一次函数练习及答案
八年级数学(下)第十九章《一次函数》同步练习题(含答案)
八年级数学(下)第十九章《一次函数》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数中,y 是x 的一次函数的是①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x .A .①②③B .①③④C .①②③④D .②③④ 【答案】C【解析】根据一次函数的定义,可知是一次函数的有①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x ,故选C . 2.如果23(2)2my m x -=-+是一次函数,那么m 的值是 A .2B .-2C .±2D .±1 【答案】B【解析】由题意得:22031m m -≠⎧⎨-=⎩,解得m =-2,故选B . 3.下列说法中正确的是A .一次函数是正比例函数B .正比例函数不是一次函数C .不是正比例函数就不是一次函数D .不是一次函数就不是正比例函数 【答案】D【解析】A .一次函数不一定是正比例函数,故本选项说法错误;B .正比例函数是一次函数,故本选项说法错误;C .不是正比例函数,但有可能是一次函数,故本选项说法错误;C .不是一次函数就不是正比例函数,故本选项说法正确,故选D .4.一次函数y =-2x +1的图象经过A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】B【解析】在一次函数y =-2x +1中,k =-2<0,b =1>0,∴一次函数y =-2x +1的图象经过第一、二、四象限,故选B .5.把直线3y x =-+向上平移m 个单位后,与直线24y x =+的交点在第一象限,则m 的取值范围是A .1<m <7B .3<m <4C .m >1D .m <4【答案】C 【解析】直线3y x =-+向上平移m 个单位后可得:3y x m =-++,联立两直线解析式得:324y x m y x =-++⎧⎨=+⎩,解得132103m x m y -⎧=⎪⎪⎨+⎪=⎪⎩,∴交点坐标为1210()33m m -+,, ∵交点在第一象限,∴10321003m m -⎧>⎪⎪⎨+⎪>⎪⎩,解得m >1,故选C . 6.如果函数y =3x +m 的图象一定经过第二象限,那么m 的取值范围是A .m >0B .m ≥0C .m <0D .m ≤0【答案】A【解析】图象一定经过第二象限,则函数一定与y 轴的正半轴相交,因而0m >,故选A . 7.关于函数y =-x +1,下列结论正确的是A .图象必经过点(-1,1)B .y 随x 的减小而减小C .当x >1时,y <0D .图象经过第二、三、四象限 【答案】C【解析】选项A ,∵当x =-1时,y =2,∴图象不经过点(-1,1),选项A 错误;选项B ,∵k =-1<0,∴y 随x 的增大而减小,选项B 错误;选项C ,∵y 随x 的增大而减小,当x =1时,y =0,∴当x >1时,y <0,选项C 正确;选项D ,∵k =-1<0,b =1>0,∴图象经过第一、二、四象限,选项D 错误.故选C .8.一次函数y =kx +b 的图象如图所示,则k 、b 的值分别为A .k =−12,b =1B .k =-2,b=1C.k=12,b=1 D.k=2,b=1【答案】B【解析】由图象可知:过点(0,1),(12,0),代入一次函数的解析式得:112bk b=⎧⎪⎨=+⎪⎩,解得:k=−2,b=1,故选B.二、填空题:请将答案填在题中横线上.9.已知一次函数y=(m-3)x-2的图象经过一、三、四象限,则m的取值范围为__________.【答案】m>3【解析】∵y=(m-3)x-2的图象经过一、三、四象限,∴m-3>0,解得m>3.故答案为:m>3.10.点(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1__________y2(填“>”或“=”或“<”).【答案】<【解析】∵k=2>0,y将随x的增大而增大,2>−1,∴y1<y2,故y1与y2的大小关系是:y1<y2,故答案为:<.11.已知一次函数的图象与直线y=12x+3平行,并且经过点(-2,-4),则这个一次函数的解析式为__________.【答案】y=12x-3【解析】∵一次函数的图象与直线y=12x+3平行,∴设一次函数的解析式为y=12x+b.∵一次函数经过点(-2,-4),∴12×(-2)+b=-4,解得b=-3,所以这个一次函数的表达式是:y=1 2x-3.故答案为:y=12x-3.12.若点M(x1,y1)在函数y=kx+b(k≠0)的图象上,当-1≤x1≤2时,-2≤y1≤1,则这条直线的函数解析式为__________.【答案】y=x-1或y=-x【解析】∵点M(x1,y1)在在直线y=kx+b上,-1≤x1≤2时,-2≤y1≤1,∴点(-1,-2)、(2,1)或(-1,1)、(2,-2)都在直线上,则有:221k bk b-+=-⎧⎨+=⎩,或122k bk b-+=⎧⎨+=-⎩,解得11kb=⎧⎨=-⎩或1kb=-⎧⎨=⎩,∴y=x-1或y=-x,故答案为:y=x-1或y=-x.三、解答题:解答应写出文字说明、证明过程或演算步骤.13.已知一次函数经过点A(3,5)和点B(-4,-9).(1)求此一次函数的解析式;(2)若点C(m,2)是该函数上一点,求C点坐标.【解析】(1)设其解析式为y=kx+b(k、b是常数,且k≠0),则5394k bk b=+⎧⎨-=-+⎩,∴k=2,b=−1.∴其解析式为y=2x-1,(2)∵点C(m,2)在y=2x-1上,∴2=2m-1,∴m=32,∴点C的坐标为(32,2).14.已知一次函数的图象经过点A(2,1),B(-1,-3).(1)求此一次函数的解析式;(2)求此一次函数的图象与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积.【解析】(1)根据一次函数解析式的特点,可得出方程组213 k bk b+=⎧⎨-+=-⎩,解得4353 kb⎧=⎪⎪⎨⎪=-⎪⎩,则得到y=43x-53.(2)根据一次函数的解析式y=43x-53,得到当y=0,x=54;当x=0时,y=-53.所以与x轴的交点坐标(54,0),与y轴的交点坐标(0,-53).(3)在y=43x-53中,令x=0,解得:y=-53,在y=43x-53中,令y=0,解得:x=54.因而此一次函数的图象与两坐标轴所围成的三角形面积是:15525 23424⨯⨯=.15.已知一次函数y=(4-k)x-2k2+32.(1)k为何值时,它的图象经过原点;(2)k为何值时,它的图象经过点(0,-2);(3)k为何值时,它的图象平行于直线y=-x;(4)k为何值时,y随x的增大而减小.【解析】(1)∵一次函数y=(4-k)x-2k2+32的图象经过原点,∴-2k2+32=0,解得:k=±4,∵4-k≠0,∴k=-4.(2)∵一次函数y=(4-k)x-2k2+32的图象经过(0,-2),∴-2k2+32=-2,解得:k.(3)∵一次函数y=(4-k)x-2k2+32的图象平行于直线y=-x,∴4-k=-1,∴k=5.(4)∵一次函数y=(4-k)x-2k2+32中y随x的增大而减小,∴4-k<0,∴k>4.16.已知一次函数图象经过(-4,-9)和(3,5)两点.(1)求一次函数解析式.(2)求图象和坐标轴交点坐标.并画出图象.(3)求图象和坐标轴围成三角形的面积.(4)若点(2,a)在函数图象上,求a的值.【解析】(1)设一次函数解析式为y=kx+b,把点(3,5),(-4,-9)分别代入解析式,则3549 k bk b+=⎧⎨-+=-⎩,解得21 kb=⎧⎨=-⎩,∴一次函数解析式为y=2x-1.(2)当x=0时,y=-1,当y=0时,2x-1=0,解得:x=0.5,∴与坐标轴的交点为A(0,-1)、B(0.5,0),图象如图,(3)S△AOB1122=⨯⨯|-1|=0.25.(4)∵点(2,a)在图象上,∴a=2×2-1=3,∴a=3.。
一次函数练习题(附答案)
一次函数练习题(附答案)一次函数练习题(附答案)篇一:一次函数测试题及其答案一次函数测试题 1.函数y=中,自变量某的取值范围是()某(ab的图象如图所示,那么a的取值范围是()A.a1C.a07.(上海市)如果一次函数yb的图象经过第一象限,且与y轴负半轴相交,那么()A.k0B.k0C.k0D.k08.(陕西)如图,一次函数图象经过点A,且与正比例函数图象交于点B,则该一次函数的表达式为()A.y某某某2)9.(浙江湖州)将直线y=2某向右平移2个单位所得的直线的解析式是(。
CA、y=2某+2B、y=2某-2C、y=2(某-2)D、y=2(某+2)10.已知两点M(3,5),N(1,-1),点P是某轴上一动点,若使PM+PN最短,则点P的坐标点是()A.(0,-4)B.(2,0)3C.(4,0)3D.(3,0)2二、填空题11.若点A(2,,-4)在正比例函数y=k某的图像上,则k=_____。
12.某一次函数的图像经过点(-1,2),且经过第一、二、三象限,请你写出一个符合上述条件的函数关系式_________。
13.在平面直角坐标系中,把直线y=2某向下平移3个单位,所得直线的解析式_14.(福建晋江)若正比例函数y1,2),则该正比例函数的解析式为y36(kPa)时,ya某b1200某y某y2(某5(2)设函数解析式为y=k某,则图像过点(1,1.6),故y=1.6某(某≥0).(3)方案一:80元。
方案二:y=6某60-2=70(元).方案三:y=1.6某60=96(元)5∴选方案二最好。
22解:(1)小李3月份工资=2000+2%某14000=2280(元)小张3月份工资=1600+4%某11000=2040(元)(2)设y2b,取表中的两对数(1,7400),(2,9200)代入解析式,得kk=1800 解得1800某9200b,b=5600(3)小李的工资w12%(1200某24某16005600)1824当小李的工资w218242208,解得,某8答:从9月份起,小张的工资高于小李的工资。
一次函数的应用练习题及答案
一次函数的应用练习题及答案一次函数是数学中一个非常基础且常见的函数类型,其形式为 y = ax + b。
在现实生活中,我们经常会遇到一次函数的应用场景。
本文将提供一些基于一次函数的应用练习题,并附带答案,希望能够帮助读者更好地理解一次函数的概念和应用。
练习题1:某公司的年工资总额与员工人数之间存在一次函数关系。
已知当公司的员工人数为100人时,年工资总额为500万元;当员工人数为200人时,年工资总额为800万元。
求该公司年工资总额与员工人数的一次函数表达式,并根据该函数回答以下问题:a) 当员工人数为300人时,年工资总额是多少?b) 当员工人数为0人时,年工资总额是多少?解答:设年工资总额为 y,员工人数为 x。
根据题意,我们可以列出两个方程:100a + b = 500200a + b = 800通过解这个方程组,我们可以得到 a 的值为 1.5,b 的值为 350。
因此,该公司的年工资总额与员工人数的一次函数表达式为 y = 1.5x + 350。
a) 当员工人数为 300 人时,将 x = 300 代入函数表达式中,可得年工资总额为 1.5 * 300 + 350 = 850 万元。
b) 当员工人数为 0 人时,将 x = 0 代入函数表达式中,可得年工资总额为 1.5 * 0 + 350 = 350 万元。
练习题2:某手机品牌的某款手机的售价与销量之间存在一次函数关系。
已知当该手机的销量为3000部时,售价为2000元/部;当销量为5000部时,售价为1500元/部。
求该手机的售价与销量的一次函数表达式,并根据该函数回答以下问题:a) 当销量为4000部时,售价是多少?b) 当销量为0部时,售价是多少?解答:设售价为 y,销量为 x。
根据题意,我们可以列出两个方程:3000a + b = 20005000a + b = 1500通过解这个方程组,我们可以得到 a 的值为 -0.1,b 的值为 500。
初中数学一次函数的图像专项练习30题(有标准答案)ok
