二叉树的构造方法

合集下载

二叉树的基本操作课件浙教版(2019)高中信息技术选修1(24张PPT)

二叉树的基本操作课件浙教版(2019)高中信息技术选修1(24张PPT)
如下图所示的是二叉树及其对应的二叉链表实现示意图。
A
B
D
C
E
F
G
头指针
二叉树的list实现
二叉树节点可以看成是一个三元组,元素是左、右子树和本节点数据。
Python的list可以用于组合这样的三个元素。
下面介绍用list构造二叉树的方法。
(1)空树用None表示。
(2)非空二叉树用包含三个元素的列表[d,l,r]表示,其中:d表示根节点的元素,l和r是两棵子树,采用与整个二叉树同样结构的list表示。
二叉树的遍历
在完成二叉树的建立操作后,就可以对二叉树的各个节点进行访问,即遍历操作。二叉树的遍历,是指按照一定的规则和次序访问二叉树中的所有节点,使得每个节点都被访问一次且仅被访问一次。按照不同的遍历方式对节点进行访问,其处理效率不完全相同。二叉树的遍历方式有很多,主要有前序遍历、中序遍历和后序遍历等。
1.数组实现
用数组来表示二叉树时,分为以下两种情况。
(1)完全二叉树从二叉树的根节点开始,按从上而下、自左向右的顺序对n个节点进行编号,根节点的编号为0,最后一个节点的编号为n-1。然后依次将二叉树的节点用一组连续的数组元素来表示,节点编号与数组的下标一一对应。如下图中图甲所示的完全二叉树所对应的一维数组表示如图乙所示。
A
B
C
A
B
C
甲 原二叉树
乙 补全后的二叉树
0
1
2
3
4
5
6
7
丙 数组实现示意图
A
B
C
对于完全二叉树而言,一维数组的表示方式既简单又节省存储空间。但对于一般的二叉树来说,采用一维数组表示时,结构虽然简单,却容易造成存储空间的浪费。

二叉树的建立与基本操作

二叉树的建立与基本操作

二叉树的建立与基本操作二叉树是一种特殊的树形结构,它由节点(node)组成,每个节点最多有两个子节点。

二叉树的基本操作包括建立二叉树、遍历二叉树、查找二叉树节点、插入和删除节点等。

本文将详细介绍二叉树的建立和基本操作,并给出相应的代码示例。

一、建立二叉树建立二叉树有多种方法,包括使用数组、链表和前序、中序、后序遍历等。

下面以使用链表的方式来建立二叉树为例。

1.定义二叉树节点类首先,定义一个二叉树节点的类,包含节点值、左子节点和右子节点三个属性。

```pythonclass Node:def __init__(self, value):self.value = valueself.left = Noneself.right = None```2.建立二叉树使用递归的方法来建立二叉树,先构造根节点,然后递归地构造左子树和右子树。

```pythondef build_binary_tree(lst):if not lst: # 如果 lst 为空,则返回 Nonereturn Nonemid = len(lst) // 2 # 取 lst 的中间元素作为根节点的值root = Node(lst[mid])root.left = build_binary_tree(lst[:mid]) # 递归构造左子树root.right = build_binary_tree(lst[mid+1:]) # 递归构造右子树return root```下面是建立二叉树的示例代码:```pythonlst = [1, 2, 3, 4, 5, 6, 7]root = build_binary_tree(lst)```二、遍历二叉树遍历二叉树是指按照其中一规则访问二叉树的所有节点,常见的遍历方式有前序遍历、中序遍历和后序遍历。

1.前序遍历前序遍历是指先访问根节点,然后访问左子节点,最后访问右子节点。

```pythondef pre_order_traversal(root):if root:print(root.value) # 先访问根节点pre_order_traversal(root.left) # 递归访问左子树pre_order_traversal(root.right) # 递归访问右子树```2.中序遍历中序遍历是指先访问左子节点,然后访问根节点,最后访问右子节点。

