【人教版】八年级数学月考试卷共3份
人教版数学八年级(下)第一次月考测试卷(含答案)
人教版数学八年级(下)第一次月考测试卷(含答案)一.选择题(每小题3分,共30分)1.(3分)下列计算不正确的是()A.B.C.D.=2+32.(3分)下列根式中,属于最简二次根式的是()A.B.C.D.3.(3分)有下列各组数:①3,4,5;②62,82,102;③0.5,1.2,1.3;④1,,.其中勾股数有()A.1组B.2组C.3组D.4组4.(3分)下列条件中,不能判断一个三角形是直角三角形的是()A.三个角的比为1:2:3B.三条边满足关系a2=b2﹣c2C.三条边的比为1:2:3D.三个角满足关系∠B+∠C=∠A5.(3分)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,AD为△ABC的高,则AD的长为()A.B.C.D.6.(3分)如图,在平面直角坐标系中,点P坐标为(﹣3,2),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.﹣5和﹣4之间C.3和4之间D.4和5之间7.(3分)国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8km,又往北走2km,遇到障碍后又往西走3km,再向北走到6km处往东拐,仅走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.20km B.14km C.11km D.10km8.(3分)如果一个三角形的三边长分别为、k、,则化简﹣|2k﹣5|的结果是()A.﹣k﹣1B.k+1C.3k﹣11D.11﹣3k9.(3分)如图,是由四个全等的直角三角形拼成的“赵爽弦图”,得到正方形ABCD与正方形EFGH,连结DF.若S正方形ABCD=5,EF=BG,则DF的长为()A.2B.C.3D.10.(3分)如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是(用含n的代数式表示)()A.B.C.D.二.填空题(每小题3分,共15分)11.(3分)式子在实数范围内有意义,则实数x的取值范围是.12.(3分)α=﹣的倒数是.13.(3分)在△ABC中,若AB=AC=5,BC=6,则AC边上的高h=.14.(3分)若关于x的一元一次不等式组无解,则a的取值范围是.15.(3分)如图,△ABC中,∠ACB=90°,分别以AC、BC为斜边作等腰直角三角形S1、S2,以AB为边作正方形S.若S1与S2的面积和为9,则正方形S的边长等于.三.解答题(共9小题,共72分)16.(6分)计算:(1);(2).17.(6分)已知最简二次根式和可以合并,你能求出使有意义的x的取值范围吗?18.(6分)如图,有一个池塘,其底边长为10尺,一根芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B'.请你计算这个池塘水的深度和这根芦苇的长度各是多少?19.(8分)如图,学校有一块三角形空地ABC,计划将这块三角形空地分割成四边形ABDE 和△EDC,分别摆放“秋海棠”和“天竺葵”两种不同的花卉,经测量,∠EDC=90°,DC=3,CE=5,BD=7,AB=8,AE=1,求四边形ABDE的面积.20.(8分)如图,在梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°,折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.求AB的长.21.(8分)定义:若两个二次根式a,b满足ab=c,且c是有理数,则称a与b是关于c 的共轭(è)二次根式.问题解决:(1)若a与2是关于6的共轭二次根式,则a=;(2)若4+与8﹣m是关于26的共轭二次根式,求m的值.22.(10分)实数a在数轴上的对应点A的位置如图所示,b=|a﹣|+|2﹣a|.(1)求b的值;(2)已知b+2的小数部分是m,8﹣b的小数部分是n,求2m+2n+1的平方根.23.(11分)如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若动点P从点A出发,以每秒1cm的速度沿折线A﹣C﹣B运动,设运动时间为t秒(t>0).(1)当点P在AB边的垂直平分线上时,求t的值;(2)当点P在∠BAC的平分线上时,求t的值.24.(12分)规律探索题:细心观察如图,认真分析各式,然后解答问题.;(S1是△OA1A2的面积);;(S2是△OA2A3的面积);;(S3是△OA3A4的面积);…(1)请用含有n(n为正整数)的等式S n=;(2)推算出OA10=;(3)求出的值.参考答案一.选择题(每小题3分,共30分)1.D;2.C;3.A;4.C;5.D;6.A;7.D;8.D;9.B;10.C;二.填空题(每小题3分,共15分)11.x>5;12.+;13.;14.a≥1;15.6;三.解答题(共9小题,共72分)16.(1);(2).;17.x≥2.;18.;19.四边形ABDE的面积为18.;20.6.;21.;22.(1);(2)±.;23.;24.;.。
【人教版】八年级(上)月考数学试卷(10月份)共3份
成都南开为明学校20~21学年度9月月考 初二(22届) 数学试题(无答案)(说明:本卷满分150分,其中A 卷100分,B 卷50分,考试时间120分钟)命题人签字: 学科组长签字:A 卷(100分)一、单项选择题 (每小题3分,共30分) 1. 在38-,,711,0.6 ,π,3.10这六个数,无理数有( )个。
A .2个 B .3个 C .4个 D .6个 2.平方根是本身的是( )A .1B .1- C.0 D .2 3. 1x -有意义的x 的取值范围是( )A .1x ≠B .1x >C .1x ≤D .1x ≥ 4.下列根式是最简二次根式是( ) 1320 30 121 5.下列无理数中,在-2与1之间的是( )A .5B .3 3 5 6.下列说法错误的是( )A .3- 是9 的平方根B 5的平方等于5C .1- 的平方根是1±D .9的算术平方根是3 7.下列计算正确的是( ) A.532= B .3523615= C .(2216= D 13= 8.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,若()21520a b c -++-= ,则这个三角形一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .钝角三角形9.一个正数的两个平方根分别是21a - 与2a -+ ,则a 的值为( )A .1B .-1C .2D .-210.已知2a =,3b = ,5c = ,则下列大小关系正确的是( )A .a >b >cB .c >b >aC .b >a >cD .a >c >b 二、填空题:(每空4分,共16分) 11.4的算术平方根为_______;12.比较大小:3 (填“>”“<”或“=”)13. =0,求20042004ab +的值_____. 14.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0), 如:3*2=3+23-2=5,那么7*(6*3)=_________. 三.解答题(共54分) 15计算:(每小题5分,20分)④()11152π-⎛⎫-++- ⎪⎝⎭16求下列各式中的x 的值: (每小题5分,10分)(1)()2913x += (2)()32216x -+=-17. (6分) 已知21a - 的平方根是3±,32a b -+的算术平方根是4,求3a b + 的立方根.18. (6分) 若,a b 都是实数,且12b =的值19 (6分) 先化简,再求值:()()()()22323412x x x x x +---+-,其中x =-.20. (6分) 自由下落的物体的高度h(m)与下落时间t(s)的关系为h =4.9t 2.有一学生不慎让一个玻璃杯从19.6 m 高的楼上自由下落,刚好另一学生站在与下落的玻璃杯同一直线的地面上,在玻璃杯下落的同时楼上的学生惊叫一声,这时楼下的学生能躲开吗?(声音的速度约为340 m/s)B 卷(50分)一填空题(每题5分,共20分)21.已知913与913的消暑部分分别是a 和b ,求348ab a b -++的值____。
人教版八年级上册数学月考考试卷【含答案】
人教版八年级上册数学月考考试卷【含答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( )A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .8.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°9.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图:在△ABC 中,∠ABC ,∠ACB 的平分线交于点O ,若∠BOC =132°,则∠A 等于_____度,若∠A =60°时,∠BOC 又等于_____。
2022年人教版八年级数学上册第一次月考试卷
2022年八年级数学上册第一次月考试题一、选择题(每小题3分,共30分)1.三角形一边上的中线把原三角形分成两个()A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形2.下列四个图形中,线段AD是△ABC 的高的是()A.B.C.D.3.如图,AB∥CD,∠D=30°,∠E=35°,则∠B的度数为()A.60°B.65°C.70°D.75°4.等腰三角形的一边长为3cm ,周长为19cm,则该三角形的腰长为()A.3cm B.8cmC.3cm或8cm D.以上答案均不对5.如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为()A.120°B.180°C.240°D.300°6.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°7.已知D是△ABC的边AB上一点,DF交AC于点E,DE=EF,FC∥AB,若BD=2,CF =5,则AB的长为()A.1B.3C.5D.78.已知,如图,OC是∠AOB内部的一条射线,P是射线OC上任意点,PD⊥OA,PE⊥OB,下列条件中:①∠AOC=∠BOC,②PD=PE,③OD=OE,④∠DPO=∠EPO,能判定OC是∠AOB的角平分线的有()A.1个B.2个C.3个D.4个9.如图,已知在△ABC中,CD 是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10B.7C.5D.410.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B 恰好落在AC边上的点E处,若∠A=25°,则∠ADE的度数为()A.20°B.30°C.40°D.50°二、填空题(共5小题,满分15分,每小题3分)11.一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为.12.如图,将∠BAC沿DE向∠BAC内折叠,使AD与A′D重合,A′E与AE重合,若∠A =30°,则∠1+∠2=.13.一个多边形的内角和比外角和的3倍多180°,则它的边数是.14.已知,如图,△ABC的角平分线AD交BC于D,BD:DC=2:1,若AC=3cm,则AB =.15.如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l交l于点D.若AC=10,BD=6,则CD=.三、解答题(共8小题,满分75分)16.(8分)已知a,b,c是三角形的三边长.(1)化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|;(2)在(1)的条件下,若a=5,b=4,c=3,求这个式子的值.17.(8分)如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.若∠B=35°,∠E=20°,求∠BAC的度数.18.(9分)如图,D、E、F分别是△ABC的三条边上的点,CE=BF,△DCE和△DBF的面积相等.求证:AD平分∠BAC.19.(9分)如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.20.(9分)如图,在Rt △ABC中,∠BAC=90°,点D,E在边BC上,∠CAE=∠B,E是CD的中点,且AD平分∠BAE,试问:BD与AC相等吗?请说说你的理由.21.(10分)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D 是AC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连结BE、EC.(1)求证:△ABE≌△DCE.(2)试猜想线段BE和EC的数量及位置关系,并证明你的猜想.22.(10分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.23.(12分)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=ADC=90°,E、F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,即可得出BE,EF,FD之间的数量关系,他的结论应是.像上面这样有公共顶点,锐角等于较大角的一半,且组成这个较大角的两边相等的几何模型称为半角模型.拓展如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC,CD上的点,且∠EAF=∠BAD,则BE,EF,FD之间的数量关系是.请证明你的结论.实际应用如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,且两舰艇到指挥中心的距离相等接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离是海里(直接写出答案).。
(人教版)八年级(上学期)月考数学试卷(10月份)共3份
2020-2021学年上学期月考试题八年级数学(无答案)(考试时间:120分钟试卷满分:150分)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1、在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A. B. C. D.2、一个多边形的内角和为1800°,则这个多边形的边数为( )A.12 B.11 C.10 D.93、如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为( )A.180°B.270°C.300°D.360°4、一个三角形的两边长分别为3和7,第三边长为整数,则第三边长度的最小值是( )A.4 B.5 C.6 D.75、下列四组中一定是全等三角形的是( )A.两条边相等的两个直角三角形B.面积相等的两个钝角三角形C.斜边相等的两个直角三角形D.周长相等的两个等边三角形6、如果△ABC≌△DEF,△DEF的周长为13,DE=3,EF=4,则AC的长为( )A.13 B.3 C.4 D.67、如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A. 2B. 3C. 4D. 58、到三角形三个顶点距离相等的是( )A.三边高线的交点B.三条中线的交点C.三条垂直平分线的交点D.三条内角平分线的交点9、如图,在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于21BC 的长为半径画弧,两弧相交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD.若CD=AC ,∠A=50°,则∠ACB 的度数为( ) A.90° B.95° C.100° D.105°10、如图,在△ABC 中,∠B =∠C ,D 为BC 中点,若由点D 分别向AB 、AC 作垂线段DE 、DF ,则能说明△BDE ≌△CDF 的理由是( )A .AASB .SASC .HLD .SSS11、如图,AD 垂直平分线段BC ,垂足为D ,∠ABC 的平分线BE 交AD 于点E ,连接EC ,若∠ABC =50°,则∠C 的度数是( )A .25°B .20°C .50°D .65°(9) (10) (11) (12)12、如图,把长方形纸片ABCD 沿对角线折叠,设重叠部分为△EBD ,那么,有下列说法:①△EBD 是等腰三角形,EB =ED ;②折叠后∠ABE 和∠CBD 一定相等;③折叠后得到的图形是轴对称图形;④△EBA 和△EDC 一定是全等三角形.