电磁场与电磁波第7章课后答案

合集下载

《电磁场与电磁波》(第四版)课后习题解答(全)

《电磁场与电磁波》(第四版)课后习题解答(全)

第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++ 【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c +=即只要满足3b+8c=1就可以使向量错误!未找到引用源。

和向量错误!未找到引用源。

垂直。

(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=-可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3))()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++ 2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a ) 所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223y z A x yze xy e =+而 A A A A rot⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y x e x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。

电磁场与电磁波课后答案

电磁场与电磁波课后答案

第一章 矢量场1.1 z y x C z y x B z y xA ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+=ρρρ 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB C ⨯ ; (e) ()ρρρA B C ⨯⨯ (f)()ρρρA B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+==ρρ( c) 7=⋅B A ρρ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ρρ (e)z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ρρρ (f)19)(-=⋅⨯C B A ρρρ 1.2 ρA z =++2∃∃∃ρπϕ; ρB z =-+-∃∃∃ρϕ32 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB A ⨯ ; (e) B A ρρ+解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A ρρ (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπρρ (e) z B A ˆˆ)3(ˆ-++=+ϕπρρρ 1.3 ρA r=+-22∃∃∃πθπϕ; ρB r =-∃∃πθ 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB A ⨯ ; (e) ρρA B +解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ρρ ; (d) ϕπθππˆ3ˆ2ˆ22++=⨯rA B ρρ ; (e) ϕπˆ2ˆ3-=+r B A ρρ 1.4 ρA x y z =+-∃∃∃2; ρB x y z =+-α∃∃∃3 当ρρA B ⊥时,求α。

解:当ρρA B ⊥时,ρρA B ⋅=0, 由此得 5-=α1.5 将直角坐标系中的矢量场ρρF x y z xF x y z y 12(,,)∃,(,,)∃==分别用圆柱和圆球坐标系中的坐标分量表示。

电磁场与电磁波_章七习题答案

电磁场与电磁波_章七习题答案

第7章 导行电磁波主要问题: 1)机械抄袭标准答案,似乎越来越缺乏耐心,我相信部分同学连题目是什么都没看! 2)7-1,7-2完全是套用书本P271页,7.20与7.21公式。

无任何难点,利用这两道题让大家明白传输线特性阻抗和什么有关。

3)7-3,7.4完全套用公式;()000001;;1L L L L in L L L Z Z Z jZ tan dS Z d Z Z Z Z jZ tan dββ+Γ-+Γ===+-Γ+ 这三个公式要求熟记。

5)7-6,7-7很多同学不会,这里我详细给出了求解过程;6)求第一个电压波节点或波腹点还有很多同学做错,需要细心点,一定牢记,电压波节点反射系数为负实数,波腹点反射系数为正实数。

好好理解下。

答案7-10提有误,做了更正。

7)7-13题目很多同学不会是因为没有看懂,还有就是概念不清晰。

1、 求内外导体直径分别为0.25cm 和 0.75cm 空气同轴线的特性阻抗; 在此同轴线内外导体之间填充聚四氟乙烯( 2.1r ε=),求其特性阻抗与300MHz 时的波长。

解:空气同轴线的特性阻抗00.7560ln60ln =65.9170.25b Z a ==Ω 聚四氟乙烯同轴线:00.75=41.404ln345.487 0.25b Z a ===Ω80.69v m f λ==== 2、在设计均匀传输线时,用聚乙烯(εr =2.25)作电介质,忽略损耗⑴ 对于300Ω的双线传输线,若导线的半径为0.6mm ,线间距应选取为多少?⑵ 对于75Ω的同轴线,若内导体的半径为0.6mm ,外导体的内半径应选取为多少? 解:⑴ 双线传输线,令d 为导线半径,D 为线间距,则0110 ln , ln1 300 ln3.75, 25.5D L C D d dDZ dDD mm dμπεππ=====∴== ⑵ 同轴线,令a 为内导体半径,b 为外导体内半径,则0112 ln , 2lnb L C b a aμπεπ==01 ln 752 ln1.875, 3.91bZ abb mm aπ===∴==3、设无耗线的特性阻抗为100Ω, 负载阻抗为5050j -Ω, 试求:终端反射系数L Γ驻波比VSWR 及距负载0.15λ处的输入阻抗in Z 。

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。

2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。

3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。

4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。

( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。

( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。

( √ )7、梯度的方向是等值面的切线方向。

(× )8、标量场梯度的旋度恒等于0。

( √ ) 9、习题1.12, 1.16。

第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。

2、在国际单位制中,电场强度的单位是V/m(伏特/米)。

3、静电系统在真空中的基本方程的积分形式是:V V sD d S d V Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。

4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。

5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。

6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。

7、在介电常数为e 的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。

8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。

电磁场与电磁波课后习题及答案七章习题解答

电磁场与电磁波课后习题及答案七章习题解答

《电磁场与电磁波》习题解答 第七章 正弦电磁波7.1 求证在无界理想介质内沿任意方向e n (e n 为单位矢量)传播的平面波可写成j()e n r t m βω⋅-=e E E 。

