生物医用高分子材料论文
生物医用材料论文
生物医用材料论文生物医用材料是指用于医疗治疗和修复人体组织的材料,它们可以被植入到人体内部,用于支撑、修复或替代受损组织或器官。
生物医用材料的研究和应用已经成为当今生物医学领域的热点之一,对于改善人类健康和延长寿命具有重要意义。
本论文将围绕生物医用材料的相关内容展开讨论,包括其分类、应用、发展趋势等方面。
首先,生物医用材料可以根据其来源和性质进行分类。
根据来源,生物医用材料可以分为天然材料和人工合成材料两大类。
天然材料包括骨、软骨、皮肤等人体组织,以及动物组织和植物组织等天然生物材料;人工合成材料则是通过化学合成或生物工程技术制备的材料,如生物陶瓷、生物聚合物等。
根据性质,生物医用材料可以分为可降解材料和不可降解材料两类。
可降解材料在人体内会逐渐降解并被代谢,不可降解材料则会长期存在于人体内。
其次,生物医用材料在临床上有着广泛的应用。
例如,生物陶瓷材料常被用于人工关节表面的修复,生物聚合物材料则可以用于修复软组织缺损,生物活性玻璃材料则可以促进骨组织再生等。
此外,生物医用材料还被广泛应用于心血管支架、人工心脏瓣膜、组织工程支架等领域,为临床治疗提供了重要的支持和帮助。
再次,生物医用材料的发展趋势主要表现在材料多样化、功能化和个性化方面。
随着生物医学工程技术的不断进步,人们对生物医用材料的需求也在不断增加。
因此,未来生物医用材料的发展将更加注重材料的多样性,不仅需要满足不同组织和器官的修复需求,还需要考虑到个体差异和个性化治疗的需求。
同时,生物医用材料的功能化也将成为未来发展的重点,例如可控释放药物的生物材料、具有生物活性的生物材料等将成为研究的热点。
综上所述,生物医用材料作为生物医学领域的重要组成部分,其研究和应用对于人类健康具有重要意义。
未来,随着生物医学工程技术的不断进步,生物医用材料将会迎来更加广阔的发展空间,为人类健康事业做出新的贡献。
医用高分子材料论文
医用高分子材料论文医用高分子材料是指用于医疗器械、医药包装、医用卫生材料等方面的高分子材料。
随着医疗技术的不断发展和人们对健康的重视,医用高分子材料的应用范围和需求量也在不断增加。
本文将从医用高分子材料的特点、应用领域和发展趋势等方面进行论述。
首先,医用高分子材料具有良好的生物相容性和生物降解性。
在医疗器械和医用卫生材料方面,高分子材料需要与人体组织接触,因此其生物相容性是至关重要的。
良好的生物相容性可以减少对人体的刺激和损害,有利于医疗器械的安全使用。
同时,一些医用高分子材料还具有生物降解性,可以在一定时间内被人体代谢和吸收,避免二次手术带来的伤害,因此在医疗器械和医用卫生材料中有着广泛的应用前景。
其次,医用高分子材料在医药包装领域也有着重要的应用。
医药包装需要具备良好的密封性、保鲜性和防渗透性,以保护药品的质量和安全。
高分子材料由于其优异的物理和化学性能,可以满足医药包装的各项要求,同时还可以实现包装材料的轻量化和环保化,符合现代医药包装的发展趋势。
另外,医用高分子材料还在医疗器械和医用卫生材料中发挥着重要作用。
例如,医用高分子材料可以用于制备手术缝线、人工关节、医用胶水等医疗器械产品,同时也可以制备口罩、手套、敷料等医用卫生材料,为医疗行业提供必要的支持。
随着医疗技术的不断进步和人们对健康的不断追求,医用高分子材料的应用领域和需求量将会不断扩大。
未来,随着生物医学工程、纳米医学、智能医疗等领域的发展,医用高分子材料将会迎来更广阔的发展空间和应用前景。
综上所述,医用高分子材料在医疗器械、医药包装、医用卫生材料等方面具有重要的应用价值,其特点和应用领域决定了其在医疗行业中的不可替代地位。
随着医疗技术的不断发展和人们对健康的不断关注,医用高分子材料必将迎来更加广阔的发展前景。
高分子材料在生物医学领域的应用研究
高分子材料在生物医学领域的应用研究高分子材料在生物医学领域的应用研究,近年来备受关注。
高分子材料以其独特的物理、化学性质,广泛应用于医学设备、医药制剂以及组织工程等领域。
本文将探讨高分子材料在生物医学领域的应用,并分析其中的优势和挑战。
一、高分子材料在医学设备中的应用在医学设备领域,高分子材料具有良好的可塑性、耐腐蚀性以及生物相容性等特性,使其成为理想的选择。
例如,聚碳酸酯、聚酯和聚氨酯等高分子材料广泛应用于体内支架、人工心脏瓣膜和人工关节等医疗器械的制造。
这些高分子材料能够提供稳定的支撑力和出色的生物相容性,有效延长了医疗器械的寿命,同时减少了患者因手术而带来的副作用。
二、高分子材料在医药制剂中的应用高分子材料在医药制剂中的应用是由于其独特的药物控释性能。
聚乳酸(PLA)、聚乳酸-羟基乳酸(PLGA)和明胶等高分子材料,被广泛用于缓释药物的制备。
这些高分子材料能够控制药物的释放速率,并提供药物在体内的稳定性,从而提高药物的疗效和减少副作用。
此外,高分子材料还可用于制备纳米粒子和微球等载药系统,进一步提高药物的靶向性和生物可用性。
三、高分子材料在组织工程中的应用组织工程是一种利用细胞、材料和生物活性物质构建人工组织和器官的技术。
高分子材料在组织工程中起到了关键作用。
例如,聚乳酸-羟基乳酸共聚物(PLGA)、明胶和胶原蛋白等高分子材料被广泛用于构建人工骨、软骨和皮肤等组织。
这些高分子材料具有良好的生物相容性和生物降解性,能够提供细胞生长和分化所需的支架结构,促进组织的再生和修复。
然而,高分子材料在生物医学领域的应用仍面临着一些挑战。
