10道典型例题掌握初中数学最值问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10道典型例题掌握初中数学最值问题
解决几何最值问题的通常思路:
两点之间线段最短;
直线外一点与直线上所有点的连线段中,垂线段最短;
三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)
是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段.
1.如图:点P 是∠AOB 内一定点,点M 、N 分别在边OA 、OB 上运动,若∠AOB =45°,OP =PMN 的周长的最小值为 .
【分析】作P 关于OA ,OB 的对称点C ,D .连接OC ,OD .则当M ,N 是CD 与OA ,OB 的交点时,△PMN 的周长最短,最短的值是CD 的长.根据对称的性质可以证得:△COD 是等腰直角三角形,据此即可求解.
【解答】解:作P 关于OA ,OB 的对称点C ,D .连接OC ,OD .则当M ,N 是CD 与OA ,OB 的交点时,△PMN 的周长最短,最短的值是CD 的长.
∵PC 关于OA 对称,
∴∠COP =2∠AOP ,OC =OP
同理,∠DOP =2∠BOP ,OP =OD
∴∠COD =∠COP +∠DOP =2(∠AOP +∠BOP )=2∠AOB =90°,OC =OD .
∴△COD 是等腰直角三角形.
则CD OC .
【题后思考】本题考查了对称的性质,正确作出图形,理解△PMN 周长最小的条件是解题的关键.
2.如图,当四边形PABN 的周长最小时,a = .
【分析】因为AB ,PN 的长度都是固定的,所以求出PA +NB 的长度就行了.问题就是PA +NB 什么时候最短.
把B点向左平移2个单位到B′点;作B′关于x轴的对称点B″,连接AB″,交x轴于P,从而确定N点位置,此时PA+NB最短.
设直线AB″的解析式为y=kx+b,待定系数法求直线解析式.即可求得a的值.
【解答】解:将N点向左平移2单位与P重合,点B向左平移2单位到B′(2,﹣1),
作B′关于x轴的对称点B″,根据作法知点B″(2,1),
设直线AB″的解析式为y=kx+b,
则
12
3
k b
k b
=+
⎧
⎨
-=+
⎩
,解得k=4,b=﹣7.
∴y=4x﹣7.当y=0时,x=7
4
,即P(
7
4
,0),a=
7
4
.
故答案填:7
4
.
【题后思考】考查关于X轴的对称点,两点之间线段最短等知识.
3.如图,A、B两点在直线的两侧,点A到直线的距离AM=4,点B到直线的距离BN=1,且MN=4,P为直线上的动点,|PA﹣PB|的最大值为.
【分析】作点B于直线l的对称点B′,则PB=PB′因而|PA﹣PB|=|PA﹣PB′|,则当A,B′、P在一条直线上时,|PA﹣PB|的值最大.根据平行线分线段定理即可求得PN和PM的值然后根据勾股定理求得PA、PB′的值,进而求得|PA﹣PB|的最大值.
【解答】解:作点B于直线l的对称点B′,连AB′并延长交直线l于P.
∴B′N=BN=1,
过D点作B′D⊥AM,
利用勾股定理求出AB′=5
∴|PA﹣PB|的最大值=5.
【题后思考】本题考查了作图﹣轴对称变换,勾股定理等,熟知“两点之间线段最短”是解答此题的关键.4.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为.
【分析】本题关键在于找到两个极端,即BA′取最大或最小值时,点P或Q的位置.经实验不难发现,分别求出点P与B重合时,BA′取最大值3和当点Q与D重合时,BA′的最小值1.所以可求点A′在BC边上移动的最大距离为2.
【解答】解:当点P与B重合时,BA′取最大值是3,
当点Q与D重合时(如图),由勾股定理得A′C=4,此时BA′取最小值为1.
则点A′在BC边上移动的最大距离为3﹣1=2.
故答案为:2
【题后思考】本题考查了学生的动手能力及图形的折叠、勾股定理的应用等知识,难度稍大,学生主要缺乏动手操作习惯,单凭想象造成错误.
5.如图,直角梯形纸片ABCD,AD⊥AB,AB=8,AD=CD=4,点E、F分别在线段AB、AD上,将△AEF沿EF 翻折,点A的落点记为P.当P落在直角梯形ABCD内部时,PD的最小值等于.
【分析】如图,经分析、探究,只有当直径EF最大,且点A落在BD上时,PD最小;根据勾股定理求出BD的长度,问题即可解决.
【解答】解:如图,
∵当点P落在梯形的内部时,∠P=∠A=90°,
∴四边形PFAE是以EF为直径的圆内接四边形,
∴只有当直径EF最大,且点A落在BD上时,PD最小,
此时E与点B重合;
由题意得:PE =AB =8,
由勾股定理得:
BD 2=82+62=80,
∴BD =
∴PD =8.
【题后思考】该命题以直角梯形为载体,以翻折变换为方法,以考查全等三角形的判定及其性质的应用为核心构造而成;解题的关键是抓住图形在运动过程中的某一瞬间,动中求静,以静制动.
6.如图,∠MON =90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在OM 上运动,矩形ABCD 的形状保持不变,其中AB =2,BC =1,运动过程中,点D 到点O 的最大距离为 .
【分析】取AB 的中点E ,连接OD 、OE 、DE ,根据直角三角形斜边上的中线等于斜边的一半可得OE =AB ,利用勾股定理列式求出DE ,然后根据三角形任意两边之和大于第三边可得OD 过点E 时最大.
【解答】解:如图,取AB 的中点E ,连接OD 、OE 、DE ,
∵∠MON =90°,AB =2
∴OE =AE =12
AB =1, ∵BC =1,四边形ABCD 是矩形,
∴AD =BC =1,
∴DE
根据三角形的三边关系,OD <OE +DE ,
∴当OD 过点E .
+1.
【题后思考】本题考查了矩形的性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,勾股定理,确定出OD 过AB 的中点时值最大是解题的关键.
7.如图,线段AB 的长为4,C 为AB 上一动点,分别以AC 、BC 为斜边在AB 的同侧作等腰直角△ACD 和等腰直角△BCE ,那么DE 长的最小值是 .
【分析】设AC =x ,BC =4﹣x ,根据等腰直角三角形性质,得出CD x ,CD 4﹣x ),根据勾股定理然后用配方法即可求解.
【解答】解:设AC =x ,BC =4﹣x ,
∵△ABC ,△BCD ′均为等腰直角三角形,
∴CD =2x ,CD ′=2
(4﹣x ), ∵∠ACD =45°,∠BCD ′=45°,
∴∠DCE =90°,
∴DE 2=CD 2+CE 2=12x 2+12
(4﹣x )2=x 2﹣4x +8=(x ﹣2)2+4, ∵根据二次函数的最值,
∴当x 取2时,DE 取最小值,最小值为:4.
故答案为:2.
【题后思考】本题考查了二次函数最值及等腰直角三角形,难度不大,关键是掌握用配方法求二次函数最值.
8.如图,菱形ABCD 中,AB =2,∠A =120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK +QK 的最小值为 .