解 E m 为常矢量。

在直角坐标中cos cos cos n x y z x y z x y zαβγ=++=++e e e e r e e e故(cos cos cos )()cos cos cos n x y z x y z x y z x y z αβγαβγ⋅=++⋅++=++e r e e e e e e则j()[(cos cos cos )]22222[(cos cos cos )]2e ()()n r t j x y z t m m x x y y z zj x y z t m e j e j βωβαβγωβαβγωββ⋅-++-++-==∇=∇+∇+∇==e E E E E e E e E e E E E而22j[(cos cos cos )]222{e }x y z t m t t βαβγωω++-∂∂==-∂∂E E E故222222()(0j j t μεβμεωμεω∂∇-=+=+=∂EE E E E E 可见,已知的()n j e r t m e βω⋅-=E E 满足波动方程2220t με∂∇-=∂EE故E 表示沿e n 方向传播的平面波。

7.2 试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。

解 表征沿+z 方向传播的椭圆极化波的电场可表示为12()j z x x y y E jE e β-=+=+E e e E E式中取121[()()]21[()()]2j zx x y y x y j zx x y y x y E E j E E e E E j E E e ββ--=+++=---E e e E e e显然,E 1和E 2分别表示沿+z 方向传播的左旋圆极化波和右旋圆极化波。

电磁场与电磁波(第7章)1

电磁场与电磁波(第7章)1
Ex

ez Ex H x H y H z e y z (ex t e y t ez t ) z 0
由此可得
H x H z t t 0
H
x
H y Ex z t 和 H 均与时间无关,因此它们不是波动的部分,故可取
定义
无损耗介质是一种理想情况,在这里指电导率
0
平面波中的电场复数表示形式
E ex Ex ex E0 exp[i(t kz)]=ex E0 exp[i(t kz / )]
理解
电场矢量的方向是 x 方向,电磁波则是沿 z 方向传播
波速为
v / k 1/ k / v
0

Jc 0
H E B t t B 0或 H 0 H E t
一般媒质中的麦克斯韦方程组变为: D 0
( H ) ( D) ( E ) t t
7.3 平面电磁波在有损耗介质中的传播
定义
实际的介质都是有损耗的,因此,研究波在有损耗介质中的传 播具有实际意义。有损耗介质也称为耗散介质,在这里是指电 导率 0 ,但仍然保持均匀、线性及各向同性等特性。 有损耗介质中出现的传导 电流会使在其中传播的电 磁波发生能量损耗,从而 导致波的幅值随着传播距 离的增大而下降。研究表 明,传播过程中幅值下降 的同时,波的相位也会发 生变化,致使整个传输波 的形状发生畸变,如图所 示 平面波在有耗介质中的传播
1. 等效介电系数
对于随时间按照正弦规规律变化的电磁场,其复数形式的麦克斯韦方程中有
E i H H Jc i E E i E

电磁学第二版习题答案第七章

电磁学第二版习题答案第七章

R1 < r < R2 : H ⋅ 2π r = I H = B = μ 2 H = 2

L
H ⋅ dl = ∑ I i
过所求点以 r 为半径作同心圆为闭合电路 L r < R1 : H ⋅ 2π r =
I Ir μ Ir ⋅ π r 2 , H = , B = μ1 H = 1 2 2 2 π R1 2π R1 2π R1
B = μ0 μ r1 H =
μ0 μr ( R32 − r 2 ) I 2 2π r ( R32 − R2 )
1
r > R3 : H ⋅ 2π r = I − I H = 0 B = 0 7.1.6 解:磁介质由于磁化在界面上出现面磁化电流,它们相当于两个无限大的均匀截流面由。 对称性分析可知:在平板内存在一个平行于导体板侧面且 B = 0 的平面在该平面的两侧 B 方向相 反。
第七章 习题
7.1.1 半径为 R 的均匀磁化介质球的磁化强度 M 与 z 轴平行,用球坐标写出球面上磁化电流面密度的 表达式,并求出其总磁矩 解:
α′ = M × n
即 α ′ = Mk × r = M sin θ eϕ 又∵ M = 7.1.2
2 1 1 2 1 2
H 2 = γ E (b −
B2 = μ0γ E
7.1.6
μr b μr b )=γE μr + μr μr + μr
2 1 1 2 1 2 1 2
μr μr b μr + μr
1 2
解: (1)

L
H ⋅dl = ∑ I i Ir μ Ir I B = μ1 H = 1 2 ⋅π r 2 H = 2 2 2π R1 2π R1 π R1

电磁场与电磁波第7章课后答案

电磁场与电磁波第7章课后答案

习题7-1、如果z z H E ,已知,由无源区的麦克斯韦方程,求圆柱坐标系中ϕρϕρH H E E ,,,与z z H E ,的关系。

解: 设z jk z e E E -=),(0ϕρρρ;z jk z e H H -=),(0ϕρρρ则 E jk z E z ρρ-=∂∂;H jk zH z ρρ-=∂∂ 在圆柱坐标系中展开无源区的麦克斯韦方程E j H ρρωε=⨯∇;H j E ρρωμ-=⨯∇得ρϕωεϕρE j H jk H z z =+∂∂1 ρϕωμϕρH j E jk E z z -=+∂∂1 ϕρωερE j H H jk z z =∂∂-- ϕρωμρH j E E jk z z -=∂∂-- z E j H H ωεϕρρρρϕ=∂∂-∂∂1 z H j E E ωμϕρρρρϕ-=∂∂-∂∂1 由以上几式得)1(12ϕρωμρρ∂∂+∂∂-=z z z cH j E jk k E )(12ρωμϕρϕ∂∂+∂∂-=z z z c H j E k j k E )(12ρϕρωερ∂∂-∂∂=z z z cH jk E j k H )(12ϕρρωεϕ∂∂+∂∂-=z z z c H k j E j k H 式中 222z c k k k -=7-2证明() 式为式的解。