首先,高分子材料的生物相容性需得到进一步提高,以避免引起免疫反应和异物反应。
其次,高分子材料的制备工艺和性能调控需要更加精确,以满足不同医学需求和应用场景的要求。
同时,高分子材料的生物降解性和药物控释性能也需要进一步改进,以提高治疗效果和减少对环境的影响。
总结起来,高分子材料在生物医学领域的应用研究表明,其在医学设备、医药制剂和组织工程等方面具有广阔的发展前景。
生物医用高分子材料论文
医用功能材料及应用学院化工学院扌旨导老师___ 乔红斌______专业班级高091班学生姓名张如心学号099034030医用功能材料及应用摘要:了解生物医用功能高分子材料近年来的应用研究及发展状况,综述国内外生物医用高分子材料的分类、特性及研究成果,展望对未来的生物医用高分子材料的发展趋势,通过介绍医用高分子材料在人工脏器、药剂及医疗器械方面的应用,以及我国近年来的研究情况和存在的问题 , 形成对生物医用功能高分子的认识和其重要性的认识。
关键词:功能高分子材料生物医用高分子材料。
前言:现代医学的发展,对材料的性能提出了复杂而严格的多功能要求,这是大多数金属材料和无机材料难以满足的,而合成高分子材料与生物体(天然高分子)有着极其相似的化学结构,化学结构的相似决定了它们在性能上能够彼此接近从而可能用聚合物制作人工器官,作为人体器官的替代物。
另外,除人工器官用材料之外,医药用高分子材料、临床检查诊断和治疗用高分子材料的开发研究也在积极地展开,它们被统称为医用高分子材料。
1. 生物医用功能高分子生物医用功能高分子材料主要以医疗为目的,用于与组织接触以形成功能的无生命材料。
其被广泛地用来取代或恢复那些受创伤或退化的组织或器官的功能,从而达到治疗的目的。
主要包括医用高分子材料(以修复、替代为主)、药用高分子材料(以药理疗效为主)。
生物医用高分子材料融合了高分子化学和物理、高分子材料工艺学、药理学、病理学、解剖学和临床医学等方面的知识, 还涉及许多工程学问题。
由于其与人体的组织和器官接触,因此,医用高分子材料必须满足如下的基本要求:①在化学上是惰性的,会因为与体液接触而发生反应;② 对人体组织不会引起炎症或异物反应;③不会致癌;④具有良好的血液相容性,不会在材料表面凝血;⑤长期植入体内,不会减小机械强度;⑥能经受必要的清洁消毒措施而不产生变形;⑦易于加工成需要的复杂形状。
2. 医用高分子材料发展的4个阶段第 1 阶段:时间大约是7 千年前至19 世纪中叶,是被动地使用天然高分子材料阶段。
生物医学材料应用研究现状与发展论文(共6篇)
生物医学材料应用研究现状与发展论文(共6篇)本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!第1篇:生物医学材料研究现状与发展趋势综述科学技术的发展,各种新型生物医学材料被研制出来,并在医学领域中得应用。
到2000年为止,在全世界高达1600亿美元的医疗市场中,医用生物材料所占比率已经达到了一半,且以20%的增长速度递增。
二十世纪80年代是新型生物医学材料辈出的时代,进入到二十世纪90年代,以珊瑚为原材料的骨移植材料、人工皮肤、猪心脏瓣膜在医学领域中得以应用。
二十世纪,美国采用新型聚氨酯材料研制出人造血管。
中国在生物医学材料的研制方面起步较晚,但是应医学领域需要而对各种生物医学材料有所应用。
随着国家对生物医学材料研究的重视,国家开始启动医学生物材料项目,并将生物医学材料纳入到优先发展的产业当中[3]。
在中国的“十二五”规划中,还特别指出要将重点发展新型口腔植、人工关节、新型人工血管、人工心瓣膜以及各种人工修复材料等等生物医学材料。
一、生物医学材料研究现状(一)金属生物材料在医学领域中,医学金属材料是较早采用的,且应用材料非常广泛,包括不锈钢材料、钛合金材料等等。
其中,不锈钢材料具有较强的耐腐蚀性,因此应用效果非常好。
由于人体内为较为复杂的电解环境,随着316L不锈钢的应用,解决了这一问题,但是,却不具备生物相容性。
钛合金具有良好的耐腐蚀性和生物相容性,具有一定的生物材料强度。
钛合金的抗拉强度介于500兆帕至1100兆帕之间,使钛合金的弹性与人体的骨骼弹性更为接近,以使材料植入到人体后,与人的骨骼更为匹配。
(二)高分子生物材料医用高分子材料的出现,使得医用材料可以用于对损伤的人体器官以修复,以增强器官的恢复功能。
目前所使用的医用高分子材料分为可生物降解和非降解的高分子材料。
可生物降解的高分子材料植入人体后,可以降解被为对人体无毒无害的CO2、H2O等对人体不会产生刺激性的物质。
浅析可降解生物医用高分子材料
浅析可降解生物医用高分子材料一、本文概述随着科技的进步和医疗领域的发展,可降解生物医用高分子材料作为一种新型的医用材料,正逐渐受到人们的关注。
本文旨在浅析可降解生物医用高分子材料的基本概念、特性、应用以及发展前景。
通过对这一领域的深入探讨,希望能够为医用材料的研究和应用提供一定的参考和启示。
可降解生物医用高分子材料是一类能够在生物体内或体外环境中,通过水解、酶解或生物代谢等方式逐渐降解的高分子材料。
它们具有良好的生物相容性和生物活性,能够在体内与生物组织进行良好的结合,且降解产物对生物体无害。
这些特性使得可降解生物医用高分子材料在医疗领域具有广泛的应用前景,如药物载体、组织工程、医疗器械等。
本文将从可降解生物医用高分子材料的分类、性质、制备方法、应用现状等方面进行详细阐述,并探讨其未来的发展趋势和挑战。
