿命。

二、齿轮传动的设计方法齿轮传动的设计一般需要考虑以下几个因素:1、传递的功率和转速齿轮传动的设计需要考虑传递的功率和转速,它们决定了齿轮的尺寸和齿数。

传递功率越大,齿轮的尺寸和齿数就越大,同时轴承容量也必须相应增加。

转速越高,齿轮的材料强度和刚度越高。

2、齿轮的几何形状和齿距在齿轮传动的设计中,必须确定齿轮的几何形状和齿距。

齿轮的齿距是指齿轮中心距,它决定了齿轮轴距。

齿轮的齿形和齿距也是重要的因素,它们直接影响齿轮的传动效率和寿命。

3、齿轮的材料和处理方式齿轮的材料和处理方式也是齿轮设计的重要因素。

齿轮必须具有足够的强度和刚度,能够承受传递功率的要求。

普通齿轮的制造需要经过多道热处理工艺,以保证齿轮的硬度和耐磨性。

4、齿轮副的载荷齿轮副的载荷是齿轮设计的重要参考依据,它决定了齿轮的强度。

齿轮副的载荷包括沿轴方向的载荷和径向载荷,其中径向载荷是齿轮副最常见的载荷类型。

机械设计基础(第10章: 轮系)

机械设计基础(第10章: 轮系)

第10章轮系前面我们己经讨论了一对齿轮传动及蜗杆传动的应用和设计问题,然而实际的现代机械传动,运动形式往往很复杂。

由于主动轴与从动轴的距离较远,或要求较大传动比,或要求在传动过程中实现变速和变向等原因,仅用一对齿轮传动或蜗杆传动往往是不够的, 而是需要采用一系列相互啮合的齿轮组成的传动系统将主动轴的运动传给从动轴。

这种由一系列相互啮合的齿轮(包括蜗杆、蜗轮)组成的传动系统称为齿轮系,简称轮系。

本章重点讨论各种类型齿轮系传动比的计算方法,并简要分析各齿轮系的功能和应用。

10.1 轮系的分类组成轮系的齿轮可以是圆柱齿轮、圆锥齿轮或蜗杆蜗轮。

如果全部齿轮的轴线都互相平行,这样的轮系称为平面轮系;如果轮系中各轮的轴线并不都是相互平行的,则称为空间轮系。

再者,通常根据轮系运动时各个齿轮的轴线在空间的位置是否都是固定的,而将轮系分为两大类:定轴轮系和周转轮系。

10.1.1定轴轮系在传动时所有齿轮的回转轴线固定不变的轮系,称为定轴轮系。

定轴轮系是最基本的轮系,应用很广。

由轴线互相平行的圆柱齿轮组成的定轴齿轮系,称为平面定轴轮系,如图10.1所示。

a)b)图10.1 平面定轴齿轮系包含有圆锥齿轮、螺旋齿轮、蜗杆蜗轮等空间齿轮的定轴轮系,称为空间定轴轮系,如图10.2所示。

图10.2 空间定轴轮系10.1.2 周转轮系轮系在运动过程中,若有一个或一个以上的齿轮除绕自身轴线自转外,其轴线又绕另一个齿轮的固定轴线转动,则称为周转轮系,也叫动轴轮系。

如图10.3所示。

a) 周转轮系结构图b)差动轮系c)行星轮系图10.3周转轮系其中齿轮2的轴线不固定,它一方面绕着自身的几何轴线O2旋转,同时O2轴线,又随构件H绕轴线O H公转。

分析周转轮系的结构组成,可知它由下列几种构件所组成:1.行星轮:当轮系运转时,一方面绕着自己的轴线回转(称自转),另一方面其轴线又绕着另一齿轮的固定轴线回转(称公转)的齿轮称行星轮,如图10.3中的齿轮2。

机械设计 齿轮传动

机械设计 齿轮传动

第十章齿轮传动本章主要内容⏹齿轮传动类型和特点;⏹齿轮传动的受力分析、计算载荷、各种载荷系数的物理意义及其影响因素;⏹齿轮传动的失效形式及其机理、特点、预防措施;⏹齿轮材料的基本要求、常用的热处理方法及材料的选用原则;⏹直齿圆柱齿轮承载能力计算,斜齿圆柱齿轮和直齿圆锥齿轮承载能力计算特点;⏹齿轮的结构设计;⏹齿轮传动的润滑。