一次函数(图像题)专项练习一1.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()A.B.C.D.2.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y2>y1,其中正确的个数是()A.0B.1C.2D.33.一次函数y=kx+b,y随x的增大而减小,且kb>0,则在直角坐标系内它的大致图象是()A.B.C.D.4.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是()A.B.C.D.5.如图所示,如果k?b<0,且k<0,那么函数y=kx+b的图象大致是()A.B.C.D.6.如图,直线l1:y=x+1与直线l2:y=﹣x﹣把平面直角坐标系分成四个部分,则点(,)在()A.第一部分B.第二部分C.第三部分D.第四部分7.已知正比例函数y=﹣kx和一次函数y=kx﹣2(x为自变量),它们在同一坐标系内的图象大致是()A.B.C.D.8.函数y=2x+3的图象是()A.过点(0,3),(0,﹣)的直线B.过点(1,5),(0,﹣)的直线C.过点(﹣1,﹣1),(﹣,0)的直线D.过点(0,3),(﹣,0)的直线9.下列图象中,与关系式y=﹣x﹣1表示的是同一个一次函数的图象是()A.B.C.D.10.函数kx﹣y=2中,y随x的增大而减小,则它的图象是下图中的()A.B.C.D.11.已知直线y1=k1x+b1,y2=k2x+b2,满足b1<b2,且k1k2<0,两直线的图象是()A.B.C.D.12.如图所示,表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象是()A.B.C.D.13.连降6天大雨,某水库的蓄水量随时间的增加而直线上升.若该水库的蓄水量V(万米3)与降雨的时间t(天)的关系如图所示,则下列说法正确的是()A.降雨后,蓄水量每天减少5万米3B.降雨后,蓄水量每天增加5万米3C.降雨开始时,蓄水量为20万米3D.降雨第6天,蓄水量增加40万米314.拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y(升)与它工作的时间t(时)之间的函数关系的图象是()A.B.C.D.15.已知正比例函数y=kx的图象经过第一、三象限,则y=kx﹣k的大致图象可能是下图的()A.B.C.D.16.一次函数y=kx+b的图象如图所示,当x_________时,y>2.17.一次函数的图象如图所示,根据图象可知,当x_________时,有y<0.18.如图,直线l是一次函数y=kx+b的图象,当x_________时,y>0.19.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x=3时,y1=y2;④当x>3时,y1<y2中,正确的判断是_________.20.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则根据图象可得,当x_________时,y1>y2.21.已知一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是_________.22.在平面直角坐标系中画出函数的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)在图象上标出和y轴的距离是2个单位长度的点,并写出它的坐标.23.作函数y=2x﹣4的图象,并根据图象回答下列问题.(1)当﹣2≤x≤4,求函数y的取值范围.(2)当x取何值时,y<0?y=0?y>0?24.如图是一次函数y=﹣x+5图象的一部分,利用图象回答下列问题:(1)求自变量的取值范围.(2)在(1)在条件下,y是否有最小值?如果有就求出最小值;如果没有,请说明理由.25.已知函数y1=﹣x+和y2=2x﹣1.(1)在同一个平面直角坐标系中画出这两个函数的图象;(2)根据图象,写出它们的交点坐标;(3)根据图象,试说明当x取什么值时,y1>y2?26.作出函数y=3﹣3x的图象,并根据图象回答下列问题:(1)y的值随x的增大而_________;(2)图象与x轴的交点坐标是_________;与y轴的交点坐标是_________;(3)当x_________时,y≥0;(4)函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是多少?27.已知函数y=2x﹣1.(1)在直角坐标系中画出这函数的图象;(2)判断点A(﹣2.5,﹣4),B(2.5,4)是否在函数y=2x﹣1的图象上;(3)当x取什么值时,y≤0.28.已知函数y=﹣2x﹣6.(1)求当x=﹣4时,y的值,当y=﹣2时,x的值.(2)画出函数图象.(3)如果y的取值范围﹣4≤y≤2,求x的取值范围.29.已知一次函数的图象经过点A(﹣3,0),B(﹣1,1)两点.(1)画出图象;(2)x为何值时,y>0,y=0,y<0?30.已知一次函数y=﹣2x+2,(1)在所给的平面直角坐标系中画出它的图象;(2)根据图象回答问题:①图象与x轴的交点坐标是_________,与y轴的交点坐标是_________;②当x_________时,y>0.参考答案:1.分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,无选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选C2.由一次函数y1=kx+b与y2=x+a的图象可知k<0,a<0,当x>2时,y2>y1,①③正确.故选 C3.∵一次函数y=kx+b,y随x的增大而减小,∴k<0,又∵kb>0,∴b<0,∴函数的图象经过第二、三、四象限.故选 C4.根据图象知:A、a>0,﹣(a﹣2)>0.解得0<a<2,所以有可能;B、a<0,﹣(a﹣2)<0.解得两不等式没有公共部分,所以不可能;C、a<0,﹣(a﹣2)>0.解得a<0,所以有可能;D、a>0,﹣(a﹣2)<0.解得a>2,所以有可能.故选B5.∵k?b<0,且k<0,∴b>0,k<0,∴函数y=kx+b的图象经过第一、二、四象限,故选 D6.由题意可得,解得,故点(,)应在交点的上方,即第二部分.故选B.7.分两种情况:(1)当k>0时,正比例函数y=﹣kx的图象过原点、第一、三象限,一次函数y=kx﹣2的图象经过第一、三、四象限,选项A符合;(2)当k<0时,正比例函数y=﹣kx的图象过原点、第二、四象限,一次函数y=kx﹣2的图象经过第二、三、四象限,无选项符合.故选A.8.A、把x=0代入函数关系式得2×0+3=3,故函数图象过点(0,3),不过(0,﹣),故错误;B、由A知函数图象不过点(0,﹣),故错误;C、把x=﹣1代入函数关系式得,2×(﹣1)+3=1,故(﹣1,﹣1)不在函数图象上,故错误;D、分别令x=0,y=0,此函数成立,故正确.故选 D9.函数y=﹣x﹣1是一次函数,其图象是一条直线.当x=0时,y=﹣1,所以直线与y轴的交点坐标是(0,﹣1);当y=0时,x=﹣1,所以直线与x轴的交点坐标是(﹣1,0).由两点确定一条直线,连接这两点就可得到y=﹣x﹣1的图象.故选 D10.整理为y=kx﹣2∵y随x的增大而减小∴k<0又因为图象过2,4,3象限故选D.11.k1k2<0,则k1与k2异号,因而两个函数一个y随x的增大而增大,另一个y随x的增大而减小,因而A是错误的;b1<b2,则y1与y轴的交点在y2与y轴的交点的下边,因而B、C都是错误的.故选D.12.①当ab>0,正比例函数y=abx过第一、三象限;a与b同号,同正时y=ax+b过第一、二、三象限,故D错误;同负时过第二、三、四象限,故B错误;②当ab<0时,正比例函数y=abx过第二、四象限;a与b异号,a>0,b<0时y=ax+b过第一、三、四象限,故C错误;a<0,b>0时过第一、二、四象限.故选A13.A、根据图象知,水库的蓄水量因该随着降雨的时间的增加而增多;故本选项错误;B、本图象的直线,所以每天的降雨量是相等的,所以,蓄水库每天的增加的水的量是(40﹣10)÷6=5;故本选项正确;C、根据图示知,降雨开始时,蓄水量为10万米3,故本选项错误;D、根据图示知,降雨第6天,蓄水量增加了40万米3﹣30万米3=10万米3,故本选项错误;故选B14.根据题意列出关系式为:y=40﹣5t,考虑实际情况:拖拉机开始工作时,油箱中有油4升,即开始时,函数图象与y轴交于点(0,40),如果每小时耗油0.5升,且8小时,耗完油,故函数图象为一条线段.故选D15.∵正比例函数y=kx的图象经过第一、三象限,∴k>0,∴﹣k<0,∴y=kx﹣k的大致图象经过一、三、四象限,故选:B.16.由图形可知,该函数过点(0,2),(3,0),故斜率k==,所以解析式为y=,令y>2,即>2,解之得:x<017.根据题意,要求y<0时,x的范围,即:x+3<0,解可得:x<﹣2,故答案为x<﹣218.根据题意,观察图象,可得直线l过点(2,0),且y随x的增大而增大,分析可得,当x>2时,有y>0 19.根据图示及数据可知:①一次函数y1=kx+b的图象经过第二、四象限,则k<0正确;②y2=x+a的图象经与y轴交与负半轴,则a>0错误;③一次函数y1=kx+b与y2=x+a的图象交点的横坐标是3,所以当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④20.根据图示可知点P的坐标是(﹣4,2),所以y1>y2即直线1在直线2的上方,则x<﹣4.21.根据图象和数据可知,当y<0即图象在x轴下侧,x<1.故答案为x<122.函数与坐标轴的交点的坐标为(0,3),(6,0).(1)点A的坐标(﹣4,5);(2)和y轴的距离是2个单位长度的点的坐标M(2,2),N(﹣2,4)23.当x=0时,y=﹣4;当y=0时,2x﹣4=0,解得x=2,∴函数图象与两坐标轴的交点为(0,﹣4)(2,0).图象如下:(1)x=﹣2时,y=2×(﹣2)﹣4=﹣8,x=4时,y=2×4﹣4=4,∵k=2>0,∴y随x的增大而增大,∴﹣8≤y≤4;(2)x<2时,y<0;x=2时,y=0;x>2时,y>0.24.(1)由图象可看出当y=2.5时,x=5,因此x的取值范围应该是0<x≤5(y轴上的点是空心圆,因此x≠0);(2)由图象可看出,当x=5时,函数的值最小,是y=2.525.(1)如图所示:(2)由(1)中两函数图象可知,其交点坐标为(1,1);(3)由(1)中两函数图象可知,当x>1时,y1>y2.26.如图.(1)因为一次项系数是﹣3<0,所以y的值随x的增大而减小;(2)当y=0时,x=1,所以图象与x轴的交点坐标是(1,0);当x=0时,y=3,所以图象与y轴的交点坐标是(0,3);(3)由图象知,在A点左边,图象在x轴上方,函数值大于0.所以x≤1时,y≥0.(4)∵OA=1,OB=3,∴函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是S△AOB=×1×3=.27.(1)函数y=2x﹣1与坐标轴的坐标为(0,﹣1)(,0),描点即可,如图所示;(2)将A、B的坐标代入函数式中,可得出A点不在直线y=2x﹣1的图象上,B点在直线y=2x﹣1的图象上,A代入函数后发现﹣ 2.5×2﹣1=﹣6≠﹣4,因此A点不在函数y=2x﹣1的图象上,然后用同样的方法判定B是否在函数的图象上;(3)当y≤0时,2x﹣1≤0,因此x≤.28.(1)当x=﹣4时,y=2;当y=﹣2时,x=﹣2;(2)由(1)可知函数图象过(﹣4,2)、(﹣2,﹣2),由此可画出函数的图象,如下图所示:(3)∵y=﹣2x﹣6,﹣4≤y≤2∴﹣4≤﹣2x﹣6≤22≤﹣2x≤8﹣4≤x≤﹣129.(1)图象如图:(2)观察图象可得,当x>﹣3时,y>0;当x=﹣3时,y=0;当x<﹣3时,y<0.30.(1)列表:x 0 1y 2 0描点,连线(如图)…(也可以写成过点(0,2)和(1,0)画直线)(2)①(1,0);(0,2)②<1。
一次函数综合练习附答案
一次函数综合练习学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.下列函数①5y x =-;②21y x =-+;③2y x =;④162y x =+;⑤21y x =-中,是一次函数的有( ) A .1个 B .2个C .3个D .4个【答案】C2.在下列各图象中,y 不是x 函数的是( )A .B .C .D .【答案】B3.一次函数y =kx +b 的图象如图所示,则关于x 的方程kx +b =0的解为( )A .x =0B .x =3C .x =﹣2D .x =﹣3【答案】B4.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( ) A .24y x =- B .24y x =+C .22y x =+D .22y x =-【答案】A5.已知方程()00kx b k +=≠的解是3x =,则函数()0y kx b k =+≠的图象可能是( )A.B.C.D.【答案】C6.如图是一次函数y=x-3的图象,若点P(2,m)在该直线的上方,则m的取值范围是()A.m>-3 B.m>0 C.m>-1 D.m<3【答案】C7.小斌家、学校、小川家依次在同一条笔直的街道上,小斌家离学校有2800米,某天,小斌、小川两人分别从自己家中同时出发,相向而行,出发4分钟后,两人在学校相遇,小川继续前行,小斌在学校取好书包后,掉头回家,两人在运动过程中均保持速度不变,两人之间的距离y(米)与小斌出发的时间x(分钟)的关系如图所示(小斌取书包的时间、掉头的时间忽略不计),则下列选项中错误的是()A.小斌的速度为700m/min B.小川的速度为200m/minC.a的值为280 D.小川家距离学校800m【答案】C8.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的图象,那么符合小明行驶情况的图象大致是()A.B.C.D.【答案】D二、填空题9.已知一次函数y=2x+m的图象是由一次函数y=2x﹣3的图象沿y轴向上平移8个单位得到的,则m=_____.