1平面图形的认识(二)
2020-2021中考数学 平面图形的认识(二)压轴解答题专题练习(及答案)
![2020-2021中考数学 平面图形的认识(二)压轴解答题专题练习(及答案)](https://img.taocdn.com/s3/m/e45f75c0ccbff121dc3683db.png)
2020-2021中考数学平面图形的认识(二)压轴解答题专题练习(及答案)一、平面图形的认识(二)压轴解答题1.问题情境:如图1,已知, .求的度数.(1)经过思考,小敏的思路是:如图2,过P作,根据平行线有关性质,可得 ________.(2)问题迁移:如图3,,点P在射线OM上运动,, .①当点P在A,B两点之间运动时,、、之间有何数量关系?请说明理由.②如果点P在A,B两点外侧运动时(点P与点A,B,O三点不重合),请你直接写出、、之间的数量关系,(3)问题拓展:如图4,,是一条折线段,依据此图所含信息,把你所发现的结论,用简洁的数学式子表达为________.2.综合与实践:七年级下册第五章我们学习了平行线的性质与判定,今天我们继续探究:折纸中的数学—长方形纸条的折叠与平行线.(1)知识初探如图1,长方形纸条ABCD中,,,,将长方形纸条沿直线EF折叠,点A落在处,点D落在处,交CD于点G.①若,求的度数;②若,则▲(用含的式子表示)(2)类比再探如图2,在图1的基础上将对折,点C落在直线上的处,点B落在处,得到折痕,则折痕EF与GH有怎样的位置关系?并说明理由.3.如图,在△ABC中,点E在AC边上,连结BE,过点E作DF∥BC,交AB于点D.若BE 平分∠ABC,EC平分∠BEF.设∠ADE=α,∠AED=β.(1)当β=80°时,求∠DEB的度数.(2)试用含α的代数式表示β.(3)若β=kα(k为常数),求α的度数(用含k的代数式表示).4.如图,在△ABC中,BC=7,高线AD、BE相交于点O,且AE=BE.(1)∠ACB与∠AOB的数量关系是________(2)试说明:△AEO≌△BEC;(3)点F是直线AC上的一点且CF=BO,动点P从点O出发,沿线段OA以每秒1个单位长度的速度向终点A运动,动点Q从点B出发沿射线BC以每秒4个单位长度的速度运动,P、Q两点同时出发,当点P到达A点时,P、Q两点同时停止运动。
第7章 平面图形的认识(二)-平行线中的常见模型 苏科版七年级数学下册专题练习(含答案)
![第7章 平面图形的认识(二)-平行线中的常见模型 苏科版七年级数学下册专题练习(含答案)](https://img.taocdn.com/s3/m/0fa835795b8102d276a20029bd64783e08127d49.png)
七年级下册平面图形的认识(二):专题:平行线中的常见四大模型专题:平行线中的常见模型模型一:“猪蹄”模型(也称“M”模型)模型一“猪蹄”模型(M模型)点P在EF左侧,在AB、 CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.典型例题例1:如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为( )A.70° B.65° C.35° D.5°例2:如图,AD∥CE,∠ABC=95°,则∠2﹣∠1的度数是( )A.105°B.95°C.85°D.75°例3:如图,直线a∥b,射线DF与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,求∠2的度数.例4:如图,AB∥CD,∠E=35°,∠F=∠G=30°,则∠A+∠C的度数为 .例5:如图,AB∥CD,∠E=120°,∠F=90°,∠A+∠C的度数是( )A.30°B.35°C.40°D.45°例6:如图,AB∥CD,∠E+∠G=∠H,则∠A+∠B+∠C+∠D+∠F的度数为 .例7:如图,直线l1∥l2,点∠α、∠β夹在两平行线之间.(1)若∠α=∠β,∠1=40°,求∠2的度数;(2)直接写出∠1、∠2、∠α、∠β之间的数量关系,不用说明理由.例8:(1)如图1,已知AB∥CD,若∠EAF=∠EAB,∠ECF=∠ECD,求证:∠AFC=∠AEC;(2)如图2,若AB∥CD,∠EAF=∠EAB,∠ECF=∠ECD,求证:∠AFC=∠AEC;(3)若AB∥CD,∠EAF=∠EAB,∠ECF∠ECD,则∠AFC与∠AEC的数量关系是 (用含有n的代数式表示,不证明).例9:如图①,已知AB∥CD,CE、BE的交点为E,现作如下操作:第1次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第2次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第3次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠ABE+∠DCE;(2)如图②,求证:∠BE1C=∠BEC;(3)从图①开始进行上述的n次操作,若∠BE n C=α°,求∠BEC的大小(直接写出结论).模型二:“铅笔”模型(也称“U”型模型)模型二:“铅笔”模型(“U”型)点P在EF右侧,在AB、 CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=360°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.典型例题例1:一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=135°,则∠ABC= 度.例2:如图,直线l1∥l2,若∠1=35°,则∠2+∠3= .例3:如图,已知AB∥CD,E为AB,CD之间一点,连接BE,DE.(1)猜想∠BED时,∠B,∠D的数量关系,并证明;(2)作∠ABE,∠CDE的角平分线BF,DF交于点F.①依题意补全图形;②直接用等式表示∠BFD与∠BED的数量关系.例4:如图,已知AB∥CD,∠ABE与∠CDE的平分线相交于点F.(1)如图1,若∠E=70°,求∠BFD的度数;(2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,写出∠M和∠E之间的数量关系,并证明你的结论.例5:实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射的光线为n.(1)当m∥n时,若∠1=50°,则∠2= ,∠3= ;(2)当m∥n时,若∠1=x°(0<x<90),则∠3= ;(3)根据(1)(2)结果,反过来猜想:当两平面镜a,b的夹角∠3为多少度时,m∥n.请说明理由(可以在图中添加适当的角度标记进行说明)例6:如图,AB∥CD,点E为两直线之间的一点.(1)如图1,若∠BAE=35°,∠DCE=20°,则∠AEC= ;(2)如图2,试说明,∠BAE+∠AEC+∠ECD=360°;(3)①如图3,若∠BAE的平分线与∠DCE的平分线相交于点F,判断∠AEC与∠AFC 的数量关系,并说明理由;②如图4,若设∠E=m,∠BAF=∠FAE,∠DCF=∠FCE,请直接用含m、n的代数式表示∠F的度数.模型三:“抬头”模型(也称“靴子”或称“臭脚”模型)模型三“抬头”模型(“靴子”模型)点P在EF右侧,在AB、 CD外部“靴子”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.典型例题例1:如图,AB//CD,∠P=40°,∠D=100°,则∠ABP的度数是 .例2:已知,AB∥CD.(1)如图1,求证:∠A-∠C=∠E;(2)如图2,EF平分∠AEC,CF平分∠ECD,∠F=105°,求∠A的度数.例3:已知直线∥,点A,B在直线上(B在A左侧),点C在直线b上,E点在直线b下方,连接 AE 交直线b于点D.(1)如图1,若∠BAD=110°,∠DCE=45°,求∠DEC的度数;(2)如图2,∠BAD 的邻补角的角平分线与∠DEC 的角平分线所在的直线交于点M,试探究∠AME与∠ECD之间的数量关系,并说明理由.例4:已知AB∥CD.(1)如图1,求证:∠EAB=∠C+∠E;(2)如图2,点F在∠AEC内且在AB、CD之间,EF平分∠AEC,CF平分∠ECD,请猜想∠F与∠EAB的数量关系并证明;(3)如图3,点M在AB上,点N在CD上,点E是AB上方一点,点G在AB、CD之间,连接EM、EN,GM的延长线MF平分∠AME,NE平分∠CNG,若2∠MEN+∠MGN=105°,求∠AME的度数.:模型四:“骨折”模型(也称“X射线”模型)模型四“骨折”模型点P在EF左侧,在AB、 CD外部“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.例1:如图,AB∥CD,∠E=40°,∠A=110°,则∠C的度数为 .例2:如图,AB∥CD,∠ABE=125°,∠C=30°,则∠α=( )A.70°B.75°C.80°D.85°例3:已知:如图,AB∥CD.(1)若∠1=∠2,试判断∠E与∠F的大小关系,并说明你的理由.(2)猜想∠1、∠2、∠E、∠F之间存在怎样的数量关系?并说明理由.例4:(1)(问题)如图1,若AB∥CD,∠AEP=40°,∠PFD=130°.求∠EPF的度数;(2)(问题迁移)如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知∠EPF=α,∠PEA的平分线和∠PFC的平分线交于点G,用含有α的式子表示∠G的度数.例5:已知AB∥MN.(1)如图1,求证:∠N+∠E=∠B;(2)若F为直线MN、AB之间的一点,∠E=∠EFB,BG平分∠ABF交MN于点G,EF 交MN于点C.①如图2,若∠N=57°,且BG∥EN,求∠E的度数;②如图3,若点K在射线BG上,且满足∠KNM=∠ENM,若∠NKB=∠EFB,∠E=∠FBD,直接写出∠E的度数.参考答案专题四:平行线中的常见模型模型一:“猪蹄”模型(也称“M”模型)模型一“猪蹄”模型(M模型)点P在EF左侧,在AB、 CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.典型例题例1:如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为(B)A.70° B.65° C.35° D.5°解析:作CF∥AB,∵AB∥DE,∴CF∥DE,∴AB∥DE∥CF,∴∠1=∠BCF,∠FCE=∠2,∵∠1=30°,∠2=35°,∴∠BCF=30°,∠FCE=35°,∴∠BCE=65°,故选:B.例2:如图,AD∥CE,∠ABC=95°,则∠2﹣∠1的度数是(C)A.105°B.95°C.85°D.75°解析:如图,作BF∥AD,∵AD∥CE,∴AD∥BF∥EC,∴∠1=∠3,∠4+∠2=180°,∠3+∠4=95°,∴∠1+∠4=95°,∠2+∠4=180°,∴∠2﹣∠1=85°.故选:C.例3:如图,直线a∥b,射线DF与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,求∠2的度数.解析:过点D作DG∥b,∵a∥b,且DE⊥b,∴DG∥a,∴∠1=∠CDG=25°,∠GDE=∠3=90°∴∠2=∠CDG+∠GDE=25°+90°=115°.☆模型拓展:M叠M型例4:如图,AB∥CD,∠E=35°,∠F=∠G=30°,则∠A+∠C的度数为35°.解析:如图所示,延长AE,CG,交于点H,过H作HP∥AB,∵AB∥CD,∴PH∥CD,∴∠A=∠AHP,∠C=∠CHP,∴∠A+∠C=∠AHC,∵∠F=∠CGF=30°,∴EF∥CH,∴∠AHC=∠AEF=35°,∴∠A+∠C=35°,故答案为:35°.例5:如图,AB∥CD,∠E=120°,∠F=90°,∠A+∠C的度数是( )A.30°B.35°C.40°D.45°解析:分别过E,F作GE∥AB,FH∥AB,∵AB∥CD,∴AB∥GE∥FH∥CD,∴∠1=∠A,∠2=∠C,∠GEF+∠HFE=180°,∵∠E=120°,∠F=90°,∴∠1+∠GEF+∠HFE+∠2=210°,∴∠1+∠2=210°﹣180°=30°,即∠A+∠C=30°,故选:A.例6:如图,AB∥CD,∠E+∠G=∠H,则∠A+∠B+∠C+∠D+∠F的度数为360°.解析:如图所示,延长AE,DG交于点Q,由题可得,∠A+∠D=∠Q,∠B+∠H+∠C=360°,又∵∠Q=∠AEF+∠DGF﹣∠F,∴∠A+∠D=∠AEF+∠DGF﹣∠F,即∠F=∠AEF+∠DGF﹣(∠A+∠D),又∵∠AEF+∠DGF=∠H,∴∠A+∠B+∠C+∠D+∠F=∠A+∠B+∠C+∠D+∠AEF+∠DGF﹣(∠A+∠D)=∠B+∠C+∠H=360°,故答案为:360°.例7:如图,直线l1∥l2,点∠α、∠β夹在两平行线之间.(1)若∠α=∠β,∠1=40°,求∠2的度数;(2)直接写出∠1、∠2、∠α、∠β之间的数量关系,不用说明理由.解析:(1)如图,延长AE交直线l2于点E,∵l1∥l2,∴∠3=∠1=40°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°.(2)∠1+∠2+∠β﹣○α=180°.理由:∵l1∥l2,∴∠3=∠1.∵∠BED=180°﹣∠α,∴∠3+∠2+∠β+180°﹣α=360°,即∠1+∠2+∠β﹣∠α=180°.☆模型拓展:M套M型例8:(1)如图1,已知AB∥CD,若∠EAF=∠EAB,∠ECF=∠ECD,求证:∠AFC=∠AEC;(2)如图2,若AB∥CD,∠EAF=∠EAB,∠ECF=∠ECD,求证:∠AFC=∠AEC;(3)若AB∥CD,∠EAF=∠EAB,∠ECF=∠ECD,则∠AFC与∠AEC的数量关系是(用含有n的代数式表示,不证明).