证明:由() 式z z e V e V z V γγ---++=00)(可得:2200'')()()(γγγγz V e V e V z V z z =+=---+因此 0222=-V dzV d γ 即 式7-2、 从图的等效电路,求5) 和式对应的传输线方程的时域形式。

解:图)()(1z I Z dzz dV -= 5) )()(1z V Y dzz dI -= 6) 串联支路上的电压为dV V dtdi dzL dz iR V +=++11 (1) 并联支路上的电流为 di i dt du dzC dz uG i +=++11 (2) 由(1)和(2)式得dz dtdi L iR dV )(11+-= (3) dz dtdu C uG di )(11+-= (4) 两边同除dz 得)(11dtdi L iR dz dV +-= (5) )(11dt du C uG dz di +-= (6) (5)、(6)式就是5) 和式对应的传输线方程的时域形式。

《电磁场与电磁波》课后习题解答(第七章)

《电磁场与电磁波》课后习题解答(第七章)

第7章习题解答【7.1】 解:设第一个分子的球心位置为原点,即0d (d 为分子直径)处 依题意任意时刻都要满足%5)10()0(0≤-E d d E E (1)其中E 是空间变化的电场,其形式为)exp(0ikx E -=E ,ck ω=,则(1)式变为%5)210exp(1≤--cfdi π (2) 可以求出 15151019.11056.1215⨯≈⨯≤f 所以频率上限的数量级为1510【7.2】解p V k ω=p pg p g p kdV dV d V V V dk dk V d ωωω===+ 1pg pp V V V d ωω=-22()1p i o rcc V n n ωωαω==-+0i n → p V c ∴= g p V V c ==即 2g p V V c ⋅=【7.3】解(1)波数681221501022310k f πππ===⨯⨯⨯⨯=⨯(rad/m ) 相速81.510p v ===⨯ (m/s )波长 21kπλ==(m )波阻抗60ηπ==(Ω) (2)均匀平面波的平均坡印廷矢量26z m S 0.26510z e e -==⨯平均 (W/m 2)得 31010m E -=⨯(V/m )当t = 0,z = 0时33sin 10100.8668.66103m E E π--⎛⎫==⨯⨯=⨯ ⎪⎝⎭(V/m )(3) t = 0.1s μ后210sin 23E ft kz ππ-⎛⎫=-+ ⎪⎝⎭267310sin 21501011028.66103z πππ---⎛⎫=⨯⨯⨯⨯-+=⨯ ⎪⎝⎭得 1sin 3028.66103z πππ-⎛⎫+-=⨯ ⎪⎝⎭15z =(m )【7.4】 解:电磁波的频率为8820310********v f λ-⨯===⨯⨯(Hz ) 在无损耗媒质中的波长为 12810vfλ-==⨯ (m ) 故波速为12888102510210v f λ-==⨯⨯⨯=⨯=(m/s )而无损耗媒质的本征阻抗为505000.1E H η==== (Ω) 联解以下两式:8210=⨯500= 得 1.99, 1.13r r με==【7.5】 解: 803100.2c f fλ⨯===故 883101510()0.2f Hz ⨯==⨯ 而 0.09vfλ== 故 880.090.091510 1.3510(/)v f m s =⨯=⨯⨯=⨯ 又v ===故 2882(/)(310/1.3510) 4.94r c v ε==⨯⨯=【7.6】 解:由题意知 7610ωπ=⨯0.8k π==106016E Hηππ====联解6100.8ππ⨯= 和60π= 得 8,2r r εμ==【7.7】 解:因4101σωε=<<,为低损耗媒质。

电磁场与电磁波课后习题及答案七章习题解答 (2)

电磁场与电磁波课后习题及答案七章习题解答 (2)

《电磁场与电磁波》习题解答 第七章 正弦电磁波求证在无界理想介质内沿任意方向e n (e n 为单位矢量)传播的平面波可写成j()e n r t m βω⋅-=e E E 。

解 E m 为常矢量。

在直角坐标中故 则 而 故可见,已知的()n j e r t m e βω⋅-=E E 满足波动方程 故E 表示沿e n 方向传播的平面波。

试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。

:解 表征沿+z 方向传播的椭圆极化波的电场可表示为式中取显然,E 1和E 2分别表示沿+z 方向传播的左旋圆极化波和右旋圆极化波。

在自由空间中,已知电场3(,)10sin()V/my z t t z ωβ=-E e ,试求磁场强度(,)z t H 。

解 以余弦为基准,重新写出已知的电场表示式这是一个沿+z 方向传播的均匀平面波的电场,其初相角为90︒-。

与之相伴的磁场为 均匀平面波的磁场强度H 的振幅为1A/m 3π,以相位常数30rad/m 在空气中沿z -e 方向传播。

当t=0和z=0时,若H 的取向为y -e,试写出E 和H 的表示式,并求出波的频率和波长。

解 以余弦为基准,按题意先写出磁场表示式 与之相伴的电场为由rad/m β=30得波长λ和频率f 分别为 '则磁场和电场分别为一个在空气中沿ye +方向传播的均匀平面波,其磁场强度的瞬时值表示式为(1)求β和在3ms t =时,z H =的位置;(2)写出E 的瞬时表示式。

解(1)781π10πrad /m rad /m 0.105rad /m 31030β==⨯==⨯在t =3ms 时,欲使H z =0,则要求 若取n =0,解得y =。