【答案】5.10.小明从家跑步到学校,接着立即原路步行回家.如图是小明离家的路程y(米)与时间x(分)之间的函数关系的图像,则小明步行回家的平均速度是__________米/分.【答案】8011.在同一平面直角坐标系中,函数y1=kx+b与y2=mx+n的图象如图所示,则关于x 的不等式kx+b≥mx+n的解集为__.【答案】x≥212.已知关于x的方程mx+3=4的解为x=1,则直线y=(m﹣2)x﹣3一定不经过第___象限.【答案】一.13.甲、乙两人分别从A 、B 两地出发,相向而行.图中的1l ,2l 分别表示甲、乙离B 地的距离()km y 与甲出发后所用时间()h x 的函数关系图象,则甲出发_______小时与乙相遇.【答案】1.414.平面直角坐标系中,点A 坐标为()23,3,将点A 沿x 轴向左平移a 个单位后恰好落在正比例函数23y x =-的图象上,则a 的值为__________. 53三、解答题15.已知13y x =-+,234y x =-,当x 取哪些值时,12y y >?你是怎样做的?与同伴交流. 【答案】74x <,见解析. 16.(1)在同一直角坐标系内画出函数2y x =-+,2y x =+的图象,这两个图象有怎样的位置关系?(2)函数32y x =-+,32y x =+的图象又有怎样的位置关系?一般地,你有怎样的猜想?【答案】(1)图见解析,这两个图象关于y 轴对称;(2))这两个图象关于y 轴对称;一般地,函数y kx b =+和y kx b =-+的图象关于y 轴对称.17.某种优质蜜柚,投入市场销售时,经调查,该蜜柚每天销售量y (千克)与销售单价x (元/千克)之间符合一次函数关系,如图所示.(1)求y 与x 的函数关系式;(2)某农户今年共采摘该蜜柚4500千克,其保质期为40天,若以18元/千克销售,问能否在保质期内销售完这批蜜柚?请说明理由.【答案】(1)y =﹣10x +300;(2)能在保质期内销售完这批蜜柚,理由见解析 18.为做好复工复产,某工厂用A 、B 两种型号机器人搬运原料,已知A 型机器人比B 型机器人每小时多搬运20kg ,且A 型机器人搬运1200kg 所用时间与B 型机器人搬运1000kg 所用时间相等.(1)求这两种机器人每小时分别搬运多少原料?(2)该工厂计划让A 、B 两种型号机器人一共工作20个小时,并且B 型号机器人的工作时间不得低于A 型号机器人,求最多搬运多少千克原料?【答案】(1)A 型为:120千克小时,B 型为:100千克每小时;(2)最多搬运2200千克.19.如图,在平面直角坐标系中,点A B ,的坐标分别为3(,0)2-,3(,1)2,连接AB ,以AB 为边向上作等边三角形ABC . (1)求点C 的坐标;(2)求线段BC 所在直线的解析式.【答案】(1)3(;(2)332y =+ 20.如图,直线l 1:y=2x+1与直线l 2:y=mx+4相交于点P (1,b ) (1)求b ,m 的值(2)垂直于x 轴的直线x=a 与直线l 1,l 2分别相交于C ,D ,若线段CD 长为2,求a 的值【答案】(1)-1;(2)53或13.21.某工厂有甲种原料130kg,乙种原料144kg,现用两种原料生产处,A B两种产品共30件,已知生产每件产品需甲种原料5kg,乙种原料4kg,且每件A产品可获得利润700元;生产每件B产品需甲种原料3kg,乙种原料6kg,且每件B产品可获利润900元,设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:(1)生产,A B两种产品的方案有哪几种;(2)设生产这30件产品可获利y元,写出关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.【答案】(1)共有三种方案,方案一:A产品18件,B产品12件,方案二:A产品19件,B产品11件,方案三:A产品20件,B产品10件;(2)利润最大的方案是方案一:A产品18件,B产品12件,最大利润为23400元.22.如图,自行车每节链条的长度为2.5cm,交叉重叠部分的圆的直径为0.8cm.(1)观察图形,填写下表:链条的节数/节234链条的长度/cm(2)如果x节链条的长度是y,那么y与x之间的关系式是什么?(3)如果一辆某种型号自行车的链条(安装前)由60节这样的链条组成,那么这辆自行车上的链条(安装后)总长度是多少?【答案】(1)4.2;5.9;7.6;(2) 1.70.8y x =+;(3)102cm23.为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:①根据上表的数据,请你写出Q 与t 的关系式; ②汽车行驶5h 后,油箱中的剩余油量是多少;③该品牌汽车的油箱加满50L ,若以100km/h 的速度匀速行驶,该车最多能行驶多远. 【答案】①Q =100﹣6t ;② 70L ;③25003km . 24.在抗击新冠肺炎的非常时期,某医药器械厂接受了生产一批高质量医用口罩的任务,要求在8天之内(含8天)生产A 型和B 型两种型号的口罩共5万只,其中A 型口罩不得少于1.8万只,该厂的生产能力是:若生产A 型口罩每天能生产0.6万只,若生产B 型口罩每天能生产0.8万只,已知生产一只A 型口罩可获利0.5元,生产一只B 型口罩可获利0.3元.若设该厂在这次任务中生产了A 型口罩x 万只.(1)该厂生产A 型口罩可获利润 万元,生产B 型口罩可获利润 万元.(2)设该厂这次生产口罩的总利润是y 万元,试写出y 关于x 的函数关系式,并求出自变量x 的取值范围;(3)在完成任务的前提下,如何安排生产A 型和B 型口罩的只数,使获得的总利润最大,最大利润是多少?(4)若要在最短时间内完成任务,如何来安排生产A 型和B 型口罩的只数?最短时间是几天?【答案】(1)0.5x ;1.5-0.3x ;(2)y=0.2x+1.5,1.8≤x≤4.2;(3)安排A 型:4.2万只,B 型:0.8万只,最大利润是2.34万元;(4)生产A 型1.8万只,生产B 型3.2万只,最短时间是7天。
一次函数的定义专项练习30题(有答案)
一次函数的定义专项练习30题1.下列五个式子,①,②,③y=﹣x+1,④,⑤y=2x2+1,其中表示y是x的一次函数的有()A.5个B.4个C.3个D.2个2.下列函数中,y是x的一次函数的是()A.y=﹣3x2﹣1 B.y=x﹣1+2 C. y=2(x﹣1)2D.3.下列问题中,变量y与x成一次函数关系的是()A.路程一定时,时间y和速度x的关系B.长10米的铁丝折成长为y,宽为x的长方形C.圆的面积y与它的半径xD.斜边长为5的直角三角形的直角边y和x4.下列函数:①y=﹣x+2;②y=﹣x2+2;③y=﹣3x;④;⑤,其中不是一次函数的有()A.1个B.2个C.3个D.4个5.下列函数(1)y=2x﹣1;(2)y=πx;(3)y=;(4)y=;(5)y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个6.下列说法正确的是()A.一次函数是正比例函数B.正比例函数是一次函数C.正比例函数不是一次函数D.一次函数不可能是正比例函数7.已知函数y=3x+1,当自变量增加3时,相应的函数值增加()A.10 B.9C.3D.88.对于函数y=2x﹣1,当自变量增加m时,相应的函数值增加()A.2m B.2m﹣1 C.m D.2m+1az9.若+5是一次函数,则a=()A.±3 B.3C.﹣3 D.10.若函数y=(m﹣1)x|m|+2是一次函数,则m的值为()A.m=±1 B.m=﹣1 C.m=1 D.m≠﹣111.函数y=(m﹣2)x n﹣1+n是一次函数,m,n应满足的条件是()A.m≠2且n=0 B.m=2且n=2 C.m≠2且n=2 D.m=2且n=012.下列说法正确的是()A.y=kx+b(k、b为任意常数)一定是一次函数B.(常数k≠0)不是正比例函数C.正比例函数一定是一次函数D.一次函数一定是正比例函数13.已知y+2与x成正比例,则y是x的()A.一次函数B.正比例函数C.反比例函数D.无法判断14.设圆的面积为S,半径为R,那么下列说法确的是()A.S是R的一次函数B.S是R的正比例函数C.S是R2的正比例函数D.以上说法都不正确15.已知函数y=(k+2)x+k2﹣4,当k_________时,它是一次函数.16.如果函数y=(a﹣2)x+3是一次函数,那么a_________.17.当m=_________时,函数y=(m+5)x2m﹣1+7x﹣3(x≠0)是一个一次函数.18.已知一次函数y=(k﹣1)x|k|+3,则k=_________.19.已知:y=(m﹣1)x|m|+4,当m=_________时,图象是一条直线.20.把2x﹣y=3写成y是x的函数的形式为_________.21.在函数y=﹣2x﹣5中,k=_________,b=_________.22.一次函数y=﹣2x﹣1,当x=﹣5时,y=_________,当y=﹣7时,x=_________.23.一次函数y=kx+b中,k、b都是_________,且k_________,自变量x的取值范围是_________;当k_________,b_________时它是正比例函数.24.函数:①y=﹣2x+3;②x+y=1;③xy=1;④y=;⑤y=+1;⑥y=0.5x中,属于一次函数的有_________,属正比例函数的有_________(只填序号)25.若y=mx|m|+2是一次函数的解析式且y随x的增大而减小,则m的值等于_________.26.已知函数y=(m﹣3)x|m|﹣2+3是一次函数,求解析式.27.已知函数y=(m﹣10)x+1﹣2m.(1)m为何值时,这个函数是一次函数;(2)m为何值时,这个函数是正比例函数.28.已知函数y=(m+1)x+(m2﹣1)当m取什么值时,y是x的一次函数当m取什么值是,y是x的正比例函数.29.x为何值时,函数的值分别满足下列条件:(1)y=3;(2)y>2.30.说出下面两个问题中两个量的函数关系,并指出它们是不是正比例函数,是不是一次函数.①汽车以40千米/小时的平均速度从A站出发,行驶了t小时,那么汽车离开A站的距离s(千米)和时间t(小时)之间的函数关系是什么的函数关系式为_________,它是_________函数;②汽车离开A站4千米,再以40千米/小时的平均速度行驶了t小时,那么汽车离开A站的距离s(千米)与时间t(小时)之间的函数关系是什么的函数关系式为_________,它是_________函数.一次函数定义30题参考答案:1.①是反比例函数,故本选项错误;②符合一次函数的定义;故本选项正确;③y=﹣x+1符合一次函数的定义;故本选项正确;④=x ﹣,符合一次函数的定义;故本选项正确;⑤y=2x2+1,是二次函数;故本选项错误;综上所述,表示y是x的一次函数的有3个;故选C2.A、自变量次数不为1,故不是一次函数;B、自变量次数不为1,故不是一次函数;C、自变量次数不为1,故不是一次函数;D、是一次函数.故选D.3.A、设路程是s,则根据题意知,y=,是反比例函数关系.故本选项错误;B、根据题意,知10=2(x+y),即y=﹣x+5,符合一次函数的定义.故本选项正确;C、根据题意,知y=πx2,这是二次函数,故本选项错误;D、根据题意,知x2+y2=25,这是双曲线方程,故本选项错误.故选B.4.①y=﹣x+2是一次函数;②y=﹣x2+2是二次函数;③y=﹣3x是一次函数;④y=﹣x是一次函数;⑤y=﹣是反比例函数;所以,不是一次函数的有②⑤共2个.故选B5.(1)y=2x﹣1是一次函数;(2)y=πx是一次函数;(3)y=,自变量次数不为1,故不是一次函数;(4)y==,自变量次数不为1,故不是一次函数;(5)y=x2﹣1自变量次数不为1,故不是一次函数;综上所述,一次函数有2个.故选C.6.A、一次函数不一定是正比例函数,故本选项错误;B、正比例函数一定是一次函数,故本选项正确;C、正比例函数一定是一次函数,故本选项错误;D、一次函数可能是正比例函数,故本选项错误.故选B.7.因为y=3x+1,所以当自变量增加3时,y1=3(x+3)+1=3x+1+9,相应的函数值增加9.故选B.8.当自变量增加m时,y=2(x+m)﹣1,即y=2x+2m ﹣1,故函数值相应增加2m.故选A.9.根据一次函数的定义可知:a2﹣8=1,a+3≠0,解得:a=3.故选B.10.根据题意得:,解得:m=﹣1.故选B.11.∵函数y=(m﹣2)x n﹣1+n是一次函数,∴,解得,.故选C.12.A、y=kx+b(k、b为任意常数),当k=0时,不是一次函数,故本选项错误;B 、(常数k≠0)是正比例函数,故本选项错误;C、正比例函数一定是一次函数,故本选项正确;D、一次函数不一定是正比例函数,故本选项错误.故选C.13.y+2与x成正比例,则y+2=kx,即y=kx﹣2,符合一次函数y=kx+b的定义条件:k、b为常数,k≠0,自变量次数为1,则y是x的一次函数.故选A.14.由题意得,S=πR2,所以S是R2的正比例函数.故选C.15.根据一次函数定义得,k+2≠0,解得k≠﹣2.故答案为:≠﹣2.16.