因数和倍数课堂教学实录
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《因数和倍数》
课前准备:
今天咱们认识的问题和什么有关呢(数)对于数同学们不陌生吧,老师来举几个例子,比如说和,这样是数叫(小数)再比如说2分之1,3分之2,这样的数叫(分数),这些都是课堂里学的,但是有一类数,在你们刚刚出生不久以后,爸爸妈妈就开始慢慢的教了,举几个例子,像哪些数像这样的数叫什么数(自然数)
为什么叫自然数呢
自然数真的简单么
教学过程:
一、认识倍数和因数
师:一起看大屏幕,数一数,几个正方形(12)12就是一个自然数。
有一个问题需要大家帮忙,能不能把12个正方形摆成一个长方形不允许说一长句话,只允许用一道非常简单的乘法算式表达出来
生:2×6=12
师:猜猜看,他每排摆了几个,摆了几排
生:2个,摆了6排。
师:当然,也可以是每排摆了几个,摆了几排
(屏幕显示摆法)是这样吗第二种摆法我们只要把他旋转一下就跟第一种怎么样(一样)。
我们可以把他忽略不计。
还可以怎么摆同样用一道乘法算式表达出来生:3×4=12
师:这一次每排摆了几个,摆了几排或者每排摆了几个,摆了几排(屏幕显示摆法)同样第二种摆法也可以省。
还有吗
生齐:1×12=12
师:用手比划一下可以怎么摆,还可以怎么摆。
(屏幕显示摆法)同样第二种摆法也可以省。
师:还有不同的想法吗
生:没有了。
师:瞧,12个同样大小的正方形摆成一个长方形有3种不同的摆法,由此还得到3道不一样的乘法算式,千万别小看这些乘法算式,今天我们研究的内容就从这里开始。
这样,咱们就以第一道乘法算式为例,3×4=12,在咱们数学上还可以说,3是12的因数,既然3是12的因数,那4(也是12的因数,)倒过来12是3的倍数,同样12(也是4的倍数)。
这就是我们今天将着重研究的因数和倍数。
师板书:因数和倍数
师:这儿还有两道乘法算式,先自己说一说谁是谁的因数谁是谁的倍数(同桌俩悄悄说)选择一道说一说谁是谁的因数谁是谁的倍数
师:刚才在听的时候发现1×12说因数和倍数时有两句特别拗口,是哪两句啊谁来挑战这个难题。
生:12是12的因数,12是12的倍数。
师:虽然是拗口了点,不过数学上还真是这么回事。
咱们一起来说一下。
为了研究方便,以后来探讨因数和倍数的时候所说的数都是什么数啊
生:自然数
师:而且谁得除外。
生:0
师:你还能找到哪两个自然数相乘等于12。
除了刚才的三组外。
正因为再也找不到了,所以我们就可以说,12的因数只有这6个。
他们分别是:(一起读一读,哪六个)1和12,2和6,3和4。
通过刚才的学习,我们不仅认识了什么是因数和倍数,而且找到了12所有的因数。
二、探索找因数倍数的方法
师:老师有一个任务交给大家,如果老师再给你一个数,你能不能像这样找到它所有的因数。
30行么
要找出30的一两个因数并不难,难就难在如何找的既准确又全面呢有方法么
学生说方法(乘法1×,2×)有没有不同的(除法30除以1,30除以2 )还有不同的么
你觉得更喜欢哪种,就用哪种。
因为这个问题有点难度,你可以独立完成也可以同桌完成(要求1),想一想怎么怎么找更准确和全面(要求2)。
如果你借助算式,别忘了填在作业纸上。
找完之后,把所有因数写到横线上(要求3)
学生填写时师巡视搜集作业。
师:张老师找到了3份不同的作业,大家仔细观察这三份作业,可有意思了。
我把他命名为A、B、C师板书。
A:2、4、13、12、18、36
B:1、2、4、3、6、9、12、18、36
C:1、36、2、18、3、12、4、9、6
师:关于A这种方法你有什么话要说(学生纷纷举手)能不能从正面的角度说一说,这个同学找出的因数有没有值得肯定的地方(学生沉默)一点都没有我们值得肯定的地方吗你先来。
生1:都对的
师:有没有道理看来要找一个人的优点挺困难的。
生2:写全了
生大声说:没有!