二叉树模型介绍

二叉树模型介绍



5)偏离均衡价格时的套利: 如果期权的价值超过了$0.633,构造该 组合的成本就有可能低于$4.367,并将 获得超过无风险利率的额外收益; 如果期权的价值低于$0.633,那么卖空 该证券组合将获得低于无风险利率的资 金。
2、一般结论
1)条件: 考虑一个无红利支付的股票,股 票价格为S。 基于该股票的某个衍生证券的当 前价格为f。 假设当前时间为零时刻,衍生证 券给出了在T时刻的盈亏状况 。

看跌期权的价值是$4.1923。 利用每个单步二步二叉树向回倒推算, 也可以得到这个结果。
四、美式期权


1、方法: 从树图的最后末端向开始的起点倒推计 算。 在每个节点检验提前执行是否最佳。 在最后节点的期权价值与欧式期权在最 后节点的期权价值相同。


在较早的一些节点,期杈的价值是取如 下两者之中较大者: 1).由公式f=e-rT[pfu+(1-p)fd] 求出的值。 2).提前执行所得的收益。
该组合的现值 ( S u f u )e S f
rT
该组合的成本
则有: S f (Su f u )e
rT
rT
得到: f e [ pfu (1 p) f d ]
d 其中 : p ud e
rT
3、股票预期收益的无关性


衍生证券定价公式没有用到股票上升和 下降的概率。 人们感觉:假设如果股票价格上升的概 率增加,基于该股票的看涨期权价值也 增加,看跌期权的价值则减少。



3、风险中性估值(risk-neutralvaluation): 把金融资产放在风险中性的世界去估值 即为期权和其它衍生证券估值时,世界 是风险中性的。 在风险中性世界中得到的价格,在现实 世界中也是正确的。

最优二叉树(哈夫曼树)的构建及编码

最优二叉树(哈夫曼树)的构建及编码

最优⼆叉树(哈夫曼树)的构建及编码参考:数据结构教程(第五版)李春葆主编⼀,概述1,概念 结点的带权路径长度: 从根节点到该结点之间的路径长度与该结点上权的乘积。

树的带权路径长度: 树中所有叶结点的带权路径长度之和。

2,哈夫曼树(Huffman Tree) 给定 n 个权值作为 n 个叶⼦结点,构造⼀棵⼆叉树,若该树的带权路径长度达到最⼩,则称这样的⼆叉树为最优⼆叉树,也称为哈夫曼树。

哈夫曼树是带权路径长度最短的树,权值较⼤的结点离根较近。

⼆,哈夫曼树的构建1,思考 要实现哈夫曼树⾸先有个问题摆在眼前,那就是哈夫曼树⽤什么数据结构表⽰? ⾸先,我们想到的肯定数组了,因为数组是最简单和⽅便的。

⽤数组表⽰⼆叉树有两种⽅法: 第⼀种适⽤于所有的树。

即利⽤树的每个结点最多只有⼀个⽗节点这种特性,⽤ p[ i ] 表⽰ i 结点的根节点,进⽽表⽰树的⽅法。

但这种⽅法是有缺陷的,权重的值需要另设⼀个数组表⽰;每次找⼦节点都要遍历⼀遍数组,⼗分浪费时间。

第⼆种只适⽤于⼆叉树。

即利⽤⼆叉树每个结点最多只有两个⼦节点的特点。

从下标 0 开始表⽰根节点,编号为 i 结点即为 2 * i + 1 和 2 * i + 2,⽗节点为 ( i - 1) / 2,没有⽤到的空间⽤ -1 表⽰。

但这种⽅法也有问题,即哈夫曼树是从叶结点⾃下往上构建的,⼀开始树叶的位置会因为⽆法确定⾃⾝的深度⽽⽆法确定,从⽽⽆法构造。

既然如此,只能⽤⽐较⿇烦的结构体数组表⽰⼆叉树了。

typedef struct HTNode // 哈夫曼树结点{double w; // 权重int p, lc, rc;}htn;2,算法思想 感觉⽐较偏向于贪⼼,权重最⼩的叶⼦节点要离根节点越远,⼜因为我们是从叶⼦结点开始构造最优树的,所以肯定是从最远的结点开始构造,即权重最⼩的结点开始构造。

所以先选择权重最⼩的两个结点,构造⼀棵⼩⼆叉树。

然后那两个最⼩权值的结点因为已经构造完了,不会在⽤了,就不去考虑它了,将新⽣成的根节点作为新的叶⼦节加⼊剩下的叶⼦节点,⼜因为该根节点要能代表整个以它为根节点的⼆叉树的权重,所以其权值要为其所有⼦节点的权重之和。

树-二叉树

树-二叉树

信息学奥赛培训之『树——二叉树』树——二叉树为何要重点研究二叉树? 引 : 为何要重点研究二叉树 ? (1)二叉树的结构最简单,规律性最强; (2)可以证明,所有树都能转为唯一对应的二叉树,不失一般性。