重点难点⏹齿轮传动的受力分析、计算载荷、各种载荷系数的物理意义及其影响因素;⏹齿轮传动的失效形式及其机理、特点、预防措施;⏹直齿圆柱齿轮承载能力计算。

第一节概述一、齿轮传动的特点、类型和基本问题齿轮传动是机械传动中最重要的传动之一,其应用范围十分广泛,型式多样,传递功率从很小到很大(可高达近十万千瓦)。

1、齿轮传动的主要特点:◆效率高可达99%。

在常用的机械传动中,齿轮传动的效率为最高;◆结构紧凑与带传动、链传动相比,在同样的使用条件下,齿轮传动所需的空间一般较小;◆工作可靠,寿命长与各类传动相比◆传动比稳定无论是平均值还是瞬时值。

这也是齿轮传动获得广泛应用的原因之一;◆成本高,不适于远距离传动与带传动、链传动相比,齿轮的制造及安装精度要求高。

2、齿轮传动的分类按齿轮类型分:直齿圆柱齿轮传动斜齿圆柱齿轮传动人字齿轮传动锥齿轮传动按装置形式分:开式传动、半开式传动、闭式传动。

按使用情况分:动力齿轮─以动力传输为主,常为高速重载或低速重载传动。

传动齿轮─以运动准确为主,一般为轻载高精度传动。

按齿面硬度分:软齿面齿轮(齿面硬度≤350HBS)硬齿面齿轮(齿面硬度>350HBS)3、两个基本问题:(1)传动平稳就是要保证瞬时传动比恒定,从而尽可能减小齿轮啮合中的冲击、振动和噪声。

(2)足够的承载能力就是要在尺寸、质量较小的前提下.保证齿轮的强度、耐磨性等方面的要求。

保证在预定的使用期限内不发生失效。

二、精度选择齿轮精度等级应根据传动的用途,使用条件、传动功率和圆周速度等确定。

表10—8给出了各类机器所用齿轮的精度等级。

2011-最新陈立德版机械设计基础第10、11章课后题答案

2011-最新陈立德版机械设计基础第10、11章课后题答案

第十章齿轮传动10.1渐开线性质有哪些?。

答:(1)发生线在基圆上滚过的长度等于基圆上被滚过的弧长,即NK=NA (2)因为发生线在基圆上作纯滚动,所以它与基圆的切点N就是渐开线上K点的瞬时速度中心,发生线NK就是渐开线在K点的法线,同时它也是基圆在N点的切线。

(3)切点N是渐开线上K点的曲率中心,NK是渐开线上K点的曲率半径。

离基圆越近,曲率半径越少。

(4)渐开线的形状取决于基圆的大小。

基圆越大,渐开线越平直。

当基圆半径无穷大时,渐开线为直线。

(5)基圆内无渐开线。

10.2何谓齿轮中的分度圆?何谓节圆?二者的直径是否一定相等或一定不相等?答:分度圆为人为定的一个圆。

该圆上的模数为标准值,并且该圆上的压力角也为标准值。

节圆为啮合传动时,以两轮心为圆心,圆心至节点p的距离为半径所作的圆。

标准齿轮采用标准安装时,节圆与分度圆是相重合的;而采用非标准安装,则节圆与分度圆是不重合的。

对于变位齿轮传动,虽然齿轮的分度圆是不变的,但与节圆是否重合,应根据具体的传动情况所决定。

10.3在加工变位齿轮时,是齿轮上的分度圆与齿条插刀上的节线相切作纯滚动,还是齿轮上的节圆与齿条插刀上的分度线相切作纯滚动?答:是齿轮上的分度圆与齿条插刀上的节线相切。