∵y=(a﹣2)x+3是一次函数,∴a﹣2≠0,∴a≠2.故答案为:a≠﹣2.17. ①,解得:m=1根据题意得:2m﹣1=1,解得:m=1,此时函数化简为y=13x﹣3.②2m﹣1=0,解得:m=,此时函数化简为y=7x﹣2.5;③m+5=0,解得:m=﹣5,此时函数化简为y=7x﹣3.故答案为:1或﹣5或18.根据题意得k﹣1≠0,|k|=1则k≠1,k=±1,即k=﹣1.19.∵y=(m﹣1)x|m|+4的图象是一条直线,∴①当该图象是一次函数图象时,|m|=1,且m﹣1≠0,解得m=﹣1.②当该直线是平行于x轴的直线时,m﹣1=0,即m=1;综上所述,当m=±1时,y=(m﹣1)x|m|+4的图象是一条直线.故答案是:±120.2x﹣y=3写成y是x的函数的形式为y=2x﹣3.故答案为:y=2x﹣3.21.根据一次函数的定义,在函数y=﹣2x﹣5中,k=﹣2,b=﹣5.22.把x、y的值分别代入一次函数y=﹣2x﹣1,当x=﹣5时,y=﹣2×(﹣5)﹣1=9;当y=﹣7时,﹣7=﹣2x﹣1,解得x=3.故填9、3.23.一次函数y=kx+b中,k、b都是常数,且k≠0,自变量x的取值范围是任意实数;当k≠0,b =0时它是正比例函数.24.函数:①y=﹣2x+3;②x+y=1;③xy=1;④y=;⑤y=+1;⑥y=0.5x中,属于一次函数的有①②⑥,属正比例函数的有⑥(只填序号)25.∵y=mx|m|+2是一次函数,∴|m|=1,∴m=±1,∵y随x的增大而减小,∴m=﹣1.故答案为:﹣126.∵m﹣3≠0且|m|﹣2=1,∴m=﹣3,∴函数解析式为:y=﹣6x+327.(1)根据一次函数的定义可得:m﹣10≠0,∴m≠10,这个函数是一次函数;(2)根据正比例函数的定义,可得:m﹣10≠0且1﹣2m=0,∴m=时,这个函数是正比例函数.28.由函数是一次函数可得,m+1≠0,解得m≠﹣1,所以,m≠﹣1时,y是x的一次函数;函数为正比例函数时,m+1≠0且m2﹣1=0,解得m=1,所以,当m=1时,y是x的正比例函数.29.(1)当y=3时,可得:1.5x+6=3,解得x=﹣2;(2)当y>2时,1.5x+6>2,解得30.①汽车以40千米/小时的平均速度从A站出发,行驶了t小时,则汽车离开A站的距离s=40t,它是正比例函数;故两空应分别填s=40t,正比例;②汽车离开A站4千米,再以40千米/小时的平均速度行驶了t小时,则汽车离开A站的距离s=40t+4,它是一次函数;故两空应分别填s=40t+4,一次.。
初二数学一次函数练习题及答案
初二数学一次函数练习题及答案一、选择题1.已知函数y = 2x + 3,若x = 4,则y =a) 8b) 11c) 7d) 9答案:b) 112.若函数y = kx + 5,当x = 3时,y = 17,则k的值为:a) 3b) 4c) 5d) 6答案:d) 63.已知函数y = -3x + 2,若x = -2,则y =a) 4b) 8c) -2d) -8答案:a) 44.若函数y = 4x - 5,当x = -1时,y =a) -4b) 9c) -9d) 11答案:c) -9二、填空题1.函数y = 2x + 3表示一条直线,其斜率为____,截距为____。
答案:2,32.已知一次函数y = -5x + k,当x = 2时,y = 9,则k的值为____。
答案:193.已知函数y = 3x + 4,若x = -1,则y的值为____。
答案:14.函数y = -2x - 1与y轴交于点(____,0)。
答案:-0.5三、解答题1.已知函数y = 2x + 1,求:(1)当x = 3时,y的值为多少?(2)当y = 5时,求相应的x值。
解:(1)将x = 3代入函数中,得到y = 2*3 + 1 = 7。
所以当x = 3时,y的值为7。
(2)将y = 5代入函数中,得到5 = 2x + 1,解方程得到x = 2。
所以当y = 5时,相应的x值为2。
2.已知函数y = -3x + 5,求:(1)求函数与x轴和y轴的交点坐标。
(2)求函数的斜率和截距。
解:(1)当函数与x轴交点时,y = 0,代入函数得到0 = -3x + 5,解方程得到x = 5/3。
所以与x轴的交点坐标为(5/3, 0)。
当函数与y轴交点时,x = 0,代入函数得到y = 5。
所以与y轴的交点坐标为(0, 5)。
(2)已知函数y = -3x + 5,斜率为-3,截距为5。
四、应用题1.一个移动应用程序每下载一个应用,需支付固定的5元服务费和每个应用的2元费用。
一次函数练习题及答案
一次函数练习题及答案一、选择题(每题2分,共10分)1. 一次函数y=kx+b的斜率k表示什么?A. 函数的截距B. 函数的增长速度C. 函数的对称轴D. 函数的顶点2. 下列哪个选项不是一次函数?A. y = 3x + 5B. y = x^2 + 1C. y = -2x - 3D. y = 53. 一次函数y=kx+b中,当k>0时,函数的图像在坐标平面内如何变化?A. 从左下角向右上角延伸B. 从左上角向右下角延伸C. 从右上角向左下角延伸D. 从左上角向右上角延伸4. 已知一次函数y=2x-4,当x=3时,y的值是多少?A. 2B. -2C. 0D. 55. 如果一次函数y=kx+b的图像经过点(1,1)和(2,4),那么k和b的值分别是多少?A. k=3, b=-2B. k=2, b=-1C. k=1, b=2D. k=4, b=-3二、填空题(每题2分,共10分)6. 一次函数y=kx+b的图像是一条______。
7. 当k<0时,一次函数y=kx+b的图像会经过第______象限。
8. 一次函数y=kx+b中,如果b>0,则函数的图像与y轴的交点在y轴的______半轴。
9. 已知一次函数y=kx+b的图像经过点(-1,5),且与x轴相交于点(3,0),则k=______。
10. 一次函数y=kx+b的图像与x轴相交于点(x,0),则x=______。
三、解答题(每题5分,共20分)11. 已知一次函数y=kx+b的图像经过点(2,-3)和(-1,6),请求出k和b的值。
12. 一次函数y=kx+b的图像与x轴相交于点(a,0),与y轴相交于点(0,b),若a=4,b=-1,请写出该一次函数的解析式。
13. 已知一次函数y=kx+b的图像经过点(0,5)和(1,10),求出该一次函数的解析式,并判断其增减性。
14. 一次函数y=kx+b的图像与反比例函数y=1/x的图像在第一象限相交于点(2,m),求m的值。
(word完整版)一次函数习题集锦(含答案),推荐文档
2 ⎪ 数学八年级上册一次函数练习题一、试试你的身手(每小题 3 分,共 24 分)11.正比例函数 y = - 2x 中,y 值随 x 的增大而. 2. 已知 y=(k-1)x+k 2-1 是正比例函数,则 k =.3. 若 y+3 与 x 成正比例,且 x=2 时,y=5,则 x=5 时,y=.4.直线 y=7x+5,过点( ,0),(0,).5.已知直线 y=ax-2 经过点(-3,-8)和⎛ 1 ,b ⎫两点,那么 a= ,b=.⎝ ⎭6. 写出经过点(1,2)的一次函数的解析式为(写出一个即可).1 x +1 , y = 1 x -1, y = 1 x 的图象有什么特点7. 在同一坐标系内函数 y =2 2 2.8. 下表中,y 是 x 的一次函数,则该函数解析式为,并补全下表.x -2 -10 12y26二、相信你的选择(每小题 3 分,共 24 分)1. 下列函数中是正比例函数的是()A. y = 8 xB. y = 82C . y = 2(x -1)D . y = -( 2 +1)x32. 下列说法中的两个变量成正比例的是( )A .少年儿童的身高与年龄B .圆柱体的体积与它的高C .长方形的面积一定时,它的长与宽D .圆的周长 C 与它的半径 r 3.下列说法中错误的是( ) A .一次函数是正比例函数 B .正比例函数是一次函数C .函数 y=|x |+3 不是一次函数D .在 y=kx+b(k 、b 都是不为零的常数)中, y-b 与 x 成正比例4. 一次函数 y=-x-1 的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限5.函数 y=kx-2 中,y 随 x 的增大而减小,则它的图象可以是()6. 如图 1,一次函数的图象经过 A 、B 两点,则这个一次函数的解析式为()A. y = 3x - 22B. y = 1x - 22C. y = 1x + 22 D. y = 3x + 227.若函数y=kx+b(k、b 都是不为零的常数)的图象如图2 所示,那么当y>0 时,x 的取值范围为()A.x>1 B.x>2 C.x<1 D.x<28.已知一次函数y=kx-k,若y 随x 的增大而减小,则该函数的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限三、挑战你的技能(共30 分)1.(10 分)某函数具有下列两条性质:(1)它的图象是经过原点(0,0)的一条直线;(2)y 的值随 x 的值增大而减小.请你写出一个满足上述两个条件的函数解析式.2.(10 分)已知一次函数 y=kx+b 的图象经过 A(2,4)、B(0,2)两点,且与 x 轴相交于C 点.(1)求直线的解析式.(2)求△AOC的面积.3.(10 分)已知一个正比例函数和一个一次函数的图象交于点 P(-2,2),且一次函数的图象与 y 轴相交于点 Q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△POQ的面积.四、拓广探索(共 22 分)1.(11 分)如图 3,在边长为 2 的正方形 ABCD 的一边 BC 上的点 P 从B 点运动到 C 点,设PB=x,梯形 APCD 的面积为 S.(1)写出 S 与x 的函数关系式;(2)求自变量 x 的取值范围;(3)画出函数图象.2.(11 分)小明在暑期社会实践活动中,以每千克 0.8 元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了 40 千克西瓜之后,余下的每千克降价 0.4 元,全部售完.销售金额与售出西瓜的千克数之间的关系如图 4 所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额 y(元)与售出西瓜 x(千克)之间的函数关系式. (2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?一、1.减小2.-1参考答案3.17 4.-5,5 5.2 ,-176.略(答案不惟一)7.三条直线互相平行8.y = 2x + 2 ,表格从左到右依次填-2 ,0 ,4二、1.D 2.D 3.A 4.A 5.D 6.A 7.D 8.B三、1.y =-x (答案不惟一)2.(1)y =x + 2(2)43.(1)正比例函数的解析式为y=-x.一次函数的解析式为y =x + 4(2)图略;(3)4四、1.(1)S = 4 -x ;(2)0 <x < 2 ;(3)图略2.(1)y =8x(0 ≤≤x540) ;(2)50 千克;(3)36 元. . . . .一次函数测试题一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是。
一次函数练习题及答案
一次函数练习题及答案本文将为大家提供一系列有关一次函数的练习题,同时附带相应的答案。
一次函数,也叫线性函数,是初中数学中的重要知识点之一。
希望通过这些练习题的训练,大家能够更好地掌握一次函数的概念、性质和解题方法。
一、选择题1.已知函数y=3x+2,则它的斜率是多少?– A. 2– B. 3– C. -2– D. -3答案:B2.若一次函数图像上两点的坐标分别为(1,4)和(3,y),则y的值是多少?– A. 10– B. 12– C. 14– D. 16答案:D3.已知函数经过点(−2,1)和(4,y),则y的值是多少?– A. -5– B. 0– C. 3– D. 6答案:C二、填空题1.若一次函数y=kx+3经过点(2,5),则k的值为 \\\_。
答案:12.一次函数y=−2x+b经过点(3,−1),则b的值为 \\\_。
答案:53.若一次函数图像上两点的坐标分别为(1,y1)和(2,y2),则$\\frac{{y_1}}{{y_2}}$ 的值为 \\\_。
答案:$\\frac{1}{2}$三、计算题1.求函数y=2x−1和y=x+3的交点坐标。
解:将两个方程联立起来,得到方程组:$$ \\begin{cases} y = 2x - 1\\\\ y = x + 3\\\\ \\end{cases} $$解方程组可得:$$ x + 3 = 2x - 1 \\\\ \\Rightarrow x = 4 $$将x=4代入其中一个方程,得到y=8−1=7。
因此,交点坐标为(4,7)。
2.已知函数y=3x+b经过点(2,−1),求b的值。
解:代入点(2,−1),得到方程 $-1 = 3 \\cdot 2 + b$,解方程可得b=−7。
3.一辆汽车以匀速行驶,开车起点距离目的地 600 公里。
如果行驶 4小时后,已行驶距离为 320 公里,求每小时行驶的公里数。