一、二叉树基础1. 二叉树的定义 二叉树是一类非常重要的树形结构,它可以递归地定义如下: 二叉树 T 是有限个结点的集合,它或者是空集,或者由一个根结点以及分别称为左 子树和右子树的两棵互不相交的二叉树。

因此,二叉树的根可以有空的左子树或空的右子树,或者左、右子树均为空。

二叉树有 5 种基本形态,如图 1 所示。

图1 二叉树的 5 种基本形态在二叉树中,每个结点至多有两个儿子,并且有左、右之分。

因此任一结点的儿子 不外 4 种情况:没有儿子;只有一个左儿子;只有一个右儿子;有一个左儿子并且有一 个右儿子。

注意:二叉树与树和有序树 的区别 二叉树与度数不超过 2 的树不同,与度数不超过 2 的有序树也不同。

在有序树中,11如果将树中结点的各子树看成从左至右是有次序的,则称该树为有序树,否则称为无序树。

-1-信息学奥赛培训之『树——二叉树』虽然一个结点的儿子之间是有左右次序的,但若该结点只有一个儿子时,就无须区分其 左右次序。

而在二叉树中,即使是一个儿子也有左右之分。

例如图 2-1 中(a)和(b)是两棵 不同的二叉树。

虽然它们与图 2-2 中的普通树(作为无序树或有序树)很相似,但它们却 不能等同于这棵普通的树。

若将这 3 棵树均看作是有序树,则它们就是相同的了。

图2-1 两棵不同的二叉树图2-2 一棵普通的树由此可见,尽管二叉树与树有许多相似之处,但二叉树不是树的特殊情形。

不是 ..2. 二叉树的性质图3 二叉树性质1: 在二叉树的第 i 层上至多有 2 i −1 结点(i>=1)。

性质2: 深度为 k 的二叉树至多有 2 k − 1 个结点(k>=1)。

性质3: 对任何一棵二叉树 T,如果其终端结点数为 n0,度为 2 的结点数为 n2,则 n0=n2+1。

数据结构之二叉树(BinaryTree)

数据结构之二叉树(BinaryTree)

数据结构之⼆叉树(BinaryTree)⽬录导读 ⼆叉树是⼀种很常见的数据结构,但要注意的是,⼆叉树并不是树的特殊情况,⼆叉树与树是两种不⼀样的数据结构。

⽬录 ⼀、⼆叉树的定义 ⼆、⼆叉树为何不是特殊的树 三、⼆叉树的五种基本形态 四、⼆叉树相关术语 五、⼆叉树的主要性质(6个) 六、⼆叉树的存储结构(2种) 七、⼆叉树的遍历算法(4种) ⼋、⼆叉树的基本应⽤:⼆叉排序树、平衡⼆叉树、赫夫曼树及赫夫曼编码⼀、⼆叉树的定义 如果你知道树的定义(有限个结点组成的具有层次关系的集合),那么就很好理解⼆叉树了。

定义:⼆叉树是n(n≥0)个结点的有限集,⼆叉树是每个结点最多有两个⼦树的树结构,它由⼀个根结点及左⼦树和右⼦树组成。

(这⾥的左⼦树和右⼦树也是⼆叉树)。

值得注意的是,⼆叉树和“度⾄多为2的有序树”⼏乎⼀样,但,⼆叉树不是树的特殊情形。

具体分析如下⼆、⼆叉树为何不是特殊的树 1、⼆叉树与⽆序树不同 ⼆叉树的⼦树有左右之分,不能颠倒。

⽆序树的⼦树⽆左右之分。

2、⼆叉树与有序树也不同(关键) 当有序树有两个⼦树时,确实可以看做⼀颗⼆叉树,但当只有⼀个⼦树时,就没有了左右之分,如图所⽰:三、⼆叉树的五种基本状态四、⼆叉树相关术语是满⼆叉树;⽽国际定义为,不存在度为1的结点,即结点的度要么为2要么为0,这样的⼆叉树就称为满⼆叉树。

这两种概念完全不同,既然在国内,我们就默认第⼀种定义就好)。

完全⼆叉树:如果将⼀颗深度为K的⼆叉树按从上到下、从左到右的顺序进⾏编号,如果各结点的编号与深度为K的满⼆叉树相同位置的编号完全对应,那么这就是⼀颗完全⼆叉树。

如图所⽰:五、⼆叉树的主要性质 ⼆叉树的性质是基于它的结构⽽得来的,这些性质不必死记,使⽤到再查询或者⾃⼰根据⼆叉树结构进⾏推理即可。

性质1:⾮空⼆叉树的叶⼦结点数等于双分⽀结点数加1。

证明:设⼆叉树的叶⼦结点数为X,单分⽀结点数为Y,双分⽀结点数为Z。

数据结构二叉排序树

数据结构二叉排序树

05
13
19
21
37
56
64
75
80
88
92
low mid high 因为r[mid].key<k,所以向右找,令low:=mid+1=4 (3) low=4;high=5;mid=(4+5) div 2=4