解:(1)如图1,连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=2x°,∠ECD=2y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+2x°+∠ACE+2y°=180°,∴∠CAE+∠ACE=180°﹣(2x°+2y°),∠FAC+∠FCA=180°﹣(x°+y°),∴∠AEC=180°﹣(∠CAE+∠ACE)=180°﹣[180°﹣(2x°+2y°)]=2x°+2y°,=2(x°+y°),∠AFC=180°﹣(∠FAC+∠FCA)=180°﹣[180°﹣(x°+y°)]=x°+y°,∴∠AFC=∠AEC;(2)如图2,连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=3x°,∠ECD=3y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+3x°+∠ACE+3y°=180°,∴∠CAE+∠ACE=180°﹣(3x°+3y°),∠FAC+∠FCA=180°﹣(2x°+2y°),∴∠AEC=180°﹣(∠CAE+∠ACE)=180°﹣[180°﹣(3x°+3y°)]=3x°+3y°=3(x°+y°),∠AFC=180°﹣(∠FAC+∠FCA)=180°﹣[180°﹣(2x°+2y°)]=2x°+2y°=2(x°+y°),∴∠AFC=∠AEC;(3)若∠AFC=∠EAB,∠ECF=∠ECD,则∠AFC与∠AEC的数量关系是:∠AFC=∠AEC.故答案为:∠AFC=∠AEC.例9:如图①,已知AB∥CD,CE、BE的交点为E,现作如下操作:第1次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第2次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第3次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠ABE+∠DCE;(2)如图②,求证:∠BE1C=∠BEC;(3)从图①开始进行上述的n次操作,若∠BE n C=α°,求∠BEC的大小(直接写出结论).【解答】解:(1)如图①,过E作EF∥AB.∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2.∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;(2)如图2.∵∠ABE和∠DCE的平分线交点为E1,∴由(1)可得,∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC;(3)如图2.∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推,∠E n=∠BEC,∴当∠E n=α度时,∠BEC=2nα°模型二:“铅笔”模型(也称“U”型模型)模型二:“铅笔”模型(“U”型)点P在EF右侧,在AB、 CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=360°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.典型例题例1:一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=135°,则∠ABC=135度.【解析】解:如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=135°,∠BAE=90°,∴∠1=45°,∠2=90°,∴∠ABC=∠1+∠2=135°.故答案为:135.例2:如图,直线l1∥l2,若∠1=35°,则∠2+∠3=215°.【解析】解:过点E作EF∥11,∵11∥12,EF∥11,∴EF∥11∥12,∴∠1=∠AEF=35°,∠FEC+∠3=180°,∴∠2+∠3=∠AEF+∠FEC+∠3=35°+180°=215°.故答案为:215°.例3:如图,已知AB∥CD,E为AB,CD之间一点,连接BE,DE.(1)猜想∠BED时,∠B,∠D的数量关系,并证明;(2)作∠ABE,∠CDE的角平分线BF,DF交于点F.①依题意补全图形;②直接用等式表示∠BFD与∠BED的数量关系.【解析】(1)∠B+∠BED+∠D=360°.证明:过点E作EG∥AB.∴∠B+∠BEG=180°.∵AB∥CD,EG∥AB,∴EG∥CD,∴∠DEG+∠D=180°,∴∠B+∠BEG+∠DEG+∠D=180°+180°.即∠B+∠BED+∠D=360°;(2)解:①如图所示:②由(1)得∠ABC+∠BED+∠CDE=360°,∵∠ABE,∠CDE的角平分线BF,DF交于点F,∴∠ABC=2∠FBE,∠CDE=2∠FDE,∴2∠FBE+∠BED+2∠CDE=360°,即∠FBE+∠BED+∠CDE=180°,∵∠BFD+∠FBE+∠BED+∠CDE=360°,∴∠BFD=180°-∠BED例4:如图,已知AB∥CD,∠ABE与∠CDE的平分线相交于点F.(1)如图1,若∠E=70°,求∠BFD的度数;(2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,写出∠M和∠E之间的数量关系,并证明你的结论.【解析】解:(1)如图1,过点E作EN∥AB,∵EN∥AB,∴∠ABE+∠BEN=180°,∵AB∥CD,AB∥NE,∴NE∥CD,∴∠CDE+∠NED=180°,∴∠ABE+∠E+∠CDE=360°,∵∠E=70°,∴∠ABE+∠CDE=290°,∵∠ABE与∠CDE的平分线相交于点F,∴∠ABF+∠CDF=(∠ABE+∠CDE)=145°,过点F作FG∥AB,∵FG∥AB,∴∠ABF=∠BFG,∵AB∥CD,FG∥AB,∴FG∥CD,∴∠CDF=∠GFD,∴∠BFD=∠ABF+∠CDF=145°;(2)结论:∠E+6∠M=360°,证明:∵设∠ABM=x,∠CDM=y,则∠FBM=2x,∠EBF=3x,∠FDM=2y,∠EDF=3y,由(1)得:∠ABE+∠E+∠CDE=360°,∴6x+6y+∠E=360°,∵∠M+∠EBM+∠E+∠EDM=360°,∴6x+6y+∠E=∠M+5x+5y+∠E,∴∠M=x+y,∴∠E+6∠M=360°.例5:实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射的光线为n.(1)当m∥n时,若∠1=50°,则∠2=100°,∠3= 90°;(2)当m∥n时,若∠1=x°(0<x<90),则∠3= 90°;(3)根据(1)(2)结果,反过来猜想:当两平面镜a,b的夹角∠3为多少度时,m∥n.请说明理由(可以在图中添加适当的角度标记进行说明)【解析】解:(1)∵m∥n,∴∠4+∠2=180°,∵∠5=∠1=50°,∴∠4=80°,∴∠2=100°,∴∠6=∠7=40°,∴∠3=180°﹣∠5﹣∠6=90°,故答案为:100°;90°;(2)∵m∥n,∴∠4+∠2=180°,∵∠5=∠1=x°,∴∠4=180°﹣2x°,∴∠2=2x°,∴∠6=∠7=90°﹣x°,∴∠3=180°﹣∠5﹣∠6=180°﹣x°﹣90°+x°=90°,故答案为:90°;(3)根据(1)、(2)猜想:当两平面镜a、b的夹角∠3是90°时,总有m∥n,证明:∵∠3=90°,∴∠5+∠6=90°,∴∠1+∠7=90°,∴∠1+∠5+∠6+∠7=180°,又∵∠1+∠4+∠5+∠2+∠6+∠7=360°,∴∠4+∠2=180°,∴m∥n.例6:如图,AB∥CD,点E为两直线之间的一点.(1)如图1,若∠BAE=35°,∠DCE=20°,则∠AEC=55°;(2)如图2,试说明,∠BAE+∠AEC+∠ECD=360°;(3)①如图3,若∠BAE的平分线与∠DCE的平分线相交于点F,判断∠AEC与∠AFC 的数量关系,并说明理由;②如图4,若设∠E=m,∠BAF=∠FAE,∠DCF=∠FCE,请直接用含m、n的代数式表示∠F的度数.【解析】解:如图所示,过点E作EF∥AB,∵AB∥CD∴AB∥CD∥EF,∴∠BAE=∠1,∠ECD=∠2,∴∠AEC=∠1+∠2=∠BAE+∠ECD=35°+20°=55°,故答案为55°.(2)如图所示,过点E作EG∥AB,∵AB∥CD∴AB∥CD∥EG,∴∠A+∠1=180°,∠C+∠2=180°,∴∠A+∠1+∠2+∠C=360°,即∠BAE+∠AEC+∠ECD=360°.(3)①2∠AFC+∠AEC=360°,理由如下:由(1)可得,∠AFC=∠BAF+∠DCF,∵AF平分∠BAE,CF平分∠DCE,∴∠BAE=2∠BAF,∠DCE=2∠DCF,∴∠BAE+∠DCE=2∠AFC,由(2)可知,∠BAE+∠AEC+∠DCE=360°,∴2∠AFC+∠AEC=360°.②由①知∠F+∠FAE+∠E+∠FCE=360°,∵∠BAF=∠FAE,∠DCF=∠FCE,∠BAF+∠DCF=∠F,∴∠F=(∠FAE+∠FCE),∴∠FAE+∠FCE=n∠F,∴∠F+∠E+n∠F=360°,∴(n+1)∠F=360°﹣∠E=360°﹣m,∴∠F=.模型三:“抬头”模型(也称“靴子”或称“臭脚”模型)模型三“抬头”模型(“靴子”模型)点P在EF右侧,在AB、 CD外部“靴子”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.典型例题例1:如图,AB//CD,∠P=40°,∠D=100°,则∠ABP的度数是140°.【解析】过点P作PM∥AB,∵AB∥CD,∴PM∥AB∥CD,∴∠MPB=∠ABP,∠D=∠DPM=100°,∴∠MPB=∠BPD+∠DPM=40°+100°=140°,∴∠ABP=∠MPB=140°.例2:已知,AB∥CD.(1)如图1,求证:∠A-∠C=∠E;(2)如图2,EF平分∠AEC,CF平分∠ECD,∠F=105°,求∠A的度数.【解析】(1)证明: 过点E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠FEA=∠EAB,∠FEC=∠C,∴∠AEC=∠FEA-∠FEC=∠EAB-∠C,即∠A-∠C=∠E.(2)解:过点E作EG∥FC,∵EF平分∠AEC,CF平分∠ECD,设∠AEF=∠CEF=,∠ECF=∠FCD=,∵EG∥FC,∴∠CEG=∠ECF=,∠FEG+∠F=180°.∵∠F=105°,∴∠FEG=180°-∠F=75°,∴∠CEG+∠CEF=75°,即+=75°,∴2x+2y=150°.由(1)知,∠A=∠AEC+∠ECD=2x+2y=150°.例3:已知直线∥,点A,B在直线上(B在A左侧),点C在直线b上,E点在直线b下方,连接 AE 交直线b于点D.(1)如图1,若∠BAD=110°,∠DCE=45°,求∠DEC的度数;(2)如图2,∠BAD 的邻补角的角平分线与∠DEC 的角平分线所在的直线交于点M,试探究∠AME与∠ECD之间的数量关系,并说明理由.例4:已知AB∥CD.(1)如图1,求证:∠EAB=∠C+∠E;(2)如图2,点F在∠AEC内且在AB、CD之间,EF平分∠AEC,CF平分∠ECD,请猜想∠F与∠EAB的数量关系并证明;(3)如图3,点M在AB上,点N在CD上,点E是AB上方一点,点G在AB、CD之间,连接EM、EN,GM的延长线MF平分∠AME,NE平分∠CNG,若2∠MEN+∠MGN=105°,求∠AME的度数.:【解析】(1)过点E作EF∥DC,∵BA∥DC,∴EF∥DC∥AB,∴∠AEF=∠BAE=110°,∠CEF=∠DCE=45°.∴∠DEC=∠AEF-∠CEF=110°-45°=65°.(2)过点M作MF∥BA,过点E作EG∥CD,设∠BAE=,∠ECD=,∵BA∥CD,∴MF∥AB∥CD∥EG.∴∠BAE=∠AEG=,∠DCE=∠CEG=,∴∠DEC=-.∵EM平分∠DEC,AM平分∠BAD的邻补角,∴∠MEC=,∠1==,∵MF∥AB,∴∠AMF=∠1=,∠MEG=∠CEG+∠MEC=,∵MF∥EG,∴∠FME=∠MEG=,∴∠AME=∠AMF+∠FME=,∴∠AME=.模型四:“骨折”模型(也称“X射线”模型)模型四“骨折”模型点P在EF左侧,在AB、 CD外部“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.例1:如图,AB∥CD,∠E=40°,∠A=110°,则∠C的度数为70°.解析:∵AB∥CD,∴∠A+∠AFD=180°,∵∠A=110°,∴∠AFD=70°,∴∠CFE=∠AFD=70°,∵∠E=40°,∠C+∠E+∠CFE=180°,∴∠C=180°﹣∠E﹣∠CFE=180°﹣40°﹣70°=70°,故答案为:70°.例2:如图,AB∥CD,∠ABE=125°,∠C=30°,则∠α=(D)A.70°B.75°C.80°D.85°【解析】解:如图,作EF∥AB,∵AB∥EF,AB∥CD,∴EF∥CD,∴∠B+∠BEF=180°,∠C=∠CEF,∵∠ABE=125°,∠C=30°,∴∠BEF=55°,∠CEF=30°,∴∠BEC=55°+30°=85°.故选:D.例3:已知:如图,AB∥CD.(1)若∠1=∠2,试判断∠E与∠F的大小关系,并说明你的理由.(2)猜想∠1、∠2、∠E、∠F之间存在怎样的数量关系?并说明理由.【解答】解:(1)∠E=∠F,理由如下:∵AB∥CD,∴∠ABC=∠BCD,∵∠1=∠2,∴∠EBC=∠FCB,∴BE∥CF,∴∠E=∠F;(2)∠1+∠F=∠BEF+∠2,理由如下:如图,延长BE交DC的延长线于点M,在四边形EMCF中,∠FEM+∠EMC+∠MCF+∠F=360°,∵∠FEM=180°﹣∠BEF,∠MCF=180°﹣∠2,∴∠180°﹣∠BEF+∠EMC+180°﹣∠2+∠F=360°,∵AB∥CD,∴∠1=∠EMC,∴∠180°﹣∠BEF+∠1+180°﹣∠2+∠F=360°,∴∠1+∠F=∠BEF+∠2例4:(1)(问题)如图1,若AB∥CD,∠AEP=40°,∠PFD=130°.求∠EPF的度数;(2)(问题迁移)如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知∠EPF=α,∠PEA的平分线和∠PFC的平分线交于点G,用含有α的式子表示∠G的度数.【解答】解:(1)如图1,过点P作PM∥AB,∴∠1=∠AEP=40°.(两直线平行,内错角相等)∵AB∥CD,(已知)∴PM∥CD,(平行于同一条直线的两直线平行)∴∠2+∠PFD=180°.(两直线平行,同旁内角互补)∵∠PFD=130°,∴∠2=180°﹣130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:如图2,过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)如图,过点G作AB的平行线GH.∵GH∥AB,AB∥CD,∴GH∥AB∥CD,∴∠HGE=∠AEG,∠HGF=∠CFG,又∵∠PEA的平分线和∠PFC的平分线交于点G,∴∠HGE=∠AEG=,∠HGF=∠CFG=,由(1)可知,∠CFP=∠P+∠AEP,∴∠HGF=(∠P+∠AEP)=(α+∠AEP),∴∠EGF=∠HGF﹣∠HGE=(α+∠AEP)=+∠AEP﹣∠HGE=例5:已知AB∥MN.(1)如图1,求证:∠N+∠E=∠B;(2)若F为直线MN、AB之间的一点,∠E=∠EFB,BG平分∠ABF交MN于点G,EF 交MN于点C.①如图2,若∠N=57°,且BG∥EN,求∠E的度数;②如图3,若点K在射线BG上,且满足∠KNM=∠ENM,若∠NKB=∠EFB,∠E=∠FBD,直接写出∠E的度数.【解答】解:(1)如图,过E作EH∥MN,∴∠N=∠HEN,又∵MN∥AB,∴EH∥AB∥MN,∴∠B=∠HEB,即∠B=∠HEN+∠NEB=∠N+∠BEN;(2)①如图,过F作FP∥EN,交MN于H点,则BG∥EN∥FP,∵∠N=57°,∴∠CHF=∠CGB=∠ABG=57°,∵BG平分∠ABF,∴∠ABF=2∠ABG=114°,∵EN∥PF,∴∠E=∠EFP,∵∠E=∠EFB,∴114°+∠E=4∠E,∴∠E=38°;②如图,过点F作FP∥AD,设∠E=a=∠FBD,则∠PFB=α,∠EFP=3α,∴∠ENM=2a,∠KNM=,当K在BG上,∠NKB=∠EFB=4a,∴∠NGB==∠ABG=∠GBF,∴,∴a=22.5°;当K在BG延长线上时,∠NGB=,∠ABG=,∴,∴a=18°,综上所述,∠E=22.5°或18°.。