考虑到波长260mπλβ==,故因此,t =3ms 时,H z =0的位置为(2)电场的瞬时表示式为在自由空间中,某一电磁波的波长为0.2m 。

当该电磁波进入某理想介质后,波长变为0.09m 。

设1r μ=,试求理想介质的相对介电常数r ε以及在该介质中的波速。

《电磁场与电磁波》(第四版)习题集:第7章 导行电磁波

《电磁场与电磁波》(第四版)习题集:第7章  导行电磁波

第7章 导行电磁波前面我们讨论了电磁波在无界空间的传播以及电磁波对平面分界面的反射与透射现象。

在这一章中我们将讨论电磁波在有界空间的传播,即导波系统中的电磁波。

所谓导波系统是指引导电磁波沿一定方向传播的装置,被引导的电磁波称为导行波。

常见的导波系统有规则金属波导(如矩形波导、圆波导)、传输线(如平行双线、同轴线)和表面波波导(如微带线),图7.0.1给出了一些常见的导波系统。

导波系统中电磁波的传输问题属于电磁场边值问题,即在给定边界条件下解电磁波动方程,这时我们可以得到导波系统中的电磁场分布和电磁波的传播特性。

在这一章中,将用该方法讨论矩形波导、圆波导和同轴线中的电磁波传播问题以及谐振腔中的场分布及相关参数。

然而,当边界比较复杂时,用这种方法得到解析解就很困难,这时如果是双导体(或多导体)导波系统且传播的电磁波频率不太高,就可以引入分布参数,用“电路”中的电压和电流等效前面波导中的电场和磁场,这种方法称为“等效传输线”法。

这一章我们还将用该方法讨论平行双线和同轴线中波的传播特性。

7.1导行电磁波概论任意截面的均匀导波系统如图7.1.1所示。

为讨论简单又不失一般性,可作如下假设: (1)波导的横截面沿z 方向是均匀的,即导波内的电场和磁场分布只与坐标x ,y 有关,与坐标z 无关。

(2)构成波导壁的导体是理想导体,即σ=∞。

(3)波导内填充的媒质为理想介质,即0σ=,且各向同性。

(4)所讨论的区域内没有源分布,即0ρ=0=J 。

a 矩形波导b 圆柱形波导c 同轴线传输线d 双线传输线e 微带线图7.0.1 常见的几种导波系统(5)波导内的电磁场是时谐场,角频率为ω。

设波导中电磁波沿+z 方向传播,对于角频率为ω的时谐场,由假设条件(1)和(2)可将其电磁场量表示为()()()(),,,,,,,z z x y z x y e x y z x y e γγ--==E E H H (7.1.1)式中γ称为传播常数,表征导波系统中电磁场的传播特性。

大学电磁场与电磁波习题参考答案-第七章答案

大学电磁场与电磁波习题参考答案-第七章答案

20XX年复习资料大学复习资料专业:班级:科目老师:日期:第七章参考答案7.4解:在距基本振子20XXXX0km 处的最大辐射方向上电场强度为1mV ,即 001.0=max E 由教材P20XXXX6公式(7-3-7)得辐射功率为 W 91000sin 24020322==⎰⎰∑ϕθθπππd d E r P max 7.5解:电基本振子的方向函数为 θϕθsin ),(=F当电场强度减少到最大值的2/1时,接收电台的位置偏离正南方向的()455.0arcsin ±=±=θ7.7解:(1)由教材P20XXXX6公式(7-3-4)得 21034.160-∑⨯==rDP E max V/m(2)216060r P D r DP ∑∑'=解得12='D7.9解:半波振子可以看成是由一系列电基本振子沿z 轴排列(如图7.9)组成的,则在z 处的电基本振子的辐射场为:dz z I e r j dE r jk )(sin 60'-'=θλπθ天线的辐射场即为上式的积分⎰-''=hh r jk dz r e z I j E )(sin 60θλπθ现在,就上式作一些近似处理。

因而在yoz 面由于辐射场为远区,即h r >>,内作下列近似:θθcos )cos 2(2122z r rz z r r -≈-+='同时令r r '≈11,则天线的辐射电场为 图题7.9⎰---=h h kz krm z kze re I E d cos sin 60jcos j j θθθλπ ()⎰-=h krm z kz kz re I 0j d cos cos cos sin 260j θθλπ()θθθθsin cos sin cos cos )cos cos(sin 60jj kh kh kh kh er I kr m -=- πθϕ120E H =(1)将4λ=h 代入上式得半波振子天线的辐射电场、磁场分别θθπθsin 2cos cos 60⎪⎭⎫ ⎝⎛=-jkrm e rI jEθθπππθϕsin 2cos cos 2120⎪⎭⎫ ⎝⎛==-jkrm e rIj E H半波振子的归一化方向函数θθπθsin 2cos cos )(⎪⎭⎫ ⎝⎛=F(2)坡印廷矢量为θθππ2222sin 2cos cos 1521⎪⎭⎫⎝⎛=⨯=r I m ra H E S *显然,其坡印廷矢量为沿半径r 方向传播的纯实数。