05
13
19
low
21
37
56
64
75
80
88
92
mid high
因为r[mid].key=k,查找成功,所查元素在表中的序号为mid 的值
平均查找长度:为确定某元素在表中某位置所进行的比 较次数的期望值。 在长度为n的表中找某一元素,查找成功的平均查找长度:
ASL=∑PiCi
Pi :为查找表中第i个元素的概率 Ci :为查到表中第i个元素时已经进行的比较次数
在顺序查找时, Ci取决于所查元素在表中的位置, Ci =i,设每个元素的查找概率相等,即Pi=1/n,则:
RL型的第一次旋转(顺时针) 以 53 为轴心,把 37 从 53 的左上转到 53 的左下,使得 53 的左 是 37 ;右是 90 ,原 53 的左变成了 37 的右。 RL型的第二次旋转(逆时针)
一般情况下,假设由于二叉排序树上插入结点而失去 平衡的最小子树的根结点指针为a(即a是离插入结点最 近,且平衡因子绝对值超过1的祖先结点),则失去平衡 后进行调整的规律可归纳为下列四种情况: ⒈RR型平衡旋转: a -2 b -1 h-1 a1
2.查找关键字k=85 的情况 (1) low=1;high=11;mid=(1+11) / 2=6
05
13
19
21

二叉排序树的构造方法

二叉排序树的构造方法

二叉排序树的构造方法二叉排序树又称二叉查找树,是一种经典的数据结构,它具有快速的插入、删除和查找等操作。

在实际应用中,二叉排序树被广泛地使用,因此了解二叉排序树的构造方法至关重要。

本文将介绍二叉排序树的构造方法,帮助读者深入理解这一数据结构。

一、二叉排序树基本概念二叉排序树是一种二叉树,每个节点包含一个值,并且满足以下性质:1. 左子树上所有节点的值均小于其父节点的值;2. 右子树上所有节点的值均大于其父节点的值;3. 左右子树也分别为二叉排序树。

根据上述性质,可以得出二叉排序树的中序遍历结果为有序序列。

这一特点使得二叉排序树成为一种非常有效的数据结构,用于快速查找和排序。

二、二叉排序树的构造方法在构造二叉排序树时,一般采用递归或循环遍历的方法。

下面将分别介绍这两种构造方法。

1. 递归构造方法递归构造方法是一种常见且直观的构造二叉排序树的方式。

其基本原理为,将新节点插入到当前节点的左子树或右子树上,直至找到合适的位置。

具体流程如下所示:(1)若二叉排序树为空,直接将新节点作为根节点插入;(2)若新节点值小于当前节点值,则递归地将其插入到左子树上;(3)若新节点值大于当前节点值,则递归地将其插入到右子树上。

通过递归构造方法,可以很方便地构造出一棵满足二叉排序树性质的树。

2. 循环构造方法循环构造方法是另一种构造二叉排序树的方式,通过使用迭代的方式,逐步构建二叉排序树。

其基本思路为:(1)从根节点开始,若树为空,则直接将新节点插入为根节点;(2)若树不为空,则利用循环遍历的方式,找到新节点应插入的位置,直至找到合适的叶子节点;(3)将新节点插入到找到的叶子节点的左子树或右子树上。

循环构造方法相对于递归构造方法,更加迭代化,适合于对二叉排序树进行迭代构造和遍历。

三、二叉排序树构造方法的实现在实际编程中,可以通过使用递归或循环的方式,实现二叉排序树的构造。

下面将简要介绍二叉排序树构造方法的实现过程。

1. 递归实现递归实现二叉排序树的构造方法一般通过编写递归函数,不断地将新节点插入到当前节点的左子树或右子树上。

数据结构——- 二叉树

数据结构——- 二叉树

证明: 5.1 二叉树的概念
(1)总结点数为 ●二叉树的主要性质 n=n0+n1+n2 (2)除根结点外,每个 ●性质3: 结点都有一个边e进入 任何一棵二叉树,若其终端结点数为n0, n=e+1 度为2的结点数为n2,则n0=n2+1 (3)边e又是由度为1或2 A 的点射出,因此 e=n1+2n2 G B (4)由(2)(3) F C D n=n1+2n2+1 (5)由(4)-(1)可得 G n0=n2+1
《数据结构与算法》
★★★★★
第五章 二叉树
廊坊师范学院 数学与信息科学学院
树型结构--实例:五子棋
A
B
D
E
F
C
…...........