其中正确的有( )A. 1个B. 2个C. 3个D. 4个第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13、若正多边形的一个外角是40°,则这个正多边形的边数是__________.14、如图,已知△ABC ≌△BAD ,若∠DAC =20°,∠C =88°,则∠DBA =__________度.15、如图所示,在△ABC 中,∠C =90°,AB =8,AD 是△ABC 的一条角平分线.若CD =2,则△ABD 的面积为__________.5) (16) (17)(17)16、如图,AB=AC ,∠A=40°,AB 的垂直平分线MN 交AC 于点D ,AB=6cm,BC=3cm,则∠DBC=_______,△DBC 的周长是_______cm17、如图,DE AB ⊥于E ,DF AC ⊥于F ,若BD CD =,BE CF =,则下列结论:①DE DF =;②AD 平分BAC ∠;③AE AD =;④2AC AB BE -=,正确的是__________.18、如图,在△ABC 中,∠ABC 的平分线与∠ACD 的平分线交于点A 1,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2,依此类推….已知∠A =α,则∠A 2018的度数为__________(用含α的代数式表示).三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤)19、(8分)如图,有公路l 1同侧、l 2异侧的两个城镇A ,B ,电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A ,B 的距离必须相等,到两条公路l 1,l 2的距离也必须相等,发射塔C 应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C 的位置.(保留作图痕迹,不写作法)20、(10分)在如图的方格中,每个小正方形的边长都为1,△ABC 的顶点均在格点上.在建立平面直角坐标系后,点B 的坐标为(-1,2).(1)把△ABC 向下平移8个单位后得到对应的△A 1B 1C 1,画出△A 1B 1C 1,并写出A 1坐标.(2)画出与△A 1B 1C 1关于y 轴对称的△A 2B 2C 2,并写出点B 2的坐标.(3)求出△A 2B 2C 2的面积21、(10分 )如图,点A 、F 、C 、D 在同一条直线上,已知AF=DC ,∠A=∠D ,BC ∥EF ,求证:AB=DE .22、(12分)如图,(1)AD是△ABC的外角∠EAC的平分线,AD∥BC.求证:△ABC是等腰三角形;(2)AD是△ABC的外角∠EAC的平分线,AB=AC.求证:AD∥BC.23、(12分)如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.24、(12分)如图,AO,BO,CO,DO分别是四边形ABCD四个内角的平分线.(1)判断∠AOB与∠COD有怎样的数量关系,为什么?(2)若∠AOD=∠BOC,则AB,CD有怎样的位置关系?为什么?25、(14分)动手操作,探究:探究一:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图(1),在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系(写出说理过程)。
24-25学年八年级数学第三次月考卷01(考试版A4)【测试范围:八年级上册第十一章~第十四章】人教
2024-2025学年八年级数学上学期第三次月考卷01(人教版)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版八年级上册第十一章10%,第十二章20%,第十三章30%,第十四章40%。
5.难度系数:0.8。
一、选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A.B.C.D.2.以下列各组线段为边,能组成三角形的是()A.2、2、4B.2、6、3C.8、6、3D.11、4、63.下列运算正确的是()A.a2⋅a=a2B.a8÷a2=a4C.(a2)3=a5D.(a3b)2=a6b24.如图,在△ABC中,AD⊥BC,交BC的延长线于点D,BE⊥AC交AC的延长线于点E ,CF⊥BD交AB 于点F.下列线段是△ABC的高的是()A.BD B.BE C.CE D.CF5.如果一个多边形的每个内角都相等,且内角和为1440°,那么该多边形的一个外角是()A.30°B.36°C.60°D.72°6.下列等式从左到右变形,属于因式分解的是( )A.2a﹣2=2(a+1)B.(a﹣b)(a﹣b)=a2﹣b2C.x2﹣2x+1=(x﹣1)2D.x2+6x+8=x(x+6)+87.如图,在△DEF中,点C在DF的延长线上,点B在EF上,且AB∥CD,∠EBA=60°,则∠E+∠D的度数为( )A.60°B.30°C.90°D.80°8.如图,在△ABC中,DE垂直平分BC,若AB=8,AC=6,则△ADC的周长等于()A.11B.13C.14D.169.若x2+2ax+16是完全平方式,则a的值是()A.4B.±4C.8D.±810.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A.a2―b2=(a+b)(a―b)B.(a―b)2=a2―2ab+b2C.(a+b)2=a2+2ab+b2D.(a+2b)(a―b)=a2+ab―2b211.如图,在△ABC中,已知点D,E,F分别为BC,AD,CE的中点,且S△ABC=16cm2,则阴影部分面积为()A.2cm2B.4cm2C.6cm2D.8cm212.我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了(a+b)n (n=1,2,3,4,…)的展开式的系数规律(按a的次数由大到小的顺序):请根据上述规律,则(x+1)2023展开式中含x2022项的系数是()A.2021B.2022C.2023D.2024二、填空题(本题共6小题,每小题2分,共12分.)13.在平面直角坐标系中,点(―2,―4)在第象限.14.因式分解:xy2―x3=.15.等腰三角形的一个底角为50°,则它的顶角的度数为.)2018×(―1.5)2019= .16.(2317.已知a―b=2, a―c=1,则(2a―b―c)2+(c―a)2=.18.如图,在∠AOB的边OA、OB上取点M、N,连接MN,PM平分∠AMN,PN平分∠MNB,若MN=2,△PMN 的面积是2,△OMN的面积是6,则OM+ON的长是.三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(8分)计算:(1)(y+2)(y―2)―(y―1)(y+5);(2)(12a3―6a2+3a)÷3a.20.(6分)先化简,再求值:1÷x2―2x+1,请从―3,0,1,2中选一个你认为合适的x值,代入求x2―x值.21.(8分)在如图所示的平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形,△ABC的顶点在格点上.(1)画出△ABC关于y轴对称的△A′B′C′;(2)求△ABC的面积.(3)在y轴上找出点Q,使△的周长最小.22.(8分)如图,四边形ABCD中,AC平分∠BAD,CE⊥AE于点E,∠B+∠D=180°.求证:AE=AD+BE.23.(10分)如图,在△ABC中,D是BC上一点,AC=AE,E是△ABC外一点,∠C=∠E,∠BAD=∠CAE.(1)求证:BC=DE;(2)若∠BAD=30°,求∠B的度数.24.(10分)如图,在等腰△ABC中,AB=AC=3,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=105°时,∠BAD= °;点D从点B向点C运动时,∠BDA逐渐变 (填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.25.(10分)阅读理解:若x满足(60―x)(x―40)=20,求(60―x)2+(x―40)2的值.解:设60―x=a,x―40=b,则(60―x)(x―40)=ab=20,a+b=(60―x)+(x―40)=20,所以(60―x)2+(x―40)2=a2+b2=(a+b)2―2ab=202―2×20=360.解决问题:(1)若x满足(20―x)(x―10)=―5,求(20―x)2+(x―10)2的值;(2)如图,正方形ABCD的边长为x,AE=1,CG=2,长方形EFGD的面积是7,四边形NGDH和四边形MEDQ都是正方形,四边形PQDH是长方形,求图中阴影部分的面积.26.(12分)在平面直角坐标系中,点A(―3,0),B(0,3),点C为x轴正半轴上一动点,过点A作AD⊥BC 交y轴于点E.(1)如图①,求证:△AEO≌△BCO;(2)如图②,若点C在x轴正半轴上运动,且OC<3,连接DO.①若∠BAD=∠BOD,求证:∠ABC=∠DOC.的值.②当AD―CD=OC时,求∠BCO∠DAO。
2024-2025学年初中八年级上学期9月月考数学试题及答案(人教版)
人教版数学2024-2025学年八年级上学期数学9月月考模拟试卷(全国通用)一.选择题(共10小题,满分30分,每小题3分)1. 下列各组图形中,属于全等图形的是( )A. B.C. D.2. 以下列数据为三边长能构成三角形的是( )A. 1,2,3B. 2,3,4C. 14,4,9D. 7,2,4 3. 下列各组图形中,BD 是ABC 的高的图形是( )A B.C. D.4. 已知三角形两边的长分别是3和5,则这个三角形第三边的长可能为( )A. 1B. 2C. 7D. 95. 两个同样大小的直角三角板按如图所示摆放,其中两条一样长的直角边交于点M ,另一直角边BE ,CD 分别落在PAQ ∠的边AP 和AQ 上,且AB AC =,连接AM ,则在说明AM 为PAQ ∠的平分线的过程中,理由正确的是( )A. SASB. SSAC. HLD. SSS.6. 一个多边形的内角和是720°,这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形7. 如图,已知ABC 六个元素,则下面甲、乙、丙三个三角形中,和ABC 全等的图形是( )A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙8. 如图在BCD △中,A 为BD 边上一点,AE CD ∥,AC 平分BCD ∠,235∠=°,60D ∠=°,则B ∠=( )A 50° B. 45° C. 40° D. 25°9. 下列多边形材料中,不能单独用来铺满地面的是( )A. 三角形B. 四边形C. 正五边形D. 正六边形10. 如图所示,△ABC 中,点D 、E 、F 分别在三边上,E 是AC 的中点,AD 、BE 、CF 交于一点G ,BD =2DC ,S △GEC =3,S △GDC =4,则△ABC 的面积是( )A. 25B. .30C. 35D. 40二.填空题(共6小题,满分18分,每小题3分)11. 如图,已知AB ∥CF ,E 为AC 的中点,若FC =6cm ,DB =3cm ,则AB =________.12. 如图,A B C D E F ∠+∠+∠+∠+∠+∠=______.的.13. 一个n 边形内角和等于1620°,则边数n 为______.14. 如图,在ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABC 的面积等于24cm ,则阴影部分图形面积等于_____2cm .15. 已知,如图ABC ,点D 是ABC 内一点,连接BD CD ,,则BDC ∠与12A ∠∠∠,,之间的数量关系为______.16. △ABC 中,AD 是BC 边上的高,∠BAD=50°,∠CAD=20°,则∠BAC=___________.三.解答题(共9小题,满分72分)17. 如果一个三角形一边长为9cm ,另一边长为2cm ,若第三边长为x cm .(1)求第三边x 的范围;(2)当第三边长为奇数时,求三角形周长.18. 已知:如图,点B ,F ,C ,E 在一条直线上,AB DE =,AB DE ∥,BF EC =.求证:ABC DEF ≌△△.的的19. 如图,CE 是ABC 外角ACD ∠的平分线,且CE 交BA 的延长线于点E ,42B ∠=°,25E ∠=°,(1)求ECD ∠的度数;(2)求BAC ∠的度数.20. 将两个三角形纸板ABC 和DBE 按如图所示的方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,ACDE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=°,求∠21. 如图,在44×的正方形网格中,点A ,B ,C 均为小正方形的顶点,用无刻度的直尺作图,不写作法,保留作图痕迹;(1)在图1中,作ABD △与ABC 全等(点D 与点C 不重合);(2)在图2中,作ABC 的高BE ;(3)在图3中,作AFC ABC ∠=∠(点F 为小正方形的顶点,且不与点B 重合); (4)在图3中,在线段AC 上找点P ,使得BPC ABC ∠=∠.22. (1)阅读理解:课外兴趣小组活动时,老师提出了如下问题:在ABC 中,9AB =,5AC =,求BC 边上的中线AD 的的取值范围.小明在组内经过合作交流,得到了如下的解决方法(如图1):①延长AD 到Q ,使得DQ AD =;②再连接BQ ,把2AB AC AD 、、集中在ABQ 中;根据小明的方法,请直接写出图1中AD 的取值范围是 .(2)写出图1中AC 与BQ 的位置关系并证明.(3)如图2,在ABC 中,AD 为中线,E 为AB 上一点,AD 、CE 交于点F ,且AE EF =.求证:AB CF =.23. 如图,在四边形ABCD 中,60120AD AB DC BC DAB DCB ==∠=°∠=°,,,,E 是AD 上一点,F 是AB 延长线上一点,且DE BF =.(1)求D ∠的度数;(2)求证:CE CF =;(3)若G 在AB 上且60ECG ∠=°,试猜想DE EG BG ,,之间的数量关系,并证明.24. 在ABC 中,90ACB ∠=°,分别过点A 、B 两点作过点C 的直线m 的垂线,垂足分别为点D 、E . (1)如图,当AC CB =,点A 、B 在直线m 的同侧时,猜想线段DE ,AD 和BE 三条线段有怎样的数量关系?请直接写出你的结论:__________;(2)如图,当AC CB =,点A 、B 在直线m 的异侧时,请问(1)中有关于线段DE 、AD 和BE 三条线段的数量关系的结论还成立吗?若成立,请你给出证明;若不成立,请给出正确的结论,并说明理由.(3)当16cm AC =,30cm CB =,点A 、B 在直线m 的同侧时,一动点M 以每秒2cm 的速度从A 点出发沿A →C →B 路径向终点B 运动,同时另一动点N 以每秒3cm 的速度从B 点出发沿B →C →A 路径向终点A 运动,两点都要到达相应的终点时才能停止运动.在运动过程中,分别过点M 和点N 作MP m ⊥于P ,NQ m ⊥于Q .设运动时间为t 秒,当t 为何值时,MPC 与NQC 全等?25. 在平面直角坐标系中,点A (0,5),B (12,0),在y 轴负半轴上取点E ,使OA =EO ,作∠CEF =∠AEB ,直线CO 交BA D .(1)根据题意,可求得OE = ;(2)求证:△ADO ≌△ECO ;(3)动点P 从E 出发沿E ﹣O ﹣B 路线运动速度为每秒1个单位,到B 点处停止运动;动点Q 从B 出发沿B ﹣O ﹣E 运动速度为每秒3个单位,到E 点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM ⊥CD 于点M ,QN ⊥CD 于点N .问两动点运动多长时间△OPM 与△OQN 全等?人教版数学2024-2025学年八年级上学期数学9月月考模拟试卷(全国通用)一.选择题(共10小题,满分30分,每小题3分)1. 下列各组图形中,属于全等图形的是( )A. B.C. D.【答案】C【解析】【分析】本题考查了全等图形.根据全等图形的定义(能够完全重合的两个图形叫做全等形)逐项判断即可得.【详解】解:A 、两个图形的大小不相同,不能够完全重合,不是全等图形,则此项不符合题意; B 、两个图形的大小不相同,不能够完全重合,不是全等图形,则此项不符合题意;C 、两个图形能够完全重合,是全等图形,则此项符合题意;D 、两个图形的形状不相同,不能够完全重合,不是全等图形,则此项不符合题意;故选:C .2. 以下列数据为三边长能构成三角形的是( )A 1,2,3B. 2,3,4C. 14,4,9D. 7,2,4【答案】B【解析】【分析】利用三角形三边关系进行判定即可.