第7章《平面图形的认识(二)》考点+易错
![第7章《平面图形的认识(二)》考点+易错](https://img.taocdn.com/s3/m/405a52c10b4e767f5acfceea.png)
第7章《平面图形的认识(二)》考点+易错知识梳理重难点分类解析考点1 和平移有关的图形周长、面积计算【考点解读】本考点解题时,一般运用平移的性质(如:连接平移前后对应点的线段的长等于平移的距离)来解决有关图形的周长、面积计算问题.例 1 如图所示是重叠的两个直角三角形,将直角三角形ABC 沿BC 方向平移到DEF ∆.如果8AB =c m,4BE =cm,3DH =cm ,那么图中阴影部分的面积为 cm 2.分析:阴影部分是一个梯形,用我们目前所学的知识无法求出该梯形的上、下底和高,因而不能运用梯形的面积公式求其面积.注意到DEF ∆是由ABC ∆经过平移得到的,因此ABC DEF S S ∆∆=,即HEC DEF ABEH S S S S ∆∆+=+阴影梯形,于是ABEH S S =阴影梯形1(883)4262=+-⨯=(cm 2). 答案:26【规律·技法】本题考查平移的性质:经过平移,对应点所连的线段平行(或在同一条直线上)且相等,对应线段平行(或在同一条直线上)且相等,对应角相等。
解题的关键是找到平移的对应点。
【反馈练习】1。
(2018·苏州期中)如图,将ABC ∆沿BC 方向平移2 cm 得到DEF ∆.若ABC ∆的周长为16 cm ,则四边形ABFD 的周长为( )A 。
16 c m B. 18 c m C. 20 c m D。
22 cm点拨:由平移的性质可知2BE FC AD ===cm,AC DF =。
2。
(2018·扬州期末)如图是某公园里一处长方形风景欣赏区ABCD ,长50AB =m ,宽30BC =m,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1 m ,那么小明沿着小路的中间从出口A 到出口B 所走的路线(图中虚线)长为 m.点拨:分别求出小明横向和纵向移动的距离即可。
考点2 利用平行线的性质和三角形内角和定理求角度大小【考点解读】本考点解题时要熟练掌握平行线的性质与三角形内角和定理,这是解题的基础,要善于分解图形,即将较复杂的图形分解出“两条平行线被第三条直线所截"与“三角形”的图形,然后分析各角之间的联系.例2 (2017·重庆)如图,//AB CD ,E 是CD 上一点,42AEC ∠=︒,EF 平分AED ∠交AB于点F ,求AFE ∠的度数.分析:由互补的性质求出AED ∠的度数,由角平分线的定义得出DEF ∠的度数,再由平行线的性质即可求出AFE ∠的度数.解答:因为42AEC ∠=︒,所以18042138AED ∠=︒-︒=︒。
(完整版)第七章平面图形的认识(二)知识点归纳+典型例题,推荐文档
![(完整版)第七章平面图形的认识(二)知识点归纳+典型例题,推荐文档](https://img.taocdn.com/s3/m/7962c5a94431b90d6d85c734.png)
第七章 平面图形的认识(二)一、知识梳理1、在同一平面上,两条直线的位置关系有 或者 .练习:平面内三条直线的交点个数可能有 ( )A. 1个或3个B.2个或3个C.1个或2个或3个D.0个或1个或2个或3个2、判定与性质:什么叫做平行线?在同一平面内, 的两直线叫平行线。
的两直线平行。
判 定性 质(1) ,两直线平行。
(2) ,两直线平行。
(3) ,两直线平行。
(1)两直线平行, 。
(2)两直线平行, 。
(3)两直线平行,互补。
如果两条直线互相平行,那么其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。
(等积变形)(2)如图,长方形ABCD 的面积为16,四边形BCFE 为梯形,BC 与DE 交于点G,则阴)如图,对面积为,使得记其面积为S 1;第二次操作,分别延长A 1B 1,B 1C 1,C 1A 1至点A 2,B 2,C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1,顺次连接A 2,B 2,C 2,得到△A 2B 2C 2,记其面积为S 2;…;按此规律继续下去,可得到△A 5B 5C 5,则其面积S 5= .(4)已知方格纸中的每个小方格是边长为1的正方形,A ,B 两点在小方格的顶点上,位置如图所示,在小方格的顶点上确定一点C ,连接AB ,AC ,BC ,使△ABC 的面积为3个平方单位.则这样的点C 共有 个.(1)如图,边长为3cm ,与5cm 的两个正方形并排放在一起,在大正方形中画一段以它的一个顶点为圆心,边长为半径的圆弧,则阴影部分的面积是______cm 2(π取3).F3、图形的平移 在平面内,将一个图形沿着________________移动____________,这样的____________叫做图形的平移。
4、平移的性质(1)平移不改变图形的_______、________,只改变图形的_________。
2020—2021学年苏科版七年级数学下册第7章《平面图形的认识(二 )》解答题常考题(二)
![2020—2021学年苏科版七年级数学下册第7章《平面图形的认识(二 )》解答题常考题(二)](https://img.taocdn.com/s3/m/3ebef7b50b1c59eef9c7b46c.png)
苏科版七年级数学下册第7章《平面图形的认识(二 )》解答题常考题(二)1.一零件形状如图,按规定∠A应等于75°,∠B和∠C应分别是18°和22°,某质检员量得∠BDC=114°,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由.2.如图,△ABC中,∠B=2∠C,AE平分∠BAC.(1)若AD⊥BC于D,∠C=35°,求∠DAE的大小;(2)若EF⊥AE交AC于F,求证:∠C=2∠FEC.3.完成下列推理结论及推理说明:如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知AB∥CD()∠B=()又∵∠B=∠D(已知)=(等量代换)∴AD∥BE()∠E=∠DFE()4.如图,AB∥CD,∠FGB=154°,FG平分∠EFD,求∠AEF的度数.5.如图,已知在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,求∠AEB 的度数.6.如图,已知∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=140°,求∠AFG的度数.7.感知:如图①,∠ACD为△ABC的外角,易得∠ACD=∠A+∠B(不需证明);探究:如图②,在四边形ABDC中,试探究∠BDC与∠A、∠B.、∠C之间的关系,并说明理由;应用:如图③,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=度;拓展:如图④,BE平分∠ABD,CE平分∠ACD,若∠BAC=100°,∠BDC=150°,则∠BEC =度.8.如图,已知∠A=90°+x°,∠B=90°﹣x°,∠CED=90°,4∠C﹣∠D=30°,射线EF∥AC.(1)判断射线EF与BD的位置关系,并说明理由;(2)求∠C,∠D的度数.9.如图,AD为△ABC的高,BE为△ABC的角平分线,若∠EBA=34°,∠AEB=80°,求∠CAD的度数.10.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°).(1)如图1,①若∠DCE=40°,求∠ACB的度数;②若∠ACB=150°,直接写出∠DCE的度数是度.(2)由(1)猜想∠ACB与∠DCE满足的数量关系是.(3)若固定△ACD,将△BCE绕点C旋转,①当旋转至BE∥AC(如图2)时,直接写出∠ACE的度数是度.②继续旋转至BC∥DA(如图3)时,求∠ACE的度数.11.如图,已知AB∥CD,直线分别交AB、CD于点E,F,∠EFB=∠B,FH⊥FB.(1)已知∠B=20°,求∠DFH;(2)求证:FH平分∠GFD;(3)若∠CFE:∠B=4:1,则∠GFH的度数.12.如图,AB∥CD,点E在线段AB上,连接EC、ED、AD,且AD⊥CE于F,ED平分∠CEB,若∠ADC=40°,∠A﹣∠B=10°,求∠BDE的度数.13.如图,∠ABC=180°﹣∠A,EF∥BD,∠1+∠2=96°,DO⊥AD交EF于点O.求∠BDO 的度数.14.如图,已知:AB∥CD,DB⊥BC,∠1=40°,求∠2的度数.完成下面的证明过程:证明:∵AB∥CD(),∴∠1=∠BCD=40°().∵BD⊥BC,∴∠CBD=.∵∠2+∠CBD+∠BCD=(),∴∠2=.15.已知:如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A+∠1=60°,求:∠D的度数.参考答案1.解:如图,延长BD与AC相交于点E,∵∠1是△ABE的外角,∠A=75°,∠B=18°,∴∠1=∠B+∠A=75°+18°=93°,同理,∠BDC=∠1+∠C=93°+22°=115°,∵李师傅量得∠BCD=114°,不是115°,∴这个零件不合格.2.(1)解:∵∠C=35°,∠B=2∠C,∴∠B=70°,∴∠BAC=75°,∵AE平分∠BAC,∴∠EAC=37.5°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=55°,∴∠DAE=55°﹣37.5°=17.5°;(2)证明:∵EF⊥AE,∴∠AEF=90°,∴∠AED+∠FEC=90°,∵∠DAE+∠AED=90°,∴∠DAE=∠FEC,∵AE平分∠BAC,∴∠EAC=∠BAC=(180°﹣∠B﹣∠C)=(180°﹣3∠C)=90°﹣∠C,∵∠DAE=∠DAC﹣∠EAC,∴∠DAE=∠DAC﹣(90°﹣∠C)=90°﹣∠C﹣90°+∠C=∠C,∴∠FEC=C,∴∠C=2∠FEC.3.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行),∴∠B=∠DCE(两直线平行,同位角相等),∵∠B=∠D(已知),∴∠DCE=∠D(等量代换),∴AD∥BE(内错角相等,两直线平行),∴∠E=∠DFE(两直线平行,内错角相等),故答案为:同旁内角互补,两直线平行,∠DCE,两直线平行,同位角相等;∴∠DCE;∠D;内错角相等,两直线平行;两直线平行,内错角相等.4.解:∵AB∥CD,∠FGB=154°,∴∠GFD=180°﹣∠FGB=180°﹣154°=26°,∵FG平分∠EFD,∴∠EFD=2∠GFD=2×26°=52°,∵AB∥CD,∴∠AEF=∠EFD=52°.5.解:∵BE∥AD,∴∠ABE=∠BAD=20°,∵BE平分∠ABC,∴∠EBC=∠ABE=20°,∵∠C=90°,∴∠AEB=∠C+∠CBE=90°+20°=110°.6.解:(1)BF∥DE,理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3,∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE;(2)∵BF∥DE,BF⊥AC,∴DE⊥AC,∵∠1+∠2=180°,∠2=140°,∴∠1=40°,∴∠AFG=90°﹣40°=50°.7.解:探究:连接AD并延长至点F,由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;且∠BDC=∠BDF+∠CDF及∠BAC=∠BAD+∠CAD;相加可得∠BDC=∠A+∠B+∠C;应用:由探究的结论易得:∠ABX+∠ACX+∠A=∠BXC,又因为∠A=50°,∠BXC=90°,所以∠ABX+∠ACX=90°﹣50°=40°;故答案为:40;拓展:由探究的结论易得∠BDC=∠BAC+∠ABC+∠ACB,易得∠ABC+∠ACB=50°;而∠BEC=(∠ABC+∠ACB)+∠A,代入∠BAC=100°,∠BDC=150°,易得∠BEC=125°故答案为:1258.