通过综合分析国内外相关研究成果,旨在为可降解生物医用高分子材料的研究和应用提供有益的参考和指导。
二、可降解生物医用高分子材料的分类天然高分子材料:这类材料主要来源于自然界,如多糖、蛋白质等。
多糖如纤维素、壳聚糖等,具有良好的生物相容性和降解性。
蛋白质如胶原蛋白、明胶等,在人体内能够被自然酶解。
这些天然高分子材料在生物医学领域有着广泛的应用,如药物载体、组织工程支架等。
合成高分子材料:合成高分子材料是通过化学合成方法制得的,如聚酯、聚乳酸(PLA)、聚己内酯(PCL)等。
这类材料具有良好的可加工性和机械性能,可以通过调整分子结构和合成条件来调控其降解速率。
合成高分子材料在生物医用领域的应用也非常广泛,如用于制作药物缓释系统、临时植入物等。
杂化高分子材料:杂化高分子材料是结合天然高分子和合成高分子优点的一种新型材料。
它们通常是通过将天然高分子与合成高分子进行化学或物理共混、交联等方式制备得到的。
杂化高分子材料不仅具有良好的生物相容性和降解性,还兼具了天然高分子和合成高分子的优点,如机械强度高、易于加工等。
生物医用高分子材料论文
生物医用高分子材料1 生物医用高分子材料概述科技关爱健康,医用高分子材料的应运而生是医疗技术发展史卜的一次飞越。
高分子材料充分体现了人类智慧,是上 1 世纪人类科学枝术的重要科技进步成果之一,在二战前后得到了迅速发展;到上世纪末,光是塑料在体积上就明显超过了钢铁。
所谓高分子一般是指由许重复单元共价连接而成的、分子量很大的一类大分子,相关材料也称为聚合物,往往具有粘弹性。
主要大品种合成聚合物材料有塑料、橡胶、合成纤维3 大类,还有涂料、粘结剂等。
医用高分子材料属于一种特殊的功能高分子材料,通常用于对生物体进行诊断、治疗、以及替换或修复、合成或再生损伤组织和器官。
简单地说,医用高分子材料学,是介于现代医学和高分子科学之间,并且涉及到物理、化学、生物学、医学等的一门交叉学科。
目前,医用高分子材料的发展可谓异军突起,医用高分子材料的应用如雨后春笋遍及整个医学领域,其用量也在持续稳定地增长。
生物医用高分子材料指用于生理系统疾病的诊断、治疗、修复或替换生物体组织或器官,增进或恢复其功能的高分子材料。
研究领域涉及材料学、化学、医学、生命科学。
虽已四十多年的研究历史,但蓬勃发展始于20世纪70年代,随着高分子化学工业的发展,出现了大量的医用新材料和人工装置,如人工心脏瓣膜、人工血管、人工肾用透析膜、心脏起博器以及骨生长诱导剂等。
近十年来,由于生物医学工程、材料科学和生物技术的发展,医用高分子材料及其制品正以其特有的生物相容性、无毒性等优异性能而获得越来越多的医学临床应用。
生物医用材料最基本的要求是它必须与生物系统直接结合,生物医用材料都必须具备生物学性能,即生物相容性,这是生物医用材料区别于其它功能材料的最重要的特征,并且要求这种材料不会因与生物系统直接结合而降低其效能与使用寿命。
生物医用材料与活体系统的相互作用表面在两个方面:一是材料反应,即活体系统对材料的作用,包括生物环境对材料的腐蚀、磨损和性质退化、甚至破坏。
药用高分子材料论文
药用高分子材料论文药用高分子材料是一种具有广泛应用前景的新型材料,它在药物传递、医疗器械、组织工程等领域都有着重要的应用。
本文将从药用高分子材料的定义、特点、应用及发展前景等方面进行探讨。
首先,药用高分子材料是一类在医药领域中应用广泛的材料,它具有多种形态和结构,包括天然高分子材料和合成高分子材料。
天然高分子材料如明胶、壳聚糖等,而合成高分子材料如聚乳酸、聚己内酯等。
这些材料具有较好的生物相容性和可降解性,能够在人体内被分解和吸收,不会对人体造成损害。
其次,药用高分子材料具有多种特点,包括生物相容性、可降解性、可调控性和多样性。
生物相容性是指材料与生物体相容的能力,可降解性是指材料在生物体内能够被降解和代谢,不会对生物体造成损害。
可调控性是指材料的性能和结构可以通过合成方法和工艺条件进行调控,而多样性则是指材料可以根据不同的需求进行设计和制备,具有很大的灵活性。
药用高分子材料在药物传递、医疗器械和组织工程等领域有着重要的应用。
在药物传递方面,药用高分子材料可以作为药物的载体,能够提高药物的稳定性和生物利用度,减少药物的毒副作用。
在医疗器械方面,药用高分子材料可以用于制备各种医疗器械,如缝合线、人工关节、支架等,具有良好的生物相容性和可降解性。
在组织工程方面,药用高分子材料可以用于细胞培养支架的制备,可以提供细胞生长的支撑和生长环境,有助于组织再生和修复。
最后,药用高分子材料具有广阔的发展前景。
随着生物医学领域的不断发展和进步,对于药用高分子材料的需求也在不断增加。
未来,药用高分子材料将更加注重其在药物传递、医疗器械和组织工程等方面的应用,同时也将更加注重其在材料性能和结构上的调控和设计,以满足不同领域的需求。
综上所述,药用高分子材料具有广泛的应用前景和发展潜力,它将在生物医学领域中发挥越来越重要的作用。
相信随着科学技术的不断进步,药用高分子材料将会在医学领域中发挥更大的作用,为人类的健康事业做出更大的贡献。
药用高分子材料论文
药用高分子材料论文药用高分子材料是一类在医学领域中具有广泛应用前景的新型材料。
它们具有良好的生物相容性、可降解性和可控释放性,因此被广泛应用于药物传递、组织工程、医用器械等领域。
本文将从药用高分子材料的特点、应用、研究现状和发展趋势等方面进行论述。