【详解】解:A 、123+=,不符合三角形三边关系,错误,不符合题意;B 、234+>,成立,符合题意;C 、4913+<,不符合三角形三边关系,错误,不符合题意;D 、247+<,不符合三角形三边关系,错误,不符合题意;故选B .【点睛】本题考查三角形三边关系,判定形成三角形的标准是两小边之和大于最大边,熟练掌握运用三角形.三边关系是解题关键.3. 下列各组图形中,BD 是ABC 的高的图形是( )A. B.C. D.【答案】B【解析】【分析】三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念即可得到答案.【详解】解:根据三角形高的定义可知,只有选项B 中的线段BD 是△ABC 的高,故选:B .【点睛】考查了三角形的高的概念,掌握高的作法是解题的关键.4. 已知三角形两边的长分别是3和5,则这个三角形第三边的长可能为( )A. 1B. 2C. 7D. 9 【答案】C【解析】【分析】先根据三角形的三边关系求出x 的取值范围,再求出符合条件的x 的值即可.【详解】解:设三角形第三边的长为x ,则5-3<x <5+3,即2<x <8,只有选项C 符合题意.故选C .【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边. 5. 两个同样大小的直角三角板按如图所示摆放,其中两条一样长的直角边交于点M ,另一直角边BE ,CD 分别落在PAQ ∠的边AP 和AQ 上,且AB AC =,连接AM ,则在说明AM 为PAQ ∠的平分线的过程中,理由正确的是( )A. SASB. SSAC. HLD. SSS【答案】C【解析】 【分析】根据全等三角形的判定和性质定理以及角平分线的定义即可得结论,从而作出判断.【详解】解:根据题意可得:90ABM ACM ∠=∠=°,∴ABM 和ACM △都是直角三角形,在Rt ABM 和Rt ACM 中,AB AC AM AM = =∴()Rt Rt HL ABM ACM ≌,∴BAM CAM ∠=∠,∴AM 为PAQ ∠的平分线,故选:C .【点睛】本题考查角平分线的判定和全等三角形的判定和性质的应用,解题的关键是掌握全等三角形的判定方法.6. 一个多边形的内角和是720°,这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形【答案】B【解析】【分析】本题考查了多边形的内角和公式,根据多边形的内角和公式解答即可.【详解】设边数为n ,根据题意,得 ()2180720n −⋅°=°,解得6n =. ∴这个多边形为六边形,故选:B .7. 如图,已知ABC 的六个元素,则下面甲、乙、丙三个三角形中,和ABC 全等的图形是( )A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙【答案】B【解析】 【分析】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,分别利用全等三角形的判定方法逐个判断即可.【详解】解:在ABC 中,边a 、c 的夹角为50°,∴与乙图中的三角形满足SAS ,可知两三角形全等,在丙图中,由三角形内角和可求得另一个角为58°,且58°角和50°角的夹边为a ,ABC ∴ 和丙图中的三角形满足ASA ,可知两三角形全等,在甲图中,和ABC 满足的是SSA ,可知两三角形不全等,综上可知能和ABC 全等的是乙、丙,故选:B .8. 如图在BCD △中,A 为BD 边上一点,AE CD ∥,AC 平分BCD ∠,235∠=°,60D ∠=°,则B ∠=( )A. 50°B. 45°C. 40°D. 25°【答案】A【解析】 【分析】本题主要考查了平行线的性质,三角形内角和定理,角平分线的定义,根据平行线的性质和角平分线的定义,可以求得BCD ∠的度数,再根据三角形内角和.即可求得B ∠的度数.【详解】解:∵AE CD ∥,235∠=°,∴1235∠=∠=°,∵AC 平分BCD ∠,∴2170BCD ∠=∠=°,∵60D ∠=°,∴180180607050B D BCD ∠=°−∠−∠=°−°−°=°,故选:A .9. 下列多边形材料中,不能单独用来铺满地面的是( )A. 三角形B. 四边形C. 正五边形D. 正六边形【答案】C【解析】【分析】一个多边形的镶嵌应该符合其内角度数可以整除360°【详解】A 、三角形内角和为180°,能整除360°,能密铺,故此选项不合题意;B 、四边形内角和为360°,能整除360°,能密铺,故此选项不合题意;C 、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺,故此选项合题意;D 、正六边形每个内角为180°﹣360°÷6=120°,能整除360°,能密铺,故此选项不合题意; 故选C .【点睛】本题主要考查图形的镶嵌问题,重点是掌握多边形镶嵌的原理.10. 如图所示,△ABC 中,点D 、E 、F 分别在三边上,E 是AC 的中点,AD 、BE 、CF 交于一点G ,BD =2DC ,S △GEC =3,S △GDC =4,则△ABC 的面积是( )A. 25B. .30C. 35D. 40【答案】B【解析】 【分析】由于BD=2DC ,那么结合三角形面积公式可得S △ABD =2S △ACD ,而S △ABC =S △ABD +S △ACD ,可得出S △ABC =3S △ACD ,而E 是AC 中点,故有S △AGE =S △CGE ,于是可求S △ACD ,从而易求S △ABC . 【详解】.解:BD =2DC ,∴S △ABD =2S △ACD , ∴S △ABC =3S △ACD ,∵E 是AC 的中点,∴S△AGE=S△CGE,又∵S△GEC=3,S△GDC=4,∴S△ACD=S△AGE+S△CGE+S△CGD=3+3+4=10,∴S△ABC=3S△ACD=3×10=30.故选B.【点睛】此题考查三角形的面积公式、三角形之间的面积加减计算.解题关键在于注意同底等高的三角形面积相等,面积相等、同高的三角形底相等.二.填空题(共6小题,满分18分,每小题3分)11. 如图,已知AB∥CF,E为AC的中点,若FC=6cm,DB=3cm,则AB=________.【答案】9cm【解析】【详解】试题解析:AB∥CF,∴∠=∠∠=∠A FCE ADE CFE..E为AC的中点,∴=AE CE.△ADE≌△CFE,∴==DA FC6.AB AD DB cm∴=+=+=639.cm故答案为9.∠+∠+∠+∠+∠+∠=______.12. 如图,A B C D E F【答案】180°##180度【解析】【分析】本题主要考查三角形的外角的性质,三角形的内角和为180°,将所求角的度数转化为某些三角形的内角和是解题的关键;将所求的角的度数转化为HNG △的内角和,即可得到答案.【详解】解:,,A B GHN C D GNH E F HGN ∠+∠=∠∠+∠=∠∠+∠=∠ ,∴180A B C D E F GNH GHN HGN ∠+∠+∠+∠+∠+∠=∠+∠+∠=°,故答案为:180°.13. 一个n 边形内角和等于1620°,则边数n 为______.【答案】11【解析】【分析】根据多边形内角和公式,列方程求解即可.【详解】解:由题意,得()18021620n −=,解得:11n =,故答案为:11.【点睛】本题考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.14. 如图,在ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABC 的面积等于24cm ,则阴影部分图形面积等于_____2cm .【答案】1【解析】【分析】此题考查了三角形中线的性质,根据三角形的中线分得的两个三角形的面积相等,就可证得12BEF BEC S S = ,12BDE ABD S S = ,12DE CD S S =△C △A ,12ABD ABC S S = ,再由ABC 的面积为4,就可得到BEF △的面积,解题的关键是熟练掌握三角形中线的性质及其应用.【详解】解:∵点F 是CE 的中点, ∴12BEF BEC S S = , ∵点E 是AD 的中点, ∴12BDE ABD S S = , 同理可证12DE CD S S =△C △A , ∵点D 是BC 的中点, ∴114222ABD ABC S S ==×= , ∴1212BDE CDE S S ==×= , ∴112BEC S =+= , ∴1212BEF S =×=△, 故答案为:1.15. 已知,如图ABC ,点D 是ABC 内一点,连接BD CD ,,则BDC ∠与12A ∠∠∠,,之间的数量关系为______.【答案】12BDC A ∠=∠+∠+∠【解析】【分析】本题考查了三角形的外角性质,延长BBBB 交AC 于点E ,由三角形外角性质可得1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,进而即可求解,正确作出辅助线是解题的关键.【详解】解:延长BBBB 交AC 于点E ,如图,∵BEC ∠是ABE 的外角,∴1BEC A ∠=∠+∠,∵BDC ∠是CDE 的外角,∴2BDC BEC ∠=∠+∠,即12BDC A ∠=∠+∠+∠,故答案为:12BDC A ∠=∠+∠+∠.16. △ABC 中,AD 是BC 边上的高,∠BAD=50°,∠CAD=20°,则∠BAC=___________.【答案】70°或30°【解析】【分析】根据AD 的不同位置,分两种情况进行讨论:AD 在△ABC 的内部,AD 在△ABC 的外部,分别求得∠BAC 的度数.【详解】①如图,当AD 在△ABC 的内部时,∠BAC=∠BAD+∠CAD=50°+20°=70°.②如图,当AD 在△ABC 的外部时,∠BAC=∠BAD -∠CAD=50°-20°=30°.故答案为:70°或30°.【点睛】本题主要考查了三角形高的位置情况,充分考虑三角形的高在三角形的内部或外部进行分类讨论是解题的关键.三.解答题(共9小题,满分72分)17. 如果一个三角形的一边长为9cm ,另一边长为2cm ,若第三边长为x cm .(1)求第三边x 的范围;(2)当第三边长为奇数时,求三角形的周长.【答案】(1)7<x <11(2)20cm【解析】【分析】(1)根据三角形的三边关系得到有关第三边的取值范围即可;(2)根据(1)得到的取值范围确定第三边的值,从而确定三角形的周长.【小问1详解】由三角形的三边关系得:9292x −<<+,即711x <<;【小问2详解】∵第三边长的范围为711x <<,且第三边长为奇数,∴第三边长为9,则三角形的周长为:99220cm ++=【点睛】本题考查了三角形的三边关系,解题的关键是能够根据三角形的三边关系列出有关x 的取值范围,难度不大.18. 已知:如图,点B ,F ,C ,E 在一条直线上,AB DE =,AB DE ∥,BF EC =.求证:ABC DEF ≌△△.【答案】证明见解析【解析】【分析】根据两直线平行,内错角相等,得出ABC DEF ∠=∠,再根据线段之间的数量关系,得出BC EF =,再根据“边角边”,即可得出结论.【详解】证明:∵AB DE ∥,∴ABC DEF ∠=∠,∵BF EC =,∴BF FC EC FC +=+,∴BC EF =,在ABC 和DEF 中,AB DE ABC DEF BC EF = ∠=∠ =, ∴()ABC DEF SAS ≌.【点睛】本题考查了平行线的性质、全等三角形的判定定理,解本题的关键在熟练掌握全等三角形的判定方法.19. 如图,CE 是ABC 外角ACD ∠的平分线,且CE 交BA 的延长线于点E ,42B ∠=°,25E ∠=°,(1)求ECD ∠的度数;(2)求BAC ∠的度数.【答案】(1)67°(2)92°【解析】【分析】本题考查角平分线定义及三角形外角性质.(1)根据三角形外角性质求出ECD ∠;(2)由已知可求出ACE ∠,根据三角形外角性质求出BAC ∠即可.【小问1详解】解:ECD ∠ 是BCE 的外角,ECD B E ∴∠=∠+∠,42B ∠=° ,25E ∠=°,∴67ECD ∠=°;【小问2详解】解:EC 平分ACD ∠,67ACE ECD ∠=∠=°∴,BAC ∠ 是ACE △的外角,BAC ACE E ∴∠=∠+∠,672592BAC ∴∠=°+°=°.20. 将两个三角形纸板ABC 和DBE 按如图所示方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,AC DE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=°,求BED ∠的度数.【答案】(1)见解析 (2)36BED ∠=°【解析】【分析】(1)利用AAS 证明三角形全等即可;(2)全等三角形的性质,得到BED BCA ∠=∠,证明()SSS DBC ABC ≌,得到1362BCD BCA ACD ∠=∠=∠=°,即可得解.【小问1详解】解:因为DBA CBE ∠=∠,所以DBA ABE CBE ABE ∠+∠=∠+∠,即DBE ABC ∠=∠.在ABC 和DBE 中,ABC DBEBAC BDE AC DE∠=∠ ∠=∠ = ,所以()AAS ABC DBE ≌.【小问2详解】因为ABC DBE ≌△△,所以BD BA =,BCA BED ∠=∠.的在DBC △和ABC 中,DC AC CB CB BD BA = = =,所以()SSS DBC ABC ≌, 所以1362BCD BCA ACD ∠=∠=∠=°, 所以36BED BCA ∠=∠=°.【点睛】本题考查全等三角形的判定和性质.解题的关键是证明三角形全等.21. 如图,在44×的正方形网格中,点A ,B ,C 均为小正方形的顶点,用无刻度的直尺作图,不写作法,保留作图痕迹;(1)在图1中,作ABD △与ABC 全等(点D 与点C 不重合);(2)在图2中,作ABC 的高(3)在图3中,作AFC ABC ∠=∠(点F 为小正方形的顶点,且不与点B 重合); (4)在图3中,在线段AC 上找点P ,使得BPC ABC ∠=∠.【答案】(1)见解析 (2)见解析(3)见解析 (4)见解析【解析】【分析】本题考查作图-应用与设计作图,全等三角形的判定与性质等知识,作三角形的高,三角形内角和,勾股定理,解题的关键是学会利用数形结合的思想解决问题.(1)利用全等三角形的判定方法,构造全等三角形即可;(2)取格点T ,连接BT 交AC 于点E ,线段BE 即为所求;(3)构造全等三角形即可;(4)利用勾股定理可知45A ∠=°,根据三角形内角和定理,作45QBC A ∠=∠=°,QB 交AC 点P 即可.【小问1详解】如图1,ABD △即为所求;【小问2详解】如图,BE 即为所求;【小问3详解】如图,AFC ∠即为所求;【小问4详解】如图,点P 即为所求.22. (1)阅读理解:课外兴趣小组活动时,老师提出了如下问题:在ABC 中,9AB =,5AC =,求BC 边上的中线AD 的的取值范围. 小明在组内经过合作交流,得到了如下的解决方法(如图1):①延长AD 到Q ,使得DQ AD =;②再连接BQ ,把2AB AC AD 、、集中在ABQ 中;根据小明的方法,请直接写出图1中AD 的取值范围是 .(2)写出图1中AC 与BQ 的位置关系并证明.(3)如图2,在ABC 中,AD 为中线,E 为AB 上一点,AD 、CE 交于点F ,且AE EF =.求证:AB CF =.【答案】(1)27AD <<;(2)AC BQ ∥,证明见解析;(3)见解析 【解析】【分析】(1)先证()SAS BDQ CDA ≌ ,推出5BQCA ==,再利用三角形三边关系求解; (2)根据BDQ CDA ≌可得BQD CAD ∠=∠,即可证明AC BQ ∥; (3)(3)延长AD 至点G ,使GD AD =,连接CG ,先证明()SAS ≌ADB GDC ,即可得出AB GC G BAD =∠=∠,,再根据AE EF =,得出AFE FAE ∠=∠,最后根据等角对等边,即可求证AB CF =.【详解】解:(1)延长AD 到Q ,使得DQ AD =,再连接BQ ,∵AD 是ABC 的中线,∴BD CD =,又∵DQ AD =,BDQ CDA ∠=∠, ∴()SAS BDQ CDA ≌ ,∴5BQCA ==, 在ABQ 中,AB BQ AQ AB BQ −<<+,∴9595AQ −<<+,即414AQ <<,∴27AD <<,故答案为:27AD <<;(2)AC BQ ∥,证明如下:由(1)知BDQ CDA ≌,∴BQD CAD ∠=∠, ∴AC BQ ∥;(3)延长AD 至点G ,使GD AD =,连接CG ,∵AD 为BC 边上中线,∴BD CD =,在ADB 和GDC 中,的BD CD ADB GDC AD GD = ∠=∠ =, ∴()SAS ≌ADB GDC ,∴AB GC G BAD =∠=∠,,∵AE EF =,∴AFE FAE ∠=∠,∴DAB AFE CFG ∠=∠=∠,∴∠=∠G CFG ,∴CG CF =,∴AB CF =.【点睛】本题考查全等三角形的判定和性质,平行线的判定和性质,三角形三边关系的应用等,解题的关键是通过倍长中线构造全等三角形.23. 