二项式定理应用常见题型大全含答案
二项式定理的应用好题整理(含参考答案)
二项式定理的应用学习目标:1.通过练习,能够利用二项展开式的通项、组合知识求特定项及系数;2.通过训练,会用赋值法恰当地赋值,求展开式中系数的和.一、自主学习1.二项式定理(a+b )n = ,其展开式共有 项,二项式系数为 (k = ), 项的系数是二项式系数与a ,b 的系数的乘积, 展开式中的第k+1项叫做 ,记作T k+1= .2. 相关性质(1)对称性在(a+b )n 的展开式中,与首末两端“ ”的两个二项式系数相等,即C n m = .(2)增减性与最大值①增减性:当k <n+12时,二项式系数逐渐 ;当k > n+12时,二项式系数逐渐 .②最大值:当二项式的次数n 为偶数时,中间 项的二项式系数 取得最大值;当二项式的次数n 为奇数时,中间 项的二项式系数 同时取得最大值.(3)系数和二项式系数和:C n 0+C n 1+C n 2+⋯+C n k +⋯+C n n = (令a = , b = 即可). 奇数项的二项式系数和等于偶数项的二项式系数和:C n 0+C n 2+C n 4+⋅⋅⋅+C n 2r +⋅⋅⋅=C n 1+C n 3+C n 5+⋯+C n 2r+1+⋅⋅⋅= (令a = , b = 即可).二、合作探究1. 求二项展开式中的特定项及系数例1 已知二项式(x +√x)6,求: (1)它的展开式中的常数项;(2)它的展开式中x 3的二项式系数和系数.练习1 若(x −√x )n 的展开式中所有奇数项的二项式系数之和为32,求:(1)它的展开式中的有理项;(2)它的展开式中系数最大的项.例2 (2019·全国卷Ⅲ) (1+2x 2 )(1+x )4的展开式中x 3的系数为练习2 (2020·全国卷Ⅰ) (x+y x 2)(x+y )5的展开式中x 3y 3的系数为 例3 (1+x +1x 3)10的展开式中,x 2项的系数为练习3 (2015·全国卷Ⅰ) ( x 2+x+y )5的展开式中,x 5y 2的系数为2. 利用赋值法求展开式系数的和例4 设(2−x)10=a 0+a 1x +a 2x 2+⋯+a 10x 10,求下列各式的值:(1) a 0;(2) a 1+a 2+a 3+⋯+a 10;(3) a 1+a 3+a 5+a 7+a 9;(4)|a 0|+|a 1|+|a 2|+⋯+|a 10|.练习4 已知(1−2x)2021=a 0+a 1x +a 2x 2+⋯+a 2021x 2021,求下列各式的值:(1) a 1+a 2+a 3+⋯+a 2021;(2) a 2+a 4+a 6+⋯+a 2020;(3)|a 0|+|a 1|+|a 2|+⋯+|a 2021|;(4)(a 0+a 2+⋯+a 2020)2-(a 1+a 3+⋯+a 2021)2.三、巩固延伸1. 在二项式(√1x 4+√x 23)n 的展开式中倒数第3项的系数为45,求x 3的系数.2. 若(√1x 3+√1x 25)n 的展开式中所有奇数项的系数和为1024,求它的中间项. 3. 已知在(a -x 3)(1+x )10的展开式中,x 5的系数为207,求x 6的系数.变式:求(1+2x)3(1−x)4展开式中x 2的系数.4. (1+x +1x 2021)10的展开式中,x 2项的系数为 .5. (2020·浙江卷)若(1+2x)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x 1+a 0,则a 1+a 3+a 5= .6. 若二项展开式(12+2x)n (n <10)中的第5项、第6项与第7项的二项式系数成等差数列,求展开式中系 数最大的项.四、课堂小结二项式定理的应用 参考答案一、自主学习1.二项式定理C n 0a n +C n 1a n−1b +⋯+C n r a n−r b r +⋯+C n n b n (n ∈N ∗); n+1; C n k (k =0,1,2,⋅⋅⋅,n);通项;C n k a n−k b k2. 相关性质(1)等距离;C n n−m(2) ①:增大;减小 ②:1;C n n 2; 2; C n n−12和C n n+12(3) 2n ;a =1, b =1;2n -1;a =1, b =-1 二、合作探究例1 (1) T 5=240;(2)15;60 练习1 (1) T 1=x 6;T 3=60x 3;T 5=240;T 7=64x 3;(2) T 5=240 例2 12; 练习2 15; 例3 1350; 练习3 30例4 (1) a 0=1024; (2) a 1+a 2+a 3+⋯+a 10=−1023;(3) a 1+a 3+a 5+a 7+a 9=12(1−310); (4)|a 0|+|a 1|+|a 2|+⋯+|a 10|=310.练习4 (1) a 1+a 2+a 3+⋯+a 2021=−2; (2) a 2+a 4+a 6+⋯+a 2020=32(32020−1); (3)|a 0|+|a 1|+|a 2|+⋯+|a 2021|=32021; (4)(a 0+a 2+⋯+a 2020)2-(a 1+a 3+⋯+a 2021)2=−32021.三、巩固延伸1. 210 ;2. T 6=462x 4;T 7=462x −61153. 90; 变式:-6 ;4. 45;5. 122;6. T 7=224x 6。
二项式定理常考题型练(含答案)
二项式定理常考题型汇总(含答案)1. 展开式中的常数项是 (用数字作答)2.若在展开式中系数为-80,则a= 。
3.如果 的展开式中各项系数之和为128,则展开式中 的系数是( )A. 7B. –7C. 21D. –21 4.设k=1,2,3,4,5,则的展开式中k x 的系数不可能是( )A. 10B. 40C. 50D. 80 5.在的展开式中的系数是( )A. –14B. 14C. –28D. 286. 的展开式中 项的系数为 。
7.的展开式中 项的系数 。
8. 521⎪⎭⎫ ⎝⎛-x x 的展开式中,4x 的系数是 。
9. 若nx x ⎪⎭⎫ ⎝⎛+321展开式的各项系数之和为32,则其展开式中的常数项是 。
10. 522⎪⎭⎫ ⎝⎛+x x 的展开式中2x 的系数是 ,展开式各项系数之和是 ,展开式各项的二项式系数之和是 。
11. 622⎪⎪⎭⎫ ⎝⎛-x x 的二项展开式中,2x 的系数是 。
12. ()6211⎪⎭⎫ ⎝⎛-++x x x x 的展开式中的常数项为 。
1.(2005·福建卷)展开式中的常数项是(用数字作答)分析:当得r=2.∴,即所求常数项为240。
2.(2004·重庆卷)若在展开式中系数为-80,则a=。
解:∴当r=3时有∴由题设得∴a=-2,即应填-2。
3.(2005·山东卷)如果的展开式中各项系数之和为128,则展开式中的系数是()A. 7B. –7C. 21D. –21分析:设,则∴由已知得,解得n=7∴令得r=6.∴,故所求系数为,应选C。
4.(2005·江苏卷)设k=1,2,3,4,5,则的展开式中的系数不可能是()A. 10B. 40C. 50D. 80分析:立足于二项展开式的通项公式:∴当k=1时,r=4,的系数为;当k=2时,r=3,的系数为;当k=3时,r=2,的系数为;当k=4时,r=1,的系数为。
∴综上可知应选C。
(完整版)二项式定理测试题及答案
二项式定理测试题及答案1.有多少个整数n 能使(n+i)4成为整数(B ) A.0 B.1 C.2 D.3 2. ()82x -展开式中不含..4x 项的系数的和为(B )A.-1B.0C.1D.23.若S=123100123100A A A A ++++L L ,则S 的个位数字是(C )A 0B 3C 5D 8 4.已知(x -xa )8展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( C ) A.28B.38C.1或38D.1或285.在3100(25)+的展开式中,有理项的个数是( D ) A.15个B.33个C.17个 D.16个6.在2431⎪⎪⎭⎫ ⎝⎛+x x 的展开式中,x 的幂指数是整数的项共有(C ) A .3项 B .4项C .5项D .6项7.在(1-x)5-(1-x)6的展开式中,含x 3的项的系数是( C )A 、-5B 、 5C 、10D 、-10 8.35)1()1(x x +⋅-的展开式中3x 的系数为( A )A .6B .-6C .9D .-9 9.若x=21,则(3+2x)10的展开式中最大的项为(B ) A.第一项 B.第三项 C.第六项 D.第八项 10.二项式431(2)3nx x-的展开式中含有非零常数项,则正整数n 的最小值为( A ) A .7B .12C .14D .511.设函数,)21()(10x x f -=则导函数)(x f '的展开式2x 项的系数为(C )A .1440B .-1440C .-2880D .2880 12.在51(1)x x+-的展开式中,常数项为( B ) (A )51 (B )-51 (C )-11 (D )1113.若32(1)1()n n x x ax bx n *+=+++++∈N L L ,且:3:1a b =,则n 的值为( C ) A.9B.10C.11D.1214.若多项式102x x +=10109910)1()1()1(++++⋅⋅⋅+++x a x a x a a ,则=9a ( )(A ) 9 (B )10 (C )9- (D )10- 解:根据左边x10的系数为1,易知110=a ,左边x 9的系数为0,右边x 9的系数为0109910109=+=+a C a a ,∴109-=a故选D 。
(完整版)二项式定理(习题含答案)
二项式定理一、 求展开式中特定项 1、在的展开式中,的幂指数是整数的共有( ) A .项 B .项 C .项 D .项 【答案】C 【解析】,,若要是幂指数是整数,所以0,6,12,18,24,30,所以共6项,故选C .3、若展开式中的常数项为 .(用数字作答)【答案】10【解】由题意得,令,可得展示式中各项的系数的和为32,所以,解得,所以展开式的通项为,当时,常数项为, 4、二项式的展开式中的常数项为 . 【答案】112【解析】由二项式通项可得,(r=0,1,,8),显然当时,,故二项式展开式中的常数项为112.5、的展开式中常数项等于________.【答案】.【解析】因为中的展开式通项为,当第一项取时,,此时的展开式中常数为;当第一项取时,,此时的展开式中常数为;所以原式的展开式中常数项等于,故应填. 6、设,则的展开式中常数项是 .【答案】 332,30x 4567()r r rrr r x C x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=30......2,1,0=r =r 2531()x x+1x =232n =5n =2531()x x+10515r rr T C x -+=2r =2510C=82)x3488838122rrr r rr r x C xx C --+-=-=)()()(T 2=r 1123=T 41(2)(13)x x--1441(2)(13)x x--4(13)x -4C (3)r rx -204C 1=21x-14C (3)12x -=-12141420sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰()622x ⎛⋅+ ⎝332=-()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ⎛⎫=-+=+=-+= ⎪⎝⎭⎰⎰的展开式的通项为,所以所求常数项为.二、 求特定项系数或系数和7、的展开式中项的系数是( )A .B .C .D . 【答案】A【解析】由通式,令,则展开式中项的系数是.8、在x (1+x )6的展开式中,含x 3项的系数是 . 【答案】15【解】的通项,令可得.则中的系数为15.9、在的展开式中含的项的系数是 . 【答案】-55【解析】的展开式中项由和两部分组成,所以的项的系数为. 10、已知,那么展开式中含项的系数为 . 【答案】135【解析】根据题意,,则中,由二项式定理的通项公式,可设含项的项是,可知,所以系数为.11、已知,则等于( )A .-5B .5C .90D .180【答案】D 因为,所以等于选D.12、在二项式 的展开式中,只有第5项的二项式系数最大,则________;展开式中的第4项=_______.6(=6663166((1)2r r r r r rr r T C C x ---+==-⋅⋅3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-8()x 62x y 5656-2828-r r r y x C )2(88--2=r 62x y 56)2(228=-C ()61x +16r r r T C x +=2r =2615C =()61x x +3x 6(1)(2)x x -⋅-3x 6(1)(2)x x -⋅-3x 336)(2x C -226)(x -x C -⋅)(3x 552-2636-=-C C dx xn 16e 1⎰=nx x )(3-2x 66e111ln |6e n dx x x=⎰==n x x )(3-1r n r r r n T C a b -+=2x 616(3)r rr r T C x -+=-2r =269135C ⨯=()()()()10210012101111x a a x a x a x +=+-+-++-L 8a 1010(1)(21)x x +=-+-8a8210(2)454180.C -=⨯=1)2nx =n【答案】,.【解析】由二项式定理展开通项公式,由题意得,当且仅当时,取最大值,∴,第4项为. 13、如果,那么的值等于( ) (A )-1 (B )-2 (C )0 (D )2 【答案】A【解析】令,代入二项式,得,令,代入二项式,得,所以,即,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7 =﹣1, 15、(x ﹣2)(x ﹣1)5的展开式中所有项的系数和等于 【答案】0 解:在(x ﹣2)(x ﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0, 所以展开式中所有项的系数和等于0. 16、在的展开式中,所有项的系数和为,则的系数等于 .【答案】【解析】当时,,解得,那么含的项就是,所以系数是-270. 17、设,若,则.【答案】0. 