首先,药用高分子材料具有良好的生物相容性。
生物相容性是衡量材料在生物体内是否引起免疫排斥和毒性反应的重要指标。
药用高分子材料可以与生物体组织良好地相容,不会引起明显的免疫排斥反应,因此在医学领域中得到了广泛应用。
例如,可降解聚乳酸材料被用于制备缝合线、修复骨折等医疗器械,其生物相容性得到了充分验证。
其次,药用高分子材料具有可降解性。
可降解性是指材料在生物体内可以被自然降解为无害的物质,不会对生物体造成持久的影响。
这种特性使得药用高分子材料在药物传递领域具有独特优势。
例如,可降解的聚乙烯醇-聚乳酸共聚物被广泛用于制备药物缓释微球,可以实现药物的持续释放,提高药物的疗效和降低毒副作用。
另外,药用高分子材料具有可控释放性。
可控释放性是指药物可以在一定时间内以可控的速率从材料中释放出来。
这种特性使得药用高分子材料在药物传递系统中可以实现精确的药物释放,提高药物的生物利用度。
例如,通过改变材料的孔隙结构和表面性质,可以实现对药物释放速率的调控,从而实现药物的持续释放和定向释放。
在当前的研究中,药用高分子材料的应用领域不断拓展,研究重点逐渐从材料本身向材料与药物的相互作用、材料的结构与性能之间的关系等方面转移。
同时,随着生物医学工程和组织工程等新兴领域的发展,对药用高分子材料的需求不断增加,这也催生了一大批新型药用高分子材料的研究和开发。
未来,随着医学技术和材料科学的不断发展,药用高分子材料必将迎来更广阔的应用前景。
我们相信,在不久的将来,药用高分子材料将会在医学领域发挥越来越重要的作用,为人类健康事业做出更大的贡献。
综上所述,药用高分子材料具有良好的生物相容性、可降解性和可控释放性等特点,在医学领域具有广泛的应用前景。
高分子材料在生物医用领域的应用研究
高分子材料在生物医用领域的应用研究在当今科技飞速发展的时代,高分子材料以其独特的性能在生物医用领域发挥着日益重要的作用。
这些材料不仅为医疗技术的进步提供了有力支持,还为改善人类健康状况带来了新的希望。
高分子材料之所以能在生物医用领域大展身手,主要得益于它们具有一系列优异的特性。
首先,高分子材料的化学组成和结构可以进行精确调控,从而满足不同的生物医学需求。
例如,通过改变聚合物的单体种类、比例和聚合方式,可以调整材料的物理性能、生物相容性和降解速率等。
其次,高分子材料具有良好的加工性能,可以通过注塑、挤出、纺丝等多种方法制备成各种形状和尺寸的医疗器械和组织工程支架。
此外,它们还表现出相对较低的毒性和免疫原性,减少了对生物体的不良影响。
在生物医用领域,高分子材料的应用范围十分广泛。
其中,用于药物输送系统是一个重要的方面。
传统的药物治疗往往存在药物利用率低、副作用大等问题,而高分子材料制成的药物载体可以有效地解决这些难题。
例如,纳米粒子作为药物载体,可以实现药物的靶向输送,将药物精准地递送到病变部位,提高治疗效果的同时降低对正常组织的损伤。
聚合物胶束也是一种常见的药物载体,它能够增加难溶性药物的溶解度,延长药物在体内的循环时间。
组织工程是另一个高分子材料大显身手的领域。
组织工程旨在构建具有生物活性的组织或器官替代品,以修复或替代受损的组织和器官。
高分子材料在组织工程中可作为支架材料,为细胞的生长和分化提供适宜的微环境。
例如,聚乳酸(PLA)、聚乙醇酸(PGA)及其共聚物(PLGA)等可生物降解的高分子材料,具有良好的生物相容性和可调控的降解速率,被广泛用于骨组织工程、软骨组织工程等领域。
这些材料可以被制备成三维多孔支架,其孔隙结构和力学性能能够模拟天然组织的微环境,促进细胞的黏附、增殖和分化,最终实现组织的再生和修复。
此外,高分子材料在医疗器械方面也有着不可或缺的地位。
例如,人工心脏瓣膜、血管支架、缝合线等都离不开高分子材料的应用。
研究生物医用高分子纤维材料 高分子化学期末论文
生物医用高分子纤维材料摘要:综述了医用的高分子纤维材料及其改性的方法。
医用高分子纤维材料包括天然高分子及合成高分子两大类。
其中包括不可降解的及可降解的高分子纤维材料。
利用聚合物共混、交联、纤维表面改性, 如等离子体处理、纤维表面化学反应及聚合物的表面接枝等物理化学方法可对医用纤维进行改性,改善纤维的力学性能、生物相容性,并使之具有细胞粘附性, 利于组织的生长。
关键词:纤维; 缝合线; 敷料; 组织工程; 纤维改性纤维在医学上的应用具有悠久的历史,纤维织物一直是主要的外伤敷料。
随着医学科学的发展及科技的进步,性能优异的纤维材料不断被开发出来,拓展了纤维在医学上的应用[1~3 ] 。
近年来,高分子纤维由于综合性能优良,被广范地用于生物医学研究领域中。
除用作外科手术缝合线及敷料外,高分子纤维束或纤维编织物(包括三维织物) 可作为组织工程支架用于人体组织的修复和再生研究。
医用高分子纤维材料包括合成高分子及天然高分子两大类。
1 医用合成高分子纤维材料用于纺制医用纤维的合成高分子材料分为不可降解及可降解高分子两大类。
部分合成的医用纤维材料的化学式如图1 所示。
111 不可降解的合成高分子纤维材料不可降解的合成高分子纤维材料通常具有优异的力学性能,在医学上用作外科手术缝合线,血管修复,以及作细胞培养支架生产活性物质。
它们主要包括聚乙烯(PE) [4 ] 、聚丙烯(PP) 、聚对苯二甲酸乙二醇酯(PET ,、聚乙烯醇(PVA) 及聚氨酯[8 ] 等。