如图,在四边形ABCD 中,60120AD AB DC BC DAB DCB ==∠=°∠=°,,,,E 是AD 上一点,F 是AB 延长线上一点,且DE BF =.(1)求D ∠的度数;(2)求证:CE CF =;(3)若G 在AB 上且60ECG ∠=°,试猜想DE EG BG ,,之间的数量关系,并证明.【答案】(1)见解析 (2)见解析(3)EG BG DE =+,证明见解析【解析】【分析】本题考查了全等三角形的判定与性质、四边形内角和定理以及角的计算;根据全等三角形的性质找出相等的边角关系是关键.(1)结合AD AB DC BC ==、即可证出ABC ADC △△≌,由此即可得出30DAC ∠=°,60DCA ∠=°,即可求解;(2)通过角的计算得出D CBF ∠=∠,证出()CDE CBF SAS ≌,由此即可得出CE CF =; (3)结合AD AB DC BC ==、即可证出ABC ADC △△≌,由此即可得出60BCA DCA ∠=∠=°,再根据60ECG ∠=°即可得出DCE ACG ∠=∠,ACE BCG ∠=∠,由(2)可知CDE CBF △△≌,进而得知DCE BCF ∠=∠,根据角的计算即可得出ECG FCG ∠=∠,结合DE DF =即可证出CEG CFG ≌ ,即得出EG FG =,由相等的边与边之间的关系即可证出DE BG EG +=.【小问1详解】解:ABC 和ADC △中,AB AD AC AC BC DC = = =, ()ABC ADC SSS ∴ ≌,BCA DCA ∴∠=∠,DAC BAC ∠=∠,60120DAB DCB ∠=°∠=° ,,1302DAC DAB ∴∠=∠=°,1602DCA DCB ∠=∠=°, 180D DAC DCA ∠+∠+∠=° ,180306090D ∴∠=°−°−°=°;【小问2详解】证明:36060120D DAB ABC DCBDAB DCB ∠+∠+∠+∠=°∠=°∠=°,, , 36060120180D ABC ∴∠+∠=°−°−°=°.180CBF ABC ∠+∠=° ,D CBF ∴∠=∠.在CDE 和CBF 中,DC BC D CBF DE BF = ∠=∠ =, ()CDE CBF SAS ∴ ≌.CE CF ∴=.【小问3详解】解:猜想DE EG BG 、、之间的数量关系为:DE BG EG +=.理由如下:在在ABC 和ADC △中,AB AD AC AC BC DC = = =, ()ABC ADC SSS ∴ ≌,111206022BCA DCA DCB °=°∴∠=∠=∠=×. 60ECG ∠=° ,DCE ACG ACE BCG ∴∠=∠∠=∠,.由(2)可得:CDE CBF △△≌,DCE BCF ∴∠=∠.60BCG BCF ∴∠+∠=°,即60FCG ∠=°.ECG FCG ∴∠=∠.在CEG 和CFG △中,CE CF ECG FCG CG CG = ∠=∠ =, ()CEG CFG SAS ∴ ≌,EG FG ∴=.DE BF FG BF BG ==+, ,DE BG EG ∴+=.24. 在ABC 中,90ACB ∠=°,分别过点A 、B 两点作过点C 的直线m 的垂线,垂足分别为点D 、E . (1)如图,当AC CB =,点A 、B 在直线m 的同侧时,猜想线段DE ,AD 和BE 三条线段有怎样的数量关系?请直接写出你的结论:__________;(2)如图,当AC CB =,点A 、B 在直线m 的异侧时,请问(1)中有关于线段DE 、AD 和BE 三条线段的数量关系的结论还成立吗?若成立,请你给出证明;若不成立,请给出正确的结论,并说明理由.(3)当16cm AC =,30cm CB =,点A 、B 在直线m 的同侧时,一动点M 以每秒2cm 的速度从A 点出发沿A →C →B 路径向终点B 运动,同时另一动点N 以每秒3cm 的速度从B 点出发沿B →C →A 路径向终点A 运动,两点都要到达相应的终点时才能停止运动.在运动过程中,分别过点M 和点N 作MP m ⊥于P ,NQ m ⊥于Q .设运动时间为t 秒,当t 为何值时,MPC 与NQC 全等?【答案】(1)DE AD BE =+;(2)不成立,理由见解析;(3)当9.2t =或14或16秒时,MPC 与NQC 全等【解析】【分析】(1)根据AD m ⊥,BE m ⊥,得90ADC CEB ∠=∠=°,而90ACB ∠=°,根据等角的余角相等得CAD BCE ∠=∠,然后根据“AAS”可判断()ACD CBE AAS ∆∆≌,则=AD CE ,CD BE =,于是DE CE CD AD BE =+=+;(2)同(1)易证()ACD CBE AAS ∆∆≌,则=AD CE ,CD BE =,于是DE CE CD AD BE =−=−;(3)只需根据点M 和点N 的不同位置进行分类讨论即可解决问题.【详解】(1)猜想:DE AD BE =+(2)不成立;理由:∵AD m ⊥,BE m ⊥,∴90ADC CEB ∠=∠=°,∵90ACB ∠=°,∴90ACD CAD ACD BCE ∠+∠=∠+∠=°,∴CAD BCE ∠=∠,在ACD 和CBE △中,ADC CEB CAD BCE AC CB ∠=∠ ∠=∠ =∴()ACD CBE AAS ∆∆≌,∴=AD CE ,CD BE =,∴DE CE CD AD BE =−=−;(3)①当08t ≤<时,点M 在AC 上,点N 在BC 上,如图,此时2AM t =,3BN t =,16AC =,30CB =,则MC AC AM =−,NC BC BN =−,当MC NC =,即162303t t −=−,解得:14t =,不合题意;②当810t ≤<时,点M 在BC 上,点N 也在BC 上,此时相当于两点相遇,如图,∵MC NC =,点M 与点N 216303t t −=−,解得:9.2t =; ③当46103t ≤<时,点M 在BC 上,点N 在AC 上,如图,∵MC NC =,∴216330t t −=−,解得:14t =; ④当46233t ≤≤时,点N 停在点A 处,点M 在BC 上,如图,∵MC NC =,∴21616t −=,解得:16t =;综上所述:当9.2t =或14或16秒时,MPC ∆与NQC ∆全等.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,同角的余角相等,判断出ACD CBE ∆∆≌是解本题的关键,还用到了分类讨论的思想.25. 在平面直角坐标系中,点A (0,5),B (12,0),在y 轴负半轴上取点E ,使OA =EO ,作∠CEF =∠AEB ,直线CO 交BA 的延长线于点D .(1)根据题意,可求得OE = ;(2)求证:△ADO ≌△ECO ;(3)动点P 从E 出发沿E ﹣O ﹣B 路线运动速度为每秒1个单位,到B 点处停止运动;动点Q 从B 出发沿B ﹣O ﹣E 运动速度为每秒3个单位,到E 点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM ⊥CD 于点M ,QN ⊥CD 于点N .问两动点运动多长时间△OPM 与△OQN 全等?【答案】(1)5;(2)见解析;(3)当两动点运动时间为72、174、10秒时,△OPM 与△OQN 全等 【解析】【分析】(1)根据OA=OE 即可解决问题.(2)根据ASA 证明三角形全等即可解决问题.(2)设运动的时间为t 秒,分三种情况讨论:当点P 、Q 分别在y 轴、x 轴上时;当点P 、Q 都在y 轴上时;当点P 在x 轴上,Q 在y 轴时若二者都没有提前停止,当点Q 提前停止时;列方程即可得到结论.【详解】(1)∵A (0,5),∴OE =OA =5,故答案为5.(2)如图1中,∵OE =OA ,OB ⊥AE ,∴BA =BE ,∴∠BAO =∠BEO ,∵∠CEF =∠AEB ,∴∠CEF =∠BAO ,∴∠CEO =∠DAO ,在△ADO 与△ECO 中,CE0DA0OA 0ECOE AOD ∠=∠ = ∠=∠, ∴△ADO ≌△ECO (ASA ).(2)设运动的时间为t 秒,当PO =QO 时,易证△OPM ≌△OQN .分三种情况讨论:①当点P 、Q 分别在y 轴、x 轴上时PO =QO 得:5﹣t =12﹣3t ,解得t =72(秒), ②当点P 、Q 都在y 轴上时PO =QO 得:5﹣t =3t ﹣12,解得t =174(秒), ③当点P x 轴上,Q 在y 轴上时,若二者都没有提前停止,则PO =得:t ﹣5=3t ﹣12,解得t =72(秒)不合题意; 当点Q 运动到点E 提前停止时,有t ﹣5=5,解得t =10(秒), 综上所述:当两动点运动时间为72、174、10秒时,△OPM 与△OQN 全等. 【点睛】本题属于三角形综合题,考查了全等三角形的判定,坐标与图形的性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.在。
数学第三次月考模拟试卷人教版2024—2025学年八年级上册
数学第三次月考模拟试卷人教版2024—2025学年八年级上册考试范围:第十一章到第十四章考生注意:本次随堂练习共三道大题,25小题,满分120分,时量120分钟一.选择题(本大题共10道题,每小题3分,共30分)1.如图所示的4组图形中,成轴对称的是()A.B.C.D.2.下列运算正确的是()A.x2•x3=x6B.(﹣x2)3=x5C.(2xy2)3=6x3y6 D.(x﹣y)3(y﹣x)2=(x﹣y)53.若x2+mx+25是完全平方式,则m的值是()A.±10B.±5C.10D.54.等腰三角形的一个内角是70°,则它的顶角的度数为()A.70°B.110°或40°C.40°D.70°或40°5.已知a=313,b=96,c=275,则a、b、c的大小关系为()A.c>a>b B.b>a>c C.a>b>c D.a>c>b6.如图,用直尺和圆规作∠MAN的角平分线,根据作图痕迹,下列结论不一定正确的是()A.AD=AE B.AD=DF C.DF=EF D.AF⊥DE7.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.6B.5C.4D.38.如图,一名工作人员不慎将一块三角形模具打碎成三块,他要带其中一块或两块碎片到商店去配一块与原来一样的三角形模具,他带()去最省事.A.①B.②C.③D.①③第6题第7题第8题9.如图,CE是△ABC的外角∠ACF的平分线,且CE交BA的延长线于点E.若∠B=40°,∠E=30°,则∠BAC的度数为()A.120°B.110°C.140°D.100°10.已知a=2023x+2022,b=2023x+2023,c=2023x+2024,则a2+b2+c2﹣ab﹣ac﹣bc的值是()A.0B.1C.2D.3二.填空题(6小题,每题3分,共18分)11.一个多边形的每一个外角都等于24°,那么这个多边形的边数是.12.已知等腰三角形一边长为7cm,另一边长为14cm,则它的周长是cm.13.(x﹣2)和(x+n)的乘积不含一次项,则n=.14.如图,△ABC中作AB的垂直平分线ED交AC于D,交AB于E,已知AE =4cm,若△BDC的周长为13cm,则△ABC的周长是cm.15.如图,在正五边形ABCDE的内部,以CD边为边作正方形CDFH,连接BH,则∠BHC=°.16.如图,已知AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,AE=12,DF=5,则点E到直线AD的距离为.第16题第14题第15题数学第三次月考模拟试卷人教版2024—2025学年八年级上册姓名:____________ 学号:____________准考证号:___________一、选择题12345678910题号答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.先化简,再求值:(x﹣2y)2﹣x(x+3y)﹣4y2,其中x=﹣4,y=.18.如图,在△ABC中,∠C=90°,AB的垂直平分线DE交AC于D,垂足为E,若∠A=30°,CD=2.(1)求∠BDC的度数;(2)求AC的长度.19.在计算(2x+a)(x+b)时,甲错把a看成了﹣a,得到结果是:2x2﹣10x+12;乙由于漏抄了第一个多项式中x的系数,得到结果:x2+x﹣12.(1)求出a,b的值;(2)在(1)的条件下,计算(2x+a)(x+b)的结果.20.若多项式(x2+ax﹣2)与(x2+x+3b)的乘积中不含x2的项.(1)求10a•1000b的值;(2)若(x+2)3=x3+mx2+nx+8,求(a+3b)m﹣n的值.21.如图,△ABC是等边三角形,∠1=∠2=∠3.(1)求证:AD=CF;(2)求∠AEF的大小.22.△ABC在平面直角坐标系中的位置如图所示.(1)作出与△ABC关于y轴对称的△A1B1C1;(2)写出点A、B、C关于x轴的对称点的坐标;(3)求出△ABC的面积.23.如图,在某高铁站广场前有一块长为2a+b,宽为a+b的长方形空地,计划在中间留两个长方形喷泉池(图中阴影部分),两个长方形喷泉池及周边留有宽度为b的人行通道.(1)求该长方形空地的面积;(用代数式表示)(2)求这两个长方形喷泉池的总面积;(用代数式表示)(3)当a=200,b=100时,求这两个长方形喷泉池的总面积.24.给出如下定义:我们把有序实数对(m,n)叫做关于x的一次多项式mx+n的特征系数对,有序数对(a,b,c)叫做关于x的二次多项式ax2+bx+c的特征系数对,并且把关于x的一次多项式mx+n叫做有序实数对(m,n)的特征多项式,把关于x的二次多项式ax2+bx+c叫做有序实数对(a,b,c)的特征多项式.(1)关于x的一次多项式﹣2x+4的特征系数对在第象限;关于x的二次多项式3x2+2x﹣1的特征系数对为;(2)求有序实数对(1,a)的特征多项式与有序实数对(a,﹣4)的特征多项式的乘积为bx2﹣cx+16,求a、b、c的值;(3)若有序实数对(p,q,﹣1)的特征多项式与有序实数对(m,n,﹣2)的特征多项式的乘积的结果为2x4+x3﹣10x2﹣x+2,计算(4p﹣2q﹣1)(2m﹣n ﹣1)的值.25.如图1,已知点A(x,0),点B(0,y),且x,y满足|2x+y+6|+|y﹣x﹣12|=0.(1)求A,B两点的坐标;(2)若点C是第二象限内一点,且∠ACO=45°,过点B作BD⊥OC于点F,求证:CF=BF;(3)如图2,若点D的坐标为(﹣1,0),过点B作BE⊥BD,且BE=BD,连接AE交y轴于点G,求G点的坐标.。
人教版2024—2025学年秋季八年级上册数学第三次月考模拟试卷