10.4为了使安装中心距大于标准中心距,可用以下三种方法:(1)应用渐开线齿轮中心距的可分性。

(2)用变位修正的直齿轮传动。

(3)用标准斜齿轮传动。

试比较这三种方法的优劣。

答:(1)此方法简易可行,但平稳性降低,为有侧隙啮合,所以冲击、振动、噪声会加剧。

(2)采用变位齿轮传动,因a'>a,所以应采用正传动。

可使传动机构更加紧凑,提高抗弯强度和齿面接触强度,提高耐磨性,但互换性变差,齿顶变尖,重合度下降也较多。

(3)采用标准斜齿轮传动,结构紧凑,且进入啮合和脱离啮合是一个逐渐的过程,传动平稳,冲击、噪声小,而斜齿轮传动的重合度比直齿轮大,所以传动平稳性好。

10.5 一渐开线齿轮的基圆半径rb=60mm,求(1)rK=70mm时渐开线的展角θK,压力角αK以及曲率半径ρK;(2)压力角α=20时的向径r、展角θ及曲率半径ρ。

北航机械原理及设计PPT第10章 齿轮传动.

北航机械原理及设计PPT第10章 齿轮传动.

北航机械原理及设计PPT第10章齿轮传动一、齿轮传动的概念齿轮传动是一种常用的机械传动方式,它利用齿轮的啮合传递动力和运动,广泛应用于机械设备中,例如汽车、工程机械、机床等。