电磁学课后答案第七章

电磁学课后答案第七章

p 2
|
M
|
d
0
= 2p 2 B2 R4 3L
第七章
7-1 外加直流电时,
U1 = Rx I1
Rx
=
U1 I1
=
40W
外加交流电时
U z = Z I z = (Rx + j Lx ) I z
Rx2 +
2 Lx2
= Uz Iz
=
20 W 0.4
= 50W
Lx =
502 - 402 = 0.6H 50
(2)
Im
=
Vm Z
=
Vm R2 + ( L - 1 )2
C
Im = Vm ( [R2 + (
1 4C 2
-
L2 )
L-
1
3
)2 ]2
C
又 0 =
1 = 745rad / s 时 LC
Im = 0 ,达极大值, < 0 时, Im 0
所以电流先上升,再下降
(3)
= arctan
(4)
L- 1 C = -61.4
- d - L dI = 0 dt dt
由此得
dI = - B dS L
积分得
I = - B (-p R2 ) = p BR2
L
L
(2) 力矩
| M |=| m ´ B | = p R2IB sin = p R2 × p R2B (1- cos ) sin L
外力所做的总功为
ò W =
7-2
由Z = R+ 1 Z I =U jC
可得
R2 + ( 1 )2 I = U C
RI = UR

电磁场与电磁波第7章 电磁波的辐射

电磁场与电磁波第7章 电磁波的辐射
是球面波。由于等相位面上任意点的E、H
振幅不同,所以又是非均匀平面波。Eθ/Hφ=η是一常数,等于媒 质的波阻抗。
第七章 电磁波的辐射
③ 场的振幅:远区场的振幅与r成反比;与I、dl/λ成正比。 值得注意,场的振幅与电长度dl/λ有关,而不是仅与几何尺寸dl 有关。
④ 场的方向性:远区场的振幅还正比于sinθ,在垂直于天线 轴 的 方 向 (θ=90°) , 辐 射 场 最 大 ; 沿 着 天 线 轴 的 方 向 (θ=0°) , 辐射场为零。这说明电基本振子的辐射具有方向性, 这种方向 性也是天线的一个主要特性。
k1r(k1)r2(k1)r3,ejkr1
ErjI2dc lro 3 s42p r3co s
第七章 电磁波的辐射
EjI2ds lir3n 4pr3sin
H
Idlsin 4r2
式中p=Qdl是电偶极矩的复振幅。 因为已经把载流短导线看成一 个振荡电偶极子,其上下两端的电荷与电流的关系是I=jωQ。
H J j E E J m j H D B m
第七章 电磁波的辐射
2.
当kr>>1时,r>>λ/2π,即场点P与源点距离r远大于波长λ的 区域称为远区。 在远区中,
k1r(k1r)2 (k1r)3
远区电磁场表达式简化为
E
j
Idl2ksinejkr 4r
j
Idlsinejkr 2r
E
j
Idlskinejkr 4r
j
Idlsinejkr 2r
第七章 电磁波的辐射
以空气中的波阻抗 0
0 120 0
代入, 可得
Pr
402
Idl2
2
式 中 I 的 单 位 为 A( 安 培 ) 且 是 复 振 幅 值 , 辐 射 功 率 Pr 的 单 位 为 W(瓦),空气中的波长λ0的单位为m(米)。

电磁学课后答案第七章

电磁学课后答案第七章

Im =
Vm = Z
Vm R2 + ( L 1 2 ) C
Im
1 - L2 ) 2 C = 3 1 2 2 [ R2 + ( L ) ] C Vm (
4

0
=
1 = 745rad / s 时 LC
Im
= 0 ,达极大值,
<
0
时,
Im
0
所以电流先上升,再下降 (3)
= arctan
(4)
LR
1 C = -61.4
7-13 (1)
1 j L L j C =R + j z = R+ 1 1 - 2 LC +j L j C
电路中总阻抗
z = R2 + (
L 12
LC
) 2 = 8.94W
(2)
Ic =
(3)
U z LC 220 1 × = ´ = 2.73 A z zC 5 ( 1 ´ 530 ´ 10 -6 ) 2 100p
N=
1´104 = 4.69 4.44 ´ 50 ´1.2 ´ 8
取N =5 得初级线圈,次级线圈匝数分别为
N1 = 5 ´ 220 = 1100匝 N 2 = 5 ´ 40 = 200匝 N 3 = 5 ´ 6 = 30匝
变压器结构如图
题解 7-20 图
2 0
2 2 2R 2 0 C +1 = R2 2 2 2 2 + R 0C
C2
R2
0
2 0
C2 = 1
=
1 RC
0时
(3)
=
z=
3 R(1 - j ) 2 1 R(1 - j ) , 2

电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)第7章

电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)第7章

第七章 时变电磁场7-1 设真空中电荷量为q 的点电荷以速度)(c v v <<向正z 方向匀速运动,在t = 0时刻经过坐标原点,计算任一点位移电流。

(不考虑滞后效应)解 选取圆柱坐标系,由题意知点电荷在任意时刻的位 置为),0 ,0(vt ,且产生的场强与角度φ无关,如习题图7-1 所示。

设) , ,(z r P φ为空间任一点,则点电荷在P 点产生的电场强度为304R q πεRE =,其中R 为点电荷到P 点的位置矢量,即)(vt z r z r -+=e e R 。

那么,由tt d ∂∂=∂∂=ED J 0ε,得 ()()()()()()()25222225224243vt z rr vt z qv vt z r vt z qrv zr d -+--+-+-=ππe e J 。

7-2 已知真空平板电容器的极板面积为S ,间距为d ,当外加电压t V V sin 0ω=时,计算电容器中的位移电流,且证明它等于引线中的传导电流。

习题图7-1 P (r ,φ,z )x解 在电容器中电场为t dV E sin 0ω=,则 t dV t D J d cos 00ωωε=∂∂=, 所以产生的位移电流为t dSV S J I d d cos 00ωωε==;已知真空平板电容器的电容为dSC 0ε=,所带电量为t CV CV Q ωsin 0==,则传导电流为t dSV t CV t QI cos cos d d 000ωωεωω===; 可见,位移电流与传导电流相等。