…...........
第五章 二叉树
本章重点难点
重点: 二叉树的定义,性质,存储结 构以及相关的应用——遍历,二叉搜 索树,堆优先 队列,Huffman树等 难点: 二叉树的遍历算法及相关应用
证明: 5.1 二叉树的概念
(1)总结点数为 ●二叉树的主要性质 n=n0+n1+n2 (2)除根结点外,每个 ●性质3: 结点都有一个边e进入 任何一棵二叉树,若其终端结点数为n0, n=e+1 度为2的结点数为n2,则n0=n2+1 (3)边e又是由度为1或2 A 的点射出,因此 e=n1+2n2 G B (4)由(2)(3) F C D n=n1+2n2+1 (5)由(4)-(1)可得 G n0=n2+1
A B C E D F G
证明: 由性质4可推出
由性质2(深度为k的 二叉树,至多有2k+1-1 个结点)可知,高度 为h(k+1)的二叉树,其 有n (n>0)个结点的完全二叉树的高度为 结点个数n满足: 「log2(n+1) ,深度为「log2(n+1) -1 2h-1-1<n<=2h-1 高度:二叉树中最大叶结点的层数+1 2h-1<n+1<=2h 取对数得到: 0层 1 h-1<log2(n+1)<=h 3 1层 2 因为h是整数,所以 h= log2(n+1) 5 2层 4

二叉树

二叉树

平衡树——特点:所有结点左右子树深度差≤1排序树——特点:所有结点―左小右大字典树——由字符串构成的二叉排序树判定树——特点:分支查找树(例如12个球如何只称3次便分出轻重)带权树——特点:路径带权值(例如长度)最优树——是带权路径长度最短的树,又称Huffman树,用途之一是通信中的压缩编码。

1.1 二叉排序树:或是一棵空树;或者是具有如下性质的非空二叉树:(1)若左子树不为空,左子树的所有结点的值均小于根的值;(2)若右子树不为空,右子树的所有结点均大于根的值;(3)它的左右子树也分别为二叉排序树。

例:二叉排序树如图9.7:二叉排序树的查找过程和次优二叉树类似,通常采取二叉链表作为二叉排序树的存储结构。

中序遍历二叉排序树可得到一个关键字的有序序列,一个无序序列可以通过构造一棵二叉排序树变成一个有序序列,构造树的过程即为对无序序列进行排序的过程。

每次插入的新的结点都是二叉排序树上新的叶子结点,在进行插入操作时,不必移动其它结点,只需改动某个结点的指针,由空变为非空即可。

搜索,插入,删除的复杂度等于树高,期望O(logn),最坏O(n)(数列有序,树退化成线性表).虽然二叉排序树的最坏效率是O(n),但它支持动态查询,且有很多改进版的二叉排序树可以使树高为O(logn),如SBT,AVL,红黑树等.故不失为一种好的动态排序方法.2.2 二叉排序树b中查找在二叉排序树b中查找x的过程为:1. 若b是空树,则搜索失败,否则:2. 若x等于b的根节点的数据域之值,则查找成功;否则:3. 若x小于b的根节点的数据域之值,则搜索左子树;否则:4. 查找右子树。

[cpp]view plaincopyprint?1.Status SearchBST(BiTree T, KeyType key, BiTree f, BiTree &p){2. //在根指针T所指二叉排序樹中递归地查找其关键字等于key的数据元素,若查找成功,3. //则指针p指向该数据元素节点,并返回TRUE,否则指针P指向查找路径上访问的4. //最好一个节点并返回FALSE,指针f指向T的双亲,其初始调用值为NULL5. if(!T){ p=f; return FALSE;} //查找不成功6. else if EQ(key, T->data.key) {P=T; return TRUE;} //查找成功7. else if LT(key,T->data.key)8. return SearchBST(T->lchild, key, T, p); //在左子树继续查找9. else return SearchBST(T->rchild, key, T, p); //在右子树继续查找10.