师:正好触及了大家的公愤,看来要找一个人的优点不太好找了,是吧其实这个同学挺不容易的,他已经找出不少了,对不对说说有什么问题
生:没有写全,少了3、6、9。
师:大伙来思考一下,6、9这两个因数是36的因数吗看来这个同学是没有找全,没有找全仅仅是因为粗心吗是因为什么
生:36÷4,只写了4,没写9
师:他的意思是说用除法来做的话,找一个数的因数,一个个找,还是两个两个找生齐:两个两个找。
生2:先把1写在头,36写在尾,然后再把2写中间,这样依次写下去,这样比较美观。
师:张老师提炼出两个字:“顺序”,好象还不仅仅是因为粗心的问题,没有按照一定的顺序。
师:第二个同学有没有找全,有没有更好的建议送给他。
生:他应该把4、3调换一下。
师:做了一个微调就不仅仅是美观的问题,更带给我们一种寻找的有序。
第三个同
学是最没有顺序的,什么1、36,2、18了,你们觉得有道理吗
师:你想提出抗议吗你们觉得有顺序吗(有)你自己来说
生:他们那样还要头对尾头对尾的,像这样直接就可以写了。
师:有没有听明白,也是同样一对一对出现的。
生:大小没有排,B大小排完后从小到大很舒服。
师:你看你那个舒服吗
生:舒服
师:正是因为你的质疑,他把方法说了出来。
他用了什么
生:乘法口诀
师:非常感谢同学们给出的发言,正是你们的发言让我们感受到了如何寻找一个数的因数,有没有问题。
师:虽然这个同学找到了尝试完了1,找到36、尝试完了2,找到18、3、12、4、9、6,自然数有很多,那你的7、8没有试,你怎么知道找全了呢
生1:找到开始重复就不找了
生2:我认为应该找到比较接近如5、6,7、8找到比较接近就可以了。
师:体会体会1、学生:36、2、学生:18、3、12、4、9、6这两个因数在不断接近,接近到相差无几。
生:
生:直接找更大数的所有的因数,这个同学很厉害,已经在用分解质因数的方法在找一个因数的个数了。
师:通过刚才的交流,有办法了吗有没有方法不遗漏。
试一个。
20
生齐:1、2、4、5、10、20
再试一个:15,写在练习纸上。
学生汇报
师:寻找一个数掌握的不错,这节课还要研究倍数呢。
会找一书的倍数吗找一个小一点的,3的倍数,谁来找一个。
生:21、300
师:你能把3的倍数全部写下来吗
生:不能。
太多太多了。
师:那怎么办写不完可以用省略号表示。
试试看。
学生练习纸上完成,汇报。
师:同学们虽然找的答案差不多,但脑子里的方法各不相同。
我想听听你是怎样找的
生1:3×1、3×2
师:能理解吗
生1:3+3=6、6+3=9
师:有理吗不要小看加3了,当到数大的时候也比较方便。
生:略
师:寻找一个数的倍数的方法掌握了吗试一试。
7的倍数
学生练习纸上完成:50以内7的倍数。
师:谁来说说这一次你找了哪几个
生:7、14、21、28
师:为什么不加省略号
生:因为给了一个限制。
师:任何自然数的倍数是无限的。
会寻找一个数的因数吗
生:略
三、感受倍数和因数的神奇奥秘
师:透出一个信息
,关于因数和倍数是不是蕴藏了很有意思的规律,下面这题就隐藏了一条规律。
屏幕显
示:老师这有9颗珠子全部放到十位和个位,1颗放十位,另外8颗放个位。
这样就得到几(18)要是不这样放,你还能得到其他的两位数吗
生1:27
生2:36
师:把你知道的两位数跟同桌说一说。
学生同桌说,师:如果把你们说的两位数按一定顺序排出来,就得到了这样的一排数,是这样吗屏幕展示:
18、27、36、45、54、63、72、81
仔细观察9颗珠子拨的两位数,你发现了什么
生:都是9的倍数
师:9颗珠子拨的两位数都是9的倍数,8颗珠子拨的两位数都是(8的倍数)师:发现了什么9颗珠子拨的两位数都是9的倍数,8颗珠子拨的两位数(不一定都是8的倍数),7颗珠子、6颗珠子呢其实这里的学问没有同学想的那么简单,张老师给大家布置一个小任务,自己在草稿本上画一画珠子,看看6颗5颗4颗拨出的两位数到底和珠子的个数有什么关系这里蕴藏着非常丰富的规律,等待着同学们去发现。
其实不仅在计数器上找到一些有趣的规律。
师:张老师问一个问题,好不好1—100这100个数,思考一下,哪个数的因数最多
生1:1
生2:99
师:还有谁要发表的
生3:9
师问生2:为什么认为99的因数最多
生:9是最大的。
师:张老师公布一下答案: 60
师:可以一起找一找。
可以负责任的告诉你,比99多多了。
是不是数越大,因数就越多。
你们知道一小时有多少分(60分),一分=60
秒,这里的60和刚才的60有关系吗这里的60就和100以内的因数有关系,你们相信吗特意给大家带来一本书。
书的名字叫《数字王国》,学生读有关资料。
师:相信了吧,其实张老师一开始也是特别不相信,咱们历法上面的
1小时=60分,一分=60秒的进率竟然和100以内的数的因数有着这么大的关系,这本书详细记载着为什么一年有12个月,一天有24小时,同学们知道为什么用12、24作为进率,道理是一样的。
数学中发现的规律
师:更有意思的在后面,张老师给大家介绍一个数,数学家把6称为“完美数”。
想知道为什么吗用最快的速度说一说6的因数
生:1、2、3、6
师:把6划去,1+2+3=6,又回到了6本身,正是因为这样的数非常特别,所以数学家把这样特点的数称为是完美数。
数学家找到了第一个完美数,就会去找第一个完美数,猜猜看,找到了没有今天张老师不把答案直接告诉你们,我透露一下资料好不好第二个完美数比20大,比30小,而且还是一个双数,好猜了吧。
数学上的规律不是一下子直觉说出来的,那么这样先来说一说双数:22、24、26、28,猜猜看,可能是谁学生试这四个数。
师:写出所有的因数,然后把自己给去掉。
师:正确答案应该是22,我们一起来找一找,人们开始找第三个完美数,想知道第5个吗师板书。
为什么这么惊讶同学们惊讶的背后张老师体会的过老,刚才找一个也花了一分多钟,要从几十亿数中找出这6个完美数,数学家们要付出多大的心血。