【解析】由81937x -21()(2)33111()()22n r n r r r r r r r nn T C x x C x -++=-⋅=-4n =r n C 8n =119(163)333381()72C x x +-=-7270127(12)x a a x a x a x -=++++L 017a a a +++L 1x =7270127(12)x a a x a x a x -=++++L 70127(12)1a a a a -=++++=-L 0x =7270127(12)x a a x a x a x -=++++L 70(10)1a -==12711a a a ++++=-L 1272a a a +++=-L *3)()n n N -∈32-1x 270-1=x ()322--=n5=n x1()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯0(sin cos )k x x dx π=-⎰8822108)1(x a x a x a a kx ++++=-K 1238a a a a +++⋅⋅⋅+=0(sin cos )(cos sin )k x x dx x x ππ=-=--⎰,令得:,即 再令得:,即 所以18、设(5x ﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M ﹣N=240,则展开式中x 的系数为 . 【答案】150解:由于(5x ﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由二项式系数和为N=2n ,且M ﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0. 解得 2n =16,或 2n =﹣15(舍去),∴n=4. (5x ﹣)n 的展开式的通项公式为 T r+1=?(5x )4﹣r ?(﹣1)r ?=(﹣1)r ??54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r??54﹣r=1×6×25=150,19、设,则 . 【答案】【解析】, 所以令,得到, 所以 三、 求参数问题20、若的展开式中第四项为常数项,则( )A .B .C .D .【答案】B【解析】根据二项式展开公式有第四项为,第四项为常数,则必有,即,所以正确选项为B. 21、二项式的展开式中的系数为15,则( )(cos sin )(cos0sin 0)2ππ=-----=1x =80128(121)a a a a -⨯=++++K 01281a a a a ++++=K 0x =80128(120)000a a a a -⨯=+⨯+⨯++⨯K 01a =12380a a a a +++⋅⋅⋅+=8877108)1(x a x a x a a x ++++=-Λ178a a a +++=L 255178a a a +++=L 87654321a a a a a a a a +-+-+-+-1-=x =82876543210a a a a a a a a a +-+-+-+-2551256-20887654321=-==+-+-+-+-a a a a a a a a a nn =45672533333342)21()(---==n nn nxC xx C T 025=-n 5=n )()1(*N n x n ∈+2x =nA 、5B 、 6C 、8D 、10 【答案】B【解析】二项式的展开式中的通项为,令,得,所以的系数为,解得;故选B . 22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵,∴当,即时,. 23、若的展开式中的系数为10,则实数( ) A1 B .或1 C .2或 D . 【答案】B.【解析】由题意得的一次性与二次项系数之和为14,其二项展开通项公式,∴或,故选B . 24、设,当时,等于( )A .5B .6C .7D .8 【答案】C . 【解析】令,则可得,故选C . 四、 其他相关问题25、20152015除以8的余数为( ) 【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数. 试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣?20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,)()1(*N n x n ∈+k n kn k x C T -+⋅=12=-k n 2-=n k 2x 152)1(22=-==-n n C C n n n 6=n 4r+14T =C r r r a x-43r -=1r =133324T =C 48,2ax ax x a ==∴=()()411x ax ++2x a =53-53-4(1)ax +14r r rr T C a x +=22144101C a C a a +=⇒=53-23(1)(1)(1)(1)n x x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+012254n a a a a +++⋅⋅⋅+=n 1x =2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-。
二项式定理考试题及答案
二项式定理考试题及答案1. 题目:计算二项式展开式 \((1+x)^5\) 的前三项。
答案:二项式展开式 \((1+x)^5\) 的前三项为 \(1 + 5x +10x^2\)。
2. 题目:给定二项式展开式 \((a+b)^n\) 中的通项公式为 \(T_{r+1} = C_n^r a^{n-r}b^r\),求 \((2-3x)^4\) 的展开式中 \(x^2\) 的系数。
答案:根据通项公式,\(x^2\) 的系数为 \(C_4^2 \cdot 2^2\cdot (-3)^2 = 6 \cdot 4 \cdot 9 = 216\)。
3. 题目:将 \((1-x)^6\) 展开,并求出展开式中 \(x^4\) 的系数。
答案:\((1-x)^6\) 的展开式中 \(x^4\) 的系数为 \(C_6^4\cdot (-1)^4 = 15\)。
4. 题目:计算二项式 \((1+x)^n\) 的展开式中 \(x^k\) 的系数,其中 \(n=10\) 且 \(k=3\)。
答案:\(x^3\) 的系数为 \(C_{10}^3 = 120\)。
5. 题目:证明二项式定理中 \((1+x)^n\) 的展开式中,奇数次幂项的系数之和等于偶数次幂项的系数之和。
答案:将 \(x\) 替换为 \(1\) 和 \(-1\),分别计算 \((1+1)^n\) 和 \((1-1)^n\),可以得到奇数次幂项和偶数次幂项系数之和相等。
6. 题目:求二项式 \((1+x)^7\) 展开式中 \(x^5\) 的系数。
答案:\(x^5\) 的系数为 \(C_7^5 = 21\)。
7. 题目:计算 \((1-2x)^3\) 的展开式,并求出 \(x^2\) 的系数。
答案:\((1-2x)^3\) 的展开式中 \(x^2\) 的系数为 \(C_3^1 \cdot (-2)^2 = 3 \cdot 4 = 12\)。
8. 题目:给定 \((1+x)^8\) 的展开式中 \(x^3\) 的系数为\(C_8^3\),求 \(x^3\) 的系数。
最新二项式定理应用常见题型大全(含答案)
二项式定理应用常见题型大全一.选择题(共21小题)1.(2012•重庆)的展开式中常数项为().C D2.(2012•桃城区)在的展开式中,有理项共有()20124.(2008•江西)展开式中的常数项为()n*56.(2006•重庆)若的展开式中各项系数之和为64,则展开式的常数项为()8829211200610.(2004•福建)若(1﹣2x)9展开式的第3项为288,则的值是()D.11.若则二项式的展开式中的常数项为()12.(a>0)展开式中,中间项的系数为70.若实数x、y满足则z=x+2y的最小值是()C1014.的展开式中第三项的系数是().C.4n+1n17.设f(x)等于展开式的中间项,若f(x)≤mx在区间[,]上恒成立,则m的取值范围是[[,[18.在的展开式中系数最大的项是()682010参考答案与试题解析一.选择题(共21小题)1.(2012•重庆)的展开式中常数项为().C D的展开式通项公式中,令的展开式通项公式为=2.(2012•桃城区)在的展开式中,有理项共有()••,2012+ 4.(2008•江西)展开式中的常数项为()的展开式的通项为的展开式的通项为=的通项为=,时,展开式中的项为常数项n*56.(2006•重庆)若的展开式中各项系数之和为64,则展开式的常数项为()则展开式的常数项为88292112006分别取,时,有)(时,有)((10.(2004•福建)若(1﹣2x)9展开式的第3项为288,则的值是()D.中,化简可得答案.,x==211.若则二项式的展开式中的常数项为()∴二项式的通项为的展开式中的常数项为=16012.(a>0)展开式中,中间项的系数为70.若实数x、y满足则z=x+2y的最小值是()C,则=y=,则1014.的展开式中第三项的系数是().C.的展开式中第三项是×=4n+1n×、;=2×;n+×17.设f(x)等于展开式的中间项,若f(x)≤mx在区间[,]上恒成立,则m的取值范围是[[,[展开式的通项,再求出其展开式的中间项,即可得变形为x,由二次函数的性质,求出[,展开式的通项为(()=x⇔时,x时,,则若18.在的展开式中系数最大的项是()(﹣)从而获解,但比较麻烦,在选择填空中不提倡用,不可小题大做,682010。
二项式定理应用的六种题型
二项式定理的应用二项式定理)()(110*--∈+++++=+N n b C b a C b a C a C b a nn n k k n k n n n n n n ⑴这个公式叫做二项式定理.⑵展开式:等号右边的多项式叫做nb a )(+的二项展开式,展开式中一共有1+n 项.⑶二项式系数:各项的系数}),,2,1,0{(n k C kn ∈叫做二项式系数.展开式的通项n b a )(+展开式的第1+k 项叫做二项展开式的通项,记作k k n k n k b a C T -+=1.题型1求某项系数例1.二项式8312(xx-中展开式的常数项是)(答案:常数项为7)1()21(68627=-⋅=C T .例2.在62)1(xx +的展开式中,3x 的系数是)(答案:20.例3.若二项式7)1(xx -的展开式中的第四项等于7,则x 的值是)(答案:51-=x .题型2多个多项式例4.72)1()1()1(x x x ++++++ 的展开式中,3x 的系数是)(答案:3x 的系数为7048373433==+++C C C C .例5.设432231404321))()()((A x A x A x A x A a x a x a x a x ++++=++++则=2A ;=3A ;答案:4343243212)()(a a a a a a a a a A +++++=,4324314213212a a a a a a a a a a a a A +++=.例6.9)2(z y x -+的展开式中324z y x 的系数为)(.答案:324z y x 的系数为5040-.例7.求当52)23(++x x 的展开式中x 的一次项的系数为)(.分析:解法①:5252]3)2[()23(x x x x ++=++,r rrr x x C T )3()2(5251-++=,当且仅当1=r 时,1+r T 的展开式中才有x 的一次项,此时x x C T T r 3)2(421521+==+,所以x 的一次项为x C C 3244415⋅,它的系数为2403244415=⋅C C .解法②:)22)(()2()1()23(555415505554155055552C x C x C C x C x C x x x x ++++++=++=++ 故展开式中含有x 的项为x x C xC C 2402244555545=+,故展开式中x 的系数为240.例8.求式子3)21(-+xx 的常数项为)(答案:631()21(xx x x -=-+,设第1+r 项为常数项,则rr r r rr r r xC xxC T 266661)1(1()1(--+-=-=,得3026=⇒=-r r ,所以20)1(36313-=-=+C T .例9.52)1)(1(x x x -++的展开式中,4x 的系数是)(分析:已知表达式展开式中每一项由两部分相乘而成,要想凑得4x ,不妨从其中一个式子切入进行分类讨论(以)1(2x x ++为例)1:)1(2x x ++出1,则5)1(x -出4x ,该项为:44455)(11xx C =-⋅⋅⋅2:)1(2x x ++出x ,则5)1(x -出3x ,该项为:4323510)(1xx C x -=-⋅⋅⋅3:)1(2x x ++出2x ,则5)1(x -出2x ,该项为:42325210)(1x x C x =-⋅⋅⋅综上所述:合并同类项后4x 的系数是5.例10.102)1(+-x x 的展开式中3x 的系数是)(分析:本题不利于直接展开所有项,所以考虑将其转化为10个因式如何分配所出项的问题:若要凑成3x 有以下几种可能:⑴:1个2x ,1个)(x -,8个1,所得项为:3888192110901)(xC x C x C -=⋅-⋅⑵:3个)(x -,7个1,所得项为:377733101201)(x C x C -=⋅-,所以3x 的系数是210-.例11.求43)1()21(x x -+的展开式中2x 的系数是)(分析:因为3)21(x +的展开式的通项是3,2,1,0,2)2(33=⋅⋅=⋅m x C x C mmmmm,4)1(x -的展开式的通项是4,3,2,1,0,)1()(44=⋅-⋅=-⋅n x C x C n n nn n ,令2=+n m ,则有0=m 且2=n ,1=m 且1=n ,2=m 且0=n ,因此43)1()21(x x -+的展开式中2x 的系数等于6)1(2)1(2)1(20422311411322403-=-⋅⋅⋅+-⋅⋅⋅+-⋅⋅⋅C C C C C C .例12.求10463)11()1(xx ++展开式中的常数项是)(答案:4246例13.已知nxx x x 1)(1(32+++的展开式中没有常数项,*∈N n 且82≤≤n ,则=n 分析:n xx 1(3+的展开式的通项为rn r n r r n r n x C x x C 43---⋅=⋅⋅,通项分别与前面三项相乘可得24144,,+-+--⋅⋅⋅r n r n r n r n rn rn x C x C xC ,因为展开式中不含常数项,82≤≤n 所以r n 4≠且14-≠r n 且24-≠r n ,即8,4≠n 且7,3≠n 且6,2≠n ,所以5=n 题型3系数特征例14.在204)3(y x +的展开式中,系数为有理数的项有项.答案:6项例15.求二项式93)(x x -的展开式中的有理项.分析:62793192191)1()()(x r rrrrr xC x x C T --+-=-=,令)90(,627≤≤∈-r Z r得3=r 或9=r 当3=r 时,44393484)1(,4627x x C T r -=-==-,当9=r 时,3399910)1(,3627x x C T r -=-==-.例16.nx )21(+的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项,系数最大的项.