(完整版)初中数学九大几何模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学九大几何模型
O
D E
C
A
B
AED D
O
E
C
B
A
B
O
C E
C
AED
D
图
2
图 2
、手拉手模型 - 旋转型全等
D E
③OE 平分∠ AED
图 2
图 1 O
A
B
D O
A
O ②∠ AEB=∠AOB ; 且∠ COD=∠AOB
1)等边三角形
3)顶角相等的两任意等腰三角形 2)等腰直角三角形
图 1
图 1
C
结论】:①△ OAC ≌△ OBD ;
C
条件】:△ OAB 和△ OCD 均为等边三角形
条件】:△ OAB 和△ OCD 均为等腰直角三角形
条件】:△ OAB 和△ OCD 均为等腰三角形 结论】:①△ OAC ≌△ OBD ;②∠ AEB=60°;③ OE 平分∠ 结论】:①△ OAC ≌△ OBD ;②∠ AEB=90°;③ OE 平分∠
、模型二:手拉手模型 -- 旋转型相似
(1)一般情况 【条件】:CD ∥AB , 将△ OCD 旋转至右图的位置 O O
D E
A A
结论】:①右图中△ OCD ∽△ OAB →→→△ OAC ∽△ OBD ;
②延长 AC 交 BD 于点 E ,必有∠ BEC=∠ BOA
2)特殊情况 条件】:CD ∥ AB ,∠ AOB=90°
将△ OCD 旋转至右图的位置 A 结论】:①右图中△ OCD ∽△ OAB →→→△ OAC ∽△ OBD ; ②延长 AC 交 BD 于点 E ,必有∠ BEC=∠ BOA ; ③ A BD C O O C D O O A B tan ∠OCD ;④BD ⊥AC ; ⑤连接 AD 、BC ,必有 AD 2 BC 2 AB 2
三、模型三、对角互补模型
1)全等型 -90 ° 条件】:①∠ AOB=∠ DCE=90°;② OC 平
分∠ AOB
结论】:① CD=CE ;② OD+OE= 2 OC ;③ S △DCE CD ;⑥
S
△BCD
证明提示: ①作垂直,如图 2,证明△ CDM ≌△ CEN ②过点 C 作 CF ⊥ OC , 如图 3,证明△ ODC ≌△ FEC ※当∠ DCE 的一边交 AO 的延长线于 D 时(如图 4): S
△OCD
S
以上三个结论:
① CD=CE ;② OE-OD= 2 OC ; ③ S △ OCE S △ OCD
2)全等型 -120 °
条件】:①∠ AOB=2∠ DCE=120°;② OC 平分∠ AOB
32 结论】:① CD=CE ;② OD+OE=O ;C ③ S △DCE
S △OCD
S △OCE
OC 2 4
证明提示:①可参考“全等型 -90 °”证法一;
②如右下图:在 OB 上取一点 F ,使 OF=OC ,证明△ OCF 为等边三角形。
条件】:①∠ AOB=2ɑ,∠DCE=180-2ɑ;②CD=C ;E 结论】:① OC 平分∠
AOB ;② OD+OE=2O ·C cos ɑ;
③
S
△
DCE
S
△
OCD
S
△
OCE
OC sin α cos α
※当∠ DCE 的一边交 AO 的延长线于 D 时(如右下图) : 原结论变成:① ②;
③。 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。
3)全等型 - 任意角ɑ
A
D
对角互补模型总结:
①常见初始条件:四边形对角互补,注意两点:四点共圆有直角三角形斜边中线;
四、模型四:角含半角模型 90°
1)角含半角模型 90° ---1
条件】:①正方形 ABCD ;②∠ EAF=45°; 结论】:① EF=DF+BE ;②△ CEF 的周长为正方形
也可以这样:
条件】:①正方形 ABCD ;② EF=DF+BE ;
2)角含半角模型 90° ---2
②初始条件“角平分线”与“两边相等”的区别; ③注意 OC 平分∠ AOB 时,
∠CDE=∠CED=∠COA=∠COB 如何引导?
ABCD 周长的一半;
结论】:①∠ EAF=45°;
条件】:①正方形ABCD;②∠ EAF=45°
结论】:① EF=DF-BE;
3)角含半角模型 90° ---3 条件】:① Rt
△ ABC ;②∠ DAE=45°; 2 2 2 结论】: BD 2 CE 2
DE 2(如图 1)
(4)角含半角模型 90°变形 【条件】:①正方形 ABCD ;②∠ EAF=45° 【结论】:△ AHE 为等腰直角三角形; 证明:连接
AC (方法不唯一)
∵∠ DAC=∠EAF=45°,
∴∠ DAH=∠CAE ,又∵∠ ACB=∠ ADB=45°;
∴△ AHE ∽△ ADC ,∴△ AHE 为等腰直角三角形
模型五:倍长中线类模型 (1)倍长中线类模型 ---1 【条件】:①矩形 ABCD ;② BD=BE ;
③ DF=EF ; 【结论】:AF ⊥CF
模型提取:①有平行线 AD ∥ BE ;②平行线间线段有中点 DF=EF ; 可以构造“ 8”
∴△ DAH ∽△ CAE ,
DA AH
AC AE
2
DE 2 仍然成立(如图 2)
若∠ DAE 旋转到△ ABC 外部时,结论 BD 2
CE 2
AD