112 可降解的合成高分子纤维材料可降解的合成高分子纤维材料, 力学性能较好,在人体内可以通过水解反应分解为小分子,降解产物无毒,可参与人体代谢或排出体外。
除作缝合线外,可降解的合成高分子纤维束、纤维网、三维编织物及无纺织物是很有潜力的组织工程支架材料,其用途包括关节再生,肌腱修复以及肝细胞移植。
可降解的合成高分子纤维材料主要有聚乙交酯、乙交酯2丙交酯共聚物、聚ε2己内酯2乙交酯嵌段共聚物纤维被研究用于引导神经细胞再生,以治疗脊索损伤[15 ] 。
药用高分子材料论文 甲壳素
甲壳素摘要:甲壳素是一种多糖类生物高分子, 在自然界中广泛存在,是第二大可再生天然生物资源。
甲壳素及其衍生物结构与性质使其在不同的领域具有不同的作用和用途。
随着进一步的研究,甲壳素一定会有光明的前景。
关键词:甲壳素壳聚糖制备医药农业应用甲壳素,又名甲壳质、几丁质、明角质。
1811年,伯拉寇诺 (Henri Braconnot)从洋菇中分离出甲壳素, 1823年, Odier氏(法)发现在昆虫外壳中广泛存在甲壳素,并将其命名为“chitin”,希腊语意为风浪。
甲壳素是一种多糖类生物高分子,在自然界中广泛存在于低等生物菌类,藻类的细胞,节肢动物虾、蟹、昆虫的外壳,软体动物(如鱿鱼、乌贼)的内壳和软骨,高等植物的细胞壁等。
甲壳素每年生命合成资源可达两千亿,是地球上仅次于植物纤维的第二大可再生天然有机化合物生物资源,是目前自然界中唯一带正电荷的天然高分子聚合物。
甲壳素为白色透明片状固体,无毒、无味、耐酸碱、耐腐蚀、耐高温、耐日光,性质十分稳定。
其化学名称为(1,4)-2-乙酰氨基-2-脱氧-β-D-葡萄糖,是一种惰性多糖。
甲壳素分子化学结构与植物中广泛存在的纤维素非常相似,所不同的是,若把组成纤维素的单个分子——葡萄糖分子第二个碳原子上的羟基(OH)换成乙酰氨基(NNCOH3)或者氨基(NH2),这样纤维素就变成了甲壳素,从这个意义上讲,甲壳素可以说是动物性纤维。
甲壳素分子中具有-O-H-O-型氢键,使其分子链间存在着有序结构,所以甲壳素不溶于水、一般有机溶剂、酸或碱溶液。
目前已知的可溶解甲壳素的溶剂有:纯甲酸、甲磺酸、二氯乙酸、六氟异丙醇、六氟丙酮、以及5%氯化铝/二甲基乙酰胺(或N-甲基-2-吡咯烷酮)、1,2-二氯乙烷/三氯乙酸(质量比6.5:3.6)等混合溶剂体系。
甲壳素虽然很早就被分离出来,却因其难溶性而长期受到冷落。
壳聚糖为甲壳酰化得到的产物,不但水溶性大大改善,化学性质也活泼了许多。
壳聚糖(Chitosan)是由甲壳素经浓碱水解脱乙酰基后生成的产物,又称脱乙酰甲壳质、可溶性甲壳素、聚氨基葡萄糖,化学名称是聚(1,4苷)-2-胺基-2-脱氧-β-D-葡萄糖。
药用高分子材料论文
药用高分子材料论文药用高分子材料在药物输送系统中的应用摘要:药用高分子材料是一类具有良好生物相容性和可控释放性能的材料,已经被广泛应用于药物输送系统中。
本文将对药用高分子材料在药物输送系统中的应用进行综述,包括药物载体、缓释材料和生物降解材料等方面的应用。
通过对这些应用的详细介绍,可以更好地了解药用高分子材料在药物输送系统中的作用和优势,为今后的研究和应用提供参考。
关键词:药用高分子材料;药物输送系统;药物载体;缓释材料;生物降解材料1. 背景药物输送系统是一种能够控制药物在体内释放和分布的系统,可以提高药物的疗效,减少药物的副作用。
药物输送系统的关键是选择合适的药物载体和材料,而药用高分子材料因其良好的生物相容性和可控释放性能,成为了药物输送系统中的重要材料。
2. 药物载体药物载体是药物输送系统中的核心部分,它可以将药物包裹在内部,并在体内释放。
药用高分子材料作为药物载体具有很好的载荷能力和稳定性,可以保护药物不被分解和失活。
常见的药用高分子材料药物载体包括聚乙烯醇、壳聚糖、明胶等,它们可以通过不同的制备方法得到不同的释放特性,满足不同药物的要求。
3. 缓释材料药用高分子材料还可以作为药物输送系统中的缓释材料,通过调控材料的结构和性质来控制药物的释放速率和方式。
例如,聚乳酸-羟基乙酸共聚物可以通过改变其比例和分子量来调节药物的缓释性能,实现长效治疗和减少药物的频繁给药。
4. 生物降解材料在药物输送系统中,生物降解材料可以降解为无毒的代谢产物,避免了二次手术和材料残留的问题。
药用高分子材料因其生物降解性能,可以被人体代谢和排出,不会对人体造成损害。
因此,生物降解材料在药物输送系统中的应用受到了广泛关注。
5. 结论药用高分子材料在药物输送系统中的应用具有很大的潜力,通过合理设计和改进材料的性能,可以实现更好的药物治疗效果。
今后,我们可以进一步研究药用高分子材料在药物输送系统中的应用,探索更多的新型材料和方法,为临床治疗提供更好的解决方案。
医用高分子材料范文
医用高分子材料范文医用高分子材料是指应用在医学领域的高分子材料。
随着科技的不断进步和医疗技术的快速发展,医用高分子材料的种类和应用范围不断扩大,已成为医疗器械和医疗设备的重要组成部分。
本文将介绍医用高分子材料的种类、特点和应用。
首先,医用高分子材料可以分为天然高分子材料和合成高分子材料两大类。
天然高分子材料包括天然橡胶、天然纤维素、胶原蛋白等。
天然高分子材料具有良好的生物相容性和生物可降解性,因此广泛应用于外科手术缝合线、心脏瓣膜、人工血管等领域。
然而,天然高分子材料的力学性能较差,容易疲劳破裂,限制了其在一些领域的应用。
合成高分子材料主要包括聚乙烯、聚丙烯、聚乳酸、聚酯等。