分析:二项展开式的通项rrrn r x C T 21=+,由第6项与第7项的系数相等得,8226655=⇒=n C C n n ,所以展开式中二项式系数最大得项为44448511202x x C T ==,设第1+r 项系数最大,则⎩⎨⎧⋅≥⋅⋅≥⋅++--118811882222r r r r r r r r C C C C ,解之得65≤≤r 即5=r 或6,所以系数最大得项为55558617922x x C T ==或66668717922x x C T ==.例17.在nb a 2)(+的展开式中,求二项式系数最大的项.分析:二项式的幂指数是偶数n 2,则中间一项的二项式系数最大,即1122++=n nT T ,也就是第1+n 项.例18.在nxx)12(3-的展开式中,只有第5项的二项式最大,则展开式中的常数项是.分析:只有第5项的二项式最大,则512=+n,即8=n ,所以展开式中的常数项为第7项等于721(268=C .题型4求系数和常用赋值举例:⑴设nn n r r n r n n n nn nb C b a C b aC a C b a +++++=+-- 11)(,①令1==b a ,可得:nnn n n nC C C C ++++= 212②令1,1-==b a ,可得:nn n n n n n C C C C C )1(0321-+-+-= ,即13120-+++=+++n n n n n n n n C C C C C C (假设n 为偶数),再结合①可得:1131202--=+++=+++n n n n n n n n n C C C C C C ⑵设nn n xa x a x a a x x f ++++=+= 2210)12()(①令1=x ,则有:)1()112(210f a a a a nn =+⨯=++++ ,即展开式系数和②令0=x ,则有:)0()102(0f a n=+⨯=,即常数项③令1-=x ,设n 为偶数,则有:)1()1)1(2(3210-=+-⨯=++-+-f a a a a a nn ,所以)1(((13120-=+++-+++-f a a a a a a n n )),即偶次项系数和与奇次项系数和的差,由①③即可求出)n a a a +++ 20(和)131(-+++n a a a 的值例19.已知0199101052)123(a x a x a x a x x ++++=+- ,求29753121086420)()(a a a a a a a a a a a ++++-+++++的值.分析:令1=x ,得510102=+++a a a ,令1-=x ,得59753110864206)()(=++++-+++++a a a a a a a a a a a ,所以555297531210864201262)()(=⨯=++++-+++++a a a a a a a a a a a 求展开式系数和,充分利用赋值法.赋值时,一般地,对于多项式nn nx a x a x a a px x g ++++=+= 2210)1()(有以下结论:⑴)(x g 的二项式系数和为n2;⑵)(x g 的奇数项的二项式系数和=偶数项的二项式系数和12-=n ;⑶)(x g 的各项系数和为)1(g ;⑷)(x g 的奇数项的系数和为)]1()1([21-+g g ;⑸)(x g 的偶数项的系数和为)]1()1([21--g g .例20.已知1111221092)1()1()1()2)(1(-++-+-+=-+x a x a x a a x x ,则1121a a a +++ 的值为.分析:本题虽然等式左侧复杂,但仍然可通过对x 赋予特殊值得到系数的关系式,观察所求式子特点可令2=x ,得到011210=++++a a a a ,只需要再求出0a 即可.令1=x 可得20-=a ,所以21121=+++a a a .例21.设443322104)22(x a x a x a x a a x ++++=+,则2312420)()(a a a a a +-++的值为.分析:所求))(()()(43210432102312420a a a a a a a a a a a a a a a +-+-++++=+-++,在恒等式中令1=x 可得443210)22(+=++++a a a a a ,令1-=x 可得44321022(-=+-+-a a a a a ,所以16)22(22()()(442312420=-+=+-++a a a a a 例22.若55443322105)32(x a x a x a x a x a a x +++++=-,则||||||||||||543210a a a a a a +++++等于.分析:虽然5)32(x -的展开式系数有正有负,但5)32(x -与5)32(x +对应系数的绝对值相同,且5)32(x +展开式的系数均为正数.所以只需计算5)32(x +的展开式系数和即可.1=x 可得系数和为55,所以55432105||||||||||||=+++++a a a a a a .例23.若)(2206220N n C C n n ∈=++,且n n n x a x a a x +++=- 10)2(,则n n a a a a )1(210-+-+- 等于.分析:由2206220++=n n C C 可得262+=+n n 或202)62(=+++n n ,解得4=n ,所求表达式只需令1-=x ,可得81)]1(2[)1(4210=--=-+-+-n na a a a .例24.已知nn nx a x a a x x x +++=++++++ 102)1()1()1(,若n a a a n -=+++-29121 ,则n 的值为.分析:在恒等式中令1=x 可得系数和12)12(222221210--=+++=++++-n nn a a a a ,与条件联系可考虑先求出0a ,n a ,令0=x ,可得n a =0,展开式中n a 为最高次项系数,所以1=n a ,所以12211210---=+++++-n a a a a n n ,所以n n n -=---+291221,即3221=+n ,解得4=n .例25.55443322105)32(x a x a x a x a x a a x +++++=-,则5432105432a a a a a a +++++的值是.分析:设55443322105)32()(x a x a x a x a x a a x x f +++++=-=所以45342321454322)32(5)(x a x a x a x a a x x f ++++=⋅-=',令1=x 可得54321543210a a a a a ++++=而在55443322105)32(x a x a x a x a x a a x +++++=-中,令0=x ,可得243350-=-=a ,所以2335432543210-=+++++a a a a a a .例26.已知10102210)(x a x a x a a x g ++++= ,9910)(x b x b b x h +++= ,若)()()1()21)(1(1019x h x g x x x +-=-+,则=9a .分析:由条件中恒等式的特点可得对应项的系数相等,在)()1(10x g x -中,与9a 相关的最高次项为19x ,故以此为突破口求9a ,等式左边19x 的系数为18181919)2()2(-+-C ,而右边19x 的系数为9910109)1(-⋅+C a a ,所以181819199910109)2()2()1(-+-=-⋅+C C a a ,只需再求出10a 即可,同样选取含10a 的最高次项,即20x ,左边20x 的系数为19)2(-,右边20x 的系数为10a ,所以1910)2(-=a ,从而解得18923⨯-=a .题型5逆用例27.=++⋅+⋅+-12321666n nn n n n C C C C .答案:)17(61-n例28.=++++-n n n n n n C C C C 1321393 .答案:314-n 题型6应用例29.证明:)(98322*+∈--N n n n 能被64整除分析:21111101211111011111211111011122888981)1(888898888898)18(989983-++++-+++++++-++++++++++=--++++++=--+++++=--+=--=--n n n n n n n n n n n n n n n n n n n n n n n n n C C C n n C C C n C C C C C n n n 由于各项均能被64整除所以)(98322*+∈--N n n n 能被64整除.例30.已知*∈N n ,求证:1522221-++++n 能被31整除.分析:132122121222155152-=-=--=++++-n n n n 113131311)131(111-+⨯++⨯+=-+=--n n n n n n C C )3131(311211---++⨯+⨯=n n n n n C C 显然括号内的数为正整数,故原式能被31整除.。
二项式定理经典题型及详细答案
二项式定理经典考点例析考点1:二项式系数与项的系数1、在28(2x -的展开式中,求: (1)第5项的二项式系数及第5项的系数.(2)2x 的系数.2.若1()nx x+展开式中第2项与第6项的系数相同,则展开式的中间一项的系数为___________.3.已知二项式102)3x求 (1)第四项(2)展开式第四项的二项式系数(3)展开式第四项的系数考点2:二项式定理逆用1、5432(1)5(1)10(1)10(1)5(1)x x x x x -+-+-+-+-=_____________2、5432)12()12(5)12(10)12(10)12(51+-+++-+++-x x x x x =_____________考点3:求二项式展开式中的特定项、某一项【例题】 1、二项式3522()x x-的展开式中5x 的系数___________;2. 二项式43(1)(1x -的展开式中2x 的系数是___________.3.若4(1a +=+(,a b 为有理数),则a b +=___________.4.二项式8(2-展开式中不含4x 项的系数的和为___________.5、二项式53)31()21(x x -+的展开式中4x 的系数___________.【练习】1.二项式4(1)x +的展开式中2x 的系数为___________..2.二项式210(1)x -的展开式中,4x 的系数为___________.3.二项式6展开式中含2x 项的系数为___________. 4.二项式533)1()21(x x -+的展开式中x 的系数___________.、常数项和有理项【例题】 1. 二项式61(2)2x x-的展开式的常数项是___________.2、二项式100的展开式中x 的系数为有理数的项的个数___________.3. 二项式261(1)()x x x x++-的展开式中的常数项为___________.4.二项式5)12(++xx 的展开式中常数项是___________. 【练习】1.8(2x -的展开式中的常数项___________. 2.在261()x x+的展开式中,常数项是___________.3.二项式5)44(++xx 的展开式中常数项是___________. 4.二项式54)31()21(xx -+的展开式中常数项是___________. 考点4:求展开式中的各项系数之和的问题1、已知7270127(12)...x a a x a x a x -=++++.求:(1)0a ; (2)763210a a a a a a ++++++ ;(3)763210a a a a a a -++-+-(4)6420a a a a +++;(5)7531a a a a +++;(6)2753126420)()(a a a a a a a a +++-+++. (7)||||||||||||763210a a a a a a ++++++ .(8)7766321022842a a a a a a ++++++ ;(9)7766321022842a a a a a a ++++++; 2.在二项式9(23)x y -的展开式中,求:(1)二项式系数之和;(2)各项系数之和;(3)所有奇数项系数之和;(4)所有项的系数的绝对值之和.3.利用二项式nn n n n n n n x C x C x C x C C x +++++=+ 432210)1(展开式nn n n n n n n n nn n n n n n n n n n n n n nn n n n n C C C C C C C C C C C C C C C C C C C C C 32842)4(2)3(0)1()2(2)1(3210153142032103210=+++++=+++=+++=-++-+-=+++++-考点5:多项式的展开式最大项问题【例题】1、二项式9)21(x +展开式中,(1)二项式系数的最大项 (2)系数的最大项 2、二项式12)21(x -展开式中(1)求展开式中系数的绝对值最大的项.(2)求展开式中系数最大的项.(3)求展开式中系数最小的项.3、已知()(1)(12)(,)m n f x x x m n N +=+++∈的展开式中含x 项系数为11,求()f x 展开式中2x 项系数的最小值.4、n xx )1(4+展开式中含x 的整数次幂的项的系数之和为__________.【练习】1、2102()x x+的展开式中系数最大的项; 2、求7(12)x -展开式中系数最大的项.3、设x =50(1)x +展开式中第几项最大?4、已知()nx x 2323+展开式中各项系数的和比各项的二项式系数的和大992,(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.考点6:含参二次函数求解【例题】1.【特征项】在二项式25()a x x-的展开式中x 的系数是-10,则实数a 的值是___________.2.【常数项】若n的展开式中存在常数项,则n 的值可以是___________.3.【有理项】已知n的展开式中,前三项的系数成等差数列,展开式中的所有有理项________. 4.【特征项】在210(1)x px ++的展开式中,试求使4x 项的系数最小时p 的值.5.【系数最大】已知1(2)2nx +的展开式中,第5项、第6项、第7项的二项式系数成等差数列,求展开式中二项式系数最大的项. 【练习】1.若9()a x x-的展开式中3x 的系数是-84,则a =___________.2.已知2)n x的展开式中第5项系数与第3项的系数比56:3,则该项展开式中2x 的系数_____. 3.若二项式22()nx x-的展开式中二项式系数之和是64,则展开式中的常数项为___________ 4.已知(13)nx +的展开式中,末三项的二项式系数的和等于121,求展开式中系数最大的项.考点7:求解某些整除性问题或余数问题1. 求证22*389()n n n N +--∈能被64整除.2. 9291被100整除所得的余数为_________ 3. 设21(*)n k k N =-∈,则11221777...7nn n n n n n C C C ---+⋅+⋅++⋅被9除所得的余数为_________4. 