}2.3 在二叉排序树插入结点的算法向一个二叉排序树b中插入一个结点s的算法,过程为:1. 若b是空树,则将s所指结点作为根结点插入,否则:2. 若s->data等于b的根结点的数据域之值,则返回,否则:3. 若s->data小于b的根结点的数据域之值,则把s所指结点插入到左子树中,否则:4. 把s所指结点插入到右子树中。

线索二叉树

线索二叉树

6·4 线索二叉树1、线索二叉树的结点结构二叉树的遍历本质上是将一个复杂的非线性结构转换为线性结构,使每个结点都有了唯一前驱和后继(第一个结点无前驱,最后一个结点无后继)。

对于二叉树的一个结点,查找其左右子女是方便的,其前驱后继只有在遍历中得到。

为了容易找到前驱和后继,有两种方法。

一是在结点结构中增加向前和向后的指针fwd和bkd,这种方法增加了存储开销,不可取;二是利用二叉树的空链指针。

现将二叉树的结点结构重新定义如下:其中:ltag=0 时ltag=1 时lchild指向前驱;rtag=0 时rchild指向左子女;rtag=1 时rchild指向后继;以这种结点结构构成的二叉链表作为二叉树的存储结构,叫做线索链表,指向前驱和后继的指针叫线索,加上线索的二叉树叫线索二叉树,对二叉树进行某种形式遍历使其变为线索二叉树的过程叫线索化。

学习线索化时,有三点必须注意:一是何种“序”的线索化,是先序、中序还是后序;二是要“前驱”线索化、“后继”线索化还是“全”线索化(前驱后继都要);三是只有空指针处才能加线索。

2、对二叉树进行中序线索化的算法bithptr *pre; /* 全程变量*/void INTHREAD(bithptr *p){if(p!=NULL){ INTHREAD(p->lchild); /* 左子树线索化*/if(p->lchild==NULL) { p->ltag=1;p->lchild=pre;}if(p->rchild==NULL) p->rtag=1;if(pre!=NULL && pre->rtag==1) pre->rchild=p;pre=p; /* 前驱指向当前结点*/INTHREAD(p->rchild); /* 右子树线索化*/}3、在线索二叉树上查找前驱和后继(1)中序线索二叉树:若结点的ltag=1,lchild指向其前驱;否则,该结点的前驱是以该结点为根的左子树上按中序遍历的最后一个结点。

【数据结构】二叉树

【数据结构】二叉树

【数据结构】⼆叉树【⼆叉树】 ⼆叉树是最为简单的⼀种树形结构。

所谓树形结构,其特征(部分名词的定义就不明确给出了,毕竟不是学术⽂章。

)在于: 1. 如果是⾮空的树形结构,那么拥有⼀个唯⼀的起始节点称之为root(根节点) 2. 除了根节点外,其他节点都有且仅有⼀个“⽗节点”;除此外这些节点还都可以有0到若⼲个“⼦节点” 3. 树中的所有节点都必须可以通过根节点经过若⼲次后继操作到达 4. 节点之间不会形成循环关系,即任意⼀个节点都不可能从⾃⾝出发,经过不重复的径路再回到⾃⾝。

说明了树形结构内部蕴含着⼀种“序”,但是不是线性表那样的“全序” 5. 从树中的任意两个节点出发获取到的两个任意⼦树,要不两者⽆交集,要不其中⼀者是另⼀者的⼦集 限定到⼆叉树,⼆叉树就是任意⼀个节点⾄多只能有两个⼦节点的树形结构。

也就是说,某个节点的⼦节点数可以是0,1或2。

由于可以有两个⼦节点,所以区别两个⼦节点可以将其分别定义为左⼦节点和右⼦节点。

但是需要注意的是,若⼀个节点只有⼀个⼦节点,那么也必须明确这个⼦节点是左⼦节点还是右⼦节点。

不存在“中⼦节点”或者“单⼦节点”这种表述。