7-3 已知正弦电磁场的频率为100GHz ,试求铜及淡水中位移电流密度与传导电流密度之比。

解 设电场随时间正弦变化,且t E m x sin ωe E =,则位移电流t E tm r x d cos 0ωωεεe DJ =∂∂=, 其振幅值为m r d E J ωεε0=传导电流t E m x ωσσsin e E J ==,振幅为m E J σ=,可见σωεε0r d J J =; 在海水中,81=r ε,m S /4=σ,则5.11241021036181119=⨯⨯⨯⨯=-ππJJ d;在铜中,1=r ε,m S /108.57⨯=σ,则871191058.9108.5102103611--⨯=⨯⨯⨯⨯⨯=ππJ J d。

电磁场与电磁波课后习题及答案七章习题解答

电磁场与电磁波课后习题及答案七章习题解答

《电磁场与电磁波》习题解答第七章正弦电磁波7.1求证在无界理想介质内沿任意方向飾(勺为单位矢量)传播的平面波可写成E = E m eiSz")o解E”为常矢量。

在直角坐标中e n = e x cos a + e y cos p + e: cos 丫r = e x x+e v y^e:zej r = (e x cos a + e x cos/3 + e: cos /)・(g、x+e y y + e: z) =xcos a +ycos 0 + z cos yE = E= E£丿[0©8”十二《«”-初]V2E = e V2E + eV2E v + eN2E.=E〃Q0)2R〔0(・gW0+g”5】=(j 0)2 E护卩p2°—j[0(AC8d十〉8“+二CO”)-期]! _ _力2£亍一乔/;,&E、r / _ rV2E 一应—={jpyE + psarE = (joJ“e)2E + peorE = 0 可见,已知的匕一匕满足波动方程歹学=0dr故E表示沿勺方向传播的平面波。

7.2试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。

解表征沿+Z方向传播的椭圆极化波的电场可表示为E = (e x E x+e y jE y)e~Jfiz =E^E2式中取E产扣M +耳)+ e J© + &)]宀2E2-^[e x(E x-E y)-e y j(E x-E y)]e-^显然,Ei和E2分别表示沿+z方向传播的左旋圆极化波和右旋圆极化波。

7.3在自由空间中,已知电场氐小讣皿曲-血冋!!!,试求磁场强度O解以余弦为基准,重新写出已知的电场表示式E(Z,f)=乞10’ cos(曲一0z-彳)V/m这是一个沿+z方向传播的均匀平面波的电场,其初相角为一90°。

与之相伴的磁场为] 1 / n H(z.t) = —e.xEQ) = 一e. xe 103cos cot-/3z- — 〃o 、 仏、• I2103 = -e v ------- c osT20龙1 A/—A« ill7.4均匀平面波的磁场强度H 的振幅为衍 ,以相位常数30iad/m 在空气中沿一© 方向传播。

电磁场与电磁波理论基础第七章作业题解答

电磁场与电磁波理论基础第七章作业题解答

第七章 平面电磁波的反射和透射 习题解答7-1.空气中的平面电磁波电场幅值为10V/m ,垂直入射到εr =25的无耗非磁性介质的表面,试确定:(1)反射系数和透射系数;(2)在空气中的驻波比;(3)入射波、反射波和透射波的平均功率流密度。

解 (1)由于空气和无耗非磁性介质的磁导率为120μμμ=≈所以,空气和无耗非磁性介质中的波阻抗分别为()()12120120245;πηπηπ==Ω====Ω 由此得到垂直入射情况下,两理想介质分界面的反射系数和透射系数为 2121241200.6724120r ηηππηηππ--==≈-++22122240.3324120t ηπηηππ⨯==≈++(2)驻波比定义为 11max minE r SE r由此得到空气中的驻波比为 1106750611067r .S.r .(3)假定电场矢量沿x e 方向,入射波沿+Z 方向传播,则可写出垂直入射情况下,入射波、反射波和透射波的电场和磁场复振幅矢量表达式为()()()1110110001111i i i i jk zi x jk z jk zi i z x y E e E e E e z z z e e e e E H k E ηηη---⨯⎧=⎪⎨=⨯=⎩=⎪ ()()()()1110000111111r r jk zr x jk z jk zr r r r z x y z z z E e E e E e e e e e E H k E ηηη-⎧=⎪⎨=⨯⨯=⎪-⎩= ()()()2220220002111t t tt jk z t x jk z jk zt t z x y E e E e E e z z z e e e e E H k E ηηη---⨯⎧=⎪⎨=⨯=⎩=⎪ 根据平均功率流密度的定义式*1Re 2av S E H ⎡⎤=⨯⎣⎦ 有11*2*10010111Re Re 2212jk z jk zi i i i av i i x y z E e E e E S E H e e e ηη--⎡⎤⎛⎫⎡⎤⎢⎥=⨯=⨯= ⎪⎣⎦⎢⎥⎝⎭⎣⎦()111*2*0010111Re Re 2221jk z jk zr r r r av r r x y z E e E e E S E H e e e ηη⎡⎤⎛⎫⎡⎤⎢⎥=⨯=⨯-=- ⎪⎣⎦⎢⎥⎝⎭⎣⎦ 22*2*20020111Re Re 2212jk z jk z t t t tav t t x y z E e E e E S E H e e e ηη--⎡⎤⎛⎫⎡⎤⎢⎥=⨯=⨯= ⎪⎣⎦⎢⎥⎝⎭⎣⎦而1200012024106733i r iti ;;EV /m ;E rE .V /m ;EtE.V /m数值代入得到()212011000.13/2iav zz W m S e e π=⨯≈⨯()221 6.70.06/2120rav z z W m S e e π=-⨯-≈-⨯()221 3.30.07/224tav z z W m S e e π=≈⨯7-4.一均匀平面电磁波沿+Z 方向传播,其电场强度矢量为()()()100sin 200cos V/m x y t kz t kz ωω=-+-E e e(1)应用麦克斯韦方程求相伴的磁场H ;(2)若在传播方向上z =0处放置一无限大的理想导体板,求z <0区域中的合成波的电场E 1和磁场H 1;(3)求理想导体板表面的电流密度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题7-1、如果z z H E ,已知,由无源区的麦克斯韦方程,求圆柱坐标系中ϕρϕρH H E E ,,,与z z H E ,的关系。