解:(1)EF∥BD,∵∠A+∠B=(90+x)°+(90﹣x)°=180°,∴AC∥BD,∵EF∥AC,∴EF∥BD;(2)∵AC∥EF∥BD,∴∠CEF=∠C,∠DEF=∠D,∵∠CED=90°,∴∠C+∠D=90°,联立,解得.9.解:∵BE为△ABC的角平分线,∴∠CBE=∠EBA=34°,∵∠AEB=∠CBE+∠C,∴∠C=80°﹣34°=46°,∵AD为△ABC的高,∴∠ADC=90°,∴∠CAD=90°﹣∠C=44°.10.解:(1)①∵∠DCE=40°,∴∠ACE=∠ACD﹣∠DCE=50°,∴∠ACB=∠ACE+∠ECB=50°+90°=140°;②∵∠ACB=150°,∠ACD=90°,∴∠ACE=150°﹣90°=60°,∴∠DCE=∠ACD﹣∠ACE=90°﹣60°=30°,故答案为:30;(2)∵∠ACB=∠ACD+∠BCE﹣∠DCE=90°+90°﹣∠DCE,故答案为:∠ACB+∠DCE=180°;(3)①∵BE∥AC,∴∠ACE=∠E=45°,故答案为:45°;②∵BC∥DA,∴∠A+∠ACB=180°,又∵∠A=60°,∴∠ACB=180°﹣60°=120°,∵∠BCE=90°,∴∠BCD=∠ACB﹣∠ECB=120°﹣90°=30°.11.解:(1)∵AB∥CD,∠B=20°,∴∠DFB=20°,∵FH⊥FB,∴∠BFH=90°,∴∠DFH=90°﹣∠DFB=70°;(2)证明:∵AB∥CD,∴∠DFB=∠B,∵∠EFB=∠DFB,∵∠DFB+∠DFH=90°,∴∠EFB+∠GFH=90°,∴∠GFH=∠DFH,∴FH平分∠GFD;(3)∵AB∥CD,∴∠CFB+∠B=180°,∵∠EFB=∠B,∠CFE:∠B=4:1,∴∠EFB=30°,∴∠GFH=90°﹣30°=60°.故答案为:60°.12.解:∵AB∥CD,∵∠A﹣∠B=10°,∴∠B=30°,∵AD⊥EF,∴∠AFE=90°,∴∠AEF=50°,∴∠BEC=130°,∵DE平分∠BEC,∴∠BED=∠BEC=65°,∴∠BDE=180°﹣30°﹣65°=85°.13.解:∵∠ABC=180°﹣∠A,即∠ABC+∠A=180°,∴AD∥BC,∴∠1=∠3,又∵EF∥BD,∴∠2=∠3,∴∠1=∠2,又∵∠1+∠2=96°,∴2∠1=96°,∠1=48°,又∵DO⊥AD,∴∠ADO=90°,∴∠BDO=90°﹣∠1=42°.答:∠BDO的度数为42°.14.证明:∵AB∥CD(已知),∴∠1=∠BCD=40°(两直线平行,同位角相等).∵BD⊥BC,∴∠CBD=90°.∵∠2+∠CBD+∠BCD=180°(三角形内角和定理),∴∠2=50°.故答案为:已知,两直线平行,同位角相等,90°,180°,三角形内角和定理,50°.15.解:∵AB∥CD,∴∠A=∠1,∵∠A+∠1=60°,∴∠1=∠A=30°,∴∠ECD=∠1=30°,∵DE⊥AE,∴∠DEC=90°,∴∠D=180°﹣∠DEC﹣∠ECD=60°.。
第七章 平面图形的认识(二)1
![第七章 平面图形的认识(二)1](https://img.taocdn.com/s3/m/aafe6a2d4b35eefdc8d3333d.png)
例10、(1)在同一平面内,画4条直线,它们的交点 总数有几种情况?画示意图说明。 (2)9条直线两两相交,且无三线共点,则一共有几 个交点? (3)平面上9条直线,无三线共点,且有26个交点。 请画出这9条直线。 (1)
0个 1个 3个 4个 5个 6个
(2)无三线共点的n条直线两两相交,则交点的个数是:n(n-1)/2 则当n=9时,交点的个数是 9(9-1)/2=9×4=36(个) (3)平面上9条直线相交,最多应 有36个交点,而要求只能有26个交 点,即减少10个交点,只有将9条 直线中的某些直线的位置改成平行
又因为a4∥a5,则a1∥a5
又因为a5⊥a6,则a1⊥a6 又因为a6∥a7,则a1⊥a7 …………… 由此可见,4个关系就是一次循环。因为2005÷4= 501……1 所以,a1⊥a2006
例5、如果两个角的两边分别平行,且 0 其中一个角比另一个的3倍小20 ,则这 两个角的度数分别是_______
A1
Hale Waihona Puke 例8、若长方形的长为a,宽为b(1)操作:在图1中 ,将线段A1A2向右平移1个单位到B1B2,得到封闭图 形A1A2B2B1(图中阴影部分);在图2中将折线 A1A2A3向右平移1个单位到B1B2B3,得到封闭图形 A1A2A3B3B2B1(图中阴影部分);在图3中,将图中的 折线B1B2B3,再向右平移1个单位,得到封闭图形 A1A2A3C3C2C1(图中阴影部分) 2b b b (2)请你分别写出上述3个图形中阴影部分的面积: S1=____,S2=____,S3=_____ (3)探索:如图4,地一块长方形草地上,有两条弯 ab-2b A1 B1 A1 B1 C1 A1 B1 曲的柏油小路(小路的水平宽度都是1个单位)。请 A2 B2 C2 A2 B2 你想一想空白部分的草地面积是_______
平面图形的认识(二)知识点总结#精选.
![平面图形的认识(二)知识点总结#精选.](https://img.taocdn.com/s3/m/b91820df6529647d2728526c.png)
平行线的性质
性质:1、两直线平行,同位角相等。2、两直线平行,内错角相等。3、两直线平行,同旁内角互补。
注意:1、性质成立的前提条件是两直线平行。2、通过该性质可以确定两个角的大小关系,还可以由已知角求出与之相关的角。
考查点:1、求特殊位置角的度数。2、求非特殊角的度数。
平行线的判定与性质的区别
区别:平行线判定的条件和结论与性质的条件和结论的位置是相相反的。
注意:1、判定是由角的关系得到直线平行,性质是由直线平行得到角的关系。2、条件和性质不能混淆。
考查点:1、平行线的判定和性质的综合应用。2、角度计算。3、在生活中的应用。易错点:考虑问题不够全面。
图形的平移
平移的概念
概念:在平面内,将一根图形沿着某个方向移动一定距离,这样的图形运动叫做图形的平移。
注意:1、平移两个要素:方向和距离。2、平移不改变图形大小,只是位置发生了变化。考查点:辨别平移后的图形。
平移的性质
性质:平移只改变图形位置,不改变图形的大小和形状。经过平移后,连接各组对应点所得的线段互相平行(或在同一条直线上)且相等。
注意:1、大小和形状是相同的。2、平移后要注意对应点、对应角、对应线段的关系。3、对应点连线的线段特点。
考查点:1、平移性质运用。2、求图形的面积和周长。
简单的平移作图
平移作图的根据是图形平移后,对应角相等,对应线段互相平行(或在同一条直线上)且相等,连接对应点的线段互相平行(或在同一条直线上)且相等。注意:平移作图要找准对应点。考查点:会画平移后的图形。
最新文件仅供参考已改成word文本。方便更改如有侵权请联系网站删除
两直线平行的条件
条件:1、同位角相等,两直线平行。2、内错角相等,两直线平行。3、同旁内角相等,两直线平行。
平面图形的认识(二)小结与思考
![平面图形的认识(二)小结与思考](https://img.taocdn.com/s3/m/807168d9ad51f01dc281f11d.png)
第七章 平面图形的认识(二) 小结与思考【教学目标】(课标要求)1.探索直线平行的条件和平行线的性质.2.通过具体实例认识平移,探索它的基本性质,理解对应点连线平行且相等的性质.3.能按要求作出简单平面图形平移后的图形;利用平移进行图案设计,认识和欣赏平移在现实生活中的应用.4.体会两条平行线之间距离的意义,会度量两条平行线之间的距离.5.了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线、高.6.探索并了解多边形的内角和与外角和公式.【教学过程】第1课时一、导入练习1.一测量员从点A 出发,行走40米到点B ,然后向左转120度,走了30米到点C ,再左转60度,走25米到点D .(1)若以1厘米代表10米,请画出测量员走的路线图(保留画图痕迹);(2)AB 与CD 平行吗?说明理由.2.如图,当半径为30厘米的转动轮转过180°的角时,传送带上的物体A 平移的距离为多少厘米?二、例题讲解例1 如图,∠A=70°∠B=∠D=110°,判断图中哪些直线平行,并说明理由.D C B A例2 如图,在四边形ABCD 中,AD ∥BC ,∠B=70°,∠C=40°.(1)画出线段CD 平移后的线段,其平移的方向为射线CB 的方向,平移的距离为线段AD 的长,平移后所得的线段与BC 相交于点E .(2)∠C 与∠AEB 相等吗?说明理由. (3)∠EAD 等于多少度?∠BAE 呢?(4)线段AE 与CD 间的距离与AD 相等吗?若不相等,请在图中测量出AE 与CD 间的距离,并表示出来.三、课堂练习1.下列图形中,由(1)仅通过平移得到的是( ).2.根据图形,填空:(1)因为∠A=∠BFD , 所以根据_______________________,可得AC ∥______. (2)因为∠EDF =∠BFD ,所以根据____________________, 可得________∥_______.3.如图,要使DE ∥AC ,需要什么条件?(至少写3个)DC B A F ED C B AE DC B A4.如图,经过平移,四边形ABCD 的顶点A 平移到了A 1,作出平移后的四边形A 1B 1C 1D 1.四、拓展提高1.小刚将一个正方形剪去一个直径等于其边长的半圆,并将半圆平移到右边,形成一个新的图案,你能利用这个新的图案经过多次平移形成一个复杂的图案吗?试试看,并给你的图案起个有意义的名字.2.如图,将一张长方形纸片沿EF 折叠后,点D 、C 分别落在点D '、C '的位置,ED '的延长线与BC 相交于点G .若∠EFG=50°,求∠1、∠2的度数.五、课堂小结1.平行线的性质.2.平行线平行的条件.3.平移的性质,画法.六、作业P41页1、2、3、91A DC B A ''GD C C FE D B A 12第2课时一、导入练习1.如图,共有哪几个三角形的个数?∠B 是哪个三角形的内角?2.下列长度的三条线段能否首尾依次相接组成三角形?并说明理由.(1)1cm ,2cm ,3cm ;(2)8cm ,6cm ,4cm ;(3)12cm ,5cm ,6cm ;(4)2cm ,5cm ,5cm ;3.五边形的内角和是多少度?外角和是多少度?每个内角与和它相邻的外角之间是什么关系?二、例题讲解1.如图,⊿ABC 中,BE 、CF 是⊿ABC 的高,∠A=60°,∠ACB=75°.求∠BCF 、∠EBC 的度数.2.画∠MON= 30°,在射线OM 上截取OA=4厘米,过点A 画AB ⊥ON ,垂足为点B ,在射线BN 上截取BC=OB ,连接AC ,画DC ⊥OM 于点D . 根据所画图形,回答下列问题:(1)∠OAB 等于多少度?(2)AB 等于多少?是否为⊿AOC 的中线,高和角平分线?(3)度量AC 、AD 、CD 的长度和∠ACB 的大小,你又有什么新的发现?三、随堂练习1.直角三角形中,如果两个锐角的度数之比为1∶2, 那么较大锐角的度数是多少?D C B AF EC BA2.等腰三角形的两边长分别为7cm 和5cm ,求它的周长.3.若多边形的每个外角都是30°,这个多边形是几边形?它的内角和是多少度?4.画出图中⊿ABC 的三条高.5.如图,有一块三角形的土地,现在要求过三角形的某个顶点画一条线段,将它的面积相等分成两部分,你认为这条线段应该如何画?在图中画出这条线段,并解释你的理由.四、拓展提高1.两根木棒的长分别为5cm 和12cm ,用长度为3cm 的第三根木棒,能钉成一个三角形吗?用长度为20cm 的第三根木棒呢?要想钉成一个三角架,第三根木棒的长度应怎样限制?2.如图,⊿ABC 中,∠A=40°,∠ACB=104°,BD 为AC 边上的高,BE 是⊿ABC 的角平分线,你能算出∠EBD 的度数吗?五、课堂小结1.三角形的有关概念.2.三角形的中线、角平分线、高线的性质及画法.3.三角形内角和公式与外角和规律.六、作业P42页6、8、11、12C BA E D C BA。
平面图形的认识(二)知识点总结
![平面图形的认识(二)知识点总结](https://img.taocdn.com/s3/m/94afaafbbe23482fb5da4c1d.png)
平面图形的认识(二)知识点总结一、直线平行的条件1.关于同位角、内错角和同旁内角同位角、内错角和同旁内角是两条直线被第三条直线所截得到的,因此识别这三种角的关键是认清第三条直线,即截线.这三种角有各自的特征.同位角的特征:在截线的同旁,被截两直线的同方向;内错角的特征:在截线的两旁,被截两直线的中间;同旁内角的特征:在截线的同旁,被截两直线之间.【例】填空1.∠1和∠3是,它是直线和被直线所截而成的;2.∠4和∠5是,它是直线和被直线AC所截而成的;3.∠2和∠6是,它是直线和BC被直线所截而成的;4.∠5和∠7是,它是直线和被直线AC所截而成的.2.关于两条直线互相平行的条件利用平移三角尺的方法画平行线,探索同位角与直线平行的关系:图中,当∠1与∠2相等,所画的直线a、b就;当∠1与∠2不相等时,直线a、b_________两直线平行的判定方法:①两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;简称:______________________________.②两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;简称:______________________________.③两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;简称:______________________________.④垂直于同一条直线的两条直线互相平行。
⑤(平行线公理推论)如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
⑥(平行线定义)在同一平面内,不相交的两条直线平行。