求证:(1)51511-能被7整除;(2)2332437n n +-+能被64整除.5. 如果今天是星期一,那么对于任意的自然数n ,经过33(275)n n +++天是星期几?考点8:计算近似值1、求60.998的近似值,使误差小于0.001. 2、求51.997精确到的近似值.考点9:有关等式与不等式的证明化简问题1、求121010101010124...2C C C ++++的值. 2、化简:1231248...(2)nnn n n n C C C C -+-++-. 3、求证:01121*(2)!...()(1)!(1)!n nn n n n n n n C C C C C C n N n n -+++=∈-+.4、证明下列等式与不等式(1)123123 (2)nn n n n n C C C nC n -++++=⋅.(2)设,,a b c 是互不相等的正数,且,,a b c 成等差数列,*n N ∈,求证2nnna cb +>. 【练习】1、=++++nn n n n n C C C C 2222210 ;2、=-++-+-nn n n n n n n C C C C C 2)1(22232210 ; 3、求证:12122-⋅=+++n n n n n n nC C C4、求证:nn n n n n n C C C C C 22222120)()()()(=++++5、已知7292222210=++++nn n n n n C C C C ,求n n n n C C C +++ 21考点10:创新型题目1、对于二项式(1-x)1999,有下列四个命题:①展开式中T 1000= -C 19991000x999;②展开式中非常数项的系数和是1;③展开式中系数最大的项是第1000项和第1001项;④当x=2000时,(1-x)1999除以2000的余数是1.其中正确命题的序号是__________.(把你认为正确的命题序号都填上) 2、规定!)1()1(m m x x x C m x +--=,其中x ∈R,m 是正整数,且10=x C ,这是组合数m n C (n 、m 是正整数,且m ≤n )的一种推广.(1) 求315-C的值;(2) 设x >0,当x 为何值时,213)(xxC C 取得最小值(3) 组合数的两个性质;①m n n m n C C -=. ②mn m n m n C C C 11+-=+.是否都能推广到mx C (x ∈R,m 是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.3、对于任意正整数,定义“n的双阶乘n!!”如下:对于n是偶数时,n!!=n·(n-2)·(n-4)……6×4×2;对于n是奇数时,n!!=n·(n-2)·(n-4)……5×3×1.现有如下四个命题:①(2005!!)·(2006!!)=2006!;②2006!!=21003·1003!;③2006!!的个位数是0;④2005!!的个位数是5.正确的命题是________.。
二项式定理应用常见题型大全(含答案)汇编
二项式定理应用常见题型大全一.选择题(共21小题)1.(2012•重庆)的展开式中常数项为().C D2.(2012•桃城区)在的展开式中,有理项共有()20124.(2008•江西)展开式中的常数项为()n*56.(2006•重庆)若的展开式中各项系数之和为64,则展开式的常数项为()8829211200610.(2004•福建)若(1﹣2x)9展开式的第3项为288,则的值是()D.11.若则二项式的展开式中的常数项为()12.(a>0)展开式中,中间项的系数为70.若实数x、y满足则z=x+2y的最小值是()C1014.的展开式中第三项的系数是().C.4n+1n17.设f(x)等于展开式的中间项,若f(x)≤mx在区间[,]上恒成立,则m的取值范围是[[,[18.在的展开式中系数最大的项是()682010参考答案与试题解析一.选择题(共21小题)1.(2012•重庆)的展开式中常数项为().C D的展开式通项公式中,令的展开式通项公式为=2.(2012•桃城区)在的展开式中,有理项共有()••,2012+ 4.(2008•江西)展开式中的常数项为()的展开式的通项为的展开式的通项为=的通项为=,时,展开式中的项为常数项n*56.(2006•重庆)若的展开式中各项系数之和为64,则展开式的常数项为()则展开式的常数项为88292112006分别取,时,有)(时,有)((10.(2004•福建)若(1﹣2x)9展开式的第3项为288,则的值是()D.中,化简可得答案.,x==211.若则二项式的展开式中的常数项为()∴二项式的通项为的展开式中的常数项为=16012.(a>0)展开式中,中间项的系数为70.若实数x、y满足则z=x+2y的最小值是()C,则=y=,则1014.的展开式中第三项的系数是().C.的展开式中第三项是×=4n+1n×、;=2×;n+×17.设f(x)等于展开式的中间项,若f(x)≤mx在区间[,]上恒成立,则m的取值范围是[[,[展开式的通项,再求出其展开式的中间项,即可得变形为x,由二次函数的性质,求出[,展开式的通项为(()=x⇔时,x时,,则若18.在的展开式中系数最大的项是()(﹣)从而获解,但比较麻烦,在选择填空中不提倡用,不可小题大做,682010。
二项式定理的常见题型及解法
二项式定理的常见题型及解法二项式定理的问题相对较独立,题型繁多,解法灵活且比较难掌握。
二项式定理既是排列组合的直接应用,又与概率理论中的三大概率分布之一的二项分布有着密切联系。
二项式定理在每年的高考中基本上都有考到,题型多为选择题,填空题,偶尔也会有大题出现。
本文将针对高考试题中常见的二项式定理题目类型一一分析如下,希望能够起到抛砖引玉的作用。
一、求二项展开式1.“(“+〃)"”型的展开式例1.求(3« + J)4的展开式:解:原式=(亨)4 = 3 y/x X-=3Gt),+ 0: 3靖 +(3x)2 + d 由)+。
:]A= -4(8 lx4 + 84x3 + 54x2 +12x +1) =81x2 +84x+—+ -4 + 54厂x 厂2."(“一匕)"”型的展开式例2.求(36一,=)4的展开式:分析:解决此题,只需要把(34一3)4改写成[36+(—一的形式然后按照二项展开式yjx y]X 的格式展开即可。
本题主要考察了学生的“问题转化”能力。
3.二项式展开式的“逆用”例3.计算1—3C:+9C:—27C:+~・+(-1)"3"C;:解:原式=<7>d(一到+C:(-3)2+C:(—3)3+....+ C»3)” =(1-3)” =(-2)”二、通项公式的应用1.确定二项式中的有关元素a反 Q? 9例4.已知(一一1一)’的展开式中工3的系数为一,常数4的值为______________x V 2 4解:= C;(色尸(J) = G;(-l)r-2^ •,产「x V 23 Q令三•一9 = 3,即〃=8依题意,得C;(一1)8・27.。
内=“解得。
=一12.确定二项展开式的常数项例5.(五一二,)1°展开式中的常数项是]5-5 5解:7;+1 =c;Q ^)i0-r (--y=(-\yc;0-x 令5—7r= 5 即r= 6. 所以常数项是(-l )6c* =2103 .求单一二项式指定器的系数例6.(』一一-)9展开式中X 9的系数是 _____________ 2%解:心=仁“产(-/ =仁”2(一'7=仁(-;)“心令18 - 3x = 9,则广=3,从而可以得到的系数为:。
二项式定理知识点和各种题型归纳带答案
二项式定理1•二项式定理:(a b)n=C0a n Ca n」b • ||「c n a n=b r•- C;;b n(n・ N ),2. 基本概念:①二项式展开式:右边的多项式叫做(a - b)n的二项展开式。
②二项式系数:展开式中各项的系数c n (r =0,1,2, , n).③项数:共(r 1)项,是关于a与b的齐次多项式④通项:展开式中的第r 1项c n a n-b r叫做二项式展开式的通项。
用丁i =C;a n」b r表示。
3. 注意关键点:①项数:展开式中总共有(n 1)项。
②顺序:注意正确选择a , b ,其顺序不能更改。
(a ■ b)n与(b ■ a)n是不同的。
③指数:a的指数从n逐项减到0,是降幕排列。
b的指数从0逐项减到n,是升幕排列。
各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是cnw’c:,…,C;,…,c n.项的系数是a与b的系数(包括二项式系数)。
4. 常用的结论:令a =1,b 二x, (1 - x)n=c0C:x C;x2十| • Qx r Fl C;x n(n N )令a =1,b = -x, (1 -x)n=C° -C:x C;x2-川C:x r ||( (-1)n C:x n(n N )5. 性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即c0 - c n , •••C n^Cn J②二项式系数和:令a=b=1,则二项式系数的和为c0 ■ c1 ■ Cn- C;Jll ■ c;-2n,变形式c n C2-Cn^H c; =2^1。
③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令a =1,b = —1,贝y C0—c n +c2 —Cj+川+(_1)n c n =(1_1)n= 0 ,从而得到:C: +C: +C:…+- = cn +C;+IH+c:r41+ …二丄X2n= 2n_l2④奇数项的系数和与偶数项的系数和:n OnO 小Jn」2n _22[[. nOn 1 2』』L n(a x) C n a x C n a x C*a x . C*a x a。
二项式定理经典习题与答案
二项式定理1. 求(X ? 一丄)9展开式的:2x(1 )第6项的二项式系数; (2) 第3项的系数; (3)X 9的系数。
分析:(1)由二项式定理及展开式的通项公式易得:第6项的二项式系数为 C9 = 126 ;(2)T 3 (x 2)7 •(一丄)2 =9x 12,故第 3 项的系数为 9;2x(3)1=C ; (x 2)9」(-丄)r =(-丄)「C ;伙1…,令 18-3r =9,故 r = 3,所2x2求系数是(-丄)3C3 - -212 22. 求证:5151 -1能被7整除。
分析:5151 _1 =(49 +2)51 _1=C 5I 4951 +C5/ 950・2半…+c 5;49 ”250 + C ;;251 — 1 ,除CH 251 -1以外各项都能被7整除。
又 c ;; 251 -1 = (23)17 一1 =(7 +1)17 -1 =昭717 +c ;7716卄+砖7 + 硝 一1 显然能被7整除,所以5151 -1能被7整除。
3. 求9192除以100的余数。
分析:9192 = (90 +1)92=C 929092 +C 929091 半一+c9290 +c 9;由此可见,除后两项外均能被 100整除,而C 9290 + C 9; =8281 =82汉100+81 故9192除以100的余数为81。
4. (2009北京卷文)若(V 2)^a b. 2(a, b 为有理数),则a b -A . 33B . 29C . 23D . 19答案】Bw析】本题主要考查二项式定理及其展开式•属于基础知识 ' 基本运算的考查•41234•••( 1+Q +c4(V 2 丨 +c :(T 2) +c :W 2) +c :(T 2)=1 4.212 8 .2 4=1712& ,由已知,得 17 1^. 2 = a b.2 ,••• a - b=17 '12 = 29 •故选 B.5. ( 2009 北京卷理)若(1 • '.2)5 =a • b',2(a,b 为有理数),贝U a b = ( )A . 45B . 55C . 70D . 80答案】C解析】本题主要考查二项式定理及其展开式•属于基础知识、基本运算的考查5 0 1 2 3 4 51 =C5 .2 C5 ,2 C5 .2 C5 .2 C5 ,2 C5 ,2=1 20 2^2 20 4、、2 =45 29.2 ,由已知,得41 29.2 = a ^.2 ,二a • b = 41 • 29 二70•故选 C.16.已知(仮-一)n的展开式中,前三项系数的绝对值依次成等差数列2vx(1)证明展开式中没有常数项;(2)求展开式中所有的有理项分析:依条件可得关于n的方程求出n ,然后写出通项T r d ,讨论常数项和有理项对r 的限制。
(完整版)二项式定理(习题含答案)
二项式定理一、求展开式中特定项1、在30的展开式中,x 的幂指数是整数的共有( )A .4项 B .5项 C .6项 D .7项【答案】C【解析】()r r rrr r x C x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=,30......2,1,0=r ,若要是幂指数是整数,所以=r 0,6,12,18,24,30,所以共6项,故选C . 3、若2531()x x +展开式中的常数项为 .(用数字作答)【答案】10【解】由题意得,令1x =,可得展示式中各项的系数的和为32,所以232n =,解得5n =,所以2531()x x +展开式的通项为10515r r r T C x -+=,当2r =时,常数项为2510C =,4、二项式82x的展开式中的常数项为 .【答案】112【解析】由二项式通项可得,3488838122rrr r rr r x C xx C --+-=-=)()()(T (r=0,1,,8),显然当2=r 时,1123=T ,故二项式展开式中的常数项为112.5、41(23)x x--的展开式中常数项等于________.【答案】14.【解析】因为41(2)(13)x x--中4(13)x -的展开式通项为4C (3)r r x -,当第一项取2时,04C 1=,此时的展开式中常数为2;当第一项取1x-时,14C (3)12x -=-,此时的展开式中常数为12;所以原式的展开式中常数项等于14,故应填14.6、设20sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰,则()622x ⎛-⋅+ ⎝的展开式中常数项是 .【答案】332=-332()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ⎛⎫=-+=+=-+= ⎪⎝⎭⎰⎰,6(=6的展开式的通项为663166((1)2r r rr r r r r T C C x ---+==-⋅⋅,所以所求常数项为3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-.二、求特定项系数或系数和7、8()x -的展开式中62x y 项的系数是( )A .56B .56-C .28D .28-【答案】A【解析】由通式r r r y x C )2(88--,令2=r ,则展开式中62x y 项的系数是56)2(228=-C .8、在x (1+x )6的展开式中,含x 3项的系数是 .