解:设每小时行驶的公里数为x,根据题意可得方程 $\\frac{320}{4} = x$,解方程可得x=80。
八年级数学一次函数32道典型题(含答案和解析)
八年级数学一次函数32道典型题(含答案和解析)1、下列函数中:① y=2πx ;② y=-2x+6;③ y=34x ;④ y=x2+3;⑤ y=32x ;⑥ y=√x ,其中是一次函数的有( )个.A.1B.2C.3D.4 答案: C .解析: ①②③满足自变量次数为1,系数不为零,且自变量不在分母上,故为一次函数.④自变量次数不为1,故不是一次函数. ⑤自变量在分母上,不是一次函数. ⑥自变量次数为12,不是一次函数.考点:函数——一次函数——一次函数的基础.2、 当m= 时,y=(m -4)x 2m+1-4x -5 是一次函数. 答案: 4或0.解析:y=(m -4)x 2m+1-4x -5是一次函数.则 m -4=0或2m+1=1. 解得 m=4或m=0.考点:函数——一次函数——一次函数的基础.3、一次函数y=kx+b 的图象不经过第二象限,则k ,b 的取值范围是( ).A. k <0,b≥0B. k >0,b≤0C. k <0,b <0D. k >0,b >0 答案: B .解析: ① k >0时,直线必经过一、三象限,故k >0.② 再由图象过三、四象限或者原点,所以b≤0 .考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.4、一次函数y=kx -k 的图象一定经过( ).A. 一、二象限B. 二、三象限C. 三、四象限D. 一、四象限 答案: D . 解析: 解法一:当k >0时,函数为增函数,且与y 轴交点在x 轴下方,此时函数经过一、三、四象限.当k <0时,函数为减函数,且与y 轴交点在x 轴上方,此时函数经过一、二、四象限.∴一次函数y=kx -k 的图象一定经过一、四象限. 解法二:一次函数y=kx -k=k (x -1)的图象一定过(1,0),即该图象一定经过一、四象限.考点:函数——一次函数——一次函数的图象——一次函数的性质.5、如果ab >0,ac <0,则直线y=−ab x+cb 不通过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 答案: A .解析:ab >0 ,ac <0.则a ,b 同号;a ,c 异号;b ,c 异号. ∴−ab <0,cb <0.∴直线y=−abx+cb 过第二、三、四象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.6、如图,一次函数y=kx+b 和正比例函数y=kbx 在同一坐标系内的大致图象是( ).解析:A 、∵一次函数的图象经过一、三、四象限.∴k>0,b<0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项错误.B、∵一次函数的图象经过一、二、四象限.∴k<0,b>0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项正确.C、∵一次函数的图象经过二、三、四象限.∴k<0,b<0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.D、∵一次函数的图象经过一、二、三象限.∴k>0,b>0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.故选B.考点:函数——一次函数——正比例函数的图象——一次函数的图象.7、下列图象中,不可能是关于的一次函数y=mx-(m-3)的图象的是().解析:将解析式变为y=mx+(3-m)较易判断.考点:函数——一次函数——一次函数的图象.8、若一次函数y=-2x+3的图象经过点P1(-5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空).答案:>.解析:在y=-2x+3中,k=-2<0.∴在一次函数y=-2x+3中,y随x的增大而减小.∵-5<1.∴m>n.考点:函数——一次函数——一次函数的性质.9、一次函数y=kx+b中,y随着x的增大而减小,b<0,则这个函数的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵一次函数y=kx+b中,y随着x的增大而减小.∴k<0.又∵b<0.∴这个函数的图象不经过第一象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k、b的关系.10、已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为().A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<0答案:A.解析:一次函数y=kx+b-x即为y=(k-1)x+b.∵函数值y随x的增大而增大.∴k-1>0,解得k>1.∵图象与x轴的正半轴相交,∴b <0.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.11、已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 . 答案:-1.解析: 由已知得:{ 2k +3>0k <0.解得:−32<k <0. ∵k 为整数. ∴k=-1.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.12、在直角坐标系x0y 中,一次函数y=kx+6的图象经过点A (2,2). (1) 求一次函数的表达式.(2) 求一次函数图象与x 轴、y 轴交点的坐标.答案:(1) 一次函数的表达式为:y=-2x+6.(2) 一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6). 解析:(1) ∵一次函数y=kx+6的图象经过点A (2,2).∴2=2k+6. ∴k=-2.∴一次函数的表达式为:y=-2x+6.(2) 在y=-2x+6中,令x=0,则y=6,令y=0,则x=3.∴一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.13、设一次函数y=kx+b 的图象经过点P (1,2),它与x 轴,y 轴的正半轴分别交于A ,B 两点,坐标原点为O ,若OA+OB=6,则此函数的解析式是 或 . 答案: 1.y=-x+3.2.y=-2x+4.解析:因为一次函数y=kx+b的图象经过点P(1,2).所以k+b=2,即k=2-b.令y=0,则x=−bk =bb−2.所以点A(bb−2,0),点B(0,b).又因为A,B位于x轴,y轴的正半轴,并且OA+OB=6.所以bb−2+b=6,其中b>2.解得b=3或b=4.此时k=-1或-2.所以函数的解析式是y=-x+3或y=-2x+4.考点:函数——一次函数——一次函数综合题.14、一次函数y=(m2-1)x+(1-m)和y=(m+2)x+(2m-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是().A. 2B.2或-1C. 1或-1D.-1答案:A.解析:一次函数y=(m2-1)x+(1-m)的图象与y轴的交点P为(0,1-m).一次函数y=(m+2)x+(2m-3)的图象与y轴的交点Q为(0,2m-3).因为P和Q关于x轴对称.所以1-m+2m-3=0.解得m=2.考点:函数——一次函数——一次函数的图象——一次函数图象与几何变换.15、已知直线y=2x-1.(1)求此直线与x轴的交点坐标.(2)若直线y=k1x+b1与已知直线平行,且过原点,求k1、b1的值.(3)若直线y=k2x+b2与已知直线关于y轴对称,求k2、b2的值.答案:(1)(12,0).(2)k1=2,b1=0.(3)k2=-2,b2=-1.解析:(1)令y=0,则0=2x-1.∴x=12.∴与x轴的交点坐标为(12,0).(2)∵y=k1x+b1与y=2x-1平行.∴k1=2.又∵y=k1x+b1过原点.∴b1=0.(3)在直线y=2x-1上任取一点(1,1).则(1,1)关于y轴的对称点为(-1,1).又∵y=k2x+b2与已知直线关于y轴对称.则b2=-1.点(-1,1)在直线y=k2x-1上.∴1=-k2-1.∴k2=-2.考点:函数——一次函数——一次函数与坐标轴交点——一次函数图象与几何变换——两条直线相交或平行问题.16、如图所示,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值.(2)解关于x,y的方程组{y=x+1y=mx+n,请你直接写出它的解.(3)直线l3:y=nx+m是否也经过点P?请说明理由.答案:(1)b=2.(2){x=1y=2.(3)直线l3:y=nx+m经过点P.解析:(1)将P(1,b)代入y=x+1,得b=1+1=2.(2)由于P点坐标为(1,2),所以{x=1y=2.(3)将P(1,2)代入解析式y=mx+n得,m+n=2.将x=1代入y=nx+m得y=m+n.由于m+n=2.所以y=2.故P(1,2)也在y=nx+m上.考点:函数——一次函数——求一次函数解析式——一次函数与二元一次方程.17、如图,直线y=kx+b经过A(-1,1)和B(-√7,0)两点,则关于x的不等式组0<kx+b<-x的解集为.答案:-√7<x<-1.解析:∵直线y=kx+b经过B(-√7,0)点.∴0<kx+b,就是y>0,y>0的范围在x轴的上方.此时:-√7<x.∵直线y=-x经过A(-1,1).那么就是A点左侧kx+b<-x.得:x<-1.故解集为:-√7<x<-1.考点:函数——一次函数——一次函数与一元一次不等式.18、阅读理解:在数轴上,x=1表示一个点,在平面直角坐标系中,x=1表示一条直线(如图(a)所示),在数轴上,x≥1表示一条射线;在平面直角坐标系中,x≥1表示的是直线x=1右侧的区域;在平面直角坐标系中,x+y-2=0表示经过(2,0),(0,2)两点的一条直线,在平面直角坐标系中,x+y-2≤0表示的是直线x+y-2=0及其下方的区域(如图(b)所示),如果x,y满足{x+2y−2≥03x+2y−6≤0x≥0y≥0,请在图(c)中用阴影描出点(x,y)所在的区域.答案:解析:略.考点:函数——一次函数——一次函数与一元一次不等式.19、甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒.(2)求乙跑步的速度及乙在途中等候甲的时间.(3)求乙出发多长时间第一次与甲相遇?答案:(1)1.900.2.1.5.(2)乙在途中等候甲的时间是100秒.(3)乙出发150秒时第一次与甲相遇.解析:(1)解:根据图象可以得到:甲共跑了900米,用了600秒.∴甲的速度为900÷600=1.5米/秒.(2)甲跑500秒的路程是500×1.5=750米.甲跑600米的时间是(750-150)÷1.5=400秒.乙跑步的速度是750÷(400-100)=2.5米/秒.乙在途中等候甲的时间是500-400=100秒.(3)∵D(600,900),A(100,0),B(400,750).∴OD的函数关系式为y=1.5x,AB的函数关系式为y=2.5x-250.根据题意得{y=1.5xy=2.5x−250.解得x=250.∴乙出发150秒时第一次与甲相遇.考点:函数——一次函数——一次函数的应用.20、如图1是某公共汽车线路收支差额y(单位:万元)(票价总收人减去运营成本)与乘客量x(单位:万人)的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图1分别改画成图2和图3.(1)说明图1中点A和点B的实际意义.(2)你认为图2和图3两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图4 中画出符合这种办法的y与x的大致函数关系图象.答案:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)1.图3.2.图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.解析:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)反映乘客意见的是图3.反映公交公司意见的是图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.考点:函数——一次函数——一次函数的图象——一次函数的应用.x+b的图象经过点A(2,3),AB⊥x轴于点B,连接OA.21、如图,已知一次函数y=−12(1) 求一次函数的解析式.(2) 设点P 为y=−12x+b 上的一点,且在第一象限内,经过点P 作x 轴的垂线,垂足为Q .若△POQ 的面积等于54倍的△AOB 的面积,求点P 的坐标.答案:(1) y=−12x+4.(2) (3,52)或(5,32).解析:(1) ∵一次函数y=−12x+b 的图象经过点A (2,3).