由于上述规则对所有节点都⽣效,所以⼆叉树也是⼀个递归的结构。

事实上,递归就是⼆叉树⼀个⾮常重要的特点,后⾯还会提到很多通过递归的思想来建⽴的例⼦。

对于左⼦节点作为根节点的那颗⼆叉树被称为相对本节点的左⼦树,右⼦树是同理。

■ 基本概念 空树 不包含任何节点的⼆叉树,连根节点也没有 单点树 只包含⼀个根节点的⼆叉树是单点树 ⾄于兄弟关系,⽗⼦关系,长辈后辈关系是⼀⾔既明的就不说了。

树中没有⼦节点的节点被称为树叶(节点),其余的则是分⽀节点。

⼀个节点的⼦节点个数被称为“度数”。

正如上所说,⼆叉树任意节点的度数取值可能是0,1或2。

节点与节点之间存在关联关系,这种关联关系的基本长度是1。

通过⼀个节点经过若⼲个关联关系到达另⼀个节点,经过的这些关联关系合起来被称为⼀个路径。

二叉树的构造方法

二叉树的构造方法

二叉树的构造方法
二叉树是一种树形数据结构,其中每个节点最多有两个子节点,分别称为左子节点和右子节点。

下面将介绍二叉树的构造方法。

二叉树的构造方法主要有两种:递归和迭代。

递归构造方法是指从根节点开始,递归地构造二叉树。

具体地,我们可以定义一个函数,该函数接收一个数组或者列表作为输入,返回一个二叉树。

在该函数中,我们首先找到根节点,然后递归地构造左子树和右子树。

每次递归时,输入的数组或列表都会被缩小,直到只剩下一个元素或者没有元素为止。

此时,递归终止,返回一个节点或者空值,作为当前子树的根节点的左子节点或右子节点。

迭代构造方法是指利用栈或队列实现非递归的构造二叉树。

具体地,我们可以定义一个栈或队列,并将根节点入栈或入队。

然后,我们循环地弹出栈或队列的顶部元素,并将其作为当前子树的根节点。

接着,我们检查当前子树是否存在左子树和右子树。

如果存在,我们将左子树和右子树入栈或入队。

循环结束的条件是栈或队列为空。

无论使用递归方法还是迭代方法,构造二叉树的时间复杂度均为O(n),其中n为二叉树的节点数。

但是,递归方法可能会因为递归深度过大
而导致栈溢出的风险,而迭代方法则需要额外的空间来存储栈或队列。

因此,在实际应用中,我们需要根据实际情况选择相应的构造方法。

深度为k(设根的参数为1)的完全二叉树至少有

深度为k(设根的参数为1)的完全二叉树至少有

数据库索引
在一些数据库系统中,为了提高查询 效率,会使用索引结构,其中完全二 叉树可以作为索引的一部分,用于快 速定位数据。
THANKS FOR WATCHING
感谢您的观看
数据结构中的完全二叉树
存储结构
完全二叉树是二叉树的一种特殊形式,其中除最后一层外,每一层都是完全填满的,最后 一层从左到右连续地填入节点。这种结构使得完全二叉树在数据结构中具有高效的空间利 用率和快速的查找性能。
插入与删除
在完全二叉树中插入或删除节点,可以保持树的平衡,从而在应用中提高数据结构的性能 。
深度为k的完全二叉树至少有
目 录
• 完全二叉树的定义 • 深度为k的完全二叉树的特点 • 深度为k的完全二叉树的构造方法 • 深度为k的完全二叉树的节点数目的计算 • 深度为k的完全二叉树的应用场景
01 完全二叉树的定义
完全二叉树的定义
完全二叉树是除最后一层外,其 它层的节点数达到最大,且最后 一层从左向右连续地填入节点。
通过插入节点的方式构造
第0层
插入根节点。
第2层
在每个已插入的节点的左子树 和右子树中分别插入一个节点。
初始化
创建一个空树。
第1层
在根节点的左子树插入一个节 点,在右子树插入一个节点。
第k层
在第k层的每个已插入的节点 的左子树和右子树中分别插入 一个节点。
ห้องสมุดไป่ตู้
04 深度为k的完全二叉树的 节点数目的计算
树的形状
深度决定了树的形状,深度越大的树越宽,但高度不变。
树的平衡性
由于完全二叉树的节点是均匀分布的,因此它是相对平衡的 树结构,有利于查找、插入和删除操作的高效进行。