齿轮传动的特点是传动平稳、传动效率高、传动比准确等,因此在工程设计中应用广泛。

二、齿轮传动的工作原理齿轮传动通过齿轮的啮合来实现动力和运动的传递。

啮合的齿轮被称为驱动齿轮,被驱动的齿轮被称为从动齿轮。

当驱动齿轮运动时,通过齿轮齿面的啮合,驱动力矩和转速传递给从动齿轮。

齿轮啮合的过程中,齿轮齿面之间产生的接触力和摩擦力使得齿轮产生转动,从而将动力和运动传递给被驱动的机构。

齿轮传动的主要参数有模数、压力角、齿数等,这些参数决定了齿轮的啮合性能和传动特性。

合理选择和设计齿轮传动的参数能够提高传动效率和可靠性。

三、齿轮传动的分类齿轮传动根据齿轮的传动方式和布置形式可以分为多种类型,常见的有直齿轮传动、斜齿轮传动、锥齿轮传动、蜗杆传动等。

1.直齿轮传动:直齿轮传动是指齿轮齿面与齿轮轴线平行的传动方式,适用于传递大功率和高速运动的场合。

直齿轮传动具有结构简单、制造成本低等优点,在工程中得到广泛应用。

2.斜齿轮传动:斜齿轮传动是指齿轮齿面与齿轮轴线呈一定角度的传动方式,适用于传递大功率和高速运动的场合,能够提供更大的传动比。

3.锥齿轮传动:锥齿轮传动是指齿轮齿面呈锥面的传动方式,适用于传递轴线不平行和交叉传动的场合,能够实现变速和反向传动。

4.蜗杆传动:蜗杆传动是指蜗轮和蜗杆的啮合传动方式,适用于传递大功率和大速比的场合。

四、齿轮传动的计算与设计在齿轮传动的计算与设计过程中,需要确定齿轮的模数、齿数、啮合角、齿轮轴距等参数。

这些参数的选择需要考虑传动的功率、转速、速比、传动效率等因素。

常用的计算和设计方法包括基本气体动力学计算方法、齿轮强度计算方法、齿轮啮合性能计算方法等。

齿轮传动的设计还需要考虑齿轮的制造工艺和加工精度。

合理的制造工艺可以保证齿轮的精度和传动性能,提高齿轮传动的可靠性和寿命。

机械设计课件第10章齿轮传动

机械设计课件第10章齿轮传动

2 优势
3 特点
高效传动,扭矩输出稳定, 反向传动方便。
具有多种传动比,适用于 不同的工况和需求。
常见齿轮类型及其特点
直齿轮
齿轮齿条平行,传动效率高。
斜齿轮
啮合平稳,噪声较低。
锥齿轮
传递扭矩在非平行轴上,用于转向和变速。
蜗轮蜗杆
大传动比,用于减速。
计算公式和参数
了解齿轮传动的计算公式和关键参数,包括齿数、模数、压力角、啮合系数等,以确保传动系统的设计合理且 可靠。
参数 齿数 模数 压力角
啮合系数
含义 齿轮上的齿数,影响啮合传动比。 齿轮的尺寸参数,直接影响齿轮的尺寸和强度。 齿轮齿条之间的夹角,影响齿轮的传动效率和噪 声。 齿轮啮合平稳性的评价指标。
设计与选型注意事项
负载分析
根据实际负荷条件分析齿轮的工作状态和强度 要求。
润滑要求
考虑齿轮传动的润滑方式和润滑剂的选择,以 减少磨损和延长使用寿命。
问题解答与讨论
解答学生在课程过程中遇到的问题并进行讨论,加深对齿轮传动原理和应用的理解。
课堂总结与展望
对本章内容进行总结,并展望下一章的内容,引发学生对机械设计的兴趣和 思考。
机械设计课件第10章齿轮 传动
欢迎来到第10章齿轮传动的课程,我们将深入了解齿轮传动的基础知识、常 见类型及其特点、计算公式和参数、设计与选型注意事项,以及实际应用案 例的分析。
基础知识
了解齿轮传动的基本工作原理和优势,包括传递扭矩和转速的原理,以及齿轮传动的高效性和可靠性。
1 工作原理
齿轮之间通过啮合将动力 传递,实现转动。
材料选择
根据负载和工作条件选择合适的齿轮材料,包 括硬度、韧性和耐磨性等方面。

机械原理(第七版)优秀课件—第十章 齿轮机构及其设计

机械原理(第七版)优秀课件—第十章 齿轮机构及其设计
第十章 齿轮机构及其设计
Gears and its Design
• 10.1 齿轮机构的特点及分类
• 10.1.1 概述 • 1.什么是齿轮?
• 2.特点:适应范围广(v、p、r);效率
高(0.99);速比稳定、传动精度高;工 作可靠;可实现任意轴间的传动。制造 和安装精度要求高,成本较高;不适于 远距离传动。
• 刀具不标准
2.变位齿轮问题的提出
1)z<zmin时又要不根切; 2)a’≠a;
3)ρ小<ρ大, σ小>σ大, u小>u大,
• 3.刀具的变位 1)正变位 2)负变位 • 4. 变位传动
1)零变位齿轮传动:∑x=0,α’=α, a’=a • x1=x2=0 标准齿轮传动 x1=-x2 等移距变位齿轮传动 • 2)非零变位齿轮传动:∑x≠0,α’≠α, a’≠a
曲齿
交错轴斜齿轮传动
• 3.按齿廓曲线分:渐开线、摆线、圆弧 • 4.按工作条件分: • 1)开式:2)闭式:
• 5.按运动速度分:
• 低速:<1m/s
• 中速:1~25
• 高速:>25m/s • 超高:>100m/s
• 10.1.3 对齿轮传动的基本要求
– 1.传动准确平稳
i 1 d1
2 d 2
α
r
α N1
xm ha m
p
Q
• 2. 变位齿轮的几何计算
• m、a由强度计算确定,α、z、d、db不变化 • h高a和、齿h厚f 、的d变a化、 df、s 、e 、α’都将变化,而关键是齿
• 1)齿顶高、齿根高
hai (ha* xi y)m
hfi (ha* c* xi)m
x的选择:无侧隙、不根
2
c os '