【答案】15【解】()61x +的通项16r rr T C x +=,令2r =可得2615C =.则()61x x +中3x 的系数为15.9、在6(1)(2)x x -⋅-的展开式中含3x 的项的系数是 .【解析】6(1)(2)x x -⋅-的展开式中3x 项由336)(2x C -和226)(x -x C -⋅)(两部分组成,所以3x 的项的系数为552-2636-=-C C .10、已知dx x n 16e 1⎰=,那么nxx (3-展开式中含2x 项的系数为 .【答案】135【解析】根据题意,66e111ln |6e n dx x x=⎰==,则n x x )(3-中,由二项式定理的通项公式1r n r rr n T C a b -+=,可设含2x 项的项是616(3)r r r r T C x -+=-,可知2r =,所以系数为269135C ⨯=.11、已知()()()()10210012101111x a a x a x a x +=+-+-++-L ,则8a 等于( )A .-5B .5C .90D .180【答案】D 因为1010(1)(21)x x +=-+-,所以8a 等于8210(2)454180.C -=⨯=选D.12、在二项式1)2nx -的展开式中,只有第5项的二项式系数最大,则=n ________;展开式中的第4项=_______.【答案】8,1937x -.【解析】由二项式定理展开通项公式21()(2)33111()()22n r n r r r r r rr nn T C x x C x -++=-⋅=-,由题意得,当且仅当4n =时,rn C 取最大值,∴8n =,第4项为1193)333381()72C x x +-=-.13、如果7270127(12)x a a x a x a x -=++++ ,那么017a a a +++ 的值等于( )(A )-1 (B )-2 (C )0 (D )2【解析】令1x =,代入二项式7270127(12)x a a x a x a x -=++++ ,得70127(12)1a a a a -=++++=- ,令0x =,代入二项式7270127(12)x a a x a x a x -=++++ ,得70(10)1a -==,所以12711a a a ++++=- ,即1272a a a +++=- ,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7 =﹣1,15、(x﹣2)(x﹣1)5的展开式中所有项的系数和等于 【答案】0解:在(x﹣2)(x﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0,所以展开式中所有项的系数和等于0.16、在*3)()n n N ∈的展开式中,所有项的系数和为32-,则1x 的系数等于.【答案】270-【解析】当1=x 时,()322--=n,解得5=n ,那么含x1的项就是()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯,所以系数是-270.17、设0(sin cos )k x x dx π=-⎰,若8822108)1(x a x a x a a kx ++++=- ,则1238a a a a +++⋅⋅⋅+= .【答案】0.【解析】由0(sin cos )(cos sin )k x x dx x x ππ=-=--⎰(cos sin )(cos 0sin 0)2ππ=-----=,令1x =得:80128(121)a a a a -⨯=++++ ,即01281a a a a ++++= 再令0x =得:80128(120)000a a a a -⨯=+⨯+⨯++⨯ ,即01a =所以12380a a a a +++⋅⋅⋅+=18、设(5x﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M﹣N=240,则展开式中x 的系数为 .【答案】150解:由于(5x﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由二项式系数和为N=2n ,且M﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0.解得 2n =16,或 2n =﹣15(舍去),∴n=4.(5x﹣)n 的展开式的通项公式为 T r+1=?(5x )4﹣r ?(﹣1)r ?=(﹣1)r?54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r?54﹣r =1×6×25=150,19、设8877108)1(x a x a x a a x ++++=- ,则178a a a +++= .【答案】255【解析】178a a a +++= 87654321a a a a a a a a +-+-+-+-,所以令1-=x ,得到=82876543210a a a a a a a a a +-+-+-+-,所以2551256-20887654321=-==+-+-+-+-a a a a a a a a a 三、求参数问题20、若n的展开式中第四项为常数项,则n =( )A .4B .5C .6D .7【答案】B【解析】根据二项式展开公式有第四项为2533333342)21()(---==n nn nxC xx C T ,第四项为常数,则必有025=-n ,即5=n ,所以正确选项为B.21、二项式)()1(*N n x n ∈+的展开式中2x 的系数为15,则=n ( )A 、5 B 、 6 C 、8 D 、10【答案】B【解析】二项式)()1(*N n x n ∈+的展开式中的通项为k n kn k x C T -+⋅=1,令2=-k n ,得2-=n k ,所以2x 的系数为152)1(22=-==-n n C C n n n ,解得6=n ;故选B .22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵4r+14T =C r r r a x -,∴当43r -=,即1r =时,133324T =C 48,2ax ax x a ==∴=.23、若()()411x ax ++的展开式中2x 的系数为10,则实数a =( )A1 B .53-或1 C .2或53- D. 【答案】B.【解析】由题意得4(1)ax +的一次性与二次项系数之和为14,其二项展开通项公式14r r rr T C a x +=,∴22144101C a C a a +=⇒=或53-,故选B .24、设23(1)(1)(1)(1)n x x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+,当012254n a a a a +++⋅⋅⋅+=时,n 等于( )A .5B .6C .7D .8【答案】C. 【解析】令1x =,则可得2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-,故选C .四、其他相关问题25、20152015除以8的余数为( )【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数.试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,。
二项式定理高考题(带答案)精选全文
可编辑修改精选全文完整版1.2018年全国卷Ⅲ理】的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C【解析】分析:写出,然后可得结果详解:由题可得,令,则,所以故选C.2.【2018年浙江卷】二项式的展开式的常数项是___________.【答案】7【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果.详解:二项式的展开式的通项公式为,令得,故所求的常数项为3.【2018年理数天津卷】在的展开式中,的系数为____________.【答案】决问题的关键.4.【山西省两市2018届第二次联考】若二项式中所有项的系数之和为,所有项的系数的绝对值之和为,则的最小值为()A. 2B.C.D.【答案】B5.【安徽省宿州市2018届三模】的展开式中项的系数为__________.【答案】-132【解析】分析:由题意结合二项式展开式的通项公式首先写出展开式,然后结合展开式整理计算即可求得最终结果.详解:的展开式为:,当,时,,当,时,,据此可得:展开式中项的系数为.6.【2017课标1,理6】621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x ++=⋅++⋅+,则6(1)x +展开式中含2x 的项为2226115C x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为44262115C x x x⋅=,故2x 前系数为151530+=,选C.情况,尤其是两个二项式展开式中的r 不同.7.【2017课标3,理4】()()52x y x y +-的展开式中x 3y 3的系数为A .80-B .40-C .40D .80【答案】C 【解析】8.【2017浙江,13】已知多项式()1x +3()2x +2=5432112345x a x a x a x a x a +++++,则4a =________,5a =________. 【答案计数.9.【2017山东,理11】已知()13nx +的展开式中含有2x 项的系数是54,则n = .【答案】4【解析】试题分析:由二项式定理的通项公式()1C 3C 3rr r r rr n n x x +T ==⋅⋅,令2r =得:22C 354n ⋅=,解得4n =. 【考点】二项式定理10.【2015高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C【解析】二项式()1nx +的展开式的通项是1C r rr n x +T =,令2r =得2x 的系数是2C n ,因为2x 的系数为15,所以2C 15n =,即2300n n --=,解得:6n =或5n =-,因为n +∈N ,所以6n =,故选C . 【考点定位】二项式定理.【名师点晴】本题主要考查的是二项式定理,属于容易题.解题时一定要抓住重要条件“n +∈N ”,否则很容易出现错误.解本题需要掌握的知识点是二项式定理,即二项式()na b +的展开式的通项是1C k n k k k n ab -+T =. 11.【2015高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C12.【2015高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为( )A.122 B .112 C .102D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n ,所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯.13.【2015高考重庆,理12】53x ⎛+ ⎝的展开式中8x 的系数是________(用数字作答).【答案】52【解析】二项展开式通项为7153521551()()2k k kkk k k T C x C x --+==,令71582k-=,解得2k =,因此8x 的系数为22515()22C =.14.【2015高考广东,理9】在4)1(-x 的展开式中,x 的系数为 . 【答案】6.【解析】由题可知()()44214411r rrrrr r T CC x--+=-=-,令412r-=解得2r =,所以展开式中x 的系数为()22416C -=,故应填入6.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.15.【2015高考天津,理12】在614x x ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 .【答案】1516【解析】614x x ⎛⎫- ⎪⎝⎭展开式的通项为6621661144rrr r r r r T C x C x x --+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,由622r -=得2r =,所以222236115416T C x x ⎛⎫=-= ⎪⎝⎭,所以该项系数为1516.16.【2015高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. 【答案】3【解析】由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =.【考点定位】二项式定理.17.【2015高考湖南,理6】已知5-的展开式中含32x 的项的系数为30,则a =( )B. C.6 D-6 【答案】D.18.【2015高考上海,理11】在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为(结果用数值表示). 【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭,所以2x 项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C = 19.(2016年北京高考)在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答) 【答案】60.20.(2016年山东高考)若(a x 2)5的展开式中x 5的系数是—80,则实数a =_______. 【答案】-221.(2016年上海高考)在nx x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________ 【答案】11222.(2016年四川高考)设i 为虚数单位,则6(i)x +的展开式中含x 4的项为(A )-15x 4 (B )15x 4 (C )-20i x 4 (D )20i x 4【答案】A23.(2016年天津高考)281()x x-的展开式中x 2的系数为__________.(用数字作答)【答案】56-24.(2016年全国I 高考)5(2x 的展开式中,x 3的系数是 .(用数字填写答案) 【答案】10。
二项式定理题型
二项式定理题型一、求二项展开式中的特定项1. 题目- 求二项式(2x - (1)/(x))^6展开式中的常数项。
2. 解析- 根据二项式定理(a + b)^n=∑_k = 0^nC_n^ka^n - kb^k,对于(2x-(1)/(x))^6,a = 2x,b=-(1)/(x),n = 6。
- 展开式的通项公式为T_r+1=C_6^r(2x)^6 - r(-(1)/(x))^r。
- 化简T_r + 1=C_6^r(2x)^6 - r(-(1)/(x))^r=C_6^r2^6 - rx^6 - r(-1)^rx^-r=C_6^r2^6 - r(-1)^rx^6 - 2r。