人教版2024—2025学年秋季八年级上册数学第三次月考模拟试卷考试范围:第十一章到第十四章考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟第I卷一.选择题(每题只有一个正确选项,每小题3分,满分30分)1.“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.下面四幅图是我国传统文化与艺术中的几个经典图案,其中不是轴对称图形的是()A.B.C.D.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.3cm,7cm,11cmC.5cm,5cm,5cm D.5cm,13cm,6cm3.如果(x+y﹣3)2+|x﹣y+6|=0,则x2﹣y2的值为()A.9B.﹣9C.18D.﹣184.若a•aᵐ•a2ᵐ+1=a14,则m的值为()A.1B.2C.3D.45.下列计算正确的是()A.a2•a5=a10B.a5+a2=a7C.(a5)2=a7D.a5÷a2=a3 6.已知a=244,b=333,c=411,则有()A.a<b<c B.c<b<a C.c<a<b D.a<c<b7.若x2+2(m﹣3)x+16是完全平方式,则m的值为()A.3B.﹣5C.7D.7或﹣18.如图,AC与BD相交于点O,∠1=∠2,若用“SAS”说明△ABC≌△BAD,则还需添加的一个条件是()A.AD=BC B.∠C=∠D C.AO=BO D.AC=BD9.如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.△ABC三条中线的交点处B.△ABC三条角平分线的交点处C.△ABC三条高线的交点处D.△ABC三条边的垂直平分线的交点处10.如图,在△ABC中,AC=BC,∠ACB=90°,M是AB边上的中点,点D,E分别是AC,BC边上的动点,DE与CM相交于点F,且∠DME=90°.下列4个结论:①图中共有3对全等三角形;②∠CDM=∠CFE;③AD+BE=AC;④S△ABC=2S四边形CDME.其中不正确的结论有()个.A.3B.2C.1D.0二.填空题(6小题,每题3分,共18分)11.一个多边形的内角和是1080°,这个多边形的边数是.12.因式分解:a3﹣4a=.13.在平面直角坐标系中,若点A(﹣1,b)与点B(a,3)关于x轴对称,则2b﹣a=.14.如图,已知AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,AE=12,DF=5,则点E到直线AD的距离为.15.已知等腰三角形一边长为7cm,另一边长为14cm,则它的周长是cm.16.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD平分∠CAB交BC于点D,点E、F分别是AD、AC边上的动点,则CE+EF的最小值为.第II卷【模拟卷】人教版2024—2025学年秋季八年级上册数学第三次月考模拟试卷姓名:____________ 学号:____________准考证号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.先化简,再求值:(x+y)(x﹣y)+(x﹣y)2﹣(x2﹣3xy),其中x=2,y=.18.已知(x3+mx+n)(x2﹣3x+1)展开后的结果中不含x3和x2项.(1)求m、n的值;(2)求(m+n)(m2﹣mn+n2)的值.19.已知5m=4,5n=6,25p=9.(1)求5m+n的值;(2)求5m﹣2p的值;20.如图,在△ACB中,∠ACB=90°,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:△CEF是等腰三角形.21.如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)请画出将△ABC向右平移7个单位得到的△A1B1C1;(2)请画出与△ABC关于x轴对称的△A2B2C2,并写出B2的坐标;(3)在x轴上找一点P使得△AA2P的面积为3,直接写出点P的坐标.22.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划在中间留一块边长为(a+b)米的正方形空地修建雕像,其余部分铺设草坪(阴影部分).(1)求草坪的面积是多少平方米?(用含a、b的代数式表示)(2)若a、b满足(x+2)(x+3)=x2+ax+b时,草坪的单价为每平方米50元.求购买草坪所需要的总费用.23.如图所示,AB=AC,∠ABD=∠ACE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠CAE=20°,∠ACE=25°,求∠ADE的度数;(3)在(2)的条件下判断△ADE的形状,并证明.24.现有若干个正方形纸片,从中任取两个大小不等的正方形如图摆放,A、D、E三点在一条直线上,(1)如图①,AE=m,CG=n,这两个正方形的面积之和是.(用m、n的代数式表示)(2)如图②,如果大正方形ABCD和小正方形DEFG的面积之和是5,图中阴影部分的面积为2,求(mn)2是多少?(3)如图③,大正方形ABCD和小正方形DEFG的面积之和是25,AE的长度等于7,图中阴影部分的面积是.(4)如图④,正方形ABCD和正方形DEFG的边长分别为a、b(a>b),如果a+b=8,ab=6,求图中阴影部分面积之和是多少?25.已知直线AB交x轴于点A(m,0),交y轴于点B(0,n),且m、n满足|m+n|+(n﹣3)2=0.(1)求m,n的值;(2)如图1,若点C在第一象限,且BE⊥AC于点E,延长BE至点D,使得BD=AC,连OC、OD、CD,试判断△COD的形状,并说明理由;(3)如图2,若点C在OB上,点F在AB的延长线上,Q为AF的中点且CQ⊥AF,△ACP是以AC为直角边的等腰直角三角形,求证:.。
2024-2025学年初中八年级上学期第一次月考数学试题及答案(人教版)
2024-2025八年级上册第一次月考模拟试卷一、填空题(本题满分30分,每小题3分)1. 在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A. B. C. D. 2. 若一个等腰三角形的两边长分别为2,4,则第三边的长为( )A. 2B. 3C. 4D. 2或43. 已知一个等腰三角形有一个角为50o ,则顶角是 ( )A. 50oB. 80oC. 50o 或80oD. 不能确定 4. 若三角形的两条边的长度是4cm 和9cm ,则第三条边的长度可能是( )A. 4 cmB. 5 cmC. 9cmD. 13cm5. 一个多边形的内角和是900°,则这个多边形的边数为 ( )A. 6B. 7C. 8D. 96. 下列长度的各种线段,可以组成三角形的是( )A. 1,2,3B. 1,3,5C. 3,3,6D. 4,5,6 7. 如图,AB 与CD 相交于点E ,EA EC =,DE BE =,若使AED CEB ≌,则( )A. 应补充条件A C ∠=∠B. 应补充条件B D ∠=∠C. 不用补充D. 以上说法都不正确8. 已知△ABC 和△DEF ,下列条件中,不能保证△ABC ≌△DEF 的是( )A. AB =DE ,AC =DF ,BC =EFB. ∠A =∠D , ∠B =∠E ,AC =DFC. AB =DE ,AC =DF ,∠A =∠DD. AB =DE ,BC =EF , ∠C =∠F9. 如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若12PP =6,则△PMN 的周长为( )的A. 4B. 5C. 6D. 710. 如图,直线AB CD ∥,70A ∠=°,40C ∠=°,则E ∠的度数为( )A. 30°B. 40°C. 50°D. 60°11. 如图,在ABC 中,AD BC ⊥于点D ,48C ∠=°.则DAC ∠的度数为( )A. 52°B. 42°C. 32°D. 28°12. 如图,在ΔΔΔΔΔΔΔΔ中,AD 平分BAC ∠交BC 于点D ,30B ∠= ,70ADC ∠=,则C ∠的度数是( )A. 50B. 60C. 70D. 80二. 填空题(本题满分24分,每小题3分)13. BD 是ABC 的中线,53AB BC ABD ==,, 和BCD △的周长的差是____.14. 若一个多边形从一个顶点可以引8条对角线,则这个多边形的内角和是______.15. Rt ABC 中,∠C=90°,∠B=2∠A ,BC=3cm , AB=____cm .16. 如图,Rt ABC ∆中,∠B =90 ,AB =3cm ,AC =5cm ,将ΔΔΔΔΔΔΔΔ折叠,使点C 与点A 重合,折痕为DE ,则CE =____cm .17. 若一个n 边形的内角都相等,且内角的度数与和它相邻的外角的度数比为3:1,那么,这个多边形的边数为________.18. 如下图,在ABC 中,AB AC =,BE CD =,BD CF =,若50B ∠=°,则EDF ∠的度数是____度.三.解答题(本大题满分62分)19 如图,DF ⊥AC 于F ,BE ⊥AC 于E ,AB =CD ,DF =BE .;求证:AF =CE .20. 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD .求△ABC 各角的度数..21. 如图,点D E ,分别AB AC ,上,CD 交BE 于点O ,且AD AE =,AB AC =.求证:(1)B C ∠=∠;(2)OB OC =.22. 如图,两人从路段ΔΔΔΔ上一点C 同时出发,以相同速度分别沿两条直线行走,并同时到达D E ,两地.且DA AB ⊥,EB AB ⊥.若线段DA EB =相等,则点C 是路段ΔΔΔΔ的中点吗?为什么?23. 在ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:ABD △是等腰三角形;(2)①若40A ∠=°,求DBC ∠的度数为 ;②若6AE =,CBD △的周长为20,求ABC 的周长.在的24. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.25. 如图,∠B =∠C =90°,M 是BC 上一点,且DM 平分∠ADC ,AM 平分∠DAB ,求证:AD =CD +AB .26. 如图,∠ABC =90°,D 、E 分别在BC 、AC 上,AD ⊥DE ,且AD =DE ,点F 是AE 中点,FD 与AB 相交于点M .(1)求证:∠FMC =∠FCM ;(2)AD 与MC 垂直吗?并说明理由.的2024-2025八年级上册第一次月考模拟试卷一、填空题(本题满分30分,每小题3分)1. 在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A 、不是轴对称图形,不符合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不符合题意;D 、不是轴对称图形,不符合题意.故选:B .【点睛】本题考查了轴对称图形识别,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2. 若一个等腰三角形的两边长分别为2,4,则第三边的长为( )A. 2B. 3C. 4D. 2或4【答案】C【解析】【分析】分4是腰长与底边两种情况,再根据三角形任意两边之和大于第三边讨论求解即可.【详解】①4是腰长时,三角形的三边分别为4、4、2,能组成三角形,所以,第三边4;②4是底边时,三角形的三边分别为2、2、4, 224+= ,∴不能组成三角形,综上所述,第三边为4.故选C .【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于要分情况讨论.3. 已知一个等腰三角形有一个角为50o ,则顶角是 ( )为.A50o B. 80o C. 50o或80o D. 不能确定【答案】C【解析】【分析】已知中没有明确该角为顶角还是底角,所以应分两种情况进行分析.【详解】分两种情况:若该角为底角,则顶角为180°−2×50°=80°;若该角为顶角,则顶角为50°.∴顶角是50°或80°.故选C.【点睛】此题考查等腰三角形的性质,解题关键在于分情况讨论.4. 若三角形的两条边的长度是4cm和9cm,则第三条边的长度可能是( )A. 4 cmB. 5 cmC. 9cmD. 13cm【答案】C【解析】【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边,进行解答即可.【详解】由题可得:9﹣4<第三边<9+4,所以5<第三边<13,即第三边在5 cm~13 cm之间(不包括5 cm 和13 cm),结合选项可知:9 cm符合题意.故选C.角形的两边的差一定小于第三边.5. 一个多边形的内角和是900°,则这个多边形的边数为()A. 6B. 7C. 8D. 9【答案】B【解析】【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【详解】解:设这个多边形的边数为n,则有(n-2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选B.【点睛】本题考查了多边形内角和,熟练掌握内角和公式是解题的关键.6. 下列长度的各种线段,可以组成三角形的是( )A. 1,2,3B. 1,3,5C. 3,3,6D. 4,5,6【答案】D【解析】【分析】根据三角形的三边关系逐一判断即可得答案.【详解】A .∵1+2=3,故不能组成三角形,不符合题意,B .∵1+3<5,故不能组成三角形,不符合题意,C .∵3+3=6,故不能组成三角形,不符合题意,D .∵4+5>6;5-4<6,故能组成三角形,符合题意,.故选:D .【点睛】本题考查三角形的三边关系,任意三角形的两边之和大于第三边,两边之差小于第三边,熟练掌握三角形的三边关系是解题关键.7 如图,AB 与CD 相交于点E ,EA EC =,DE BE =,若使AED CEB ≌,则( )A. 应补充条件A C ∠=∠B. 应补充条件B D ∠=∠C. 不用补充D. 以上说法都不正确【答案】C【解析】 【分析】本题要判定AED CEB ≌,已知EA EC =,DE BE =,具备了两组边对应相等,由于对顶角相等可得AED CEB ∠=∠,可根据SAS 能判定AED CEB ≌.【详解】解:在AED 与CEB 中,EA EC AED CEB DE BE = ∠=∠ =,(SAS)AED CEB ∴ ≌,∴不用补充条件即可证明AED CEB ≌,.故选:C .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8. 已知△ABC 和△DEF ,下列条件中,不能保证△ABC ≌△DEF 的是( )A. AB =DE ,AC =DF ,BC =EFB. ∠A =∠D , ∠B =∠E ,AC =DFC. AB =DE ,AC =DF ,∠A =∠DD. AB =DE ,BC =EF , ∠C =∠F【答案】D【解析】【分析】三角形全等的判定定理中,常见的不能判定三角形全等的条件为SSA ,AAA ,通过对条件的对比很容易得出结论.【详解】A 选项对应判定定理中的SSS ,故正确;B 选项对应判定定理中的AAS ,故正确;C 选项对应判定定理中的ASA ,故正确;D 选项则为SSA ,两边加对角是不能判定三角形全等的,故错误.故选D .【点睛】本题考查三角形全等判定定理,能熟记并掌握判定定理是解题关键.9. 如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若12PP =6,则△PMN 的周长为( )A. 4B. 5C. 6D. 7【答案】C【解析】【分析】根据题意易得1PM PM =,2P N PN =,然后根据三角形的周长及线段的数量关系可求解. 【详解】解:由轴对称的性质可得:OA 垂直平分1PP ,OB 垂直平分2P P ,∴1PM PM =,2P N PN =, ∵1212PMN C PM PN MN PM P N MN PP =++=++=△,12PP =6,∴6PMN C = ;故选C .【点睛】本题主要考查轴对称的性质及线段垂直平分线的性质定理,熟练掌握轴对称的性质及线段垂直平分线的性质定理是解题的关键.10. 如图,直线AB CD ∥,70A ∠=°,40C ∠=°,则E ∠的度数为( )A. 30°B. 40°C. 50°D. 60°【答案】A【解析】 【分析】此题考查了平行线的性质,三角形外角的性质,首先根据AB CD ∥得到170A ∠=∠=°,然后利用三角形外角的性质求解即可.解题的关键是熟练掌握三角形外角的性质:三角形的外角等于与它不相邻的两个内角的和.【详解】如图所示,∵AB CD ∥,70A ∠=°,∴170A ∠=∠=°,∵40C ∠=°∴1704030E C ∠=∠−∠=°−°=°.故选A .11. 如图,在ABC 中,AD BC ⊥于点D ,48C ∠=°.则DAC ∠的度数为( )A. 52°B. 42°C. 32°D. 28°【答案】B【解析】 【分析】根据垂直的定义,直角三角形的两个锐角互余,即可求解.【详解】解:∵AD BC ⊥,48C ∠=°,∴90ADC ∠=°,∵48C ∠=°,∴904842DAC ∠=°−°=°,故选:B .【点睛】本题考查了垂直的定义,直角三角形的两个锐角互余,求得90ADC ∠=°是解题的关键. 12. 如图,在ΔΔΔΔΔΔΔΔ中,AD 平分∠交BC 于点D ,30B ∠= ,70ADC ∠=,则C ∠的度数是( )A. 50B. 60C. 70D. 80【答案】C【解析】 【分析】由30B ∠= ,70ADC ∠= ,利用外角的性质求出BAD ∠,再利用AD 平分BAC ∠,求出BAC ∠,再利用三角形的内角和,即可求出C ∠的度数.【详解】∵30B ∠= ,70ADC ∠=, ∴703040BAD ADC B ∠=∠−∠=−= ,∵AD 平分BAC ∠,∴280BAC BAD ∠=∠= ,∴180180308070C B BAC ∠=−∠−∠=−−= .故选C .【点睛】本题考查了三角形的外角性质定理,角平分线的定义以及三角形的内角和定理,熟练掌握相关性质和定理是解题关键.二. 填空题(本题满分24分,每小题3分)13. BD 是ABC 的中线,53AB BC ABD ==,, 和BCD △的周长的差是____.【答案】2【解析】【分析】由中线定义,得AD CD =,根据周长定义,进行线段的和差计算求解.【详解】∵BD 是ABC 的中线,∴AD CD =,∴ABD △和BCD △的周长的差()()AB BD AD BC BD CD AB BC =++−++=−,∵53AB BC ==,, ∴ABD △和BCD △的周长的差532=−=.故答案为:2.【点睛】本题考查中线的定义;由中线得到线段相等是解题的关键.14. 若一个多边形从一个顶点可以引8条对角线,则这个多边形的内角和是______.【答案】1620°【解析】【分析】设多边形边数为n ,根据n 边形从一个顶点出发可引出(n−3)条对角线可得n−3=8,计算出n 的值,再根据多边形内角和(n−2)•180 (n ≥3)且n 为整数)可得答案.【详解】解:设多边形边数为n ,由题意得:n−3=8,n=11,内角和:180°×(11−2)=1620°.故答案为1620°.【点睛】本题主要考查了多边形的对角线,以及多边形内角和,关键是掌握n边形从一个顶点出发可引出(n−3)条对角线,多边形内角和公式(n−2)•180 (n≥3)且n为整数).