机械设计基础-10. 10齿轮传动的润滑

机械设计基础-10. 10齿轮传动的润滑

第十一节齿轮传动的润滑一、齿轮传动润滑的目的齿轮传动时,相啮合的齿面间有相对滑动,因此就会产生摩擦和磨损,增加动力消耗,降低传动效率。

对齿轮传动进行润滑,就是为了避免金属直接接触,减少摩擦磨损,同时还可以起到散热和防锈蚀的目的。

二、齿轮传动的润滑方式开式及半开式齿轮传动或速度较低的闭式齿轮传动,通常采用人工周期性加油润滑。

通用的闭式齿轮传动,常采用浸油润滑和喷油润滑。

当齿轮的圆周速度v<12m/s时,常将大齿轮的轮齿进入油池中进行浸油润滑。

齿轮浸入油中的深度可视齿轮的圆周速度大小而定,对圆柱齿轮通常不宜超过一个齿高,但一般亦不应小于10mm;对圆锥齿轮应浸入全齿宽,至少应浸入齿宽的一半。

在多级齿轮传动中,可借带油轮将油带到未进入油池内的齿轮的齿面上。

当齿轮的圆周速度v>12m/s时,应采用喷油润滑,即由油泵或中心油站以一定的压力供油,借喷嘴将润滑油喷到轮齿的啮合面上。

当v≤25m/s,喷嘴位于轮齿啮入边或啮出边均可;当v>25m/s时,喷嘴应位于轮齿啮出的一边,以便借润滑油及时冷却刚啮合过的轮齿,同时亦对轮齿进行润滑。

润滑剂的选择:齿轮传动常用的润滑剂为润滑油或润滑脂。

选用时,应根据齿轮的工作情况(转速高低、载荷大小、环境温度等),选择润滑剂的粘度、牌号。

作业1.常见的齿轮失效有哪些形式?2. 齿轮强度设计准则是根据什么确定的?有哪些准则?3. 通常软齿面与硬齿面的硬度界限是如何划分的?4. 在进行齿轮强度计算时,为什么要引入载荷系数K?载荷系数K由哪几部分组成?5. 为什么齿面点蚀一般首先发生在靠近节线的齿根面上? 为什么?6. P233 题10-57:P234 题10-68:两级斜齿圆柱齿轮减速器,其布置方式如图,问:1)低速级斜齿轮的螺旋方向如何选才能使中间轴Ⅱ上两齿轮所受的轴向力方向相反?(在图上画出)2)低速级小齿轮β2应取多大值,才能使中间轴Ⅱ上轴向力相互抵消?9:P233 题10-110:图示为直齿锥齿轮一斜齿圆柱齿轮减速器,齿轮1主动,转向如图示。

机械设计复习参考题(第10章齿轮传动)

机械设计复习参考题(第10章齿轮传动)

例 10-7 图 1
解: (1) 各轮的转向和2轮的螺向如例10-8图2所示。 (2) 3轮为左旋、4轮为右旋,如图所示。 (3) 齿轮2、3 所受的各个分力如图所示。 (4) 求齿轮3所受分力: n nz 960 × 22 n3 = n 2 = 1 = 1 1 = = 222.3 r/min i12 z2 95

沙 大 学
2 KT1 (u + 1) ≤ [σ H ] bd 12 u
1
MPa ,重合度系数 Z ε =0.9,是按接触疲劳强度,求该齿轮传动传
提示:接触疲劳强度校核公式为
σ H = Z E Z H Zε
2 KT1 (u + 1) bd12 u
≤ [σ H ]
解:由已知条件: u = z2 / z1 = 75/25 = 3 d1 = m z1 = 3×25 = 75 mm b =φd d1 = 1×75 = 75 mm 因为大齿轮的许用接触应力较低,故按大齿轮计算承载能力:
解: (1) 两轮所受分力的方向如例10-8图2所示。 (2) 求各个分力的大小: P 3 T1 = 9550 = 9550 × = 29.844 Nm n1 960
d m1 = mz1 (1 − 0.5φ R ) = 4 × 28 × (1 − 0.5 × 0.3) = 95.2 mm tan δ 1 = z1 / z 2 = 0.5833 , δ 1 = 30.2564° = 30°15′23′′ 2T1 2 × 29.844 × 10 3 = = 627 N d m1 95.2 Fr1 = Ft1 tan α cos δ 1 = 627 × tan 20° × cos 30.2564° = 197 N Fr1 = Ft1 tan α sin δ 1 = 627 × tan 20° × sin 30.2564° = 115 N Ft1 =

机械设计第十章课后题答案

机械设计第十章课后题答案

一、课本10-2 解:(1)B 轮是惰轮,齿根弯曲应力是对称循环变应力。

查图10-21d),接触疲劳极限应力MPa 580lim =H σ,弯曲疲劳极限应力MPa 3084407.0=⨯=FE σ。

许用应力为:MPa 58015801][lim =⨯==S K H HN H σσ;MPa 2964.13081][=⨯==S K FE FN F σσ (2)B 轮是主动轮,齿根弯曲应力是脉动循环变应力。

查图10-21d),接触疲劳极限应力MPa 580lim =H σ,弯曲疲劳极限应力MPa 440=FE σ。

许用应力为:MPa 58015801][lim =⨯==S K H HN H σσ;MPa 3144.1440][===S K FE FN F σσ 如齿轮的工作寿命不是无限寿命时,上述两种情况下的许用应力值均相应增大。