【例】如图,(1)因为∠1=∠2,所以_______∥_______,理由是______________;(2)因为∠3=∠D,所以_______∥_______,理由是______________;(3)因为∠B+∠BCD=180°,所以_______∥_______,理由是______________.【例】如图,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°.AC与BD平行吗?AE与BF平行吗?为什么?试猜想AC与BF的位置关系.二、直线平行的性质探索平行线的性质:平行线的性质:性质一:两条平行线被第三条直线所截,同位角相等简称:________________________________.性质二:两条平行线被第三条直线所截,内错角相等简称:________________________________.性质三:两条平行线被第三条直线所截,同旁内角互补简称:________________________________.【例】已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线吗?若是,请说明理由.解:AD是∠BAC的平分线,理由如下:因为AD⊥BC,EG⊥BC(已知),所以∠4=90°,∠5=90°(_______).所以∠4=∠5(_______).所以AD∥EG(______________).所以∠1=∠E(_______),∠2=∠3(______________).因为∠E=∠3(已知),所以 _______=_______(_______),所以AD是∠BAC的平分线(_______).【例】如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明你的理由.【例】将一张长方形纸片如图所示折叠后,再展开,如果∠1=55°,那么∠2等于______°三、图形的平移1、平移的概念在平面内,把一个图形整体沿某一直线方向移动,会得到一个新的图形,图形的这种移动,叫作平移。
平面图形的认识二知识点及试
![平面图形的认识二知识点及试](https://img.taocdn.com/s3/m/0774dbf6aaea998fcd220e79.png)
平面图形的认识二知识点及试作者:日期: 2第七章平面图形的认识(二)、平行线1、同位角、内错角、同旁内角的定义两条线(a,b )被第三条(c)直线所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角(corresponding angles) 如图:Z1与/8, Z2与/7,/3与/6,/4与/5均为同位角。
两条线(a,b )被第三条(c)直线所截,两个角分别在截线的两侧,且在两条被截直线之间,具有这样位置关系的一对角叫做内错角。
如图:/1与/6,72与/5均为同位角。
两条线(a,b )被第三条(c)直线所截,两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角(interior angles of thesame side ) 。
女口图:71与7 5,72与7 6均为同位角。
2、平行线的性质(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
3、平行线的判定(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补,两直线平行。
(4)平行于同一直线的两直线平行4、平移平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做图形的平移(translation ),简称平移。
5、平移的性质经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。
(1)图形平移前后的形状和大小没有变化,只是位置发生变化;(2)图形平移后,对应点连成的线段平行且相等(或在同一直线上)(3)多次平移相当于一次平移。
(4)多次对称后的图形等于平移后的图形。
(5)平移是由方向,距离决定的。
(6)经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等。
二、三角形1、由三条不在同一直线上的三条线段首尾依次相接组成的图形叫做三角形。
第一单元认识图形(二)《认识平面图形》教案
![第一单元认识图形(二)《认识平面图形》教案](https://img.taocdn.com/s3/m/f1e56cf6dc3383c4bb4cf7ec4afe04a1b071b0b1.png)
难点解析:学生在将理论知识应用于实际问题解决应针对以上重点和难点内容,采用讲解、示范、讨论、练习等多种教学方法,帮助学生深入理解平面图形的核心知识,突破学习难点。
四、教学流程
1.讨论主题:学生将围绕“平面图形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
首先,关于平面图形的对称性,我觉得可以通过更多的生活实例来帮助学生理解。比如,可以让学生观察教室里的窗户、门等物品,找出它们的对称轴,这样既能让学生感受到几何图形与现实生活的紧密联系,又能提高他们对对称性的认识。
其次,对于周长和面积的计算,我认为可以设计一些有趣的实践活动,让学生在动手操作中掌握计算方法。比如,可以让学生测量课桌、课本等物品的长度和宽度,然后计算它们的周长和面积。这样既能让学生在实践中学习,也能提高他们的实际应用能力。
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《认识平面图形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否注意过周围有哪些平面图形?”(举例说明)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平面图形的奥秘。
(二)新课讲授(用时10分钟)
举例:计算给定图形的周长和面积,运用到实际生活中,如计算房间面积等。
2.教学难点
(1)平面图形的分类:区分不同类型的平面图形,了解它们的共同特征和区别;
河南中考数学 平面图形的认识(二)压轴解答题
![河南中考数学 平面图形的认识(二)压轴解答题](https://img.taocdn.com/s3/m/8eabf73128ea81c759f57816.png)
河南中考数学平面图形的认识(二)压轴解答题一、平面图形的认识(二)压轴解答题1.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交射线BC于点F.(1)如(图1),当AE⊥BC时,求证:DE∥AC(2)若∠C=2∠B,∠BAD=x°(0<x<60)①如(图2),当DE⊥BC时,求x的值.②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.2.如图,四边形ABCD中,AD∥BC,∠BDC=∠BCD,DE⊥DC交AB于E.(1)求证:DE平分∠ADB;(2)若∠ABD的平分线与CD的延长线交于F,设∠F=α.①若α=50°,求∠A的值;②若∠F<,试确定α的取值范围.3.如图1,直线CB∥OA,∠A=∠B=120°,E ,F在BC上,且满足∠FOC =∠AOC,并且OE 平分∠BOF.(1)求∠AOB及∠EOC的度数;(2)如图2,若平行移动AC,那么∠OCB: ∠OFB的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;4.己知AB∥CD,点E在直线AB,CD之间。
(1)如图①,试说明:∠AEC=∠BAE+∠ECD;(2)若AH平分∠BAE,将线段CE沿射线CD平移至FG。
①如图②,若∠AEC=90°,FH平分∠DFG,求∠AHF的度数;②如图③,若FH平分∠CFG,试判断∠AHF与∠AEC的数量关系并说明理由。
5.如图,现有一块含有30°的直角三角板ABC,且l1∥l2,其中∠ABC=30°。
(1)如图(1),当直线l1 和l2分别过三角板ABC的两个顶点时,且∠1=35°,则∠2=________°(2)如图(2),当∠ADE=80°时,求∠GFB的度数。
(3)如图(3),点Q是线段CD上的一点,当∠QFC=2∠CFN时,请判断∠ADE和∠QFG的数量关系,并说出理由。
完整版苏科版七年级下册数学第7章 平面图形的认识(二) 含答案
![完整版苏科版七年级下册数学第7章 平面图形的认识(二) 含答案](https://img.taocdn.com/s3/m/7c63ce6fa55177232f60ddccda38376baf1fe01e.png)
苏科版七年级下册数学第7章平面图形的认识(二)含答案一、单选题(共15题,共计45分)1、如图,纸片△ABC中,∠A=55°,∠B=75°,将纸片的一角折叠,使C落在△ABC内,则∠1+∠2等于()A.130°B.50°C.100°D.260°2、如图,直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2B.∠1=∠4C.∠3+∠4=180°D.∠2=30°,∠4=35°3、如图所示,△ABC中,∠C=90°,AB的垂直平分线交BC于点D,连接AD,若∠CAD=20°,则∠B=()A.20°B.30C.35°D.40°4、如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A.A,C两点之间B.E,G两点之间C.B,F两点之间D.G,H 两点之间5、如图,在中,,,,将沿射线的方向平移,得到,再将绕点逆时针旋转一定角度后,点恰好与点重合,则平移的距离为()A.2B.3C.4D.56、如图,AB//CD, ∠CED=90°, ∠BED=40°, 则∠C 的度数是()A.30°B.40°C.50°D.60°7、如图,在菱形ABCD中,菱形的边长为5,对角线AC的长为8,延长AB至E,BF平分∠CBE,点G是BF上的任意一点,则△ACG的面积为()A.20B.12C.D.248、如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第10层中含有正三角形个数是()A.102个B.114个C.126个D.138个9、如图所示,△ABC中AB边上的高是()A.线段CDB.线段CBC.线段DAD.线段CA10、如图,CD∥AB,∠1=120°,∠2=80°,则∠E的度数是( )A.40°B.60°C.80°D.120°11、如图,N,C,A 三点在同一直线上,在△ ABC 中,∠A:∠ABC:∠ACB=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN 等于( )A.1:2B.1:3C.2:3D.1:412、如图,,,,则的度数为()A. B. C. D.13、如图,分别为的,边的中点,将此三角形沿折叠,使点落在边上的点处.若,则等于()A. B. C. D.14、如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.70°B.80°C.65°D.60°15、如图,BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,BE、CF相交于D,则∠CDE的度数是()A.60°B.70°C.80°D.50°二、填空题(共10题,共计30分)16、如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,CD交AB于点F,若AE=,AD=2,则△ACF的面积为________.17、如图,在△ABC中,AB=AC,点D,点E分别是BC,AC上一点,且DE⊥AD,若∠BAD=55°,∠B=50°,则∠DEC的度数为________.18、如图,直线,点在直线上,且,=,则的度数是________.19、已知三角形的三边长分别为2,a-1,4,则化简|a-3|-|a-7|的结果为________.20、如果将点B先向右移动4个单位长度,再向左移动6个单位长度后,这时点B表示的数是-6,则点B最初在数轴上表示的数为________.21、已知等腰三角形的底角为15°,腰长为30cm,则此等腰三角形的面积为________.22、如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是________.23、如图,平面上直线a,b分别经过线段OK两端点(数据如图),则a,b相交所成的锐角是________.24、如图,△ABC中,AB=5,AC=7,BO平分∠ABC,CO平分∠ACB,MN经过点O,与AB、AC相交于点M、N,且MN∥BC,则△AMN的周长等于________.25、如图,点B,D在⊙O上,且在直径AC的两侧,连结OD,AD,BC,AB。
平面图形的认识(二)
![平面图形的认识(二)](https://img.taocdn.com/s3/m/4c98f9d6a417866fb94a8e5c.png)
要点诠释:(1)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数; (2)正多边形的每个内角都相等,都等于(2)180nn°.2. 多边形的外角和:任意多边形的外角和都为360°.要点诠释:多边形的外角和为360°.n边形的外角和恒等于360°,它与边数的多少无关. 【典型例题】类型一、平行线的性质与判定例1.如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明.(适当添加辅助线,其实并不难)举一反三:【变式1】已知直线AB∥CD,当点E在直线AB与CD之间时,有∠BED=∠ABE+∠CDE成立;而当点E在直线AB与CD之外时,下列关系式成立的是( ).A.∠BED=∠ABE+∠CDE或∠BED=∠ABE-∠CDEB.∠BED=∠ABE-∠CDEC.∠BED=∠CDE-∠ABE或∠BED=∠ABE-∠CDED.∠BED=∠CDE-∠ABE【变式2】如图,两直线AB、CD平行,则∠1+∠2+∠3+∠4+∠5+∠6= .例2.如图,已知CD∥EF,∠1+∠2=∠ABC,求证:AB∥GF.类型二、图形的平移例3.(吉林)如图所示,把边长为2的正方形的局部进行图①~④的变换,组成图⑤,则图⑤的面积是( )A.18 B.16 C.12 D.8举一反三:【变式】如图,AB∥DC,ED∥BC,AE∥BD,写出图中与△ABD面积相等的三角形。