- 要求常数项,则令x的指数6-2r = 0,解得r = 3。
- 把r = 3代入通项公式中,可得常数项为C_6^32^6 - 3(-1)^3。
- 计算C_6^3=(6!)/(3!(6 - 3)!)=(6×5×4)/(3×2×1)=20。
- 所以常数项为20×2^3×(-1)=-160。
二、求二项展开式的系数和1. 题目- 已知二项式(1 + 2x)^n,设(1 + 2x)^n=a_0+a_1x + a_2x^2+·s+a_nx^n,求a_0+a_1+a_2+·s+a_n的值。
2. 解析- 令x = 1,则(1+2×1)^n=(1 + 2)^n=3^n。
- 此时(1 + 2x)^n变为a_0+a_1×1+a_2×1^2+·s+a_n×1^n,即a_0+a_1+a_2+·s+a_n=3^n。
三、二项式系数的性质相关题目1. 题目- 在二项式(x + y)^n的展开式中,二项式系数最大的项是第5项和第6项,求n的值。
2. 解析- 当n为偶数时,二项式系数最大的是中间一项,即第(n)/(2)+1项;当n为奇数时,二项式系数最大的是中间两项,即第(n + 1)/(2)项和第(n+3)/(2)项。
二项式定理练习(带答案)
1.3.1二项式定理一、选择题1.在(x -12x )10的二项展开式中,x 4的系数为( )A .-120B .120C .-15D .15[答案] C[解析] T r +1=C r 10x 10-r (-12x )r =(-12)r ·C r 10x 10-2r 令10-2r =4,则r =3.∴x 4的系数为(-12)3C 310=-15.2.在(x 2-2x)6的二项展开式中,x 2的系数为( ) A .-154B.154 C .-38 D.38[答案] C[解析] ∵T r +1=C r 6(x 2)6-r ·(-2x )r =C r 6(-1)r 22r -6x 3-r (r =0,1,2,…,6), 令3-r =2得r =1.∴x 2的系数为C 16(-1)1·2-4=-38,故选C. 3.在(2x 2-1x )5的二项展开式中,x 的系数为( )A .10B .-10C .40D .-40[答案] D[解析] 本小题考查二项式展开式的系数求法,考查运算能力.(2x 2-1x )5的展开式的通项为T r +1=C r 5(2x 2)5-r (-1x )r =C r 525-r (-1)r x 10-3r ,令10-3r =1得,r =3,∴T 4=C 3522(-1)3x =-40x .∴x 的系数是-40.[点评] 把二项式系数等同于项的系数是易犯的错误.4.在⎝ ⎛⎭⎪⎫x 2-1x n 的展开式中,常数项为15,则n 的一个值可以是( ) A .3 B .4 C .5 D .6[答案] D[解析] 通项T r +1=C r 10(x 2)n -r (-1x)r =(-1)r C r n x 2n -3r ,常数项是15,则2n =3r ,且C r n =15,验证n =6时,r =4合题意,故选D.5.在⎝⎛⎭⎪⎪⎫32x -1220的展开式中,系数是有理数的项共有( ) A .4项 B .5项 C .6项 D .7项[答案] A [解析] T r +1=C r 20(32x )20-r ⎝ ⎛⎭⎪⎫-12r =⎝ ⎛⎭⎪⎫-22r ·(32)20-r C r 20·x 20-r , ∵系数为有理数,∴(2)r与220-r 3均为有理数, ∴r 能被2整除,且20-r 能被3整除,故r 为偶数,20-r 是3的倍数,0≤r ≤20.∴r =2,8,14,20.二、填空题6. ⎝ ⎛⎭⎪⎪⎫2-13x 6的展开式中的第四项是________.[答案] -160x[解析] ⎝⎛⎭⎪⎪⎫2-13x 6的展开式中第4项为 T 4=C 3623·⎝⎛⎭⎪⎪⎫-13x 3=-160x . 7.x (x -2x )7的展开式中,x 4的系数是________.(用数字作答)[答案] 84[解析] x 4的系数,即(x -2x )7展开式中x 3的系数, T r +1=C r 7·x 7-r ·(-2x )r=(-2)r ·C r 7·x 7-2r , 令7-2r =3得,r =2,∴所求系数为(-2)2C 27=84.8.若(1+2)5=a +b 2(a 、b 为有理数),则a +b 等于________.[答案] 70 [解析] ∵(1+2)5=1+52+20+202+20+42=41+292=a +b 2,又a 、b 为有理数,∴⎩⎨⎧ a =41,b =29.∴a +b =41+29=70.。
高考数学《二项式定理》真题含答案
高考数学《二项式定理》真题含答案一、选择题1.(x +1)6的展开式中的第二项为( )A .6xB .15x 2C .6x 5D .15x 4答案:C2.⎝⎛⎭⎫x 2-2x 3 5 的展开式中的常数项为( ) A .80 B .-80C .40D .-40答案:C解析:由二项展开式通项知T k +1=(-2)k C k 5 ·(x 2)5-k ⎝⎛⎭⎫1x 3 k=(-2)k C k 5 x 10-5k ,令10-5k =0,得k =2.∴常数项为T 3=(-2)2C 25 =40.3.(多选)已知(a +2b )n 的展开式中第6项的二项式系数最大,则n 的值可能为( )A .8B .9C .10D .11答案:BCD4.若(x +2)⎝⎛⎭⎫a x -x 5 展开式中的常数项为80,则a =( )A .-2B .2C .±2D .4答案:B解析:⎝⎛⎭⎫a x -x 5 的展开式的通项公式为T k +1=C k 5 ·(-1)k ·a 5-k ·x 2k -5,显然,2k -5为奇数,故(x +2)⎝⎛⎭⎫a x -x 5 展开式中的常数项为C 25 ·a 3=80,所以a =2. 5.若(x -2y )6的展开式中的二项式系数和为S ,x 2y 4的系数为P ,则P S为( ) A .152 B .154C .120D .240答案:B解析:由题意得S =26=64,P =C 46 (-2)4=15×16=240,∴P S =24064 =154. 6.在二项式⎝⎛⎭⎫x +3x n 的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且A +B =72,则展开式中常数项的值为( )A .6B .9C .12D .18答案:B解析:在⎝⎛⎭⎫x +3x n的展开式中令x =1,得A =4n ,各项二项式系数之和为B =2n ,由 4n +2n =72,得n =3,∴⎝⎛⎭⎫x +3x n =⎝⎛⎭⎫x +3x 3 ,其通项为T k +1=C k 3 (x )3-k ⎝⎛⎭⎫3x k =3k C k 3 x 3-3k 2,令3-3k 2=0,得k =1,故展开式的常数项为T 2=3C 13 =9. 7.⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数为( ) A .5 B .10C .15D .20答案:C解析:要求⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数,只要分别求出(x +y )5的展开式中x 2y 3和x 4y 的系数再相加即可,由二项式定理可得(x +y )5的展开式中x 2y 3的系数为C 35 =10,x 4y 的系数为C 15 =5,故⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数为10+5=15.故选C. 8.设S =(x -1)4+4(x -1)3+6(x -1)2+4(x -1)+1,则S =( )A .(x -2)4B .(x -1)4C .x 4D .(x +1)4答案:C解析:S =C 04 (x -1)4+C 14 (x -1)3+C 24 (x -1)2+C 34 (x -1)1+C 44 (x -1)0=(x -1+1)4=x 4.9.(多选)已知(2+x )(1-2x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则( )A .a 0的值为2B .a 5的值为16C .a 1+a 2+a 3+a 4+a 5+a 6的值为-5D .a 1+a 3+a 5的值为120答案:ABC解析:对于A ,令x =0,得a 0=2×1=2,故A 正确;对于B ,(1-2x )5的展开式的通项T k +1=C k 5 (-2x )k =(-2)k C k 5 x k ,所以a 5=2×(-2)5C 55 +1×(-2)4C 45 =-64+80=16,故B 正确;对于C ,令x =1,得(2+1)(1-2×1)5=a 0+a 1+a 2+a 3+a 4+a 5+a 6 ①,即a 1+a 2+a 3+a 4+a 5+a 6=-3-a 0=-3-2=-5,故C 正确;对于D ,令x =-1,得(2-1)[1-2×(-1)]5=a 0-a 1+a 2-a 3+a 4-a 5+a 6 ②,由①②解得a 1+a 3+a 5=-123,故D 不正确.综上所述,选ABC.二、填空题10.[2024·全国甲卷(理)](13+x )10的展开式中,各项系数中的最大值为______. 答案:5解析:方法一 二项式(13 +x )10的展开式的通项为T k +1=C k 10 (13)10-k x k . 由⎩⎨⎧Ck 10 (13)10-k >C k -110 (13)11-k ,C k 10 (13)10-k >C k +110 (13)9-k ,解得294 <k <334. 又k ∈N *,所以k =8.所以所求系数的最大值为C 810 (13 )2=5.方法二 展开式中系数最大的项一定在下面的5项中:C 510 (13 )5x 5,C 610 (13)4x 6,C 710 (13 )3x 7,C 810 (13 )2x 8,C 910 (13 )1x 9,计算可得,所求系数的最大值为C 810 (13)2=5. 11.在二项式(2 +x )9的展开式中,常数项是________,系数为有理数的项的个数是______________.答案:162 5解析:该二项展开式的第k +1项为T k +1=C k 9 (2 )9-k x k ,当k =0时,第1项为常数项,所以常数项为(2 )9=162 ;当k =1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5.12.在(x -1x)7的展开式中,系数最大的是第________项. 答案:5解析:二项式⎝⎛⎭⎫x -1x 7的展开式的通项为T k +1=C k 7 ·x 7-k ·(-1)k x -k =(-1)k C k 7 x 7-2k ,故第k +1项的系数为(-1)k C k 7 ,当k =0,2,4,6时,系数为正,因为C 07 <C 67 <C 27 <C 47 ,所以当k =4时,系数最大,是第5项.。
二项式定理典型例题(含解答)
二项式定理典型例题典型例题一例1 在二项式nx x ⎪⎭⎫ ⎝⎛+421的展开式中前三项的系数成等差数列,求展开式中所有有理项. 分析:典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决.解:二项式的展开式的通项公式为:4324121C 21)(C rn r r n rr n r n r x x x T --+=⎪⎭⎫ ⎝⎛= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,123121-=====n n t n t t nn , 由已知:)1(8112312-+=+=n n n tt t ,∴8=n 通项公式为1431681,82,1,021C +-+==r rr rr T r x T 为有理项,故r 316-是4的倍数,∴.8,4,0=r 依次得到有理项为228889448541256121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有典型例题四例4(1)求103)1()1(x x +-展开式中5x 的系数;(2)求6)21(++xx 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式.解:(1)103)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项: 用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5x 项,可以得到5510C x ;用3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;用3)1(x -中的2x 乘以10)1(x +展开式中的3x 可得到531033102C 3C 3x x x =⋅;用 3)1(x -中的3x 项乘以10)1(x +展开式中的2x 项可得到521022103C C 3x x x -=⋅-,合并同类项得5x 项为:5521031041051063)C C 3C C (x x -=-+-.(2)2121⎪⎪⎭⎫ ⎝⎛+=++x x x x 1251)21(⎪⎪⎭⎫ ⎝⎛+=++x x x x .由121⎪⎪⎭⎫⎝⎛+x x 展开式的通项公式r rrrrr x x T--+=⎪⎭⎫ ⎝⎛=61212121C 1)2(C ,可得展开式的常数项为924C 612=.说明:问题(2)中将非二项式通过因式分解转化为二项式解决.这时我们还可以通过合并项转化为二项式展开的问题来解决.典型例题五例5 求62)1(x x -+展开式中5x 的系数.分析:62)1(x x -+不是二项式,我们通过22)1(1x x x x -+=-+或)(12x x -+展开. 解:方法一:[]6262)1()1(x x x x -+=-+ -+++-+=44256)1(15)1(6)1(x x x x x其中含5x 的项为55145355566C 15C 6C x x x x =+-.含5x 项的系数为6.方法二:[]6262)(1)1(x x x x -+=-+62524232222)()(6)(15)(20)(15)(61x x x x x x x x x x x x -+-+-+-+-+-+=其中含5x 的项为555566)4(15)3(20x x x x =+-+-.∴5x 项的系数为6.方法3:本题还可通过把62)1(x x -+看成6个21x x -+相乘,每个因式各取一项相乘可得到乘积的一项,5x 项可由下列几种可能得到.5个因式中取x ,一个取1得到556C x .3个因式中取x ,一个取2x -,两个取1得到)(C C 231336x x -⋅⋅. 1个因式中取x ,两个取2x -,三个取1得到222516)(C C x x -⋅⋅. 合并同类项为5525161336566)C C C C (C x x =+-,5x 项的系数为6.典型例题六例6 求证:(1)1212C C 2C -⋅=+++n n n n n n n ;(2))12(11C 11C 31C 21C 1210-+=++++++n n nn n n n n . 