二、课本10-7 解:该齿轮传动的承载能力由齿面接触强度所限定。

1.计算按齿面接触强度所限定的转矩,由式(10-21)得:()2311][12⎪⎪⎭⎫ ⎝⎛⋅+≤E H H d z z u K u d T σεφα1)小齿轮分度圆直径 mm 95.145229cos 246cos 11='︒⨯==βz m d n 。

2)齿宽系数 096.195.1451601===d b d φ。

3)查图10-26,765.01=αε,925.02=αε端面重合度 685.1925.0765.021=+=+=αααεεε。

4)齿数比 5.42410812===z z u 。

5)由表10-6查得材料的弹性影响系数 21MPa 8.189=E z 。

6)由图10-30查得区域系数 455.2=H z 。

7)小齿轮合金钢调质260HBS ,由图10-21d 查得小齿轮的接触疲劳极限MPa 5801lim =H σ;大齿轮碳钢调质220HBS ,由图10-21d 查得大齿轮的接触疲劳极限MPa 5202lim =H σ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

σlim 齿轮的疲劳极限
S 安全系数
弯曲强度计算时: S= S F=1.25~1.50; σlim=σFE
接触强度计算时: S= S H=1.0;
σlim=σHlim
三.齿轮精度的选择
齿轮共分12个精度等级,1级精度最高,12级精度最低。
按载荷及速度推荐的齿轮传动精度等级
标准斜齿圆柱齿轮强度计算
Fr Ft tan
Fn
Ft
cos
Ft2 Ft1, Fr2 Fr1, Fn2 Fn1
方向:
Ft1与ω1 反向(阻力)
圆周力Ft Ft2与ω2同向(动力)
径向力Fr:指向各自轮心
练习: n1
F
n2
Ft1⊙○FF×rr12Ft2n1 n2
二.齿根弯曲疲劳强度计算
齿根弯曲应力
方向:Ft、Fr与直齿轮相同
Fa1:用左、右手定则:四指为ω1方向,拇指为Fa1方向。 :左旋用左手,右旋用右手
Fa2:与Fa1反向,不能对从动轮运用左右手定则。 练习:
右旋 n1
FtF1 a1⊙
Fr1 F○×r2 FFat22
n2
Fa2Ft1⊙○FF×rr12Ft2Fna11 n2
二.计算载荷
pca
点击播 放动画
§10-1 齿轮传动概述 §10-2 齿轮传动的失效形式及设计准则 §10-3 齿轮的材料及其选择原则 §10-4 齿轮传动的计算载荷 §10-5 标准直齿圆柱齿轮传动的强度计算 §10-6 齿轮传动设计参数、许用应力与精度选择 §10-7 标准斜齿圆柱齿轮传动的强度计算 §10-8 标准锥齿轮传动的强度计算 §10-9 齿轮的结构设计 §10-10 齿轮传动的润滑
H
斜齿圆柱齿轮法面曲率半径
设计公式
d1
3
2KT1