这些材料具有较好的力学性能和化学稳定性,可以通过化学合成来控制其物理性能和化学性质,满足不同医疗器械和医疗设备的要求。
例如,聚乳酸可以制备成可降解的缝合线,聚乙烯可以制备成人工关节、人工骨头等。
其次,医用高分子材料具有许多特点。
首先,医用高分子材料具有良好的生物相容性。
这意味着它们可以与生物体的组织和细胞相容,不会引起明显的免疫反应和毒性反应。
这是医用高分子材料能够被广泛应用于人体的重要原因之一其次,医用高分子材料具有可调控的物理性能和化学性质。
通过改变材料的组成、结构和加工工艺,可以调节医用高分子材料的机械性能、表面性质、降解速率等,以满足不同医疗需求。
再次,医用高分子材料具有较好的加工性能和可塑性。
它们可以通过注塑、挤出、模压等加工工艺制备成各种形状的医疗器械和医疗设备,例如导尿管、人工心脏瓣膜等。
同时,医用高分子材料还可以通过热成型、薄膜法等加工工艺制备成薄膜、纤维等形式,应用于创伤敷料、医用纤维材料等领域。
最后,医用高分子材料具有良好的生物可降解性。
它们在体内能够逐渐分解为低分子物质,最终通过代谢排出体外,不会对人体造成负面影响。
这种特性使得医用高分子材料在内外科手术、组织工程和药物缓释等领域得到了广泛应用。
最后,医用高分子材料在医疗领域有广泛的应用。
天然生物医用高分子材料的研究进展
天然生物医用高分子材料的研究进展一、本文概述Overview of this article随着科学技术的快速发展,生物医用高分子材料作为一种重要的生物材料,其在医疗领域的应用越来越广泛。
这些材料以其独特的生物相容性、可降解性和良好的机械性能等特点,被广泛应用于药物载体、组织工程、生物传感器、医疗器械等多个方面。
本文旨在全面综述天然生物医用高分子材料的研究进展,包括其来源、性质、制备方法、应用领域以及面临的挑战和未来的发展趋势。
With the rapid development of science and technology, biomedical polymer materials, as an important type of biomaterial, are increasingly widely used in the medical field. These materials are widely used in drug carriers, tissue engineering, biosensors, medical devices, and other fields due to their unique biocompatibility, biodegradability, and good mechanical properties. This article aims to comprehensively review the research progress of natural biomedical polymer materials, including their sources, properties, preparationmethods, application fields, challenges and future development trends.我们将首先介绍天然生物医用高分子材料的来源和分类,包括天然多糖、天然蛋白质、天然橡胶等。
生物医用材料论文
生物医用材料论文学院:材料与化工学院专业:材料科学与工程姓名:石玉姜学号:20090413310082目录1高分子医用材料简要介绍1.1 定义1.2高分子医用材料分类1.2.1按可降解性分为1.2.2按材料与活体组织的相互作用关系分类1.2.3按成分组成不同分为1.3高分子医用材料的特性1.4医用高分子材料的条件2医用高分子材料的发展2.1高分子材料的诞生2.2高分子医用材料发展的4个阶段2.3国内外研究进展2.4医用高分子材料的发展方向3高分子材料的研究及应用3.1高分子医用材料的生物相容性研究3.1.1组织相容性3.1.2血液相容性3.2高分子医用材料的发展应用3.2.1 硬组织相容性高分子材料3.2.2 软组织相容性高分子材料3.2.3 血液相容性高分子材料3.2.4高分子药物和药物控释高分子材料4 医用高分子生物材料的发展前景和趋势5结论6参考文献高分子生物医用材料研究进展石玉姜材料与化工学院摘要:医用高分子材料是一门介于现代医学和高分子科学之间的新兴学科。
目前, 在生命科学、医疗器械、药物等领域中已得到广泛而重要的应用。
本文通过对文献的收集和查询,对医用高分子材料的种类和特性进行了介绍,概述了生物医用高分子材料的发展状况与研究现状,并对其应用进行了综述,展望了未来高分子生物材料的发展前景与趋势。
关键词:生物医用高分子材料种类特性发展状况研究现状应用发展趋势前言医用高分子材料是一类可对有机体组织进行修复、替代与再生, 具有特殊功能作用的合成高分子材料, 可以利用聚合的方法进行制备, 是生物医用材料的重要组成之一。
由于医用高分子材料可以通过组成和结构的控制而使材料具有不同的物理和化学性质, 以满足不同的需求, 耐生物老化, 作为长期植入材料具有良好的生物稳定性和物理、机械性能, 易加工成型, 原料易得, 便于消毒灭菌, 因此受到人们普遍关注, 已成为生物材料中用途最广、用量最大的品种, 近年来发展需求量增长十分迅速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学号密级兰州城市学院学生论文生物医用高分子材料学院名称:化学与环境科学学院专业名称:化学教育学生姓名:指导教师:二○一四年一月生物医用高分子材料作者*(兰州城市学院化学与环境科学学院, 兰州730070)摘要:随着人民生活水平的提高和现代医学的发展,生物医用高分子材料日益重要,在医疗费用中的比重也十分突出。