分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质nn n n n n 2C C C C 210=++++ .解:(1)11C )!()!1()!1()!()!1(!)!(!!C --=+--⋅=--=-⋅=k n kn n k n k n n k n k n k n k n k k ∴左边111101C C C ----+++=n n n n n n n =⋅=+++=-----11111012)C C C (n n n n n n n 右边.(2))!()!1(!)!(!!11C 11k n k n k n k n k k k n --=-⋅+=+11C 11)!()!1()!1(11+++=-++⋅+=k n n k n k n n . ∴左边112111C 11C 11C 11++++++++++=n n n n n n n =-+=++++=+++++)12(11)C C (C 111112111n n n n n n n 右边. 说明:本题的两个小题都是通过变换转化成二项式系数之和,再用二项式系数的性质求解.此外,有些组合数的式子可以直接作为某个二项式的展开式,但这需要逆用二项式定理才能完成,所以需仔细观察,我们可以看下面的例子:求10C 2C 2C 2C 22108107910810109+++++ 的结果.仔细观察可以发现该组合数的式与10)21(+的展开式接近,但要注意:10101099102210110010102C 2C 2C 2C C )21(⋅+⋅++⋅+⋅+=+ 10101091092102C 2C 2C 21021++++⨯+= )C 2C 2C 210(21101099108210+++++=从而可以得到:)13(21C 2C 2C 21010101099108210-=++++ . 典型例题七例7 利用二项式定理证明:98322--+n n 是64的倍数.分析:64是8的平方,问题相当于证明98322--+n n 是28的倍数,为了使问题向二项式定理贴近,变形1122)18(93++++==n n n ,将其展开后各项含有k 8,与28的倍数联系起来.解:∵98322--+n n 98)18(98911--+=--=++n n n n9818C 8C 8C 81211111--+⋅+⋅++⋅+=+-+++n nn n n n n n981)1(88C 8C 8211111--+++⋅++⋅+=-+++n n n n n n n 2111118C 8C 8⋅++⋅+=-+++n n n n n 64)C 8C 8(112111⋅++⋅+=-+-++n n n n n 是64的倍数.说明:利用本题的方法和技巧不仅可以用来证明整除问题,而且可以用此方程求一些复杂的指数式除以一个数的余数.典型例题八例8 展开52232⎪⎭⎫ ⎝⎛-x x .分析1:用二项式定理展开式.解法1:52232⎪⎭⎫ ⎝⎛-x x 2232524150250523)2(23)2(23)2(⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=x x C x x C x x C52554245322352323)2(23)2(⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+x C x x C x x C10742532243840513518012032xx x x x x -+-+-= 分析2:对较繁杂的式子,先化简再用二项式定理展开.解法2:10535232)34(232x x x x -=⎪⎭⎫ ⎝⎛-233254315530510)3()4()3()4()4([321-+-+=x C x C x C x ])3()3()4()3()4(5554134532335-+-+-+C x C x C)243716204320576038401024(321369121510-+-+-=x x x x x x10742532243840513518012032x x x x x x -+-+-=. 说明:记准、记熟二项式nb a )(+的展开式,是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.典型例题九例9 若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为( ). A .11 B .33 C .55 D .66 分析:10)(z y x ++看作二项式10])[(z y x ++展开.解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即∑=-⋅+=++=++10010101010)(])[()(k k k kz y x C z y x z y x .这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式ky x -+10)(展开,不同的乘积k kk z y x C ⋅+-1010)((10,,1,0 =k )展开后,都不会出现同类项. 下面,再分别考虑每一个乘积k kk z y x C ⋅+-1010)((10,,1,0 =k ).其中每一个乘积展开后的项数由ky x -+10)(决定,而且各项中x 和y 的指数都不相同,也不会出现同类项.故原式展开后的总项数为66191011=++++ ,∴应选D .典型例题十例10 若nx x ⎪⎭⎫⎝⎛-+21的展开式的常数项为20-,求n .分析:题中0≠x ,当0>x 时,把nx x ⎪⎭⎫ ⎝⎛-+21转化为nn x x x x 2121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+;当0<x 时,同理nn n x x x x 21)1(21⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛-+.然后写出通项,令含x 的幂指数为零,解出n . 解:当0>x 时nn x x x x 2121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+,其通项为rn r n r r rn r n r x C xx C T 222221)()1()1()(--+-=-=,令022=-r n ,得r n =, ∴展开式的常数项为n nnC2)1(-;当0<x 时,nn n x x x x 21)1(21⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛-+, 同理可得,展开式的常数项为n n n C 2)1(-.无论哪一种情况,常数项均为nn n C 2)1(-. 令20)1(2-=-nn n C ,以 ,3,2,1=n ,逐个代入,得3=n .典型例题十一例11 1031⎪⎭⎫ ⎝⎛+x x 的展开式的第3项小于第4项,则x 的取值范围是______________.分析:首先运用通项公式写出展开式的第3项和第4项,再根据题设列出不等式即可. 解: 1031⎪⎭⎫ ⎝⎛+x x 有意义必须0>x ;依题意有43T T <即3373102382101)(1)(⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛x x C x x C .∴31123891012910xx ⨯⨯⨯⨯⨯<⨯⨯(∵0>x ).解得5648980<<x .∴x 的取值范围是⎭⎬⎫⎩⎨⎧<<5648980x x .∴应填:5648980<<x .典型例题十二例12 已知n xx)1(2log +的展开式中有连续三项的系数之比为321∶∶,这三项是第几项?若展开式的倒数第二项为112,求x 的值.解:设连续三项是第k 、1+k 、2+k 项(+∈N k 且1>k ),则有32111∶∶∶∶=+-k n k n k n C C C , 即321!)1)(1(!!)(!!!)1)(1(!∶∶∶∶=--+-+--k n k n k n k n k n k n .∴321)1(1)(1)1)((1∶∶∶∶=+-+--k k k n k k n k n .∴⎪⎪⎩⎪⎪⎨⎧=-+=+-⇒⎪⎪⎩⎪⎪⎨⎧=-+=+---32)()1(21132)()1(21)1)(()(k n k k n k k n k k k k n k n k n k 14=⇒n ,5=k 所求连续三项为第5、6、7三项.又由已知,1122log 1314=xx C .即82log =x x .两边取以2为底的对数,3)(log 22=x ,3log 2±=x ,∴32=x ,或32-=x .说明:当题目中已知二项展开式的某些项或某几项之间的关系时,常利用二项式通项,根据已知条件列出某些等式或不等式进行求解.典型例题十三例13 nx )21(+的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.分析:根据已知条件可求出n ,再根据n 的奇偶性;确定二项式系数最大的项.解:556)2(x C T n =,667)2(x C T n =,依题意有8226655=⇒=n C C n n . ∴8)21(x +的展开式中,二项式系数最大的项为444851120)2(x x C T ==.设第1+r 项系数最大,则有65222211881188≤≤⇒⎪⎩⎪⎨⎧⋅≥⋅⋅≥⋅++--r C C C C r r r r r r r r . ∴5=r 或6=r (∵{}8,,2,1,0 ∈r ).∴系娄最大的项为:561792x T =,671792x T =.说明:(1)求二项式系数最大的项,根据二项式系数的性质,n 为奇数时中间两项的二项式系数最大,n 为偶数时,中间一项的二项式系数最大.(2)求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式,解不等式的方法求得.典型例题十四例14 设nm x x x f )1()1()(+++=(+∈N n m ,),若其展开式中关于x 的一次项的系数和为11,问n m ,为何值时,含2x 项的系数取最小值?并求这个最小值.分析:根据条件得到2x 的系数关于n 的二次表达式,然后用二次函数性质探讨最小值.解:1111=+=+m n C C n m .211)(21222222-+=-+-=+n m n n m m C C n m 499)211(55112211022+-=+-=-=n n n mn .∵+∈N n , ∴5=n 或6,6=m 或5时,2x 项系数最小,最小值为25.说明:二次函数499)211(2+-=x y 的对称轴方程为211=x ,即5.5=x ,由于5、6距5.5等距离,且对+∈N n ,5、6距5.5最近,所以499)211(2+-n 的最小值在5=n 或6=n 处取得.典型例题十五例15 若0166777)13(a x a x a x a x ++++=- ,求(1) 721a a a +++ ;(2) 7531a a a a +++;(3) 6420a a a a +++.解:(1)令0=x ,则10-=a ,令1=x ,则128270167==++++a a a a . ①∴129721=+++a a a .(2)令1-=x ,则701234567)4(-=+-+-+-+-a a a a a a a a ②由2②①-得:8256]4128[2177531=--=+++)(a a a a (3)由2②①+得:6420a a a a +++][210123456701234567)()(a a a a a a a a a a a a a a a a +-+-+-+-++++++++=8128])4(128[217-=-+=. 说明:(1)根据问题恒等式特点来用“特殊值”法.这是一种重要方法,它适用于恒等式.(2)一般地,对于多项式nn n x a x a x a a q px x g ++++=+= 2210)()(,)(x g 的各项的系数和为)1(g :)(x g 的奇数项的系数和为)]1()1([21-+g g .)(x g 的偶数项的系数和为)]1()1([21--g g . 典型例题十六例16 填空:(1) 3230-除以7的余数_____________;(2) 155555+除以8的余数是___. 分析(1):将302分解成含7的因数,然后用二项式定理展开,不含7的项就是余数.解:3230-3)2(103-=3)8(10-=3)17(10-+=37771010910911010010-++++=C C C C2]77[791081109010-+++⨯=C C C又∵余数不能为负数,需转化为正数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项式定理应用常见题型大全一.选择题(共21小题)1.(2012•重庆)的展开式中常数项为()A.B.C.D.1052.(2012•桃城区)在的展开式中,有理项共有()A.3项B.4项C.6项D.7项3.(2012•湖北)设a∈Z,且0≤a≤13,若512012+a能被13整除,则a=()A.0B.1C.11 D.124.(2008•江西)展开式中的常数项为()A.1B.46 C.4245 D.42465.(2007•湖南)在(1+x)n(n∈N*)的二项展开式中,若只有x5的系数最大,则n=()A.8B.9C.10 D.116.(2006•重庆)若的展开式中各项系数之和为64,则展开式的常数项为()A.﹣540 B.﹣162 C.162 D.5407.(2008•安徽)设(1+x)8=a0+a1x+…+a8x8,则a0,a1,…,a8中奇数的个数为()A.2B.3C.4D.58.(2007•江西)设(x2+1)(2x+1)9=a0+a1(x+2)+a2(x+2)2+…+a11(x+2)11,则a0+a1+a2+…+a11的值为()A.﹣2 B.﹣1 C.1D.29.(2006•江西)在(x﹣)2006的二项展开式中,含x的奇次幂的项之和为S,当x=时,S等于()A.23008B.﹣23008C.23009D.﹣2300910.(2004•福建)若(1﹣2x)9展开式的第3项为288,则的值是()A.2B.1C.D.11.若则二项式的展开式中的常数项为()A.160 B.180 C.150 D.17012.(a>0)展开式中,中间项的系数为70.若实数x、y满足则z=x+2y的最小值是()A.﹣1 B.C.5D.113.(x+1)10的展开式中的第六项是()A.210x4B.252x52 C.210x6D.21014.的展开式中第三项的系数是()A.B.C.15 D.15.二项式(1﹣x)4n+1的展开式中,系数最大的项是()A.第2n+1项B.第2n+2项C.第2n项D.第2n+1项和第2n+2项16.已知(1+x)n的展开式中,第二、三、四项的系数成等差数列,则n等于()A.7B.7或2 C.6D.6或1417.设f(x)等于展开式的中间项,若f(x)≤mx在区间[,]上恒成立,则m的取值范围是()A.[5,+∞)B.[,+∞)C.[,5]D.[,5)18.在的展开式中系数最大的项是()A.