u
u
1
zE
zH
H
2
标准锥齿轮强度计算
一.设计参数
大端参数为标准值
1 2 90 时
u
z2 z1
d2 d1
cot 1
tan 2
R
d1
2
2
d2 2
2
d1
u2 1 2
dm1 dm2 R 0.5b 1 0.5 b
齿轮传动概述
一.齿轮传动的主要特点
传动效率高,可达99%。 结构紧凑。 齿轮传动工作可靠,寿命长。 传动比稳定。 齿轮的制造及安装精度要求高,价格较贵。
二.齿轮传动的分类
按齿轮类型分
点击播 放动画
点击播 放动画
直齿圆柱齿轮传动
斜齿圆柱齿轮传动
点击播 放动画
点击播 放动画
人字齿轮传动
锥齿轮传动
K
载荷系数 K KAKVKαKβ
p
平均载荷
Fn
作用于齿面接触线上的法向载荷
L
沿齿面的接触线长
KA ─使用系数 Kα─齿间载荷分配系数
Kv ─动载系数 Kβ─齿向载荷分布系数
标准直齿圆柱齿轮强度计算
一.轮齿的受力分析
以节点 P 处的啮合力为分析对象,并不计啮合轮齿间的摩擦力,可得:
Ft
2T1 d1
从动齿—节线起脊
主动齿—节线出沟
二.设计准则
按主要失效形式进行设计计算,按其他失效形式进行校核计算
闭式软齿面齿轮传动,按齿面接触强度设计,按齿根弯曲强度校核。 闭式硬齿面齿轮传动,按齿根弯曲强度设计,按齿面接触强度校核。 开式齿轮传动,按齿根弯曲强度设计。
齿轮材料及选取原则
一.选材的基本要求
齿面硬,齿芯 韧
F
斜齿圆柱齿轮轮齿受载及折断
YFa、YSa应按当量齿数zv=z/cos3查表确定
四.齿面接触疲劳强度计算
节点处的法面曲率半径为:
n
t cos b
d sin t 2 cos b
1 1 1 2 cos b u 1 Σ n1 n2 d1 sin t u
校核公式
H
KFt
bd1α
u
u
1
zE
zH
二.常用材料
优质碳钢、合金钢、铸钢、 铸铁、非金属材料
三.选择材料的基本原则
满足工作条件的 要求,如强度、 寿命、可靠性、 经济性等;
考虑齿轮尺寸大 小,毛坯成型方 法及热处理和制 造工艺;
钢制软齿面两配对 齿轮,其齿面硬度 相差30-50HBS或 更多。
计算载荷
pca
Kp
KFn L
pca
计算载荷
按装置形式
开式传动、半开式传动、闭式传动。
按齿面硬度分
软齿面齿轮(齿面硬度≤350HBS) 硬齿面齿轮(齿面硬度>350HBS)
失效形式及设计准则
一.齿轮的主要失效形式
轮齿折断

F
部 折

整 体 折 断 齿根裂纹起始点
齿面点蚀
齿面胶合
齿面出现沟痕
点蚀实例 胶合实例
齿面磨损
过度磨损
塑性变形
磨损实例
KFn L
为所有啮合轮齿上接触线长度之和,
L b cos b

pca
KFn L
bα cos b
KFt
cost cos b
KFt
bα cost
三.齿根弯曲疲劳强度计算
校核公式
螺旋角影响系数
F
KFtYFaYSa Y
bmnα
F
设计公式
mn 3
2KT1Y cos2 d z12α
• YFaYSa
一.轮齿的受力分析
Ft
2T1 d1
F ' F t 2T1
cos d1 cos
Fr
F ' tan n
2T1 tan n d1 cos
Fa
Ft
tan
2T1 tan d1
Fn
F'
cos n
2T1
d1 cosn cos
Ft2 Ft1, Fr2 Fr1, Fa2 Fa1, Fn2 Fn1
F0
KFtYFa bm
齿形系数 取决于轮齿形状, 与模数m无关
校核公式
应力校正系数
F
KFtYFaYsa bm
设计公式
[ F ]
考虑齿根应力集 中、其余应力对
F的影响。
m
3
2KT1
d Z12
YFaYsa
[ F ]
齿宽系数
d
b d1
齿根应力图
三.齿面接触疲劳强度计算
赫兹应力计算公式
H
在节点啮合时,接触应力较大, 故以节点为接触应力计算点。
Fca
(
1
1
1
2
)
(1
12
1
2 2
)L
E1
E1
节点处的综合曲率半径为:
d1 sin 2
u u 1
齿数比
校核公式
H
区域系数
KFt bd1
u 1 u ZEZH
[ H ]
弹性影响系数
设计公式
d1
3
2KT1
d
u 1(ZHZE
u [ H ]
)2
zE
1
1
12 E1
1
2 2
E2
设计参数、许用应力、精度选择
一.设计参数的选择
压力角通常取20°
闭式齿轮传动 z1=20~40 齿数
开式齿轮传动 z1=17~20
齿宽系数d 取值适当
二.许用应力
KN Lim
S
KN 寿命系数,是应力循环次数N对疲劳极限的影响系数;
N 60njLh
n为齿轮的转数,单位为r/min; j为齿轮每转一圈,同一齿面啮合的次数; Lh为齿轮的工作寿命,单位为小时。
相关文档
最新文档