近几年来,由于生物医学工程、材料科学和生物技术的发展,生物医用高分子材料及其制品正以其特有的生物相容性、无毒性等优异性能而获得越来越多的医学临床应用。
关键词:生物医用高分子材料;基础研究;合成;医疗器械引言医用高分子是一类令人瞩目的功能高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。
医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的新型高技术合成高分子材料,是科学技术中的一个正在发展的新领域,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大意义,它已渗入到医学和生命科学的各个部门并应用于临床的诊断与治疗[1]。
1.医用高分子材料发展的4个阶段第1阶段:时间大约是7千年前至19世纪中叶,是被动地使用天然高分子材料阶段。
这一时期的高分子材料有,大漆及其制品、蚕丝及织物、麻、棉、羊皮、羊毛、纸、桐油等。
第2阶段:从19世纪中页到20世纪20年代,是对天然高分子材料进行化学改性,从而研制新材料阶段。
在这阶段中,人类首次研制出合成高分子材料(酚醛树脂)。
这一时期的高分子材料有,硫化橡胶,赛璐珞(硝基纤维素脂)、硝基纤维素酯,人造丝、纤维素粘胶丝、酚醛树脂清漆和电木等。
第3阶段:20世纪30年代至60年代,是人类大量研制新合成高分子材料阶段。
在这一阶段,“高分子科学”概念已经诞生,大批高分子化学家投入到新聚合物的合成和新材料开发的研究领域。
从而导致了至今天仍有重要意义的大批通用高分子材料的诞生。
例如顺丁、丁苯、丁纳等合成橡胶的出现;尼龙66、聚酯(PET)、聚丙烯腈等合成纤维的出现;聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯、聚碳酸酯、聚酰亚胺、有机硅、有机氟、杂环高分子等塑料和树脂的出现。
第4阶段:从20世纪60年代至今,是人类对高分子材料大普及、大扩展阶段。
在这个阶段,人类对上述聚合物的使用更加合理,聚合物生产的价格更为低廉,从而使高分子材料渗透到国民经济及人类生活的各个方面,使高分子材料成为了人类社会继金属材料,无机材料之后的第3大材料[2]。
2.医用高分子的现状2.1医用高分子材料的目前需求人的健康长寿依赖于医学的发展。
现代医学的进步已经越来越依赖于生物材料和器械的发展,没有医用材料的医学诊断和治疗在现代医学中几乎是不可想象的。
目前全球大量用于医疗器械的生物医学材料主要有20 种,其中医用高分子12 种,金属4 种,陶瓷2 种,其他2 种。
利用现有的生物医学材料已开发应用的医用植入体、人工器官等近300种,主要包括:起搏器、心脏瓣膜、人工关节、骨板、骨螺钉、缝线、牙种植体,以及药物和生物活性物质控释载体等。
近年来,西方国家在医学上消耗的高分子材料每年以10 %~20 %的速度增长 ,而国内也以20 %左右的速度迅速增长。
随着现代科学技术的发展,尤其是生物技术的重大突破,生物材料的应用将更加广泛,需求量也随之越来越大。
生物医用材料产业发展如此迅猛,主要动力来自于人口老龄化、中青年创伤的增多、疑难疾病患者的增加和高新技术的发展[3]。
生物材料的研究与开发被许多国家列入高技术关键新材料发展计划,并迅速成为国际高技术制高点之一。
作为世界人口最多的国家,生物材料的市场潜力十分巨大。
据民政部门报告:我国现有的肢体不自由患者已超过1500万,其中肢残患者约800万;由类风湿引发的大骨节病患者有数百万;冠心病患者已超过1000万;白内障盲人约500万;牙缺损和牙缺失患者高达3亿~4亿人; 肝炎病毒携带者1. 2亿;心血管病患者2000万;需计划生育的育龄妇女2000万;伴随人口老龄化(60岁以上的老年人口已达1. 39亿人,约占全国人口的10. 69 %) 的骨质疏松患者7000万;每年由于疾病、交通事故和运动创伤等造成的骨缺损和缺失患者人数近1000万人;需要进行颅颌面和胸部美容整形的人数有数千万人。
这还不包括数目庞大的各类软组织、血液和器官疾病患者人数[4]。
我国医用高分子材料研制和生产迅速发展,初具规模,已经成为一个新兴产业,总产值的增长率远高于国民经济平均发展速度。
可见,生物材料是一个巨大的产业,生物材料的不可缺少性,尤其是进口材料动辄上万元的价格决定了我国必须加强具有自主知识产权的生物材料的研究开发。
2.2生物医用功能高分子材料分类由于高分子生物材料由多学科参与研究工作,出现了不同的分类方式。
高分子生物材料随不同来源、应用目的、活体组织对材料的影响等可以分为多种类型。
目前,这些分类方法和各种高分子生物材料的名称还处于混合实用状态,尚无统一的标准[5]。
按材料来源可分为天然和人工合成两大类,下面我们就分别对这两种材料进行详细的论述。
2.21天然生物材料天然生物材料是指从自然界现有的动、植物体中提取的天然活性高分子,如从各种甲壳类、昆虫类动物体中提取的甲壳质壳聚糖纤维,从海藻植物中提取的海藻酸盐,从桑蚕体内分泌的蚕丝经再生制得的丝素纤维与丝素膜,以及由牛屈肌腱重新组构而成的骨胶原纤维[6]等。