∴3=(−12)×2+b .解得b=4.故此一次函数的解析式为:y=−12x+4.(2) 设P (p ,d ),p >0.∵点P 在直线y=−12x+4的图象上.∴ d=−12p+4①.∵ S △POQ =54S △AOB =54×12×2×3. ∴ 12pd=154②.①②联立得,{ d =−12p +412pd =154.解得{ p =3d =52或{p =5d =32.∴ 点坐标为:(3,52)或(5,32).考点:函数——一次函数——求一次函数解析式——一次函数的应用.22、已知:一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).(1) 求a 的值及正比例函数y=kx 的解析式.(2) 点P 在坐标轴上(不与原点O 重合),若PA=OA ,直接写出P 点的坐标.(3) 直线x=m (m <0且m≠-4 )与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积为S ,求S 关于m 的函数关系式.答案:(1) a=-4,正比例函数的解析式为y=−14x . (2) P 1(-8,0)或P 2(0,2).(3) S △ABC=38m2+3m+6(m≠-4).解析:(1) ∵一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).∴ 12a+3=1. 解得a=-4. ∴ A (-4,1). ∴ 1=K×(-4). 解得k=−14.∴正比例函数的解析式为y=−14x .(2) 如图1,P 1(-8,0)或P 2(0,2).(3) 依题意得,点B 坐标为(m ,12m+3),点C 的坐标为(m ,−m4).作AH ⊥BC 于点H ,H 的坐标为(m ,1). 分两种情况: ① 当m <-4时.BC=−14m -(12m+3)=−34m -3.AH=-4-m .则S △ABC =12BC×AH=12(−34m -3)(-4-m )=38m 2+3m+6.② 当m >-4时.BC=(12m+3)+m 4=34m+3.AH=m+4.则S △ABC =12BC×AH=12(34m+3)(m+4)=38m 2+3m+6.综上所述,S △ABC=38m2+3m+6(m≠-4).考点:函数——平面直角坐标系——坐标与距离——坐标与面积.一次函数——一次函数图象上点的坐标特征——两条直线相交或平行问题——一次函数综合题.三角形——三角形基础——三角形面积及等积变换.23、已知y 1=x+1,y 2=-2x+4,当-5≤x≤5时,点A (x ,y 1)与点B (x ,y 2)之间距离的最大值是 . 答案:18.解析: 当x=5时,y 1=6,y 2=-6.当x=-5时,y 1=-4,y 2=14.∴ A (5,6),B (5,-6)或A (-5,-4),B (-5,14). ∴ AB=6-(-6)=12或AB=14-(-4)=18. ∴ 线段AB 的最大值是18.考点:函数——一次函数——一次函数的性质.24、如图,在平面直角坐标系xOy中,直线y=−4x+8与x轴,y轴分别交于点A,点B,点3D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标.(2)求直线CD的解析式.答案: (1)AB=√62+82=10,点C的坐标为C(16,0).(2)直线CD的解析式为y=3x-12.4解析:(1)根据题意得A(6,0),B(0,8).在RT△OAB中,∠AOB=90°,OA=6,OB=8.∴AB=√62+82=10.∵△DAB沿直线AD折叠后的对应三角形为△DAC.∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上.∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0).由题意可知CD=BD,CD2=BD2.由勾股定理得162+y2=(8-y)2.解得y=-12.∴点D的坐标为D(0,-12).可设直线CD的解析式为y=kx-12(k≠0).∵点C(16,0)在直线y=kx-12上.∴16k-12=0..解得k=34∴直线CD的解析式为y=3x-12.4考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.25、直线AB:y=-x+b分别与x、y轴交于A、B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.(1)求点B的坐标及直线BC的解析式.(2)在x轴上方存在点D,使以点A、B、C为顶点的三角形与△ABC全等,画出△ABD,并请直接写出点D的坐标.(3)在线段OB上存在点P,使点P到点B,C的距离相等,求出点P的坐标.答案:(1)B(0,3),直线BC的解析式为y=3x+3.(2)画图见解析,D1(4,3),D2(3,4).(3)证明见解析.解析:(1)把A(3,0)代入y=-x+b,得b=3.∴B(0,3).∴OB=3.∵OB:OC=3:1.∴OC=1.∵点C在x轴负半轴上.∴C(-1,0).设直线BC 的解析式为y=mx+n . 把B (0,3)及C (-1,0)代入,得{n =3−m +n =0.解得{m =3n =3.∴直线BC 的解析式为:y=3x+3.(2) 如图所示,D 1(4,3),D 2(3,4).(3) 由题意,PB=PC .设PB=PC=X ,则OP=3-x . 在RT △POC 中,∠POC=90°. ∴ OP 2+OC 2=PC 2. ∴ (3-x )2+12=x 2. 解得,x=53.∴ OP=3-x=43.∴点P 的坐标(0,43).考点:函数——平面直角坐标系——特殊点的坐标.一次函数——求一次函数解析式.三角形——全等三角形——全等三角形的性质.26、一次函数y=kx+b (k≠0),当x=-4时,y=6,且此函数的图象经过点(0,3). (1) 求此函数的解析式.(2) 若函数的图象与x 轴y 轴分别相交于点A 、B ,求△AOB 的面积.(3) 若点P 为x 轴正半轴上的点,△ABP 是等腰三角形,直接写出点P 的坐标.答案:(1)y=−34x+3.(2)6.(3)(78,0)或(9,0).解析:(1)当x=-4时,y=6,且此函数的图象经过点(0,3).代入y=kx+b 有,{−4k +b =6b =3,解得:{k =−34b =3.∴此函数的解析式为y=−34x+3.(2)当y=0时,x=4.∴点A (4,0),B (0,3). ∴ S △AOB=12×3×4=6.(3)AB=√42+32=5.当点P 为P 1时,BP 1=AP 1.∴在RT △OBP 1中,32+OP 12=(4-OP 1)2. 解得:OP 1=78. ∴ P1(78,0).当点P 为P 2时,AB=AP 2,∴P 2(9,0). 故点P 的坐标为(78,0)或(9,0).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.三角形——三角形基础——三角形面积及等积变换. 等腰三角形——等腰三角形的性质.27、已知点A (-4,0),B (2,0).若点C 在一次函数y=12x+2的图象上,且△ABC 是直角三角形,则点C 的个数是( ).A.1B. 2C. 3D.4 答案: B .解析: 如图所示,当AB 为直角边时,存在C 1满足要求.当AB 为斜边时,存在C 2满足要求.故点C的个数是2.考点:函数——一次函数——一次函数综合题.28、在平面直角坐标系xOy中,点A(-3,2),点B是x轴正半轴上一动点,连结AB,以AB为腰在x轴的上方作等腰直角△ABC,使AB=BC.(1)请你画出△ABC.(2)若点C(x,y),求y与x的函数关系式.答案:(1)画图见解析.(2)y=x+1.解析:(1)(2)作AE⊥x轴于E,CF⊥x轴于F.∴∠AEB=∠BFC=90°.∵A(-3,2).∴ AE=2,EO=3. ∵ AB=BC ,∠ABC=90°. ∴ ∠ABE+∠CBF=90°. ∵ ∠BCF+∠CBF=90°. ∴ ∠ABE=∠BCF. ∴ △ABE ≌△BCF . ∴ EB=CF ,AE=BF. ∵ OF=x ,CF=y . ∴ EB=y=3+(x+2). ∴ y=x+1.考点:函数——一次函数——一次函数综合题.三角形——直角三角形——等腰直角三角形.29、如图,直线l 1:y=12x 与直线l 2:y=-x+6交于点A ,直线l 2与x 轴、y 轴分别交于点B 、C ,点E 是线段OA 上一动点(E 不与O 、A 重合),过点E 作 EF ∥x 轴,交直线l 2于点F .(1) 求点A 的坐标.(2) 设点E 的横坐标为t ,线段EF 的长为d ,求d 与t 的函数关系式,并写出自变量t 的取值范围.(3) 在x 轴上是否存在一点P ,使△PEF 为等腰直角三角形?若存在,求出P 点坐标;若不存在,请你说明理由.答案:(1) (4,2).(2) d=6-32t ,其中0<t <4.(3) 存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形.解析:(1)联立{ y =12y =−x +6,解得{x =4y =2.∴点A 的坐标为(4,2).(2)点E 在直线l 1:y=12x .∵点E 的横坐标为t . ∴点E 的纵坐标为12t .∵ EF ∥x 轴,点F 在直线l 2:y=-x+6上. ∴点F 的纵坐标为12t .由12t=-x+6,得点F 的横坐标为6-12t .∴ EF 的长d=6−12t -t=6−32t . ∵ 点E 在线段OA 上. ∴ 0<t <4.(3) 若∠PEF=90°,PE=EF .则6−32t=t2,解得t=3.∵ 0<t <4.∴ P 点坐标为(3,0). 若∠PFE=90°,PF=EF . 则6−32t=t2,解得t=3. ∵ 0<t <4.∴ P 点坐标为(92,0).若 ∠EPF=90°. ∴6−32t=2×t2,解得t=125. 此时点P 的坐标为(185,0).综上,存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形. 考点:函数——一次函数——两条直线相交或平行问题——一次函数的应用——一次函数综合题.三角形——直角三角形——等腰直角三角形.30、规定:把一次函数y=kx+b 的一次项系数和常数项互换得y=bx+k ,我们称y=kx+b 和y=bx+k (其中k.b≠0,且|k|≠|b |)为互助一次函数,例如y=−23x+2和y=2x −23就是互助一次函数.如图,一次函数y=kx+b 和它的互助一次函数的图象l 1,l 2交于P 点,l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点.(1) 如图(1),当k=-1,b=3时. ① 直接写出P 点坐标 .② Q 是射线CP 上一点(与C 点不重合),其横坐标为m ,求四边形OCQB 的面积S 与m 之间的函数关系式,并求当△BCQ 与△ACP 面积相等时m 的值.(2) 如图(2),已知点M (-1,2),N (-2,0).试探究随着k ,b 值的变化,MP+NP 的值是否发生变化?若不变,求出MP+NP 的值;若变化,求出使MP+NP 取最小值时的P 点坐标.答案: (1)① (1,2).② S=2m −16(m >13),m=53.(2)随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化.使MP+NP 取最小值时的P 点坐标为(1,65).解析:(1)① P (1,2).② 如图,连接OQ .∵ y=-X+3与y=3x -1的图象l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点. ∴ A (3,0),B (0,3),C (13,0),D (0,-1).∵ Q (m ,3m -1)(m >13).∴ S=S △OBQ +S △OCQ =12×3×m+12×13×(3m -1)=2m −16(m >13).∴ S △BCQ =S -S △BOC =2m −16−12×3×13=2m −23. 而S △ACP =12×(3−13)×2=83.由S △BCQ=S △ACP ,得2m −23=83,解得m=53.(2) 由{ y =kx +b y =bx +k,解得{ x =1y =k +b ,即P (1,k+b ).∴随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化. 如图,作点N (-2,0)关于直线x=1的对称点N(4,0),连接MN 交直线x=1于点P ,则此时MP+NP 取得最小值.设直线MN 的解析式为y=cx+d ,依题意{−c +d =24c +d =0.解得{c =−25y =85.∴直线MN 的解析式为y=−25x+85.令x=1,则y=65,∴P (1,65).即使MP+NP 取最小值时的P 点坐标为(1,65).考点:函数——函数基础知识——函数过定点问题.一次函数——一次函数与二元一次方程——一次函数综合题. 几何初步——直线、射线、线段——线段的性质:两点之间线段最短. 