中,∠C=90°,∠B=2∠A,BC=3cm,AB=____cm.15. Rt ABC【答案】6【解析】【详解】试题分析:根据直角三角形的性质即可解答.解:如图:∵Rt△ABC中,∠C=90°,∠B=2∠A∴∠A+∠B=90°∴∠A=30°,∠B=60°∴=,∵BC=3cm,∴AB=2×3=6cm.故答案为6.考点:直角三角形的性质.∆中,∠B=90 ,AB=3cm,AC=5cm,将ΔΔΔΔΔΔΔΔ折叠,使点C与点A重合,折痕为DE,16. 如图,Rt ABC则CE=____cm.【答案】258【解析】 【分析】在Rt △ABC 中,由勾股定理可得BC4= cm ,设AE =x cm ,由折叠的性质可得CE =x cm ,BE = (4)x −cm ,从而由勾股定理可得:2223(4)x x =+−,即可求解.【详解】解:∵在Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,∴由勾股定理可得:BC4=cm ,设AE =x cm ,则由折叠的性质可得:CE =x cm ,BE =BC -CE =(4)x −cm ,∴在Rt △ABE 中,由勾股定理可得:2223(4)x x =+−,解得:258x =(cm ). 即CE 的长为258cm . 故答案是:258. 【点睛】本题考查了折叠性质以及勾股定理的应用,熟练掌握勾股定理的内容是解题的关键. 17. 若一个n 边形的内角都相等,且内角的度数与和它相邻的外角的度数比为3:1,那么,这个多边形的边数为________.【答案】8##八【解析】【分析】本题考查的是多边形的内角和,以及多边形的外角和,解答本题的关键是熟练掌握任意多边形的外角和是360°,与边数无关. 先根据内角的度数与和它相邻的外角的度数比为3:1,求得每一个外角的度数,再根据任意多边形的外角和是360°,即可求得结果.【详解】解:设每一个外角的度数为x ,则每一个内角的度数3x ,则3180x x +=°,解得45x =°,∴每一个外角的度数为45°,∴这个多边形的边数为360458°÷°=,故答案为:8.18. 如下图,在ABC 中,AB AC =,BE CD =,BD CF =,若50B ∠=°,则EDF ∠的度数是____度. 的【答案】50【解析】【分析】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形内角和定理,由等腰三角形的性质可得B C ∠=∠,进而可证明()SAS BDE CFD ≌,得到BED CDF ∠=∠,即可得130BDE CDF BDE BED ∠+∠=∠+∠=°,最后根据平角的定义即可求解,掌握等腰三角形的性质及全等三角形的判定和性质是解题的关键.【详解】解:∵AB AC =,∴B C ∠=∠,又∵BE CD =,BD CF =,∴()SAS BDE CFD ≌,∴BED CDF ∠=∠,∵50B ∠=°,∴18050130BDE BED ∠+∠=°−°=°,∴130BDE CDF ∠+∠=°,∴()18018013050EDF BDE CDF ∠=°−∠+∠=°−°=°, 故答案为:50.三.解答题(本大题满分62分)19. 如图,DF ⊥AC 于F ,BE ⊥AC 于E ,AB =CD ,DF =BE .;求证:AF =CE .【答案】证明见解析.【解析】【分析】由HL 证明Rt △ABE ≌Rt △CDF ,得出对应边相等AE =CF ,由AE ﹣EF =CF =EF ,即可得出结论.详解】∵DF ⊥AC ,BE ⊥AC ,∴∠CFD =∠AEB =90°,在Rt △ABE 和Rt △CDF 中,{AB CD BE DF==, ∴Rt △ABE ≌Rt △CDF (HL ),∴AE =CF ,∴AE ﹣EF =CF =EF ,∴AF =CE .【点睛】本题考查了全等三角形的判定与性质.掌握全等三角形的判定方法是解题的关键.20. 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD .求△ABC 各角的度数.【答案】∠A=36°,∠ABC=∠C=72°【解析】【分析】设∠A=x ,根据等腰三角形的性质和三角形的外角性质、三角形的内角和定理即可求得各个角的度数.【详解】解:设∠A=x ,∵AD=BD ,∴∠ABD=∠A=x ,∴∠BDC=∠ABD+∠A=2x ,∵BD=BC ,∴∠C=∠BDC=2x ,∵AB=AC ,∴∠ABC=∠C=2x ,∴在△ABC 中,x+2x+2x=180°,∴x=36°,2x=72°,【即∠A=36°,∠ABC=∠C=72°.【点睛】本题考查了等腰三角形的性质、三角形的外角性质、三角形内角和定理,熟练掌握等腰三角形的性质和外角性质是解答的关键.21. 如图,点D E ,分别在AB AC ,上,CD 交BE 于点O ,且AD AE =,AB AC =.求证:(1)B C ∠=∠;(2)OB OC =.【答案】(1)证明见解析(2)证明见解析【解析】【分析】本题考查三角形全等的判定与性质,熟记三角形全等的判定定理:SSS SAS ASA AAS 、、、是解决问题的关键.(1(2)根据三角形全等的判定定理找条件证明即可得证.【小问1详解】证明:在ABE 和ACD 中,AD AE A A AB AC = ∠=∠ =()SAS ABE ACD ∴≌ ,∴B C ∠=∠;【小问2详解】证明: AD AE =,AB AC =,BD CE ∴=,由(1)知,B C ∠=∠,在BOD 和COE 中,BOD COE B C DB EC ∠=∠ ∠=∠ =()AAS ≌BOD COE ∴△△,∴OB OC =.22. 如图,两人从路段ΔΔΔΔ上一点C 同时出发,以相同的速度分别沿两条直线行走,并同时到达D E ,两地.且DA AB ⊥,EB AB ⊥.若线段DA EB =相等,则点C 是路段ΔΔΔΔ的中点吗?为什么?【答案】点C 是路段ΔΔΔΔ的中点,理由见解析.【解析】【分析】本题考查了全等三角形的判定和性质,利用HL 证明Rt Rt ACD BCE ≌得到AC BC =即可求解,掌握全等三角形的判定和性质是解题的关键.【详解】解:点C 是路段ΔΔΔΔ的中点,理由如下:∵两人从点C 同时出发,以相同的速度同时到达D E ,两地,∴CD CE =,∵DA AB ⊥,EB AB ⊥,∴90A B ∠=∠=°,又∵DA EB =,∴()Rt Rt HL ACD BCE ≌, ∴AC BC =,∴点C 是路段ΔΔΔΔ的中点.23. 在ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:ABD △是等腰三角形;(2)①若40A ∠=°,求DBC ∠的度数为 ;②若6AE =,CBD △的周长为20,求ABC 的周长.【答案】(1)见解析 (2)①;②32【解析】【分析】(1)根据线段的垂直平分线到线段两端点的距离相等即可得证;(2)①由在ABC 中,AB AC =,40A ∠=°,利用等腰三角形的性质,即可求得ABC ∠的度数,利用等边对等角求得DBA ∠的度数,则可求得DBC ∠的度数;②将ABC 的周长转化为AB AC BC ++的长即可求得.【小问1详解】解:∵AB 的垂直平分线MN 交AC 于点D ,∴DB DA =,∴ABD △是等腰三角形;【小问2详解】解:①在ABC 中,∵AB AC =,40A ∠=°, ∴180180407022AABC C −∠°−∠=∠=°==°°, 由(1)得DA DB =,40DBA A ∠=∠=︒,∴704030DBC ABC DBA ∠=∠−∠=°−°=°;故答案为:30°;②∵AB 的垂直平分线MN 交AC 于点D ,6AE =,∴212AB AE ==,∵CBD △的周长为20,∴20BD CD BC AD CD BC AC BC ++=++=+=,∴ABC 的周长122032AB AC BC =++=+=. 【点睛】此题考查了线段的垂直平分线的性质及等腰三角形的判定与性质,解题的关键是熟练掌握以上知识的应用.24. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.【答案】见解析【解析】【分析】利用AAS 证明PBD PCE ≌即可.本题考查了三角形全等的判定和性质,熟练掌握三角形全等的判定是解题的关键.【详解】证明:∵PD AB PE AC ⊥⊥,,∴90PDB PEC ∠=∠=°,∵AB AC =,∴B C ∠=∠,∵P 是边BC 的中点,∴PB PC =,∵PDB PEC B C PB PC ∠=∠ ∠=∠ =,∴PBD PCE ≌,∴PD PE =.25. 如图,∠B =∠C =90°,M 是BC 上一点,且DM 平分∠ADC ,AM 平分∠DAB ,求证:AD =CD +AB .【答案】证明见解析【解析】【分析】过M作ME⊥AD于E,根据垂直定义和角平分线性质得出∠C=∠DEM=90°,∠B=∠AEM=90°,∠CDM=∠EDM,CM=EM,∠EAM=∠BAM,BM=ME,根据全等三角形性质,推导得△MCD≌△MED,根据全等得出CD=DE,同理得AE=AB,即可得出答案.【详解】如图,过M作ME⊥AD于E,∵∠B=∠C=90°,DM平分∠ADC,AM平分∠DAB,∴∠C=∠DEM=90°,∠B=∠AEM=90°,∠CDM=∠EDM,CM=EM,∠EAM=∠BAM,BM=EM,∴CDM EDMC DEMCM EM∠=∠∠=∠=,∴△MCD≌△MED(AAS),∴CD=DE,∵BAM EAMB AEMBM EM∠=∠∠=∠=∴△ABM≌△AEM(AAS),∴AE=AB,∴AD=AE+DE=CD+AB.【点睛】本题考查了角平分线、全等三角形的知识;解题的关键是熟练掌握角平分线、全等三角形的性质,从而完成求解.26. 如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.【答案】(1)见解析;(2)AD ⊥MC ,理由见解析【解析】【分析】(1)由已知可以证得△DFC ≌△AFM ,从而得到CF =MF ,最后得到∠FMC =∠FCM ; (2)由(1)可以证得DE ∥CM ,再根据AD ⊥DE 可得AD ⊥MC .【详解】解:(1)证明:∵△ADE 是等腰直角三角形,F 是AE 中点,∴DF ⊥AE ,DF =AF =EF ,又∵∠ABC =90°,∠DCF ,∠AMF 都与∠MAC 互余,∴∠DCF =∠AMF ,在△DFC 和△AFM 中,DCF AMF CFD MFA DF AF∠=∠ ∠=∠ = , ∴△DFC ≌△AFM (AAS ),∴CF =MF ,∴∠FMC =∠FCM ;(2)AD ⊥MC ,理由:由(1)知,∠MFC =90°,FD =FA =FE ,FM =FC ,∴∠FDE =∠FMC =45°,∴DE ∥CM ,∴AD ⊥MC .【点睛】本题考查全等三角形的综合运用,熟练掌握三角形全等的判定和性质、等腰三角形的性质、同角余角相等的性质、平行线的判定与性质、垂直的判定并灵活运用是解题关键.。
人教版八年级上册数学月考测试卷及答案【完整】
人教版八年级上册数学月考测试卷及答案【完整】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的倒数是()A. B. C. D.2. 已知: 将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b, 则下列关于直线y=kx+b的说法正确的是()A. 经过第一、二、四象限B. 与x轴交于(1, 0)C. 与y轴交于(0, 1)D. y随x的增大而减小3.已知点在抛物线上, 则下列结论正确的是()A. B. C. D.4.已知关于x的分式方程=1的解是负数, 则m的取值范围是()A. m≤3B. m≤3且m≠2C. m<3D. m<3且m≠25. 下列各组数中, 能构成直角三角形的是()A.4, 5, 6 B.1, 1, C.6, 8, 11 D.5, 12, 236. 一元二次方程的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根7. 在平面直角坐标系中, 一次函数y=kx+b的图象如图所示, 则k和b的取值范围是()A. k>0, b>0B. k>0, b<0C. k<0, b>0D. k<0, b<0 8.如图, 过△ABC的顶点A, 作BC边上的高, 以下作法正确的是()A. B.C. D.9.如图, 点P是∠AOB内任意一点, 且∠AOB=40°, 点M和点N分别是射线OA和射线OB上的动点, 当△PMN周长取最小值时, 则∠MPN的度数为()A. 140°B. 100°C. 50°D. 40°10.如图是由4个相同的小正方形组成的网格图, 其中∠1+∠2等于()A. 150°B. 180°C. 210°D. 225°二、填空题(本大题共6小题, 每小题3分, 共18分)1. 已知a, b, c是△ABC的三边长, a, b满足|a﹣7|+(b﹣1)2=0, c为奇数, 则c=________.2. 若|x|=3, y2=4, 且x>y, 则x﹣y=__________.3.若, 则 ________.4.如图, 矩形ABCD中, AB=3, BC=4, 点E是BC边上一点, 连接AE, 把∠B沿AE折叠, 使点B落在点处, 当为直角三角形时, BE的长为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年北京师大附属实验中学八年级(上)月考数学试卷(10月份)(解析版)一、选择题(每小题5分,共40分)1.(5分)2017年12月15日,北京2022年冬奥会会徽“冬梦”正式发布.以下是参选的会徽设计的一部分图形,其中是轴对称图形的是()A.B.C.D.2.(5分)如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=()A.∠B B.∠A C.∠EMF D.∠AFB3.(5分)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°4.(5分)如图,已知∠O,点P为其内一定点,分别在∠O的两边上找点A、B,使△P AB周长最小的是()A.B.C.D.5.(5分)如图,△ABC中,AB=AC,∠B=30°,点D是AC的中点,过点D作DE⊥AC交BC于点E,连接EA.则∠BAE的度数为()A.30°B.80°C.90°D.110°6.(5分)如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.AB=AD B.BH⊥ADC.S△ABC=BC•AH D.AC平分∠BAD7.(5分)在平面直角坐标系中,已知点A(2,m)和点B(n,﹣3)关于y轴对称,则m+n的值是()A.﹣1B.1C.5D.﹣58.(5分)如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,依此类推,若OA1=1,则△A2016B2016A2017的边长为()A.2016B.4032C.22016D.22015二、填空题(每小题5分,共30分)9.(5分)已知图中的两个三角形全等,则∠1等于度.10.(5分)如图,在平面直角坐标系xOy中,△DEF可以看作是由△ABC经过若干次的图形变化(轴对称、平移)得到的,写出一种由△ABC得到△DEF的过程:.11.(5分)如图,△ABC中,AD平分∠BAC,AB=4,AC=2,若△ACD的面积等于3,则△ABD的面积为.12.(5分)已知△ABC的两边长分别为AB=2和AC=6,第三边上的中线AD=x,则x的取值范围是.13.(5分)如图,在△ABC中,AB=AC,AD=DE,∠BAD=20°,∠EDC=10°,则∠ADE=.14.(5分)如图,已知△ABC中,AB=AC=24厘米,∠ABC=∠ACB,BC=16厘米,点D为AB的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为厘米/秒时,能够在某一时刻使△BPD与△CQP全等.三、解答题(共30分)15.(5分)尺规作图:已知:∠AOB.求作:∠A'O'B',使∠A'O'B'=∠AOB.(不写作法,保留作图痕迹,画在答题纸的方框中)写出这样作图的两点依据:①;②.16.(5分)已知:如图,AC=AB,AE=AD,∠1=∠2.求证:∠3=∠4.17.(6分)如图,△ABC中,AB=AC,AD是BC边上的中线,CE⊥AB于点E.求证:∠CAD=∠BCE.18.(7分)如图,在△ABC中,D是边AB上一点,E是边AC的中点,作CF∥AB交DE的延长线于点F.(1)证明:△ADE≌△CFE;(2)若∠B=∠ACB,CE=5,CF=7,求DB.19.(7分)如图1,E是等边三角形ABC的边AB所在直线上一点,D是边BC所在直线上一点,且D与C不重合,若EC=ED.则称D为点C关于等边三角形ABC的反称点,点E称为反称中心.在平面直角坐标系xOy中,(1)已知等边三角形AOC的顶点C的坐标为(2,0),点A在第一象限内,反称中心E在直线AO上,反称点D在直线OC上.