这些纤维由于他们来自生物体内且都具有很高的生物功能和很好的生物适应性,在保护伤口、加速创面愈方面具有强大的优势,已引起国内外医务界广泛的关注。
自然界广泛存在的天然生物材料仍有着人工材料无可比拟的优越性能。
例如:迄今为止再高明的材料学家也做不出具有高强度和高韧性的动物牙釉质,海洋生物能长出色彩斑斓、坚阊义不被海水腐蚀的贝壳等等。
甲壳素又称几丁质(chitin),广泛存在于虾、蟹等甲壳动物及昆虫、藻类和细菌中,是世界上仅次于纤维素的第二大类天然高分子化合物。
它是一种惰性多糖,用浓碱脱去乙酰基可转变成聚壳糖(chintosan)。
甲壳素、聚壳糖及其衍生物具有良好的生物相容性和生物降解性。
降解产物带有一定正电荷,能从血液中分离出血小板因子,增加血清中H-6水平,促进血小板聚集或凝血素系统,作为止血剂有促进伤口愈合,抑制伤口愈合中纤维增生,并促进组织生长的功能,对烧、烫伤有独特疗效。
比如家蚕丝脱胶后可得到纯丝素蛋白成分,丝素蛋白是一种优质的生物医学材料,具有无毒、无刺激性、良好的血液相容性和组织相容性。
根据研究报道,由于天然高分子医用材料的独特临床效果,它的应用前景相当广阔。
2.22合成生物材料由于天然材料的有限,人们需要大量的生物材料来维持他们的健康。
合成高分子材料因与人体器官组织的天然高分子有着极其相似的化学结构和物理性能,因而可以植入人体,部分或全部取代有关器官。
因此,在现代医学领域得到了最为广泛的应用,成为现代医学的重要支柱材料。
与天然生物材料相比,合成高分子材料具有优异的生物相容性,不会因与体液接触而产生排斥和致癌作用,在人体环境中的老化不明显。
通过选用不同成分聚合物和添加剂,改变表面活性状态等方法可进一步改善其抗血栓性和耐久性,从而获得高度可靠和适当有机物功能响应的生物合成高分子材料[7]。
目前,使用于人体植入产品的高分子合成材料包括聚酰胺、环氧树脂、聚乙烯、聚乙烯醇、聚乳酸、聚甲醛、聚甲基丙烯酸甲酯、聚四氟乙烯、聚醋酸乙烯酯、硅橡胶和硅凝胶等。
应用场合涉及组织粘合、手术缝线、眼科材料(人工玻璃体、人工角膜和人工晶状体等)、软组织植入物(人工心脏、人工肾、人工肝等)和人工管形器(人工器官、食道)等。
合成医用高分子材料发展的第一阶段始于1937年,其特点是所用高分子材料都是已有的现成材料,如用丙烯酸甲酯制造义齿的牙床。
第二阶段始于1953年,其标志是医用级有机硅橡胶的出现,随后又发展了聚羟基乙酸酯缝合线以及四种聚(醚一氨)酯心血管材料,从此进入了以分子工程研究为基础的发展时期。
目前的研究焦点已经从寻找替代生物组织的合成材料转向研究一类具有主动诱导、激发人体组织器官再生修复的新材料,这标志着生物医用高分子材料的发展进入了第三个阶段,其特点是这种材料一般由活体组织和人工材料有机结合而成,在分子设计上以促进周围组织细胞生长为预想功能,其关键在于诱使配合基和组织细胞表面的特殊位点发生作用以提高组织细胞的分裂和生长速度。
2.3医用高分子材料的特殊要求大部分医用高分子材料是要用于人体的,它在植入后将会与人体发生一系列的相互作用,为保证其使用的安全性和有效性,目前国内外对所有进入临床应用的医用高分子材料的要求十分严格并且建立了一系列的评价体系[8]。
除了作为材料在力学强度等方面的普遍要求之外,医用高分子材料的特殊要求可以综合概括为以下4个方面:1)生物功能性:因各种生物材料的用途而异,如:作为缓释药物时,药物的缓释性能就是其生物功能性。
2) 生物相容性:可概括为材料和活体之间的相互关系,主要包括血液相容性和组织相容性。
组织相容性主要指无毒性,无致癌性,无热原反应,无免疫排斥反应,不破坏邻近组织等。
血液相容性一样,不引起凝血,不破坏红细胞,不破坏血小板,不改变血中蛋白,不扰乱电解质平衡。
3) 化学稳定性: 耐生物老化性或可生物降解性。
对于长期植入的医用高分子材料,生物稳定性要好;对于暂时植入的医用高分子材料,则要求在确定时间内降解为无毒的单体或片段,通过吸收、代谢过程排出体外。
4) 生产加工性:首先,严格控制用于合成医用高分子材料的原料纯度,不能带入有害物质,重金属含量不能超标;其次,材料加工助剂必须符合医用标准;第三,对于体内应用的高分子材料,生产环境应当具有符合标准的洁净级别; 第四,便于消毒灭菌(紫外灭菌、高压煮沸、环氧乙烷气体消毒和酒精消毒等) 。
正因为对于医用高分子材料的要求严格,相关的研发周期一般较长,需要经过体外实验、动物实验、临床实验等不同阶段的试验,材料市场化需要经国家药品和医疗器械检验部门的批准,且报批程序复杂,费用高。
这也是生物材料的市场价格居高不下的一个重要原因。
3.医用高分子材料的主要类别和应用医用高分子材料涉及到多个学科,根据不同的角度医用高分子材料有不同的分类方法,尚无统一标准。
为了便于比较不同结构的生物材料对于各种治疗目的的适用性,按生物医学用途分类如下: 3. 1 硬组织相容性高分子材料硬组织相容性高分子材料(如各种人工骨、人工关节、牙根等) 是医学临床上应用量很大的一类产品,涉及医学临床的骨科、颌面外科、口腔科、颅脑外科和整形外科等多个专科,往往要求具有与替代组织类似的机械性能,同时能够与周围组织结合在一起。
如牙科材料(蛀牙填补用树脂、假牙和人工牙根、人工齿冠材料和硅橡胶牙托软衬垫等) ;人造骨、关节材料聚甲基丙烯酸甲酯等。