三角形——三角形基础——三角形面积及等积变换.31、新定义:对于关于x 的一次函数y=kx+b (k≠0),我们称函数{y =kx +b (x ≤m )y =−kx −b (x >m )为一次函数y=kx+b (k≠0)的m 变函数(其中m 为常数).例如:对于关于x 的一次函数y=x+4的3变函数为{y =x +4(x ≤3)y =−x −4(x >3).(1) 关于x 的一次函数y=-x+1的2变函数为y ,则当x=4时,y=__________. (2) 关于x 的一次函数y=x+2的1变函数为y 1,关于x 的一次函数y=−12x -2的-1变函数为y 2,求函数y 1和函数y 2的交点坐标.(3) 关于x 的一次函数y=2x+2的1变函数为y 1,关于x 的一次函数y=−12x -1的m变函数为y 2.① 当-3≤x≤3时,函数y 1的取值范围是__________(直接写出答案).② 若函数y 1和函数y 2有且仅有两个交点,则m 的取值范围是__________(直接写出答案).答案: (1)3.(2)(−83,−23)和(0,2).(3)①-8≤y 1≤4.②−65≤m <−23.解析: (1) 根据m 变函数定义,关于x 的一次函数y=-x+1的2变函数为: {y =−x +1(x ≤2)y =x −1(x >2).∴ x=4时,y 1=4-1=3.∴ y 1=3.(2) 根据定义得:y 1={y =x +2(x ≤1)y =−x −2(x >1),y 2={y =−12x −2(x ≤−1)y =12x +2(x >−1). 求交点坐标:① {y =x +2(x ≤1)y =−12x −2(x ≤−1) ,解得{x =−83y =−23. ② {y =x +2(x ≤1)y =12x +2(x >−1) ,解得{x =0y =2. ③ {y =−x −2(x >1)y =−12x −2(x ≤−1),无解. ④ {y =−x −2(x >1)y =12x +2(x >−1),无解. 综上所述函数y 1和函数y 2的交点坐标为(−83,−23)和(0,2).(3)略.考点:函数——一次函数——一次函数的性质——一次函数图象上点的坐标特征——一次函数与二元一次方程——一次函数综合题.32、在平面直角坐标系xOy 中,对于点M (m ,n )和点N (m ,n’,给出如下定义:若n’={n (m ≥2)−n (m <2),则称点N 为点M 的变换点.例如:点(2,4)的变换点的坐标是(2,4),点(-1,3)的变换点的坐标是(-1,-3).(1) 回答下列问题:① 点(√5,1)的变换点的坐标是 .② 在点A (-1,2),B (4,-8)中有一个点是函数y=2x 图象上某一点的变换点,这个点是 (填“A”或“B”).(2) 若点M 在函数y=x+2(-4≤x≤3)的图象上,其变换点N 的纵坐标n’的取值范围是 .(3) 若点M 在函数y=-x+4(-1≤x≤a ,a >-1)的图象上,其变换点N 的纵坐标n’的取值范围是-5≤n’≤2,则a 的取值范围是 .答案: (1)①(√5,1).② A.(2)-4<n’≤2或4≤n’≤5.(3)6≤a≤9.解析:(1)① 由定义可知,由于√5>2,所以点(√5,1)的变换点的坐标是(√5,1).②若点A(-1,2)是变换点,则变换前的点为(-1,-2),-2=-1×2,在函数y=2x上.若点B(4,-8)是变换点,则变换前的点为(4,-8),-8≠4×2,不在函数y=2x上.所以这个点是A.(2)若点M在函数y=x+2(-4≤x≤3)的图象上,设M(x,x+2).当2≤x≤3时,4≤n’=x+2≤5.当-4≤x<2时,-4<n’=-(x+2)≤2.综上,纵坐标n’的取值范围是-4<n’≤2或4≤n’≤5.(3)当a>2时,2≤x<a时,4-a≤n’=-x+4≤2.-1≤x<2时,-5≤n’=-(-x+4)≤—2.∴只需-5≤4-a≤-2,此时6≤a≤9.当a<2时,-1≤x≤a,-5≤n’=-(-x+4)≤a-4.此时不满足-5≤n’≤2,故舍去.综上,的取值范围是6≤a≤9.考点:式——探究规律——定义新运算.函数——平面直角坐标系——点的位置与坐标.一次函数——一次函数图象上点的坐标特征.。
一次函数试题及答案
一次函数试题及答案### 一次函数试题一、选择题1. 如果直线y=3x+4与x轴相交于点A(-4/3, 0),则直线y=3x+b与x 轴相交于点B(x, 0),则b的值是()。
- A. 4- B. 12- C. -4- D. 02. 已知一次函数y=kx+b的图象过点(3,5)和(-1,-1),则k+b的值是()。
- A. 4- B. 3- C. 2- D. 1二、填空题1. 一次函数y=kx+b的斜率为2,且过点(1,-1),求b的值。
2. 直线y=-2x+3与y轴的交点坐标是()。
三、解答题1. 已知一次函数y=kx+b的图象经过点(-1,2)和(2,-1),求k和b的值。
2. 直线y=-x+3与x轴相交于点A,与y轴相交于点B,求AB的长度。
答案一、选择题1. 答案:B解析:已知直线y=3x+4与x轴相交于点A(-4/3, 0),因此当y=0时,x=-4/3。
直线y=3x+b与x轴相交时,y=0,所以3x+b=0,解得x=-b/3。
因为交点B的横坐标是x,所以-b/3=x,即b=3x。
将点A的横坐标-4/3代入得b=12。
2. 答案:C解析:将点(3,5)代入y=kx+b得3k+b=5,将点(-1,-1)代入得-k+b=-1。
解方程组得k=2,b=1,所以k+b=3。
二、填空题1. 答案:b=-3解析:已知斜率k=2,将点(1,-1)代入y=kx+b得-1=2*1+b,解得b=-3。
2. 答案:(0,3)解析:直线与y轴相交时,x=0,代入y=-2x+3得y=3。
三、解答题1. 解:将点(-1,2)代入y=kx+b得-k+b=2,将点(2,-1)代入得2k+b=-1。
解方程组得k=-3/2,b=-2。
2. 解:直线y=-x+3与x轴相交时,y=0,代入得x=3,所以点A(3,0)。
与y轴相交时,x=0,代入得y=3,所以点B(0,3)。
根据两点间距离公式,AB=√(3²+3²)=3√2。
一次函数练习题(含答案)
一次函数练习题(含答案)1.已知x+3与y成正比例,并且当x=1时,y=8.则y与x之间的函数关系式为(C)y=8x+6.2.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过(C)三象限。
3.直线y=-2x+4与两坐标轴围成的三角形的面积是(B)6.4.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2.如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为(A)y1>y2.5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,则有一组a,b的取值,使得下列4个图中的一个为正确的是(D)。
6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第(A)一象限。
7.一次函数y=kx+2经过点(1,1),那么这个一次函数(B)y随x的增大而减小。
8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在(C)第三象限。
9.要得到y=-33x-4的图像,可把直线y=-x/2向下平移4个单位。
10.若函数y=(m-5)x+(4m+1)x^2(m为常数)中的y与x 成正比例,则m的值为(A)m>-11.11.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是(B)-1<k<1.12.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5.这样的直线可以作(B)3条。
13.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是(A)-4<a<0.1.根据函数图像回答问题:XXX到达离家最远的地方需要几小时?此时离家多远?求XXX出发两个半小时离家多远?求XXX出发多长时间距家12千米?2.已知一次函数的图像,交x轴于A(-6,0),交正比例函数的图像于点B,且点B在第三象限,它的横坐标为-2,△AOB 的面积为6平方单位,求正比例函数和一次函数的解析式。
一次函数练习题和参考答案
一次函数练习题和参考答案第1题. 某工厂加工一批产品,为了提前完成任务,规定每个工人完成150个以内,按每个产品3元付报酬,超过150个,超过部分每个产品付酬增加0.2元;超过250个,超过部分出按上述规定外,每个产品付酬增加0.3元,求一个工人:①完成150个以内产品得到的报酬y元与产品数x个之间的函数关系式;②完成150个以上,但不超过250个产品得到的报酬y元与产品数量x个的函数关系式;③完成250个以上产品得到的报酬y元与产品数量x个的函数关系式.答案:① 0② 150③ x250第2题. 商品的销售量也受销售价格的影响,比如,某衬衣定价为100元时,每月可卖出2000件,价格每上涨10元,销售量便减少50件.那么,每月售出衬衣的总件数y件与衬衣价格x元销售之间的函数关系式为_________.答案:第3题. 写出下列函数关系式,并指出自变量的取值范围:油箱中有油60升,每小时耗油2升,求耗油量M与时间t小时的关系.答案: 030第4题. 写出下列函数关系式,并指出自变量的取值范围:轮子每分钟转60圈,求轮子旋转的转数N与时间t分的关系答案: t0第5题. 下列关于函数的说法中,正确的是A.一次函数是正比例函数B.正比例函数是一次函数C.正比例函数不是一次函数D.不是正比例函数的就不是一次函数答案:B第6题. 等腰三角形的周长为20cm,腰长为y cm,底边长为xcm,则y与x的函数关系式为______.答案:第7题. 若函数y=m-3xm-1+x+3是一次函数,且x0,则m的值为______.答案:2或1第8题. 一次函数y=kx+b中,k、b都是,且k ,自变量x的取值范围是,当k ,b 时,它是正比例函数.答案:常数,0,全体实数,0,=0第9题. 观察图形上图中每个小正方形都是由四根火柴秆组成的,那么火柴秆的数量y根与小正方形的个数n的’关系为 .答案:. y=3n+1n为1、2、3、4、.第10题. △ABC中,一边长为x cm,这边上的高为4cm,面积为y cm2,那么y与x 之间的函数关系式为 .答案:y=2x第11题. 出租车收费按路程计算,2km内包括2km收费3元,超过2km,每增加1km 加收1元,则路程x2km时,车费y元与x之间的函数关系为____.答案:第12题. 拖拉机开始工作时,油箱中有油36L,如果每小时耗油4L,那么油箱中剩余油量yL,与工作时间xh之间的函数关系式是____,自变量x的取值范围是____.答案:第13题. 《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必交税,超过800元的部分为全月应纳税所得额,此项税款按下表分段累计进行计算:全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%某合资企业一工人工资在1400元-2000元之间变化,求他应交税金y元与其工资x元之间的函数关系.答案:第14题. 出租车收费按路程计算,2km内包括2km收费3元,超过2km,每增加1 km 加收1元,则路程x2 km时,车费y元与路程xkm之间的函数关系为______.答案:第15题. 将长为30cm,宽为10cm的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为3cm,则5张白纸粘合后的长度是多少?设x张白纸粘合后的总长度为ycm,y与x之间的函数关系式是什么?答案:138cm,y=30x-3x-1=27x+3.第16题. 已知y+a与x-b成正比例其中a、b都是常数,试说明:y是x的一次函数答案:设y+a=kx-bx0y=kx-a+bk第17题. 已知y+a与x-b成正比例其中a、b都是常数1试说明y是x的一次函数;2如果x=-1时,y=-15;x=7时,y=1,求这个一次函数的解析式.答案:1因为y+a与x-b成正比例,所以y+a=kx-bk0,即y=kx-bk+a因为k不等于0,a、b为常数,所以y是x的一次函数;2代入解得k=2,bk+a=13, 所以y=2x-13.第18题. 下列关于函数的说法中,正确的是A.一次函数是正比例函数B.正比例函数是一次函数C.正比例函数不是一次函数D.不是正比例函数的就不是一次函数答案:B第19题. 汽车由天津开往相距120km的北京,若它的平均速度为60km/h,则汽车距北京的路程Skm与行驶时间th之间的函数关系式是______.答案:S=120-60t第20题. 两港相距640千米,轮船以15千米/时的速度航行,t小时后剩下的距离y 与t的函数关系式为________.答案:第21题. 某种国库卷的年利率为9.18%,则存满三年的本息和y与本金x之间的函数关系式为 .答案:y=x+39.18%xx0第22题. 一个长为120m,宽为100m的矩形场地要扩建成一个正方形场地,设长增加x米,宽增加y米,则y与x的函数关系式是,自变量的取值范围是,且y是x的函数.答案:y=x+20,x0,一次感谢您的阅读,祝您生活愉快。