解: 设z jk z e E E -=),(0ϕρρρ;z jk z e H H -=),(0ϕρρρ则 E jk z E z ρρ-=∂∂;H jk zH z ρρ-=∂∂ 在圆柱坐标系中展开无源区的麦克斯韦方程E j H ρρωε=⨯∇;H j E ρρωμ-=⨯∇得ρϕωεϕρE j H jk H z z =+∂∂1 ρϕωμϕρH j E jk E z z -=+∂∂1 ϕρωερE j H H jk z z =∂∂-- ϕρωμρH j E E jk z z -=∂∂-- z E j H H ωεϕρρρρϕ=∂∂-∂∂1 z H j E E ωμϕρρρρϕ-=∂∂-∂∂1 由以上几式得)1(12ϕρωμρρ∂∂+∂∂-=z z z cH j E jk k E )(12ρωμϕρϕ∂∂+∂∂-=z z z c H j E k j k E )(12ρϕρωερ∂∂-∂∂=z z z cH jk E j k H )(12ϕρρωεϕ∂∂+∂∂-=z z z c H k j E j k H 式中 222z c k k k -=7-2证明() 式为式的解。

证明:由() 式z z e V e V z V γγ---++=00)(可得:2200'')()()(γγγγz V e V e V z V z z =+=---+因此 0222=-V dzV d γ 即 式7-2、 从图的等效电路,求5) 和式对应的传输线方程的时域形式。

解:图)()(1z I Z dzz dV -= 5) )()(1z V Y dzz dI -= 6) 串联支路上的电压为dV V dtdi dzL dz iR V +=++11 (1) 并联支路上的电流为 di i dt du dzC dz uG i +=++11 (2) 由(1)和(2)式得dz dtdi L iR dV )(11+-= (3) dz dtdu C uG di )(11+-= (4) 两边同除dz 得)(11dtdi L iR dz dV +-= (5) )(11dt du C uG dz di +-= (6) (5)、(6)式就是5) 和式对应的传输线方程的时域形式。

7-3、由10)、、和9)式推导11)和 12)式。

解: 将βαγj +=111L j R Z ω+=111C j G Y ω+= 代入11Y Z =γ并等式两边平方得)(211111121122G L R C j C L G R j ++-=+-ωωαββα令等式两边实部和虚部分别相等,得1121122C L G R ωβα-=-)(21111G L R C +=ωαβ解以上两方程,得)]())(([21112112122121221C L G R C G L R ωωωα-+++= 11) )]())(([21112112122121221C L G R C G L R ωωωβ--++=12)7-4、证明() 式为式的解。

解 z z e V e V z V γγ--++=00)( )()(222z V dzz V d γ-= 即0222=-V dzV d γ7-5、同轴线内导体外径为mm d 04.3=, 外导体内径为mm 7, 内外导体之间为2.2=r ε的非磁性介质,求特性阻抗。

解:特性阻抗Ω===74.332/04.32/7ln 2.2160ln 60a b Z r r εμ。

7-6、型号为SYV -5-2-2的同轴电缆内导体外径为mm 68.0, 外导体内径为mm 2.2, 内外导体之间为99.1=r ε 的非磁性介质,求特性阻抗。

解:特性阻抗Ω===93.492/68.02/2.2ln 99.1160ln 60a b Z r r εμ7-7、特性阻抗为75Ω的传输线,终端负载为Ω=50L Z 。

求:(1)终端的反射系数;(2)传输线上的电压驻波比;(3)距终端λλλλλ,2/,8/3,4/,8/=l 处的输入阻抗。

解:(1)终端的反射系数5150757550-=--=+-=ΓL L Z Z Z Z ; (2)电压驻波比5.15/45/611==Γ-Γ+=ρ; (3)距终端l 输入阻抗l jZ Z l jZ Z ZZ L L in ββtan tan ++= 其中λπλπβ/2/2l l l =⨯=所以,Ω+=j Z in 84.2823.69)8/(λΩ=5.112)4/(λin ZΩ-=j Z in 84.2823.69)8/3(λΩ=50)2/(λin ZΩ=50)(λin Z7-8、特性阻抗为Ω=300c Z 的传输线, 终端接负载Ω+=300300j Z L ,波长为m 1=λ。