第6项B.第6、7项C.第4、6项D.第5、7项19.2.9986的近似值(精确到小数后第三位)为()A.726.089 B.724.089 C.726.098 D.726.90820.在(x+y+z)8的展开式中,合并同类项之后的项数是()A.16 B.28C.C82D.C10221.今天为星期六,则今天后的第22010天是()A.星期一B.星期二C.星期四D.星期日参考答案与试题解析一.选择题(共21小题)1.(2012•重庆)的展开式中常数项为()A.B.C.D.105考点:二项式定理的应用.专题:计算题.分析:在的展开式通项公式中,令x的幂指数等于零,求出r的值,即可求得展开式中常数项.解答:解:的展开式通项公式为T r+1==,令=0,r=4.故展开式中常数项为=,故选B.点评:本题主要考查二项式定理,二项展开式的通项公式,求展开式中某项的系数,属于中档题.2.(2012•桃城区)在的展开式中,有理项共有()A.3项B.4项C.6项D.7项考点:二项式定理的应用.专题:计算题.分析:求出展开式的通项公式,观察可得要使此项为有理项,r是6的倍数,故r=0,6,12,18,由此可得有理项的个数.解答:解:由于的通项公式为T r+1=••,要使此项为有理项,则20﹣r是偶数,且r还是3的倍数,即r是6的倍数,故r=0,6,12,18,故有理项共有4项,故选B.点评:本题主要考查二项式定理,二项展开式的通项公式,求展开式中某项的系数,属于中档题.3.(2012•湖北)设a∈Z,且0≤a≤13,若512012+a能被13整除,则a=()A.0B.1C.11 D.12考点:二项式定理的应用.专题:计算题.分析:由二项式定理可知512012+a=(52﹣1)2012+a的展开式中的项含有因数52,要使得能512012+a能被13整除,只要a+1能被13整除,结合已知a的范围可求解答:解:∵512012+a=(52﹣1)2012+a=+…++a由于含有因数52,故能被52整除要使得能512012+a能被13整除,且a∈Z,0≤a≤13则可得a+1=13∴a=12故选D点评:本题考查的知识点是整除的定义,其中根据已知条件确定a+1是13的倍数是解答本题的关键.4.(2008•江西)展开式中的常数项为()A.1B.46 C.4245 D.4246考点:二项式定理的应用.专题:计算题.分析:利用二项展开式的通项公式求出展开式的通项,令x 的指数为0得常数项.解答:解:的展开式的通项为,其中r=0,1,2 (6)的展开式的通项为=,其中k=0,1,2, (10)的通项为=当时,展开式中的项为常数项∴,,时,展开式中的项为常数项∴展开式中的常数项为1+C63C104+C66C108=4246故选项为D点评:本题考查二项展开式的通项公式是解决展开式的特定项问题的工具.5.(2007•湖南)在(1+x)n(n∈N*)的二项展开式中,若只有x5的系数最大,则n=()A.8B.9C.10 D.11考点:二项式定理的应用.专题:计算题.分析:本题的项的系数和二项式系数相等,根据二项展开式中中间项的二项式系数最大求出n的值.解答:解:∵只有x5的系数最大,又∵展开式中中间项的二项式系数最大x5是展开式的第6项,∴第6项为中间项,∴展开式共有11项,故n=10故选项为C点评:本题考查二项展开式中二项式系数的性质:展开式中中间项的二项式系数最大.6.(2006•重庆)若的展开式中各项系数之和为64,则展开式的常数项为()A.﹣540 B.﹣162 C.162 D.540考点:二项式定理的应用.专题:计算题.分析:据二项式系数和为2n,列出方程求出n,利用二项展开式的通项公式求出常数项.解答:解:若的展开式中各项系数之和为2n=64,解得n=6,则展开式的常数项为=﹣540,故选项为A.点评:本题考查二项式系数的性质及二项展开式的通项公式是解决二项展开式的特定项问题的工具.7.(2008•安徽)设(1+x)8=a0+a1x+…+a8x8,则a0,a1,…,a8中奇数的个数为()A.2B.3C.4D.5考点:二项式系数的性质.分析:利用二项展开式的通项公式判断出展开式中项的系数即为二项式系数,求出所有的二项式系数值,求出项为奇数的个数.解答:解:由(1+x)8=a0+a1x+a2x2+…+a8x8可知:a0、a1、a2、、a8均为二项式系数,依次是C80、C81、C82、、C88,∵C80=C88=1,C81=C87=8,C82=C86=28,C83=C85=56,C84=70,∴a0,a1,,a8中奇数只有a0和a8两个故选A点评:本题考查利用二项展开式的通项公式解决二项展开式的特定项问题、利用组合数公式求二项式系数.8.(2007•江西)设(x2+1)(2x+1)9=a0+a1(x+2)+a2(x+2)2+…+a11(x+2)11,则a0+a1+a2+…+a11的值为()A.﹣2 B.﹣1 C.1D.2考点:二项式定理的应用.专题:计算题.分析:本题由于求的是展开式右边a0+a1(x+2)+a2(x+2)2+…+a11(x+2)11中a0+a1+a2+…+a11的和,所以可以利用赋值的办法令x+2=1,由此将x=﹣1代入展开式即可求出结果为﹣2.解答:解:令x+2=1,所以x=﹣1,将x=﹣1代入(x2+1)(2x+1)9=a0+a1(x+2)+a2(x+2)2+…+a11(x+2)11得[(﹣1)2+1](﹣2+1)9=a0+a1+a2+…+a11;∴a0+a1+a2+…+a11=2×(﹣1)=﹣2.所以选A点评:本题主要考查二项式定理的应用问题,属于基础题型,难度系数为0.7,一般在求有关系数和等问题时,常常借助赋值的办法来加以解决.9.(2006•江西)在(x﹣)2006的二项展开式中,含x的奇次幂的项之和为S,当x=时,S等于()A.23008B.﹣23008C.23009D.﹣23009考点:二项式定理的应用.专题:计算题.分析:利用二项式定理将二项式展开,令x分别取,得到两个等式,两式相减,化简即得.解答:解:设(x﹣)2006=a0x2006+a1x2005+…+a2005x+a2006则当x=时,有a0()2006+a1()2005+…+a2005()+a2006=0(1)当x=﹣时,有a0()2006﹣a1()2005+…﹣a2005()+a2006=23009(2)(1)﹣(2)有a1()2005+…+a2005()=﹣23009¸即2S=﹣23009则S=﹣23008故选项为B点评:本题考查二项式定理的展开式形式及赋值法求系数和.10.(2004•福建)若(1﹣2x)9展开式的第3项为288,则的值是()A.2B.1C.D.考点:二项式系数的性质;极限及其运算.专题:计算题.分析:根据二项式定理,写出(1﹣2x)9展开式的第3项,结合题意,可得T92=C92•(﹣2x)2=36•(﹣2x)2=288,化简计算x的值,代入中,化简可得答案.解答:解:根据题意,(1﹣2x)9展开式的第3项为T92=C92•(﹣2x)2=36•(﹣2x)2=288,化简可得,2x=,解可得,x=;则=2;故选A.点评:本题综合考查二项式定理、有理数指数幂的化简、极限的计算、等比数列的前n项和公式,解题的关键在于由二项式定理,化简计算得到x的值.11.若则二项式的展开式中的常数项为()A.160 B.180 C.150 D.170考点:定积分;二项式定理的应用.专题:计算题;函数的性质及应用.分析:先计算定积分,再写出二项式的通项,令x的指数为0,即可求得展开式中的常数项.解答:解:==2∴二项式=的通项为=令6﹣2r=0,可得r=3,∴二项式的展开式中的常数项为=160故选A.点评:本题考查定积分知识,考查二项展开式,考查展开式中的特殊项,属于基础题.12.(a>0)展开式中,中间项的系数为70.若实数x、y满足则z=x+2y的最小值是()A.﹣1 B.C.5D.1考点:简单线性规划;二项式系数的性质.专题:计算题.分析:由题意可得,展开式中的中间项为共有9项,中间项为第5项,利用二项展开式的通项可求a,然后作出不等式组表示的平面区域,由z=x+2y可得,y=,则表示直线在y轴上的截距,截距越小,z越小,结合图形可求z的最小值解答:解:由题意可得,展开式中的中间项为共有9项,中间项为第5项∴=∴=70∵a>0∴a=1∵,作出不等式组表示的平面区域,如图所示由z=x+2y可得,y=,则表示直线在y轴上的截距,截距越小,z越小当z=x+2y经过点B时,z最小,由可得B(1,﹣1),此时Z=﹣1故选A点评:本题主要考查了二项展开式的通项的应用,线性规划在求解目标函数中的最值中的应用,本题具有一定的综合性13.(x+1)10的展开式中的第六项是()A.210x4B.252x52 C.210x6D.210考点:二项式定理.专题:计算题.分析:利用二项展开式的通项公式求出展开式的通项,令通项中的r=5得到展开式中的第六项.解答:解:(x+1)10展开式的通项为T r+1=C10r x r令r=5得展开式中的第六项是T6=C105x5=252x5故选B点评:解决二项展开式的特定项问题,一般利用的工具是二项展开式的通项公式.14.的展开式中第三项的系数是()A.B.C.15 D.考点:二项式定理.专题:计算题.分析:由二项式性质直接得出第三项,计算出该项的系数,得出正确选项.解答:解:的展开式中第三项是故第三项的系数15×=故选B点评:本题考查二项式定理,求解本题的关键是熟练掌握理解二项式的项的公式,利用此公式写出第三项,即可得到该项的系数15.二项式(1﹣x)4n+1的展开式中,系数最大的项是()A.第2n+1项B.第2n+2项C.第2n项D.第2n+1项和第2n+2项考点:二项式定理.专题:计算题.分析:利用二项展开式的通项公式求出通项,据通项判断出项的系数与二项式系数只有符号之差,据二项式系数的性质:中间项的二项式系数最大求出系数最大的项.解答:解:由二项展开式的通项公式T k+1=C k4n+1(﹣x)k=(﹣1)k C k4n+1x k,可知系数为(﹣1)k C k4n+1,与二项式系数只有符号之差,故先找中间项为第2n+1项和第2n+2项,又由第2n+1项系数为(﹣1)2n C k4n+1=C k4n+1,第2n+2项系数为(﹣1)2n+1C2n+14n+1=﹣C2n+14n+1<0,故系数最大项为第2n+1项.故选A点评:本题考查利用二项展开式的通项公式解决二项展开式的特定项问题、二项式系数的性质:中间项的二项式系数最大.16.已知(1+x)n的展开式中,第二、三、四项的系数成等差数列,则n等于()A.7B.7或2 C.6D.6或14考点:二项式定理;等差数列的性质.专题:计算题.分析:由二项式定理,可得(1+x)n的展开式的第二、三、四项的系数,再结合题意,其展开式的第二、三、四项的系数成等差数列,可得n+=2×;解可得答案.解答:解:根据题意,(1+x)n的展开式为T r+1=C n r x r,则第二、三、四项的系数分别为C n1、C n2、C n3,即n、、;又由这三项的系数成等差数列,即n+=2×;解可得:n=7,n=0(舍)n=2(舍);故选A.点评:本题考查二项式定理的运用,难点在于解关于n的方程n+=2×,注意化简的技巧即可.17.设f(x)等于展开式的中间项,若f(x)≤mx在区间[,]上恒成立,则m的取值范围是()A.[5,+∞)B.[,+∞)C.[,5]D.[,5)考点:二项式定理;函数的最值及其几何意义.专题:计算题.分析:先由二项式定理可以得到展开式的通项,再求出其展开式的中间项,即可得f(x),由x的范围,可将f(x)≤mx变形为x2≤m,由二次函数的性质,求出x2在区间[,]上的最大值,结合不等式恒成立的意义,即可得答案.解答:解:展开式的通项为T r+1=C6r(x2)6﹣r()r=()r•C6r•x12﹣3r,其展开式的中间项为T4=()3•C63•x3=x3,即f(x)=x3,f(x)≤mx⇔x3≤mx,当≤x≤时,x3≤mx⇔x2≤m,且≤x≤时,x2的最大值为5,则若x2≤m恒成立,则必有m≥5,故m的取值范围是[5,+∞),故选A.点评:本题考查二项式定理与函数的恒成立问题,关键由二项式定理求出f(x)并求出其最大值.18.在的展开式中系数最大的项是()A.第6项B.第6、7项C.第4、6项D.第5、7项考点:二项式定理.专题:计算题.分析:由二项展开式通项公式Tr+1=C10r(x2)10﹣r(﹣)r=(﹣1)rc10r(x)20﹣3r可知,在展开式的共11项中,系数(﹣1)rc10r最大时,只需当r=4或6,从而获解.解答:解:由Tr+1=C10r(x2)10﹣r(﹣)r=(﹣1)rc10r(x)20﹣3r可知,展开式中每一项系数为(﹣1)rc10r,系数要最大,当且仅当r=4或6时,第5项系数c104等于第7项系数c106且最大,故选D.点评:本题考查二项展开式系数最大项的求法,需要注意以下几点:(1)二项展开式系数和二项式系数的区别,前者是展开以后除未知数x外剩下部分可正可负,后者仅指组合数c n r,所以恒正.(2)要熟悉展开式共多少项.(3)展开式系数最大可能在中间项也可能不再中间项,而二项式系数最大项必在中间.本题也可以解不等式组:从而获解,但比较麻烦,在选择填空中不提倡用,不可小题大做,要小题小做更要巧做.19.2.9986的近似值(精确到小数后第三位)为()A.726.089 B.724.089 C.726.098 D.726.908考点:二项式定理.专题:计算题.分析:利用二项式定理将其展开,再取前3项即可.解答:解:2.9986=(3﹣0.002)6=36﹣C61×35×0.002+C62×34×0.0022﹣…≈729﹣2.916+0.00486≈726.089.故选A.点评:本题是考查二项式展开式的应用,难点是项数的舍弃.20.在(x+y+z)8的展开式中,合并同类项之后的项数是()A.16 B.28C.C82D.C102考点:二项式定理.专题:计算题.分析:利用组合模型求解该问题,恰当构造分组模型,利用组合法解决该问题.解答:解:对于这个式子,可以知道必定会有形如qx a y b z c的式子出现,其中q∈R,a,b,c∈N 而且a+b+c=8构造11个完全一样的小球模型,分成3组,每组至少一个,共有分法C102种,每一组中都去掉一个小球的数目分别作为(x+y+z)8的展开式中每一项中x,y,z各字母的次数.小球分组模型与各项的次数是一一对应的.故(x+y+z)8的展开式中,合并同类项之后的项数为C102,故选D.点评:本小题考查二项展开式的系数特征,考查构造法解决该问题.关键要构造一个适当的组合模型.21.今天为星期六,则今天后的第22010天是()A.星期一B.星期二C.星期四D.星期日考点:二项式定理;二项式定理的应用.专题:计算题.分析:此类题一般用利用二项式定理展开,变为关于7的展开式,求得余数,确定出今天后的第22010天是星期几解答:解:∵22010=8670=(7+1)670=C6700×7670×10+C6701×7669×11+C6702×7668×12+…+C6702010×70×1670∴22010除7的余数是1故今天为星期六,则今天后的第22010天是星期日故选D点评:本题考查二项式定理的应用,解答本题的关键是利用二项式的展开式求出余数,本题将问题转化为求余数的问题,使得解题变得容易,运算得到了化简.利用二项式定理求余数是其一个重要运用,题后总结本题的转化变形规律.。