类型三、认识三角形例4. 如图,P为△ABC内任意一点,试比较AB+AC与PB+PC的大小,并说明理由。
举一反三:【变式】下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a(a>0)例5.已知如图∠xOy=90°,BE是∠ABy的平分线,BE的反向延长线与∠OAB的平分线相交于点C,当点A,B分别在射线Ox,Oy上移动时,试问∠C的大小是否发生变化?如果保持不变,请说明理由;如果随点A,B的移动而变化,请求出变化范围.类型四、多边形的内角和与外角和例6.若一个多边形的每个外角都等于60°,则它的内角和等于()A.180° B.720° C.1080° D.540°举一反三:【变式】如图,∠1+∠2+∠3+∠4+∠5=320°,则∠6=.举一反三:【变式1】如图,AC、BD相交于点O, ∠A+∠B=∠C+∠D吗?为什么?【变式2】如图,△ABC的角平分线BD、CE相交于点P,∠A=70°,求∠BPC的度数.课后练习:一、选择题1.一学员在广场上练习驾驶汽车,两次拐弯后行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) .A.第一次向左拐30°,第二次向右拐30°.B.第一次向右拐50°,第二次向左拐130°.C .第一次向左拐50°,第二次向左拐130°.D .第一次向左拐50°,第二次向右拐130°.2.两条平行直线被第三条直线所截时,产生的八个角中,角平分线互相平行的两个角是( ).A .同位角B .同旁内角C .内错角 D. 同位角或内错角3. 如图所示,b ∥c ,a ⊥b ,∠1=130°,则∠2=( ).A .30° B. 40° C. 50° D. 60°4.如图,1753DE //AB,CAE CAB,CDE ,∠=∠∠=65B ∠=,则∠AEB =( ). A .70 B .65 C .60 D .555.一个凸n 边形,除一个内角外,其余n -1个内角的和是2400°,则n 的值是( ).A.15B.16C.17D.不能确定6. 如图所示,把一张对面互相平行的纸条折成如图所示,EF 是折痕,若∠EFB =32°,则下列结论不正确的有( ).A.32='∠EF C B. ∠AEC =148° C. ∠BGE =64° D. ∠BFD =116°7. 过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是( )A .8B .9C .10D .118.如图把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,∠A 与∠1+∠2之间的数量关系保持不变,请找一找这个规律,你发现的规律是( ). A B C ' D ' C D E F GA、∠A=∠1+∠2B、2∠A=∠1+∠2C、2∠A=2∠1+∠2D、3∠A=2(∠1+∠2)二、填空题9. 如图所示,AB∥CD,点E在CB的延长线上.若∠ECD=110°,则∠ABE的度数为________.10.如图所示,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A、B两岛的视角∠ACB等于________.11.如图所示,AB∥CD,MN交AB、CD于E、F,EG和FG分别是∠BEN和∠MFD的平分线,那么EG 与FG的位置关系是.12.如图,一块梯形玻璃的下半部分打碎了,若∠A=125°,∠D=107°,则打碎部分的两个角的度数分别为 .13.如图,∠1=∠2,∠A=60°,则∠ADC=度.14. 如图,某个窗户上安装有两扇可以滑动的铝合金玻璃窗ABCD 和A /B /C /D /,当玻璃窗户ABCD 和A /B /C /D /重合时窗户是打开的;反之窗户是关闭的。
第七章平面图形的认识(二)0123
![第七章平面图形的认识(二)0123](https://img.taocdn.com/s3/m/1cf082faaeaad1f346933f3d.png)
1. 的一对角称为同位角 同位角相等,2. 的一对角称为内错角 内错角相等,3. 的一对角称为同旁内角1.1,若A=3,则 ∥ ; 若2=E ,则 ∥ ; 若 + = 180°,则2.直线a,b,c 在同一平面内,若a ⊥c,b⊥c,则a b .由此可得结论:3. 如图2,写出一个能判定直线a ∥b 的条件:4. 推理填空:(1)∵∠A =∠ (已知), ∴AC∥ED( );(2)∵∠2 =∠ (已知), ∴AC∥ED( ); (3)∵∠A +∠ = 180°(已知), ∴AB∥FD( );(4)∵∠2 +∠ = 180°(已知),∴AC∥ED( );5.说理题∠D =∠A,∠B =∠FCB,求证:ED∥CF.由此可得结论:图1 1 2 3A F C DB EEB AF D CG321FE D C B A1.如图1,已知∠1 = 100°,AB∥CD,则∠2 = ,∠3 = ,∠4 = . 2.如图2,直线AB 、CD 被EF 所截,若∠1 =∠2,则∠AEF +∠CFE = .3.如图3所示(1)若EF∥AC,则∠A +∠ = 180°,∠F + ∠ = 180°( ). (2)若∠2 =∠ ,则AE∥BF.( ) (3)若∠A +∠ = 180°,则AE∥BF.( ) 4.如图4,AB∥CD,∠2 = 2∠1,则∠2 = .5. 推理填空:如图,EF ∥AD,∠1=∠2,∠BAC=70°.将求∠AGD 的过程填写完整. 解: 因为EF ∥AD,所以∠2=____(____________________________) 又因为∠1=∠2所以∠1=∠3(______________)所以AB ∥_____(_____________________________) 所以∠BAC+______=180°(___________________________)6. 说理题如图,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G.图124 3 1ABCD E1 2 A B DCEF图2 1 2 3 45AB C D FE 图312 AB CDE F图412 AC B F GED图22CD图21BF 知识检测:1、如图1,已知AB ∥CD ,直线L 分别交AB 、CD•于点E 、F ,EG 平分∠BEF ,若∠EFG=40°,则∠EGF的度数是( )A .60°B .70°C .80°D .90°(1) (2)2、如图2,AB ∥DE ,∠E=65°,则∠B+∠C•的度数是( ) A .135° B .115° C .65° D .35°3、如图,∠1=∠B ,∠2=∠3,∠4=80º,试求∠ADC 的度数。
平面图形的认识(二)
![平面图形的认识(二)](https://img.taocdn.com/s3/m/7fd30e4ae518964bcf847c3d.png)
平面图形的认识(二)一、两条直线被第三条直线所截,构成“三线八角”同位角三线八角内错角同旁内角1、同位角:两条直线被第三条直线所截,如果两个角分别在两条直线相同的一侧,且在第三条直线的同旁,那么这两个角叫做同位角2、内错角:两条直线被第三条直线所截,如果两角分别在两条直线之内,且在第三条直线的两旁,那么这两个角叫做内错角。
3、同旁内角:两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的同旁,那么这两个角叫做同旁内角。
注意:构成“三线八角”的不仅可以是直线,也可以是线段或射线。
“三线八角”与直线是否平行无关。
二、平行线的判定及性质1、同一平面内两条直线的位置关系:平行(概念):同一平面内两条不相交的直线。
相交(包括:重合)2、两直线平行的判定方法:⑴、根据平行线的定义。
温故⑵、两条直线都与第三条直线平行,那么这两条直线也相互平行。
⑶、同位角相等,两直线平行。
⑷、内错角相等,两直线平行。
⑸、同旁内角互补,两直线平行。
3、平行线的性质:⑴、两直线平行,同位角相等。
⑵、两直线平行,内错角相等。
⑶、两直线平行,同旁内角互补。
⑷、平行线间的距离处处相等。
(平行线间的距离:一条平行线上的一点到另一条平行线垂线段的长度。
)注意:平行线性质判断所给角的关系,前提条件是“两条直线被第三条直线所截”。
三、图形的平移1、平移的概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做图形的平移。
注意:平移是由平移的方向和距离决定的,平移不改变图形的形状和大小。
2、平移的性质:⑴、对应点的连线平行(或在同一条直线上)且相等,对应线段平行(或在同一条直线上)且相等。
⑵、对应角相等,对应角的两边分别平行且方向一致。
注意:平移后,对应角相等,对应线段平行且相等。
对应点之间线段的长度就是平移的距离。
四、认识三角形:1、三角形的概念:由三条不在同一直线上的线段,首尾依次相接组成的图形。
2、三角形的分类:锐角三角形(三个角都是锐角)⑴、按角分直角三角形(有一个角是直角)钝角三角形(有一个角是钝角)不等边三角形(三边都不相等)⑵、按边分一般等腰三角形(两边相等)等腰三角形等边三角形(三边都相等)3、三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
第7章平面图形的认识(二)知识点梳理苏科版七年级数学下册
![第7章平面图形的认识(二)知识点梳理苏科版七年级数学下册](https://img.taocdn.com/s3/m/4570322a793e0912a21614791711cc7931b778f6.png)
平面图形的认识(二)知识点梳理知识点一:认识三线八角如果两条线被第三条线所截,那么这两条线叫做被截线,这第三条线叫做截线。
这三条线一共可以组成八个角,简称三线八角。
同位角(F形):位于截线的同侧,被截线的同侧。
内错角(Z形):位于截线的两侧,被截线的内侧同旁内角(U形):位于截线的同侧,被截线的内侧注意:以上三种角都有一条公共边。
知识点二:两直线平行的判定条件1.同位角相等,两直线平行。
几何语言:∵∠1=∠2,∴AB∥CD。
2.内错角相等,两直线平行。
几何语言:∵∠1=∠2,∴AB∥CD。
3.同旁内角互补,两直线平行。
几何语言:∵∠1+∠2=180°,∴AB∥CD。
知识点四:平移1.概念:在平面内,把一个图形整体沿某一直线方向移动,会得到一个新的图形,图形的这种移动,叫作平移。
注意:平移改变的是图像的位置,不变的是图像的大小和形状。
2、平移的要素:方向、距离;3、平移作图的步骤:定、找、移、连。
①定:确定平移的方向和距离。
②找:找出表示图形的关键点。
③移:过关键点作平行且相等的线段,得到关键点的对应点。
④连:按原图形顺次连接对应点。
知识点五:三角形1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
知识点六:多边形1.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
2.多边形的内角:多边形相邻两边组成的角叫做它的内角。
多边形内角和定理:n 边形的内角的和等于: (n - 2)×180° 正多边形各内角度数为:n2)180-(n 3.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科教师辅导讲义学生姓名:年级:七课时数:3辅导科目:数学辅导教师:辅导内容:平面图形的认识(二)章节复习辅导日期:教学目标:1.掌握平行线的性质与判定2.掌握三角形的有关性质3.掌握平移的变化4.掌握多边形内角和与外角和公式【同步知识梳理】1.已知三角形的三边分别为4,a,8,那么a的取值范围是()A.4<a<8 B.1<a<12 C.4<a<12 D.4<a<62.如图所示是同位角关系的是().A.∠3和∠4 B.∠1和∠4 C.∠2和∠4 D.不存在3.下列说法正确的是().A.相等的角是对顶角.B.两条直线被第三条直线所截,内错角相等.C.如果两条直线都和第三条直线平行,那么这两条直线也互相平行.D.若两个角的和为180°,则这两个角互为余角.4.∠1和∠2是直线AB和CD被直线EF所截得到的同位角,那么∠1和∠2的大小关系是().A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.无法确定5.如图所示中,不能通过基本图形平移得到的是().6.一个人从A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC 等于().A.75°B.105°C.45°D.135°7.一个多边形的每个内角均为120°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形8.如果在同一平面内有两个图形甲和乙,通过平移,总可以完全重合在一起(不论甲和乙的初始位置如何),则甲和乙是().A.两个点B.两个半径相等的圆C.两个点或两个半径相等的圆D.两个能够完合重合的多边形答案:c9. 如图所示,AB∥CD,EF分别交AB、CD于G、H两点,若∠1=50°,则∠EGB=________.10.如图所示,已知BC∥DE,则∠ACB+∠AOE=.11.每天小明上学时,需要先由家向东走150米到公共汽车站点,然后再乘车向西900米到学校,每天小明由家到学校移动的方向是________,移动的距离是________.12. (广东湛江)如图所示,请写出能判断CE∥AB的一个条件,这个条件是;①:________ ②:________ ③:________13.(2015•成都)如图,直线m∥n,△ABC为等腰三角形,∠BAC=90°,则∠1=度.14.如图所示,直线AB与直线CD相交于点O,EO⊥AB,∠EOD=25°,则∠BOD=,∠AOC=,∠BOC=.15. 如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西.16.如图,在一块长为a米,宽为b米的长方形地上,有一条弯曲的柏油马路,马路的任何地方的水平宽度都是2米,其它部分都是草地.