03 深度为k的完全二叉树的 构造方法

第6章树和二叉树(下)-数据结构简明教程(第2版)-微课版-李春葆-清华大学出版社

第6章树和二叉树(下)-数据结构简明教程(第2版)-微课版-李春葆-清华大学出版社

6.6
【例6.16】 已知先序序列为ABDECFG,中序序列为DBEACGF,
给出构造该二叉树的过程。
解:构造该二叉树的过程如下所示。
根:A 左先序:BDE 右先序:CFG 右中序:DBE 右中序:CGF

叉 树
根:B 左先序:D 右先序:E
根:C 左先序:空 右先序:FG

右中序:D 右中序:E
右子树中
序序列, 有n-k-1 个结点

构 造
若bk前面有k个结点,则左子树有k个结点,右子树有n-k-1 个结点。
可以求出左右子树的中序序列和后序序列。
这样根结点是确定的,左右子树也是确定的,则该二叉树是 确定的。
6.6
【例6.17】 已知一棵二叉树的后序遍历序列为DEBGFCA,
中序遍历序列为DBEACGF,给出构造该二叉树的过程。
间 的
以树的根结点为轴心,将整棵树顺时针转动45度,使之结

构层次分明。

【例6.18】 将图6.27(a)所示的树转换成二叉树。 解:转换的过程:
A
A
6.7
BC D

叉 树
EF
G

一棵树
树 之
A


B


E
C
相邻兄弟之间 加连线(虚线)
BC D
EF
G
删除与双亲 结点的连线
转换后的二叉树
A BC D
【例6.15】 一棵二叉树的先序遍历序列和中序遍历序列相同,
说明该二叉树的形态。
解:二叉树的先序遍历序列为NLR,中序遍历序列为LNR:
NLR = LNR
二 则L应为空(因为N为空后其L、R没有意义)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二叉树的构造方法
2007-07-18
在本节的讨论中,为简化问题,设二叉树中的结点均为一个字符。

将二叉链表中的结点定义为如下结构类型:
struct BiNode
{
char data;
BiNode *lchild, *rchild;
};
建立二叉树可以有多种方法,下面介绍常用的两种方法。

⑴ 方法一:根据二叉树的一个遍历序列来建立二叉树。

只根据二叉树的前序、中序和后序序列中的任何一个都不能唯一确定一棵二叉树,因为不能确定某结点左右子树的情况。

针对以上问题,做如下处理:将二叉树中每个结点的空指针引出一个虚结点,其值为特定值如“#”,以标识其为空,把这样处理后的二叉树称为原二叉树的扩展二叉树。

扩展二叉树的一个遍历序列就能唯一确定这棵二叉树。

图5-7给出了一个二叉树的扩展二叉树,以及该扩展二叉树的前序遍历序列。

假设扩展二叉树的前序遍历序列由键盘输入,root为指向根结点的指针,二叉链表的建立过程是:首先输入根结点,若输入的是一个“#”字符,则表明该二叉树为空树,即root=NULL;否则输入的字符应该赋给root->data,之后依次递归建立它的左子树和右子树。

建立二叉链表的递归算法如下:
⑵方法二:根据二叉树的前序序列和中序序列建立该二叉树。

这个过程是一个递归过程,其基本思想是:先根据前序序列的第一个元素建立根结点;然后在中序序列中找到该元素,确定根结点的左、右子树的中序序列;再在前序序列中确定左、右子树的前序序列;最后由左子树的前序序列与中序序列建立左子树,由右子树的前序序列与中序序列建立右子树。

假设二叉树的前序序列和中序序列分别存放在一维数组pre[n]与pin[n]中,并假设二叉树各结点的字符均不相同,函数pos(x , pin , i)的返回值为在数组pin中从第i个元素开始查找元素值等于x的元素的位置。

建立一棵二叉树的算法如下:
算法的初始调用为Creat (root, 0, 0, n )。

相关文档
最新文档