①如图2,若E为边AO的中点,在图中作出点C关于等边三角形AOC的反称点D,并直接写出点D的坐标:;②若AE=2,求点C关于等边三角形AOC的反称点D的坐标;(2)若等边三角形ABC的顶点为B(n,0),C(n+1,0),反称中心E在直线AB上,反称点D在直线BC上,且2≤AE<3.请直接写出点C关于等边三角形ABC的反称点D的横坐标t的取值范围:(用含n的代数式表示).2020-2021学年北京师大附属实验中学八年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题(每小题5分,共40分)1.(5分)2017年12月15日,北京2022年冬奥会会徽“冬梦”正式发布.以下是参选的会徽设计的一部分图形,其中是轴对称图形的是()A.B.C.D.【分析】直接根据轴对称图形的概念分别解答得出答案.【解答】解:A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不合题意.故选:B.2.(5分)如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=()A.∠B B.∠A C.∠EMF D.∠AFB【分析】由全等三角形的性质:对应角相等即可得到问题的选项.【解答】解:∵△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,∴∠DCE=∠B,故选:A.3.(5分)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.4.(5分)如图,已知∠O,点P为其内一定点,分别在∠O的两边上找点A、B,使△P AB周长最小的是()A.B.C.D.【分析】根据轴对称的性质即可得到结论.【解答】解:分别在∠O的两边上找点A、B,使△P AB周长最小的是D选项,5.(5分)如图,△ABC中,AB=AC,∠B=30°,点D是AC的中点,过点D作DE⊥AC交BC于点E,连接EA.则∠BAE的度数为()A.30°B.80°C.90°D.110°【分析】根据∠BAE=∠BAC﹣∠EAD,只要求出∠BAC,∠EAD即可解决问题.【解答】解:∵AB=AC,∴∠B=∠C=30°,∴∠BAC=180°﹣30°﹣30°=120°,∵DE垂直平分线段AC,∴EA=EC,∴∠EAD=∠C=30°,∴∠BAE=∠BAC﹣∠EAD=90°.故选:C.6.(5分)如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.AB=AD B.BH⊥ADC.S△ABC=BC•AH D.AC平分∠BAD【分析】根据线段垂直平分线的判定解决问题即可.【解答】解:由作图可知,直线BC垂直平分线段AD,故BH⊥AD,7.(5分)在平面直角坐标系中,已知点A(2,m)和点B(n,﹣3)关于y轴对称,则m+n的值是()A.﹣1B.1C.5D.﹣5【分析】直接利用关于y轴对称点的性质得出m,n的值,进而得出答案.【解答】解:∵点A(2,m)和点B(n,﹣3)关于y轴对称,∴n=﹣2,m=﹣3,则m+n的值是:﹣2﹣3=﹣5.故选:D.8.(5分)如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,依此类推,若OA1=1,则△A2016B2016A2017的边长为()A.2016B.4032C.22016D.22015【分析】根据等边三角形的性质和∠MON=30°,可求得∠OB1A2=90°,可求得A1A2=2OA1=2,同理可求得OA n+1=2OA n=4OA n﹣1=…=2n﹣1OA2=2n OA1=2n,再结合含30°角的直角三角形的性质可求得△A n B n A n+1的边长,于是可得出答案.【解答】解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,∵∠MON=30°,∴∠OB1A2=90°,可求得A1A2=2OA1=2,同理可求得OA n+1=2OA n=4OA n﹣1=…=2n﹣1OA2=2n OA1=2n,在△OB n A n+1中,∠O=30°,∠B n A n+1O=60°,∴∠OB n A n+1=90°,∴B n A n+1=OA n+1=×2n=2n﹣1,即△A n B n A n+1的边长为2n﹣1,∴△A2016B2016A2017的边长为22016﹣1=22015,故选:D.二、填空题(每小题5分,共30分)9.(5分)已知图中的两个三角形全等,则∠1等于58度.【分析】利用三角形的内角和等于180°求出边b所对的角的度数,再根据全等三角形对应角相等解答.【解答】解:如图,∠2=180°﹣50°﹣72°=58°,∵两个三角形全等,∴∠1=∠2=58°.故答案为:58.10.(5分)如图,在平面直角坐标系xOy中,△DEF可以看作是由△ABC经过若干次的图形变化(轴对称、平移)得到的,写出一种由△ABC得到△DEF的过程:将△ABC沿y轴翻折,再将得到的三角形向下平移3个单位长度(答案不唯一).【分析】依据轴对称变换以及平移变换,即可得到由△ABC得到△DEF的过程.【解答】解:将△ABC沿y轴翻折,再将得到的三角形向下平移3个单位长度,即可得到△DEF.故答案为:将△ABC沿y轴翻折,再将得到的三角形向下平移3个单位长度(答案不唯一).11.(5分)如图,△ABC中,AD平分∠BAC,AB=4,AC=2,若△ACD的面积等于3,则△ABD的面积为6.【分析】过C点作DE⊥AB于E,CF⊥AC于F,如图,利用角平分线的性质得DE=DF,再根据三角形面积公式,利用S△ACD=•DF•AC=3得到DF=DE=3,然后利用三角形面积公式计算S△ABD.【解答】解:过C点作DE⊥AB于E,CF⊥AC于F,如图,∵AD平分∠BAC,∴DE=DF,∵S△ACD=•DF•AC=3,∴DF==3,∴DE=3.∴S△ABD=•DE•AB=×3×4=6.故答案为6.12.(5分)已知△ABC的两边长分别为AB=2和AC=6,第三边上的中线AD=x,则x的取值范围是2<x<4.【分析】作出草图,延长AD到E,使DE=AD,连接CE,利用“边角边”证明△ABD和△ECD全等,然后根据全等三角形对应边相等可得CE=AB,再根据三角形的任意两边之和大于第三边,两边之和小于第三边求出AE的取值范围,便不难得出x的取值范围.【解答】解:如图,延长AD到E,使DE=AD,连接CE,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB,∵AB=2,AC=6,∴6﹣2<AE<6+2,即4<AE<8,∴2<x<4.故答案为:2<x<4.13.(5分)如图,在△ABC中,AB=AC,AD=DE,∠BAD=20°,∠EDC=10°,则∠ADE=60°.【分析】设∠B=∠C=x,则∠DAE=∠DEA=∠C+∠EDC=x+10°,录音三角形内角和定理构建方程求解即可.【解答】解:∵AD=DE,∴∠DAE=∠DEA,∵AB=AC,∴∠B=∠C,设∠B=∠C=x,则∠DAE=∠DEA=∠C+∠EDC=x+10°,∵∠BAC+∠B+∠C=180°,∴20°+10°+x+2x=180°,∴x=50°,∴∠DAE=∠DEA=60°,∴∠ADE=60°,故答案为60°.14.(5分)如图,已知△ABC中,AB=AC=24厘米,∠ABC=∠ACB,BC=16厘米,点D为AB的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为4或6厘米/秒时,能够在某一时刻使△BPD与△CQP全等.【分析】求出BD的长,要使△BPD与△CQP全等,必须BD=CP或BP=CP,得出方程12=16﹣4x 或4x=16﹣4x,求出方程的解即可.【解答】解:设经过x秒后,使△BPD与△CQP全等,∵AB=AC=24厘米,点D为AB的中点,∴BD=12厘米,∵∠ABC=∠ACB,∴要使△BPD与△CQP全等,必须BD=CP或BP=CP,即12=16﹣4x或4x=16﹣4x,解得:x=1或x=2,x=1时,BP=CQ=4,4÷1=4;x=2时,BD=CQ=12,12÷2=6;即点Q的运动速度是4或6,故答案为:4或6三、解答题(共30分)15.(5分)尺规作图:已知:∠AOB.求作:∠A'O'B',使∠A'O'B'=∠AOB.(不写作法,保留作图痕迹,画在答题纸的方框中)写出这样作图的两点依据:①三边对应相等两三角形全等;②全等三角形的对应角相等.【分析】①以点O为圆心,以任意长度为半径画弧,交OA于点C,交OB于点D.②画射线O′M.③以点O′为圆心,以OC为半径画弧,交O′M于点B′.④以点B′为圆心,以CD为半径画弧,与已知画的弧交点与点A′.⑤作射线O′A′,作∠A′O′B′即为所求.【解答】解:如图∠A′O′B′即为所求;作图的依据:①三边对应相等两三角形全等.②全等三角形的对应角相等.故答案为:三边对应相等两三角形全等.全等三角形的对应角相等.16.(5分)已知:如图,AC=AB,AE=AD,∠1=∠2.求证:∠3=∠4.【分析】将∠3和∠4分别放在△AEC和△ADB中,只需证明两三角形全等可得出∠3=∠4,分析条件:AC=AB,AE=AD,差一个夹角,故由∠1=∠2,在等式两边都加上∠BAC,得到∠EAC=∠DAB,利用SAS可得出两三角形全等,利用全等三角形的对应角相等可得证.【解答】证明:∵∠1=∠2,∴∠1+∠ABC=∠2+∠BAC,即∠EAC=∠DAB,在△AEC和△ADB中,,∴△AEC≌△ADB(SAS),∴∠3=∠4.17.(6分)如图,△ABC中,AB=AC,AD是BC边上的中线,CE⊥AB于点E.求证:∠CAD=∠BCE.【分析】根据等腰三角形的性质得出∠B=∠ACB,根据等腰三角形底边上的中线与底边上的高互相重合得到AD⊥BC,再根据直角三角形的两个锐角互余和等角的余角相等即可求解.【解答】证明:∵AB=AC,BD=CD(已知),∴∠B=∠ACB(等边对等角),AD⊥BC(等腰三角形底边上的中线与底边上的高互相重合).又∵CE⊥AB(已知),∴∠CAD+∠ACB=90°,∠BCE+∠B=90°(直角三角形的两个锐角互余).∴∠CAD=∠BCE(等角的余角相等).18.(7分)如图,在△ABC中,D是边AB上一点,E是边AC的中点,作CF∥AB交DE的延长线于点F.(1)证明:△ADE≌△CFE;(2)若∠B=∠ACB,CE=5,CF=7,求DB.【分析】(1)根据AAS或ASA证明△ADE≌△CFE即可;(2)利用全等三角形的性质求出AD,AB即可解决问题;【解答】(1)证明:∵E是边AC的中点,∴AE=CE.又∵CF∥AB,∴∠A=∠ACF,∠ADF=∠F,在△ADE与△CFE中,∴△ADE≌△CFE(AAS).(2)解:∵△ADE≌△CFE,CF=7,∴CF=AD=7,又∵∠B=∠ACB,∴AB=AC,∵E是边AC的中点,CE=5,∴AC=2CE=10.∴AB=10,∴DB=AB﹣AD=10﹣7=3.19.(7分)如图1,E是等边三角形ABC的边AB所在直线上一点,D是边BC所在直线上一点,且D与C不重合,若EC=ED.则称D为点C关于等边三角形ABC的反称点,点E称为反称中心.在平面直角坐标系xOy中,(1)已知等边三角形AOC的顶点C的坐标为(2,0),点A在第一象限内,反称中心E在直线AO上,反称点D在直线OC上.①如图2,若E为边AO的中点,在图中作出点C关于等边三角形AOC的反称点D,并直接写出点D的坐标:(﹣1,0);②若AE=2,求点C关于等边三角形AOC的反称点D的坐标;(2)若等边三角形ABC的顶点为B(n,0),C(n+1,0),反称中心E在直线AB上,反称点D在直线BC上,且2≤AE<3.请直接写出点C关于等边三角形ABC的反称点D的横坐标t的取值范围:n ﹣3<t≤n﹣2或n+2≤t<n+3(用含n的代数式表示).【分析】(1)①过点E作EF⊥OC,垂足为F,根据等边三角形的性质可得DF=FC=,OF=,即可求OD=1,即可求点D坐标;②分点E与坐标原点O重合或点E在边OA的延长线上两种情况讨论,根据反称点定义可求点D的坐标;(2)分点E在点E在AB的延长线上或在BA的延长线上,根据平行线分线段成比例的性质,可求CF =DF的值,即可求点D的横坐标t的取值范围.【解答】解:(1)①如图,过点E作EF⊥OC,垂足为F,∵EC=ED,EF⊥OC∴DF=FC,∵点C的坐标为(2,0),∴AO=CO=2,∵点E是AO的中点,∴OE=1,∵∠AOC=60°,EF⊥OC,∴∠OEF=30°,∴OE=2OF=1∴OF=,∵OC=2,∴CF==DF,∴DO=1∴点D坐标(﹣1,0)故答案为:(﹣1,0)②∵等边三角形AOC的两个顶点为O(0,0),C(2,0),∴OC=2.∴AO=OC=2.∵E是等边三角形AOC的边AO所在直线上一点,且AE=2,∴点E与坐标原点O重合或点E在边OA的延长线上,如图,若点E与坐标原点O重合,∵EC=ED,EC=2,∴ED=2.∵D是边OC所在直线上一点,且D与C不重合,∴D点坐标为(﹣2,0)如图,若点E在边OA的延长线上,且AE=2,∵AC=AE=2,∴∠E=∠ACE.∵△AOC为等边三角形,∴∠OAC=∠ACO=60°.∴∠E=∠ACE=30°.∴∠OCE=90°.∵EC=ED,∴点D与点C重合.这与题目条件中的D与C不重合矛盾,故这种情况不合题意,舍去,综上所述:D(﹣2,0)(2)∵B(n,0),C(n+1,0),∴BC=1,∴AB=AC=1∵2≤AE<3,∴点E在AB的延长线上或在BA的延长线上,如图点E在AB的延长线上,过点A作AH⊥BC,过点E作EF⊥BD∵AB=AC,AH⊥BC,∴BH=CH=,∵AH⊥BC,EF⊥BD∴AH∥EF∴若AE=2,AB=1∴BE=1,∴=1∴BH=BF=∴CF==DF∴D的横坐标为:n﹣﹣=n﹣2,若AE=3,AB=1∴BE=2,∴=∴BF=2BH=1∴CF=DF=2∴D的横坐标为:n﹣1﹣2=n﹣3,∴点D的横坐标t的取值范围:n﹣3<t≤n﹣2,如图点E在BA的延长线上,过点A作AH⊥BC,过点E作EF⊥BD,同理可求:点D的横坐标t的取值范围:n+2≤t<n+3,综上所述:点D的横坐标t的取值范围:n﹣3<t≤n﹣2或n+2≤t<n+3.故答案为:n﹣3<t≤n﹣2或n+2≤t<n+3.2020-2021学年山西省朔州市部分重点中学八年级(上)第一次大联考数学试卷(解析版)一.选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请把正确答案的代号填在下表中)1.(3分)下列四个选项中的图形与最左边的图形全等的是()A.B.C.D.2.(3分)赵师傅在做完门框后,为防止变形,按图中所示的方法在门上钉了两根斜拉的木条(图中的AB,CD两根木条),其中运用的几何原理是()A.两点之间线段最短B.三角形两边之和大于第三边C.垂线段最短D.三角形的稳定性3.(3分)如图,六角螺母的橫截面是正六边形,则∠1的度数为()A.60°B.120°C.45°D.75°4.(3分)如图,用三角板作△ABC的边AB上的高线,下列三角板的摆放位置正确的是()A.B.C.D.5.(3分)将一副三角板按图中的方式叠放,则∠1的度数为()A.105°B.100°C.95°D.110°6.(3分)如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=36°,那么∠B的度数为()A.144°B.54°C.44°D.36°7.(3分)下面是投影屏上出示的解答题,需要回答横线上符号代表的内容.如图,直线EF∥直线GH,在Rt△ABC中,∠C=90°,顶点A在GH上,顶点B在EF上,且BA平分∠DBE,若∠CAD=26°,求∠BAD的度数.解:∵∠C=90°,∠CAD=26°,∴∠ADC=.∵直线EF∥直线GH,∴=∠ADC=64°.∵BA平分∠DBE,∴∠ABE==32°.∵直线EF∥直线GH,∴∠BAD==32°.下列选项错误的是()A.代表64°B.代表∠DBEC.在代表∠DBE D.代表∠CBE8.(3分)如图,△ABC≌△DEF,B、E、C、F四个点在同一直线上,若BC=8,EC=5,则CF的长是()A.2B.3C.5D.79.(3分)在△ABC中,有下列条件:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=2∠B=3∠C;④∠A=∠B=∠C.其中能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个10.(3分)如图,△ABC中,∠ABC=100°,且∠AEF=∠AFE,∠CFD=∠CDF,则∠EFD的度数为()A.80°B.60°C.40°D.20°二.填空题(本大题共5个小题.每小题3分,共15分)11.(3分)在△ABC中,若∠C=90°,∠B=35°,则∠A的度数为.12.(3分)三角形的外角和等于度.13.(3分)如图,CD是△ABC的中线,若AB=8,则AD的长为.14.(3分)如图,△ACB≌△DCE,且∠BCE=60°,则∠ACD的度数为.15.(3分)一机器人以2m/s的速度在平地上按如下要求行走,则该机器人从开始到停止所需时间为s.