求草地的面积.答案:(a-2)b【精题精练精讲】专题1:平行线的性质与判定1.(2018秋•禅城区期末)如图1,BC⊥AF于点C,∠A+∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE 三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况)?并说明理由.【分析】(1)根据∠A+∠B=90°,∠A+∠1=90°,即可得到∠B=∠1,进而得出AB∥DE.(2)分三种情况讨论:点P在A,D之间;点P在C,D之间;点P在C,F之间;分别过P作PG∥AB,利用平行线的性质,即可得到∠ABP,∠DEP,∠BPE三个角之间的数量关系.2.(2018秋•通州区期末)如图,D,E分别是三角形ABC的边AB,BC上的点,DE∥AC,点F在DE 的延长线上,且∠DFC=∠A.(1)求证:AB∥CF;(2)若∠ACF比∠BDE大40°,求∠BDE的度数.北北甲乙【分析】(1)只要证明∠DFC=∠BDE,即可解决问题;(2)用构建方程组的思想即可解决问题;变式训练:1.(2018春•丰台区期末)阅读下列材料:已知:如图1,直线AB∥CD,点E是AB、CD之间的一点,连接BE、DE得到∠BED.求证:∠BED =∠B+∠D.小冰是这样做的:证明:过点E作EF∥AB,则有∠BEF=∠B.∵AB∥CD,∴EF∥CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.图1即∠BED=∠B+∠D.请利用材料中的结论,完成下面的问题:已知:直线AB∥CD,直线MN分别与AB、CD交于点E、F.(1)如图2,∠BEF和∠EFD的平分线交于点G.猜想∠G的度数,并证明你的猜想;(2)如图3,EG1和EG2为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点G1和G2.求证:∠FG1E+∠G2=180°.【分析】(1)由材料中的结论得∠EGF=∠BEG+∠GFD,根据EG、FG分别平分∠BEF和∠EFD,得到∠BEF=2∠BEG,∠EFD=2∠GFD,由于BE∥CF到∠BEF+∠EFD=180°,于是得到2∠BEG+2∠GFD=180°,即可得到结论;(2)过点G1作G1H∥AB,由结论可得∠G2=∠1+∠3,∠EG1F=∠BEG1+∠G1FD,得到∠3=∠G2FD,由于FG2平分∠EFD,求得∠4=∠G2FD,由于∠1=∠2,于是得到∠G2=∠2+∠4,由于∠EG1F=∠BEG1+∠G1FD,得到∠EG1F+∠G2=∠2+∠4+∠BEG1+∠G1FD=∠BEF+∠EFD,然后根据平行线的性质即可得到结论.2.(2018春•涟源市期末)如图1,直线AG与直线BH和DI分别相交于点A和点G,点C为DI上一点,且CE⊥AG,垂足为点E,∠DCE﹣∠HAE=90°.(1)求证:BH∥DI.(2)如图2:直线AF交DC于F,AM平分∠EAF,AN平分∠BAE,证明:∠AFG=2∠MAN.【分析】(1)由三角形内角和定理和邻补角的定义得到∠DCE=∠CEG+∠CGA,结合垂直的定义、三角形外角的性质得到∠CGA=∠HAE,所以BH∥DI;(2)根据角平分线的定义表示出∠EAM、∠EAN,然后求出∠MAN,再根据两直线平行,内错角相等可得∠BAF=∠AFG,从而得解.3.(2018春•天桥区期末)(1)问题情境:如图1,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC 的度数.小明想到一种方法,但是没有解答完:如图2,过P作PE∥AB,∴∠APE+∠P AB=180°.∴∠APE=180°﹣∠P AB=180°﹣130°=50°.∵AB∥CD.∴PE∥CD.…………请你帮助小明完成剩余的解答.(2)问题迁移:请你依据小明的思路,解答下面的问题:如图3,AD∥BC,点P在射线OM上运动,∠ADP=∠α,∠BCP=∠β.①当点P在A、B两点之间时,∠CPD,∠α,∠β之间有何数量关系?请说明理由.②当点P在A、B两点外侧时(点P与点O不重合),请直接写出∠CPD,∠α,∠β之间的数量关系.【分析】(1)过P作PE∥AB,构造同旁内角,通过平行线性质,可得∠APC=50°+60°=110°.(2)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(3)画出图形,分两种情况:①点P在BA的延长线上,②点P在AB的延长线上,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.专题2:认识三角形1.(2011春•米东区校级期末)操作与探究探索:在如图1至图3中,△ABC的面积为a.(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA、若△ACD的面积为S1,则S1=a (用含a的代数式表示);(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE、若△DEC的面积为S2,则S2=(用含a的代数式表示);(3)在图2的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图3)、若阴影部分的面积为S3,则S3=(用含a的代数式表示).发现:像上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图3),此时,我们称△ABC向外扩展了一次、可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的;倍.【分析】(1)根据等底等高的三角形面积相等解答即可;(2)分别过A、E作BD的垂线,根据三角形中位线定理及三角形的面积公式求解即可;(3)由△BFD、△ECD及△AEF的边长为△ABC边长的一半,高与△AEF的高相等解答即可.2.如图,已知△ABC的面积为1cm2,如果AD=2AC,BF=3BA,CE=4CB,求△DEF的面积.分析:连接AE、BD、CF,把△DEF分解成七部分,根据等高的三角形的面积的比等于底边的比,结合△ABC的面积,求出另外六个三角形的面积变式训练:1.(2009春•芜湖校级期末)探究规律:如图,已知直线m∥n,A,B为直线m上的两点,C,P为直线n上两点.(1)请写出图中面积相等的各对三角形:.(2)如果A,B,C为三个定点,点P在n上移动,那么,无论P点移动到任何位置,总有与△ABC的面积相等.理由是:.【分析】根据两条平行线间的距离处处相等,再结合三角形的面积公式,首先判断出:△ABC与△ABP,△ACP与△BCP这两对三角形分别是同底等高的,故两对三角形的面积分别相等.再根据等式的性质,让其中一对三角形的面积都减去公共的部分,即可得到第三对三角形的面积相等,即△AOC与△BOP.2.探索:在如图1至图3中,△ABC的面积为a.(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.若△ACD的面积为S1,则S1=(用含a的代数式表示);(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE.若△DEC的面积为S2,则S2=(用含a的代数式表示),并写出理由;(3)在图2的基础上延长AB到点F,使BF=AB,连接FD、FE,得到△DEF(如图3).若阴影部分的面积为S3,则S3=(用含a的代数式表示).发现:像上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图3),此时,我们称△ABC向外扩展了一次.可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的倍.应用:去年在面积为10m2的△ABC空地上栽种了某种花卉.今年准备扩大种植规模,把△ABC向外进行两次扩展,第一次由△ABC扩展成△DEF,第二次由△DEF扩展成△MGH(如图4).求这两次扩展的区域(即阴影部分)面积共为多少平方米?【分析】(1)根据三角形的面积公式,等底同高的两个三角形的面积相等;(2)运用分割法:连接AD.根据三角形的面积公式进行分析:等底同高的两个三角形的面积相等;(3)在(2)的基础上,阴影部分的面积是(2)中求得的面积的3倍;再加上原来三角形的面积进行计算.应用:根据上述结论,即扩展一次后得到的三角形的面积是原三角形的面积的7倍,则扩展两次后,得到的三角形的面积是原三角形的面积的72=49倍.从而得到扩展的区域的面积是原来的48倍.3.如图所示,四边形ABCD中,E、F、G、H依次是各边中点,O是四边形形内一点,若S四边形AEOH=3,S四边形BFOE=4,S四边形CGOF=5,求S四边形DHOG.【分析】连接OC,OB,OA,OD,易证S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,S△OAE=S△OBE,所以S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,所以可以求出S四边形DHOG.专题3:图形的平移1.(2019春•赣榆区期中)如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)画出平移后的△A′B′C′的中线B′D′(3)若连接BB′,CC′,则这两条线段的关系是(4)△ABC在整个平移过程中线段AB扫过的面积为(5)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有个(注:格点指网格线的交点)【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A′、B′、C′即可;(2)利用网格特点找出A′C′的中点D′,然后连接B′D′即可;(3)根据平移的性质求解;(4)利用平移的性质和平行四边形的面积公式求解;(5)过点C作AB的平行线,然后找出此平行线上的格点即可.2.(2019春•新吴区期中)如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC向右平移4个单位后得到的△A1B1C1;(2)图中AC与A1C1的关系是:;(3)画出△ABC的AB边上的高CD;垂足是D;(4)图中△ABC的面积是.【分析】(1)利用网格特点和平移的性质画出点A、B、C的对应点A1、B1、C1,从而得到△A1B1C1;(2)根据平移的性质求解;(3)利用网格特点,过点C画CD⊥AB于D;(4)利用一个矩形的面积分别减去三个三角形的面积可计算出△ABC的面积.变式训练:1.(2018春•兴义市期中)如图,将方格纸中的三角形ABC先向右平移2格得到三角形DEF,再将三角形DEF向上平移3格得到三角形GPH.(1)动手操作:按上面步骤作出经过两次平移后分别得到的三角形;(2)设AC与ED相交于点M.则图中与∠BAC相等角有.【分析】(1)首先确定A、B、C三点向右平移2格后所得对应点D、E、F三点的位置,然后再连接,然后再向上平移3格可得G、P、H三点位置,再连接即可;(2)根据平移的性质可得与∠BAC相等的角是∠D,∠G,根据平行线的性质可得与∠BAC相等的角还有∠AMD,∠CME;2.(2018春•宿豫区期中)如图,△ABC中,∠B=90°,把△ABC沿BC方向平移到△DEF的位置,若AB=4,BE=3,PE=2,求图中阴影部分的面积.【分析】根据平移的性质得到S△ABC=S△DEF,则利用S阴影部分+S△PEC=S梯形ABEP+S△PEC得到S阴影部分=S,然后根据梯形的面积公式求解.梯形ABEP3.(2018春•新罗区校级月考)按要求画图:(1)如图(1)所示,网格内每个小正方形的边长都为1个单位长度,试画出小船向右平移4 个单位长度,向上平移4个单位长度后的图形.(2)如图(2)过点P分别画直线m、n的垂线.【分析】(1)根据平移的性质作图;(2)利用尺规作图作出直线m、n的垂线.专题4:多边形的内角和与外角和1.(2019春•江阴市期中)初一(10)班数学学习小组“孙康映雪”在学习了第七章平面图形的认识(二)后对几何学习产生了浓厚的兴趣.请你认真研读下列三个片断,并完成相关问题.如图1,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.【片断一】(1)小孙说:由四边形内角和知识很容易得到∠OBC+∠ODC的值.如果你是小孙,得到的正确答案应是:∠OBC+∠ODC=°.【片断二】(2)小康说:连结BD(如图2),若BD平分∠OBC,那么BD也平分∠ODC.请你说明当BD平分∠OBC时,BD也平分∠ODC的理由.【片断三】(3)小雪说:若DE平分∠ODC、BF平分∠MBC,我发现DE与BF具有特殊的位置关系.请你先在备用图中补全图形,再判断DE与BF有怎样的位置关系并说明理由.【分析】(1)根据四边形的性质,可得答案;(2)根据三角形内角和定理和角平分线的定义即可求解;(3)根据补角的性质,可得∠CBM=∠ODC,根据相似三角形的判定与性质,可得答案.2.(2017秋•民权县月考)如图1我们称之为“8字形”,请直接写出∠A,∠B,∠C,∠D之间的数量关系:;(2)如图2,∠1+∠2+∠3+∠4+∠5+∠6+∠7=度(3)如图3所示,已知∠1=∠2,∠3=∠4,猜想∠B,∠P,∠D之间的数量关系,并证明.【分析】(1)根据三角形内角和定理即可得出∠A+∠D=∠C+∠B;(2)∠6,∠7的和与∠8,∠9的和相等.由多边形的内角和得出答案即可;(3)先根据“8字形”中的角的规律,可得∠DAP+∠D=∠P+∠DCP①,∠PCB+∠B=∠P AB+∠P②,再根据角平分线的定义,得出∠DAP=∠P AB,∠DCP=∠PCB,将①+②,可得2∠P=∠D+∠B.变式训练:1.(2017春•虎丘区校级期中)已知如图,四边形ABCD中∠BAD=α,∠BCD=β,BE、DF分别平分四边形的外角∠MBC和∠NDC(1)如图1,若α+β=150°,则∠MBC+∠NDC=度;(2)如图1,若BE与DF相交于点G,∠BGD=45°,请求出α、β所满足的等量关系式;(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.