求终端反射系数、驻波比、电压波节点及波腹点的位置。

解:终端反射系数04.63447.0300600300j L c c L e j j Z Z Z Z =+=+-=Γ;驻波比62.211=Γ-Γ+=ρ;m f v 1103/103/88=⨯⨯==λ电压波腹点位置m n n l 176.02/42min +=+=λπαλ电压波节点的位置m n l l 426.02/4min max +=+=λ7-9、特性阻抗为75Ω的传输线,终端负载为L Z ,测得距终端负载20cm 处是电压波节点, 30cm 处是相邻的电压波腹点,电压驻波比为2,求终端负载。

设入射电压波为z j e V β-+=10,负载处0=z ,写出总电压、电流波。

解:距终端负载20cm 处是电压波节点, 30cm 处是相邻的电压波腹点,相邻的电压波腹点和波节点距离为cm 102030=-,那么终端就是电压波节点。

cm 40104=⨯=λ2=ρ3111==-=Γρρ,由于终端就是电压波节点,因此 31-=Γ Z Z L < L Z Z =ρ,Ω==2/75ρZ Z L 传输线上的总电压电流波可写为)()(0z j z j e eV z V ββΓ+=-+ )()(0z j z j e e ZV z I ββΓ-=-+7-10、特性阻抗为75Ω的传输线,终端负载为L Z ,测得距终端负载20cm 处是电压波腹点,30cm 处是相邻的电压波节点,电压驻波比为2,求终端负载。

解 距终端负载20cm 处是电压波腹点,30cm 处是相邻的电压波节点,相邻的电压波腹点和波节点距离为cm 102030=-,cm 40104=⨯=λ那么终端就是电压波腹点。

2=ρ3111==-=Γρρ,由于终端就是电压波节点,因此 31=Γ Z Z L > ZZ L =ρ,Ω==150ρZ Z L7-11、特性阻抗为75Ω的传输线,终端负载为L Z ,测得距终端负载10cm 处是电压波腹点,30cm 处是相邻的电压波节点,电压驻波比为2,求终端负载。

解 2=ρ 3111=+-=Γρρ cm 2010304=-=λ,cm 80=λ电压波腹点到终端的距离m ax l 为24max λλπθn l +=取0=n ,则2801044maxππλπθ=⨯==l 终端反射系数为 31312/j e j ==Γπ 由 ZZ Z Z L L +-=Γ得 Ω⨯+=-+=Γ-Γ+=75)5354(31131111j Z j jZ Z L 7-12、特性阻抗为Z 的传输线,终端接一负载,设终端负载处电压和电流分别为0V 和0I ,证明传输线上任一位置的电压)(z V 和电流)(z I 和0V 和0I 的关系可写为⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡00)cos()sin()sin()cos()()(I V z z Z j z jZ z z I z V ββββ 解 设一段长为l 、特性阻抗为Z 的无损耗传输线,左端接信号源,右端接负载L Z ,如图所示。

信号源产生沿z 方向传输的电压波和电流波为z j e V V β-++=0 (1)z j e Z V I β-++=0 (2)图 无损耗传输线入射电压电流波传输到负载后,一部分被负载吸收,一部分被反射。

反射电压电流波可写为z j e V V β--=0 (3)z j e Z V I β---=0 (4) 传输线上的总电压电流波可写为z j z j e V eV z V ββ--++=00)( (5) z j z j e ZV e Z V z I ββ--+-=00)( (6) 在终端0=z ,-++=000V V V (7)ZV Z V I -+-=000 (8) 解得 )(21000ZI V V +=+(9) )(21000ZI V V -=+ (10) 将(9)、(10)代入(5)、(6)式得⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡00)cos()sin()sin()cos()()(I V z z Z j z jZ z z I z V ββββ7-13、用一段特性阻抗为Ω=50c Z ,s m p /1050.18⨯=υ,终端短路的传输线,在MHz f 300=的频率上形成(1)pF C 31060.1-⨯=的电容;(2)H L μ21065.2-⨯=的电感。

求短路传输线的长度。

解:m f v 2/1/==λ , l l πβ4=,l jZ l Z in βtan )(=(1)fC j l j l Z in πβ21tan 50)(==,可得:电容 m l 125.0=(2)fL j l j l Z in πβ2tan 50)(==,可得:电感 m l 0625.0=7-14、如果以上电感、电容用开路传输线实现,传输线应多长?解:l jZctg l Z in β-=)((1)fCj l ctg j l Z in πβ2150)(=-=,可得: 电容 m l 375.0=(2)fL j l ctg j l Z in πβ250)(=-=,可得:电感 m l 3125.0=7-15、某仪器的信号输入端为同轴接口,输入阻抗为75Ω,如果要使特性阻抗为Ω=50c ZΩ=50c Z Z Ω=75L Zl jZ Z l jZ Z Z l Z L L in ββtan tan )(++= 当m f v l 25.04//4/===λ时,L in Z Z l Z /)(2=,可得Ω=⨯==23.615075c L Z Z Z 为所求。

7-16、某天线的输入阻抗为5.3775j -Ω,天线作为负载与特性阻抗为Ω=75c Z 的传输线相连。

要使传输线上无反射,应如何进行阻抗匹配变换?解:这里用两种解法。

(1)采用如图所示的方法,先用特性阻抗为Ω=75c Z 长为1l 的传输线,将负载的复阻抗转换为电阻R ,然后用长度为4/2λ=l 特性阻抗为Z 的传输线,使其输入阻抗等于Ω=75c Z ,即实现传输线匹配。

相关文档
最新文档