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)如图1,△ABC的外角∠CAD为116°,∠C=80°,求∠B的余角的度数.(2)求图2中x的值.17.(6分)如图,△ABC≌△DBC,∠A=40°,∠ACD=88°,求∠ABC的度数.18.(7分)如图.在△ABC中,AD平分∠BAC,F是AD的反向延长线上一点,EF⊥BC于点E.若∠1=40°,∠C=70°,求∠F的度数.19.(9分)如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.20.(8分)如图1,四边形MNBD为一张长方形纸片.(1)如图2,将长方形纸片剪两刀,剪出三个角(∠BAE、∠AEC、∠ECD),则∠BAE+∠AEC+∠ECD =°.(2)如图3,将长方形纸片剪三刀.剪出四个角(∠BAE、∠AEF、∠EFC、∠FCD),则∠BAE+∠AEF+∠EFC+∠FCD=°.(3)如图4,将长方形纸片剪四刀,剪出五个角(∠BAE、∠AEF、∠EFG、∠FGC、∠GCD),则∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=°.(4)根据前面探索出的规律,将本题按照上述剪法剪n刀,剪出(n+1)个角,那么这(n+1)个角的和是°.21.(10分)已知a.b,c是△ABC的三边长,a=4,b=6,设三角形的周长是x.尝试:分别写出c及x的取值范围.发现:当c为奇数时,求x的最大值和最小值.联想:若x是小于18的偶数,判断△ABC的形状.22.(12分)如图,AE,DE,BF,CF分别是四边形ABCD(四边不相等)的内角平分线,AE,BF交于点G,DE,CF交于点H.(1)探索∠FGE与∠FHE有怎样的数量关系,并说明理由;(2)∠FGE与∠FHE有没有可能相等?若能相等,则四边形ABCD的边有何特殊要求?若不能相等,请说明理由.23.(13分)如图,在四边形ABCD中,BE和DF分别平分四边形的外角∠MBC和∠NDC,BE与DF相交于点G,若∠BAD=α,∠BCD=β.(1)如图1,若α+β=168°,求∠MBC+∠NDC的度数.(2)如图1,若∠BGD=35°,试猜想α、β所满足的数量关系式,并说明理由.(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.2020-2021学年山西省朔州市部分重点中学八年级(上)第一次大联考数学试卷参考答案与试题解析一.选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请把正确答案的代号填在下表中)1.(3分)下列四个选项中的图形与最左边的图形全等的是()A.B.C.D.【分析】根据全等图形判断即可.【解答】解:只有B选项的图形与已知图形全等,故选:B.2.(3分)赵师傅在做完门框后,为防止变形,按图中所示的方法在门上钉了两根斜拉的木条(图中的AB,CD两根木条),其中运用的几何原理是()A.两点之间线段最短B.三角形两边之和大于第三边C.垂线段最短D.三角形的稳定性【分析】利用三角形的稳定性进行解答即可.【解答】解:按图中所示的方法在门上钉了两根斜拉的木条(图中的AB,CD两根木条),其中运用的几何原理是三角形的稳定性,故选:D.3.(3分)如图,六角螺母的橫截面是正六边形,则∠1的度数为()A.60°B.120°C.45°D.75°【分析】根据多边形的外角和等于360°解答即可.【解答】解:∵这个正六边形的外角和等于360°,∴∠1=360°÷6=60°.故选:A.4.(3分)如图,用三角板作△ABC的边AB上的高线,下列三角板的摆放位置正确的是()A.B.C.D.【分析】根据高线的定义即可得出结论.【解答】解:A,C,D都不是△ABC的边AB上的高,故选:B.5.(3分)将一副三角板按图中的方式叠放,则∠1的度数为()A.105°B.100°C.95°D.110°【分析】先求出∠2=45°、∠3=30°,再根据三角形的内角和列式计算即可得解.【解答】解:由图可知,∠2=90°﹣45°=45°,∴∠1=180﹣45°﹣30°=105°.故选:A.6.(3分)如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=36°,那么∠B的度数为()A.144°B.54°C.44°D.36°【分析】利用平行线的性质求出∠A,再利用三角形内角和定理求出∠B即可.【解答】解:∵AB∥CD,∴∠A=∠ACD=36°,∵∠ACB=90°,∴∠B=90°﹣36°=54°,故选:B.7.(3分)下面是投影屏上出示的解答题,需要回答横线上符号代表的内容.如图,直线EF∥直线GH,在Rt△ABC中,∠C=90°,顶点A在GH上,顶点B在EF上,且BA平分∠DBE,若∠CAD=26°,求∠BAD的度数.解:∵∠C=90°,∠CAD=26°,∴∠ADC=.∵直线EF∥直线GH,∴=∠ADC=64°.∵BA平分∠DBE,∴∠ABE==32°.∵直线EF∥直线GH,∴∠BAD==32°.下列选项错误的是()A.代表64°B.代表∠DBEC.在代表∠DBE D.代表∠CBE【分析】利用三角形内角和定理可得∠ADC的度数,再利用平行线的性质及角平分线的定义可得答案.【解答】解:∵∠C=90°,∠CAD=26°,∴∠ADC=64°.∵直线EF∥直线GH,∴∠DBE=∠ADC=64°.∵BA平分∠DBE,∴∠ABE=∠DBE=32°.∵直线EF∥直线GH,∴∠BAD=∠ABE=32°.故选:D.8.(3分)如图,△ABC≌△DEF,B、E、C、F四个点在同一直线上,若BC=8,EC=5,则CF的长是()A.2B.3C.5D.7【分析】利用全等三角形的性质可得BC=EF=8,再利用线段的和差关系计算即可.【解答】解:∵△ABC≌△DEF,∴BC=EF=8,∴EC=5,∴CF=8﹣5=3,故选:B.9.(3分)在△ABC中,有下列条件:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=2∠B=3∠C;④∠A=∠B=∠C.其中能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个【分析】根据三角形内角和定理来判断.【解答】解:①由∠A+∠B=∠C,∠A+∠B+∠C=180°得到:2∠C=180°,则∠C=90°,所以△ABC是直角三角形;②设∠A=x,∠B=2x,∠C=3x,∠A+∠B+∠C=180°得到:6x=180°,则x=30°,∠C=3x=90°,所以△ABC是直角三角形;③由∠A=2∠B=3∠C,∠A+∠B+∠C=180°得到:∠A+∠A+∠A=180°,则∠A=()°,所以△ABC不是直角三角形;④∠A=∠B=∠C,∠A+∠B+∠C=180°得到:∠A+∠A+2∠A=180°,则∠A=45°,∠C=90°,所以△ABC是直角三角形;综上所述,能确定△ABC是直角三角形的条件有3个.故选:C.10.(3分)如图,△ABC中,∠ABC=100°,且∠AEF=∠AFE,∠CFD=∠CDF,则∠EFD的度数为()A.80°B.60°C.40°D.20°【分析】求出∠AFE+∠CFD即可解决问题.【解答】解:∵∠B=100°,∴∠A+∠C=80°,∵∠AFE=∠AEF,∠CFD=∠CDF,∠A+2∠AFE=180°,∠C+2∠CFD=180°,∴2∠AFE+2∠CFD=280°,∴∠AFE+∠CFD=140°,∴∠EFD=180°﹣140°=40°,故选:C.二.填空题(本大题共5个小题.每小题3分,共15分)11.(3分)在△ABC中,若∠C=90°,∠B=35°,则∠A的度数为55°.【分析】根据直角三角形的性质解答即可.【解答】解:∵在Rt△ABC中,∠C=90°,∠B=35°,∴∠A=90°﹣35°=55°,故答案是:55°.12.(3分)三角形的外角和等于360度.【分析】根据任何多边形的外角和是360度即可求解.【解答】解:三角形的外角和等于360°.故答案是:360.13.(3分)如图,CD是△ABC的中线,若AB=8,则AD的长为4.【分析】利用三角形的中线定义解答即可.【解答】解:∵CD是△ABC的中线,∴AD=AB,∵AB=8,∴AD=4,故答案为:4.14.(3分)如图,△ACB≌△DCE,且∠BCE=60°,则∠ACD的度数为60°.【分析】利用全等三角形的性质结合等式的性质可推出∠ACD=∠BCE,进而可得答案.【解答】解:∵△ACB≌△DCE,∴∠ACB=∠DCE,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,∵∠BCE=60°,∴∠ACD=60°.故答案为:60°.15.(3分)一机器人以2m/s的速度在平地上按如下要求行走,则该机器人从开始到停止所需时间为16 s.【分析】该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.【解答】解:360°÷45°=8,则所走的路程是:4×8=32(m),则所用时间是:32÷2=16(s).故答案是:16.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)如图1,△ABC的外角∠CAD为116°,∠C=80°,求∠B的余角的度数.(2)求图2中x的值.【分析】(1)根据三角形的外角性质求出∠B,根据余角的概念计算,得到答案;(2)根据五边形的内角和等于540°列方程即可得到结论.【解答】解:(1)∠B=∠CAD﹣∠C=36°,∴∠B的余角=90°﹣36°=54°;(2)∵80°+x°+x°+x°+x°=540°,∴x=115.17.(6分)如图,△ABC≌△DBC,∠A=40°,∠ACD=88°,求∠ABC的度数.【分析】利用全等三角形的性质可得∠ACB=∠DCB,进而可得度数,然后再利用三角形内角和求∠ABC 的度数即可.【解答】解:∵△ABC≌△DBC,∴∠ACB=∠DCB,∵∠ACD=88°,∴∠ACB=44°,∵∠A=40°,∴∠ABC=180°﹣40°﹣44°=96°.18.(7分)如图.在△ABC中,AD平分∠BAC,F是AD的反向延长线上一点,EF⊥BC于点E.若∠1=40°,∠C=70°,求∠F的度数.【分析】利用角平分线的定义可得∠BAC的度数,然后再计算出∠FDE的度数,再利用直角三角形两锐角互余可得答案.【解答】解:∵AD平分∠BAC,∴∠BAC=2∠1=2×40°=80°,∵∠C=70°,∴∠B=30°,∴∠ADC=∠1+∠B=70°,∵EF⊥BC于点E,∴∠FED=90°,∴∠F=180°﹣70°﹣90°=20°.19.(9分)如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.【分析】(1)根据全等三角形的性质得到∠FCA=∠EBD=90°,根据直角三角形的性质计算即可;(2)根据全等三角形的性质得到CA=BD,结合图形得到AB=CD,计算即可.【解答】解:(1)∵BE⊥AD,∴∠EBD=90°,∵△ACF≌△DBE,∴∠FCA=∠EBD=90°,∴∠A=90°﹣∠F=27°;(2)∵△ACF≌△DBE,∴CA=BD,∴CA﹣CB=BD﹣BC,即AB=CD,∵AD=11cm,BC=5cm,∴AB+CD=11﹣5=6cm,∴AB=3cm.20.(8分)如图1,四边形MNBD为一张长方形纸片.(1)如图2,将长方形纸片剪两刀,剪出三个角(∠BAE、∠AEC、∠ECD),则∠BAE+∠AEC+∠ECD =360°.(2)如图3,将长方形纸片剪三刀.剪出四个角(∠BAE、∠AEF、∠EFC、∠FCD),则∠BAE+∠AEF+∠EFC+∠FCD=540°.(3)如图4,将长方形纸片剪四刀,剪出五个角(∠BAE、∠AEF、∠EFG、∠FGC、∠GCD),则∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=720°.(4)根据前面探索出的规律,将本题按照上述剪法剪n刀,剪出(n+1)个角,那么这(n+1)个角的和是180n°.【分析】(1)过点E作EF∥AB,再根据两直线平行,同旁内角互补即可得到三个角的和等于180°的2倍;(2)分别过E、F分别作AB的平行线,根据两直线平行,同旁内角互补即可得到四个角的和等于180°的三倍;(3)分别过E、F、G分别作AB的平行线,根据两直线平行,同旁内角互补即可得到四个角的和等于180°的三倍;(4)根据前三问个的剪法,剪n刀,剪出n+1个角,那么这n+1个角的和是180n度.【解答】解:(1)过E作EF∥AB(如图②).∵原四边形是长方形,∴AB∥CD,又∵EF∥AB,∴CD∥EF(平行于同一条直线的两条直线互相平行).∵EF∥AB,∴∠A+∠1=180°(两直线平行,同旁内角互补).∵CD∥EF,∴∠2+∠C=180°(两直线平行,同旁内角互补).∴∠A+∠1+∠2+∠C=360°,又∵∠1+∠2=∠AEC,∴∠BAE+∠AEC+∠ECD=360°;(2)分别过E、F分别作AB的平行线,如图③所示,用上面的方法可得∠BAE+∠AEF+∠EFC+∠FCD=540°;(3)分别过E、F、G分别作AB的平行线,如图④所示,用上面的方法可得∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=720°;(4)由此可得一般规律:剪n刀,剪出n+1个角,那么这n+1个角的和是180n度.故答案为:(1)360;(2)540;(3)720;(4)180n.21.(10分)已知a.b,c是△ABC的三边长,a=4,b=6,设三角形的周长是x.尝试:分别写出c及x的取值范围.发现:当c为奇数时,求x的最大值和最小值.联想:若x是小于18的偶数,判断△ABC的形状.【分析】尝试:利用三角形三边关系进而得出c的取值范围,进而得出答案;发现:根据奇数的定义和x的取值范围,可求解;联想:根据偶数的定义,以及x的取值范围即可求c的值,利用等腰三角形的判定方法得出即可.【解答】解:尝试:因为a=4,b=6,所以2<c<10.故周长x的范围为12<x<20.发现:∵a=4,b=6,c为奇数,∴x为奇数,∵12<x<20,∴x最大为19,最小为13.联想:∵周长为小于18的偶数,∴x=16或x=14.当x为16时,c=6;当x为14时,c=4.当c=6时,b=c,△ABC为等腰三角形;当c=4时,a=c,△ABC为等腰三角形.综上所述,△ABC是等腰三角形.22.(12分)如图,AE,DE,BF,CF分别是四边形ABCD(四边不相等)的内角平分线,AE,BF交于点G,DE,CF交于点H.(1)探索∠FGE与∠FHE有怎样的数量关系,并说明理由;(2)∠FGE与∠FHE有没有可能相等?若能相等,则四边形ABCD的边有何特殊要求?若不能相等,请说明理由.【分析】(1)根据角平分线的定义得到∠GAB=∠DAB,∠GBA=∠CBA,求得∠FGE=∠AGB=180°﹣∠GAB﹣∠GBA=180°﹣(∠DAB+∠CBA),同理,∠FHE=180°﹣(∠ADC+∠BCD),两式相加即可得到结论;(2)当∠FGE=∠FHE时,求得∠DAB+∠CBA=∠ADC+∠BCD,根据四边形的内角和即可得到结论.【解答】解:(1)∠FGE+∠FHE=180°,理由:∵AE平分∠BAD,BF平分∠ABC,∴∠GAB=∠DAB,∠GBA=∠CBA,∴∠FGE=∠AGB=180°﹣∠GAB﹣∠GBA=180°﹣(∠DAB+∠CBA),同理,∠FHE=180°﹣(∠ADC+∠BCD),∴∠FGE+∠FHE=360°﹣(∠DAB+∠CBA+∠ADC+∠BCD)=180°;(2)∠FGE与∠FHE相等,此时,AD∥BC,∵∠FGE=180°﹣(∠DAB+∠CBA),∠FHE=180°﹣(∠ADC+∠BCD),当∠FGE=∠FHE时,180°﹣(∠DAB+∠CBA)=180°﹣(∠ADC+∠BCD),即∠DAB+∠CBA=∠ADC+∠BCD,∵四边形的内角和=360°,∴∠DAB+∠CBA=∠ADC+∠BCD=180°,∴AD∥BC.23.(13分)如图,在四边形ABCD中,BE和DF分别平分四边形的外角∠MBC和∠NDC,BE与DF相交于点G,若∠BAD=α,∠BCD=β.(1)如图1,若α+β=168°,求∠MBC+∠NDC的度数.(2)如图1,若∠BGD=35°,试猜想α、β所满足的数量关系式,并说明理由.(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.【分析】(1)利用角平分线的定义和四边形的内角和以及α+β=168°推导即可;(2)利用角平分线的定义和四边形的内角和以及三角形的内角和转化即可;(3)利用角平分线的定义和四边形的内角和以及三角形的外角的性质计算即可.【解答】解:(1)在四边形ABCD中,∠BAD+∠ABC+∠BCD+∠ADC=360°,∴∠ABC+∠ADC=360°﹣(α+β),∵∠MBC+∠ABC=180°,∠NDC+∠ADC=180°,∴∠MBC+∠NDC=180°﹣∠ABC+180°﹣∠ADC=360°﹣(∠ABC+∠ADC)=360°﹣[360°﹣(α+β)]=α+β,∵α+β=168°,∴∠MBC+∠NDC=168°;(2)β﹣α=70°.理由:如图1,连接BD,。