【分析】(1)利用角平分线的定义和四边形的内角和以及α+β=150°推导即可;(2)利用角平分线的定义和四边形的内角和以及三角形的内角和转化即可;(3)利用角平分线的定义和四边形的内角和以及三角形的外角的性质计算即可.2.(2017春•宿城区校级月考)(1)如图①,将△ABC纸片沿DE,使点A落在四边形BCED内部点A 的位置,若∠A=40°,则∠1+∠2=°;若∠A=30°,则∠1+∠2=°;猜想∠A与∠1、∠2的数量关系为:∠1+∠2=;请说明理由.(2)如图②,将△ABC纸片沿DE进行折叠,使点A落在四边形BCED的外部点A的位置,写直接出∠A与∠1、∠2之间的数量关系,并说明理由.【分析】(1)根据翻折变换的性质用∠1、∠2表示出∠ADE和∠AED,再根据三角形的内角和定理列式整理即可得解;根据翻折变换的性质用∠1、∠2表示出∠ADE和∠AED,再根据三角形的内角和定理列式整理即可得解;(2)根据翻折的性质可得∠A=∠DA′E,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式整理即可得解.3.(2016秋•费县期中)(1)如图1、2,试研究其中∠1、∠2与∠3、∠4之间的数量关系;(2)用你发现的结论解决下列问题:如图3,AE、DE分别是四边形ABCD的外角∠NAD、∠MDA的平分线,∠B+∠C=240°,求∠E的度数.【分析】(1)根据四边形的内角和等于360°用∠5+∠6表示出∠3+∠4,再根据平角的定义用∠5+∠6表示出∠1+∠2,即可得解;(2)根据(1)的结论求出∠MDA+∠NAD,再根据角平分线的定义求出∠ADE+∠DAE,然后利用三角形的内角和定理列式进行计算即可得解.【能力拓展训练】1.(2015春•江都区校级月考)如图1,一张△ABC纸片,点M、N分别是AC、BC上两点.(1)若沿直线MN折叠,使C点落在BN上,则∠AMC′与∠ACB的数量关系是(写出结论即可).(2)若折成图2的形状,猜想∠AMC′、∠BNC′和∠ACB的数量关系,并说明理由.(3)若折成图3的形状,猜想∠AMC′、∠BNC′和∠ACB的数量关系,并说明理由.(4)将上述问题推广,如图4,将四边形ABCD纸片沿MN折叠,使点C、D落在四边形ABNM的内部时,∠AMD′+∠BNC′与∠C、∠D之间的数量关系是(写出结论即可).【分析】(1)根据折叠性质和三角形的外角定理得出结论;(2)先根据折叠得:∠CMN=∠C′MN,∠CNM=∠C′NM,由两个平角∠CMA和∠CNB得:∠AMC′+∠′BNC′等于360°与四个折叠角的差,化简为结果;(3)利用两次外角定理得出结论;(4)与(2)类似,先由折叠得:∠DMN=∠D′MN,∠CNM=∠C′NM,再由两平角的和为360°得:∠AMD′+∠BNC′=360°﹣2∠DMN﹣2∠CNM,根据四边形的内角和得:∠DMN+∠CNM=360°﹣∠C﹣∠D,代入前式可得结论.【解答】解:(1)由折叠得:∠ACB=∠MC′C,∵∠AMC′=∠ACB+∠MC′C,∴∠AMC′=2∠ACB;故答案为:∠AMC′=2∠ACB;(2)猜想:∠AMC′+∠BNC′=2∠ACB,理由是:由折叠得:∠CMN=∠C′MN,∠CNM=∠C′NM,∵∠CMA+∠CNB=360°,∴∠AMC′+∠′BNC′=360°﹣∠CMN﹣∠C′MN﹣∠CNM﹣∠C′NM=360°﹣2∠CMN﹣2∠CNM,∴∠AMC′+∠BNC′=2(180°﹣∠CMN﹣∠CNM)=2∠ACB;(3)∵∠AMC′=∠MDC+∠C,∠MDC=∠C′+∠BNC′,∴∠AMC′=∠C′+∠BNC′+∠C,∵∠C=∠C′,∴∠AMC′=2∠C+∠BNC′,∴∠AMC′﹣∠BNC′=2∠ACB;(4)由折叠得:∠DMN=∠D′MN,∠CNM=∠C′NM,∵∠DMA+∠CNB=360°,∴∠AMD′+∠BNC′=360°﹣2∠DMN﹣2∠CNM,∵∠DMN+∠CNM=360°﹣∠C﹣∠D,∴∠AMD′+∠BNC′=360°﹣2(360°﹣∠C﹣∠D)=2(∠C+∠D)﹣360°,故答案为:∠AMD′+∠BNC′=2(∠C+∠D)﹣360°.【点评】本题是折叠变换问题,思路分两类:①一类是利用外角定理得结论;②一类是利用平角和多边形内角和相结合得结论;字母书写要细心,角度比较复杂,是易错题.2.(2014春•江阴市期末)探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?如图甲,∠FDC、∠ECD为△ADC的两个外角,则∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?如图乙,在△ADC中,DP、CP分别平分∠ADC和∠ACD,则∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图丙,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,则∠P与∠A+∠B的数量关系.探究四:若将上题中的四边形ABCD改为六边形ABCDEF呢?如图丁则∠P与∠A+∠B+∠E+∠F的数量关系.探究五:如图,四边形ABCD中,∠F为四边形ABCD的∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的锐角,若设∠A=α,∠D=β;(1)如图①,α+β>180°,则∠F=;(用α,β表示)(2)如图②,α+β<180°,请在图中画出∠F,且∠F=;(用α,β表示)(3)一定存在∠F吗?如有,直接写出∠F的值,如不一定,直接指出α,β满足什么条件时,不存在∠F.【分析】探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC=∠ADC,∠PCD=∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可;探究四:根据六边形的内角和公式表示出∠EDC+∠BCD,然后同理探究二解答即可;探究五:①根据四边形的内角和定理表示出∠BCD,再表示出∠DCE,然后根据角平分线的定义可得∠FBC=∠ABC,∠FCE=∠DCE,三角形的一个外角等于与它不相邻的两个内角的和可得∠F+∠FBC =∠FCE,然后整理即可得解;②同①的思路求解即可;③根据∠F的表示,∠F为0时不存在.【解答】解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠DPC=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠ACD=180°﹣(∠ADC+∠ACD)=180°﹣(180°﹣∠A)=90°+∠A;探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠DPC=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠BCD=180°﹣(∠ADC+∠BCD)=180°﹣(360°﹣∠A﹣∠B)=(∠A+∠B);探究四:六边形ABCDEF的内角和为:(6﹣2)•180°=720°,∵DP、CP分别平分∠EDC和∠BCD,∴∠PDC=∠EDC,∠PCD=∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠EDC﹣∠BCD=180°﹣(∠EDC+∠BCD)=180°﹣(720°﹣∠A﹣∠B﹣∠E﹣∠F)=(∠A+∠B+∠E+∠F)﹣180°即∠P=(∠A+∠B+∠E+∠F)﹣180°,探究五:①由四边形内角和定理得,∠BCD=360°﹣∠A﹣∠D﹣∠ABC,∴∠DCE=180°﹣(360°﹣∠A﹣∠D﹣∠ABC)=∠A+∠D+∠ABC﹣180°,由三角形的外角性质得,①∠FCE=∠F+∠FBC,∵BF、CF分别是∠ABC和∠DCE的平分线,∴∠FBC=∠ABC,∠FCE=∠DCE,∴∠F+∠FBC=(∠A+∠D+∠ABC﹣180°)=(∠A+∠D)+∠ABC﹣90°,∴∠F=(∠A+∠D)﹣90°,∵∠A=α,∠D=β,∴∠F=(α+β)﹣90°;②如图5,同①可求,∠F=90°﹣(α+β);③∠F不一定存在,当α+β=180°时,∠F=0,不存在.故答案为:探究一:∠FDC+∠ECD=180°+∠A;探究二:∠P=90°+∠A;探究三:∠P=(∠A+∠B).探究四:∠P=(∠A+∠B+∠E+∠F)﹣180°;探究五:①,②.3.(2012•镇江模拟)(1)填表:n(凸多边形的边数)345…m(凸多边形中角度等于135°的内角个数的最大值)…(2)猜想给定一个正整数n,凸n边形最多有m个内角等于135°,则m与n之间有怎样的关系?(3)取n=7验证你的猜想是否成立?如果不成立,请给出凸n边形中最多有多少个内角等于135°?并说明理由.【分析】(1)根据三角形、四边形、五边形的内角和,可求得答案;(2)根据(1)可猜想凸n边形中角度等于135°的内角个数的最大值为:n﹣2;(3)设凸n边形最多有m个内角等于135°,则每个135°内角的外角都等于45°,由凸n边形的n 个外角和为360°,可得k≤=8,只有当n=8时,m才有最大值8,即可得当3≤n≤5时,凸n 边形最多有n﹣2个内角等于135°;当6≤n≤7时,凸n边形最多有n﹣1个内角等于135°;当n=8时,凸n边形最多有8个内角等于135°;当n>8时,凸n边形最多有7个内角等于135°.4.一个凸多边形的内角的度数从小到大排列,恰好依次增加相同的度数,其中最小角是100°,最大角是140°,求这个多边形的边数.【分析】设边数为n,增加相同度数为x,根据依次增加相同的度数,从100°增加到了140°,用n表示出x,再根据n边形的内角和进行列方程求解.【解答】解:设边数为n,增加相同度数为x,则:100+(n﹣1)x=140,解得:x=.又因为(n﹣2)•180=n•100+=n•100+n•20,解得:n=6.【点评】此题中要能够用增加相同的度数x表示出多边形的内角和,即100+100+x+100+2x+…+100+(n ﹣1)x=n•100+(1+2+…+n﹣1)x=100n+.5.阅读下列材料,然后回答文后问题.如图,在n边形内任取一点O,并把O与各顶点连接起来,共构成n个三角形,这n个三角形的内角和为n•180°,再减去以点O为顶点的一个周角,就可以得到n边形的内角和为(n﹣2)•180°.回答:(1)这种方法是将问题转化为问题来解决的,这种转化是思想的体现,也正是解决问题的基本思想;(2)若在n边形的一边上或外部任取一点O,并把O与各顶点连接起来,那么如何说明n边形的内角和为(n﹣2)•180°.【分析】(1)根据解决多边形问题的基本思想求解;(2)若在n边形的一边上或外部任取一点O,并把O与各顶点连接起来,那么共构成(n﹣1)个三角形,此n边形的内角和为这(n﹣1)个三角形的内角和减去180°,从而得出结论.【解答】解:(1)多边形,三角形,化归,多边形;(2)若O在一边上,连接O与各顶点,则共构成(n﹣1)个三角形,这(n﹣1)个三角形的内角和为(n﹣1)•180°,再减去以点O为顶点的一个平角,即(n﹣1)•180°﹣180°=(n﹣2)•180°;若点O在外部,连接O与各顶点,则共构成n个三角形,这n个三角形的内角和为n•180°,再减去以点O为顶点的多出的两个三角形的内角和,即n•180°﹣180°×2=(n﹣2)•180°.【点评】本题主要考查了n边形的内角和定理的推导,体现了数学中的化归思想.【课后知识应用】1.一学员在广场上练习驾驶汽车,两次拐弯后行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) .A.第一次向左拐30°,第二次向右拐30°.B.第一次向右拐50°,第二次向左拐130°.C.第一次向左拐50°,第二次向左拐130°.D.第一次向左拐50°,第二次向右拐130°.2.两条平行直线被第三条直线所截时,产生的八个角中,角平分线互相平行的两个角是().A.同位角B.同旁内角C.内错角 D. 同位角或内错角3. 如图所示,b∥c,a⊥b,∠1=130°,则∠2=().A.30° B. 40° C. 50° D. 60°4.如图,1753DE//AB,CAE CAB,CDE,∠=∠∠=65B∠=,则∠AEB=().A.70B.65C.60D.555.一个凸n边形,除一个内角外,其余n-1个内角的和是2400°,则n的值是().A.15B.16C.17D.不能确定6. 如图所示,把一张对面互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论不正确的有().A.32='∠EFC B. ∠AEC=148° C. ∠BGE=64° D. ∠BFD=116°7. (玉林二模)过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是()A.8 B.9 C.10 D.118.如图把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A与∠1+∠2之间的数量关系保持不变,请找一找这个规律,你发现的规律是().A、∠A=∠1+∠2B、2∠A=∠1+∠2C、2∠A=2∠1+∠2D、3∠A=2(∠1+∠2)9. (荆州二模)如图所示,AB∥CD,点E在CB的延长线上.若∠ECD=110°,则∠ABE的度数为________.ABC'D'CDEFG10. (宁波外校一模)如图所示,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A、B两岛的视角∠ACB等于________.11. (吉安)如图所示,AB∥CD,MN交AB、CD于E、F,EG和FG分别是∠BEN和∠MFD的平分线,那么EG与FG的位置关系是.12.如图,一块梯形玻璃的下半部分打碎了,若∠A=125°,∠D=107°,则打碎部分的两个角的度数分别为 .13.(永州)如图,∠1=∠2,∠A=60°,则∠ADC=度.14. 如图,某个窗户上安装有两扇可以滑动的铝合金玻璃窗ABCD和A/B/C/D/,当玻璃窗户ABCD和A/B/C/D/重合时窗户是打开的;反之窗户是关闭的。