二次函数培优经典题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
112O x
y
培优训练五(二次函数1)
1、如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( )
A .m =n ,k >h
B .m =n ,k <h
C .m >n ,k =h
D .m <n ,k =h
2、已知二次函数y =ax 2+bx +c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b ﹣2a =0;②abc <0;③a ﹣2b +4c <0;④8a +c >0.其中正确的有( )
A . 3个
B . 2个
C . 1个
D . 0个
3、如图,二次函数2y ax bx c =++的图像与y 轴正半轴相交,其顶点坐标
为(1,12),下列结论:①0ac <;②0a b +=; ③244ac b a -=;
④0a b c ++<.其中正确结论的个数是
A . 1
B . 2
C . 3
D . 4
4、若二次函数c x x y +-=62的图象经过A (-1,y 1)、B (2,y 2)、C
(23+,y 3)三点,则关于y 1、y 2、y 3大小关系正确的是
A .y 1>y 2>y 3
B .y 1>y 3>y 2
C .y 2>y 1>y 3
D .y 3>y 1>y 2
5、如图,一次函数)0(1≠+=k n kx y 与二次函数 )0(22≠++=a c bx ax y 的图象相交于A (1-,5)、B (9,2)两点,则关
于x 的不等式c bx ax n kx ++≥+2
的解集为
A 、91≤≤-x
B 、91<≤-x
C 、91≤<-x
D 、1-≤x 或9≥x
6.如图,已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、
B 、
C (1,0)三点.
(1)求抛物线的解析式;
(2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P,使ΔABO 与ΔADP 相似,求出点P 的坐标;
(3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使ΔADE 的面积等于四边形APCE 的面积?如果存在,请求出点E 的坐标;如果不存在,请说明理由.
7、如图,已知二次函数y=﹣x 2+mx+4m 的图象与x 轴交于A (x 1,0),B (x 2,0)两点(B 点在A 点的右边),与y 轴的正半轴交于点C ,且(x 1+x 2)﹣x 1x 2=10.
(1)求此二次函数的解析式.
(2)写出B ,C 两点的坐标及抛物线顶点M 的坐标;
(3)连接BM ,动点P 在线段BM 上运动(不含端点B ,M ),过点P 作x 轴的垂线,垂足为H ,设OH 的长度为t ,四边形PCOH 的面积为S .请探究:四边形PCOH 的面积S 有无最大值?如果有,请求出这个最大值;如果没有,请说明理由.
培优训练六(二次函数2)
1、如图,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点,且AE =BF =CG =DH ,设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是( )
A 、
B 、
C 、
D 、
2、如图,已知二次函数c bx x y ++=2的图象经过点(-1,0),(1,-2),该图象与x 轴
的另一个交点为C ,则AC 长为 .
3、某公园草坪的防护栏由100段形状相同的抛物线形构件组成,为了牢固起见,每段护栏
需要间距0.4m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5m (如图),则这条防护栏需要不锈钢支柱的总长度至少为 m 。
4、如图,在一个矩形空地ABC D 上修建一个矩形花坛AMPQ ,要求点M 在AB 上,点Q 在AD 上,点P 在对角线BD 上.若AB =6m ,AD =4m ,设AM 的
长为xm ,矩形AMPQ 的面积为S 平方米.
(1)求S 与x 的函数关系式;
(2)当x 为何值时,S 有最大值?请求出最大值.
5.如图所示,在平面直角坐标系xOy 中,矩形OABC 的边长OA 、OC 分别为12cm 、6cm ,点A 、C 分别在y 轴的负半轴和x 轴的正半轴上,抛物线y =ax 2+bx +c 经过点A 、B ,且18a +c =0.
(1)求抛物线的解析式.
x
y
(第2题) O 1
1(1,-2) c bx x y ++=2-1 A B
C 第3题
(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.
①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t 的取值范围.
②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
6.如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.
(1)求该抛物线的函数解析式;
(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.
(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.