一次函数练习题及答案
一次函数练习题及答案一、选择题1. 一次函数y = 2x - 3的斜率是:A. 2B. -3C. -2D. 3答案:A2. 如果一次函数y = kx + b的图象经过点(1, 0)和(0, -1),那么k 的值是:A. 1B. -1C. 0D. 2答案:A3. 函数y = 3x + 5与x轴的交点坐标是:A. (-5/3, 0)B. (0, 5)C. (1, 0)D. (-1, 0)答案:A二、填空题4. 已知一次函数y = 4x + 1,当x = 2时,y的值为________。
答案:95. 一次函数y = -2x + 4的图象与y轴的交点坐标是________。
答案:(0, 4)三、解答题6. 已知直线y = 3x + 2与直线y = -x + 4相交于点P,求点P的坐标。
解:将两个方程联立求解:\[ \begin{cases} y = 3x + 2 \\ y = -x + 4 \end{cases} \]解得:\[ x = \frac{2}{4}, y = 3 \times \frac{2}{4} + 2 \] 所以点P的坐标为(\(\frac{1}{2}\), 3)。
7. 一次函数y = kx + b的图象经过点A(-1, -2)和点B(2, 6),求k 和b的值。
解:将点A和点B的坐标代入一次函数方程得:\[ \begin{cases} -k + b = -2 \\ 2k + b = 6 \end{cases} \] 解得:\[ k = 2, b = 0 \]8. 已知直线y = 5x - 7在x轴上的截距为a,在y轴上的截距为b,求a和b的值。
解:当y = 0时,x = \frac{7}{5},所以a = \frac{7}{5};当x = 0时,y = -7,所以b = -7。
四、应用题9. 某工厂生产一种产品,每件产品的成本为c元,售价为p元。
已知当生产x件时,利润为y元,且利润函数为y = 20x - 30。
一次函数练习题(超经典含答案)
第十九章一次函数19.2 一次函数19.3 课题学习选择方案1.下列四个实际问题中的两个变量之间关系中,属于正比例函数关系的是A.有一个边长为x的正方体,则它的表面积S与边长x之间的函数关系B.某梯形的下底5 cm,高3 cm,上底x cm(0<x<5),则梯形的面积S与上底x之间的函数关系C.一个质量为100 kg的物体,静止放在桌面上,则该物体对桌面的压强P与受力面面积S之间的函数关系D.一个小球由静止开始沿一个斜坡向下滚动,其速度每秒增加2 m/s,则小球速度v 与时间t之间的函数关系2.已知y=(m+1)2m x,如果y是x的正比例函数,则m的值为A.1 B.-1 C.1,-1 D.03.若点P(-1,3)在正比例函数y=kx(k≠0)的图象上,则k的值是A.3 B.13C.-3 D.-134.下列函数关系式:(1)y=-x;(2)y=2x+11;(3)y=x2;(4)y=1x,其中一次函数的个数是A.1 B.2 C.3 D.4 5.一次函数y=2x-1的图象大致是A.B.C.D .6.设点(-1,m )和点(12,n )是直线y =(k -1)x +b (0<k <1)上的两个点,则m ,n 的大小关系为 A .m >nB .m ≥nC .m ≤nD .m <n7.已知y =(m -1)x +m +3的图象经过一、二、四象限,则m 的取值范围是 A .-3<m <1B .m >1C .m <-3D .m >-38.若y =(m -1)x |m |是正比例函数,则m 的值为__________.9.直线y =-x +1向上平移5个单位后,得到的直线的解析式是__________. 10.已知y 与x +2成正比例,且当x =1时,y =-6.(1)求y 与x 的函数关系式.(2)若点(a ,2)在此函数图象上,求a 的值.11.已知函数y =231()2k k x-+(k 为常数).(1)k 为何值时,该函数是正比例函数;(2)k 为何值时,正比例函数过第一、三象限,写出正比例函数解析式; (3)k 为何值时,正比例函数y 随x 的增大而减小,写出正比例函数的解析式.12.已知函数y =(m -2)x 3-|m|+m +7,当m 为何值时,y 是x 的一次函数.13.已知y =(k -1)x |k |+(k 2-4)是一次函数.(1)求k 的值; (2)求x =3时,y 的值; (3)当y =0时,x 的值.14.设一次函数y kx b =+(k ,b 是常数,0k ≠)的图象过(12)A -,,(04)B -,两点.(1)求该一次函数表达式;(2)已知存在另一直线CD ,其表达式为:3y x m =+,若直线AB CD ,交于点E ,且E 在第四象限,求此时m 的取值范围.15.下列函数①y =2x -1,②y =πx ,③y =1x,④y =x 2中,一次函数的个数是 A .1B .2C .3D .416.已知点12(4)(2)y y -,,,都在直线23y x b =-+上,则1y 与2y 的大小关系是 A .12y y >B .12y y =C .12y y <D .不能确定17.一次函数y =-x 的图象平分A .第一、三象限B .第一、二象限C .第二、三象限D .第二、四象限18.已知一函数y =kx +3和y =-kx +2,则两个一次函数图象的交点在A .第一、二象限B .第二、三象限C .第三、四象限D .第一、四象限19.已知一次函数y =(a +1)x +b 的图象如图所示,那么a ,b 的取值范围分别是A .a >-1,b >0B .a >-1,b <0C .a <-1,b >0D .a <-1,b <020.一次函数y =mx +|m -1|的图象过点(0,2),且y 随x 的增大而增大,则m 的值为A .1-B .1C .3D .1-或321.一次函数y =-5x -3的图象不经过的象限是A .第一象限B .第二象限C .第三象限D .第四象限22.已知k >0,则一次函数y =kx -k 的图象大致是A .B .C .D .23.对于一次函数y =-2x +4,下列结论错误的是A .函数值随自变量的增大而减小B.当x<0时,y<4C.函数的图象向下平移4个单位长度得y=-2x的图象D.函数的图象与y轴的交点坐标是(0,4)24.若y=kx-4的函数值y随着x的增大而减小,则k的值可能是下列的A.0 B.-4 C.πD.1 225.已知某一次函数的图象与直线y=-3x平行,且与函数y=3x+5的图象交y轴上于同一点,那么这个一次函数的解析式是A.y=3x+5 B.y=3x-5C.y=-3x+5 D.y=-3x-526.如图表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数,且mn≠0)的图象的是A.B.C.D.27.已知正比例函数y=(5m-3)x,如果y随着x的增大而减小,那么m的取值范围为__________.28.已知一次函数图象交x轴于点(-2,0),与y轴的交点到原点的距离为5,则该一次函数解析式为__________.29.已知y与x+2成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当y=36时x的值;(3)判断点(-7,-10)是否是函数图象上的点.30.已知点(2,-4)在正比例函数y=kx的图象上.(1)求k的值;(2)若点(-1,m)在函数y=kx的图象上,试求出m的值;(3)若A(12,y1),B(-2,y2),C(1,y3)都在此函数图象上,试比较y1,y2,y3的大小.31.如图,直线OA的解析式为y=3x,点A的横坐标是-1,OB OB与x轴所夹锐角是45°.(1)求B点坐标;(2)求直线AB的函数表达式;(3)若直线AB与y轴的交点为点D,求△AOD的面积;(4)在直线AB上存在异于点A的另一点P,使得△ODP与△ODA的面积相等,请直接写出点P的坐标.32.如图,在平面直角坐标系xOy 中,一直线111(0)y k x b k =+≠与x 轴相交于点A ,与y 轴相交于点(02)B ,,与正比例函数222(0)y k x k =≠的图象交于点(11)P ,.(1)求直线1y 的解析式. (2)求AOP △的面积.(3)直接写出12k x b k x +>的解集.33.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现要调往A 县10辆,调往B 县8辆,已知调运一辆农用车的费用如表:(1)设从乙仓库调往A 县农用车x 辆,求总运费y 关于x 的函数关系式. (2)若要求总运费不超过900元.共有哪几种调运方案? (3)求出总运费最低的调运方案,最低运费是多少元?34.(2018·江苏常州)一个正比例函数的图象经过(2,-1),则它的表达式为A .y =-2xB .y =2xC .12y x =-D .12y x =35.(2018·四川南充)直线y =2x 向下平移2个单位长度得到的直线是A .y =2(x +2)B .y =2(x -2)C .y =2x -2D .y =2x +236.(2018·辽宁抚顺)一次函数y =-x -2的图象经过A .第一、二、三象限B .第一、二、四象限C .第一、三,四象限D .第二、三、四象限37.(2018·湖南常德)若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则A .2k <B .2k >C .0k >D .0k <38.(2018·山东枣庄)如图,直线l 是一次函数y =kx +b 的图象,若点A (3,m )在直线l上,则m 的值是A .-5B .32C .52D .739.(2018·贵州遵义)如图,直线y =kx +3经过点(2,0),则关于x 的不等式kx +3>0的解集是A .x >2B .x <2C .x ≥2D .x ≤240.(2018·辽宁省辽阳)如图,直线y =ax +b (a ≠0)过点A (0,4),B (-3,0),则方程ax +b =0的解是A .x =-3B .x =4C .x =43-D .x =34-41.(2018·湖北荆州)已知:将直线y =x -1向上平移2个单位长度后得到直线y =kx +b ,则下列关于直线y =kx +b 的说法正确的是 A .经过第一、二、四象限 B .与x 轴交于(1,0) C .与y 轴交于(0,1)D .y 随x 的增大而减小42.(2018·湖南娄底)将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为 A .24y x =-B .24y x =+C .22y x =+D .22y x =-43.(2018·浙江义乌)如图,一个函数的图象由射线BA 、线段BC 、射线CD 组成,其中点(12)A -,,(13)B ,,(21)C ,,(65)D ,,则此函数A .当1x <时,y 随x 的增大而增大B .当1x <时,y 随x 的增大而减小C .当1x >时,y 随x 的增大而减小D .当1x >时,y 随x 的增大而减小44.(2018·四川甘孜州)一次函数y =kx -2的函数值y 随自变量x 的增大而减小,则k 的取值范围是__________.45.(2018·内蒙古巴彦淖尔)已知点A (-5,a ),B (4,b )在直线y =-3x +2上,则a __________b .(填“>”“<”或“=”)46.(2018·海南)如图,在平面直角坐标系中,点M 是直线y =-x 上的动点,过点M 作MN ⊥x 轴,交直线y =x 于点N ,当MN ≤8时,设点M 的横坐标为m ,则m 的取值范围为__________.47.(2018·辽宁辽阳)如图,直线142y x=+与坐标轴交于A,B两点,在射线AO上有一点P,当△APB是以AP为腰的等腰三角形时,点P的坐标是__________.48.(2018·甘肃陇南)如图,一次函数y=-x-2与y=2x+m的图象相交于点P(n,-4),则关于x的不等式组2220x m xx+<--⎧⎨--<⎩的解集为__________.49.(2018·辽宁锦州)如图,直线y1=-x+a与y2=bx-4相交于点P,已知点P的坐标为(1,-3),则关于x的不等式-x+a<bx-4的解集是__________.50.(2018·吉林长春)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为__________.(写出一个即可)51.(2018·湖南邵阳)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是__________.52.(2018·黑龙江牡丹江)某书店现有资金7700元,计划全部用于购进甲、乙、丙三种图书共20套,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元.书店将甲、乙、丙三种图书的售价分别定为每套550元,430元,310元.设书店购进甲种图书x套,乙种图书y套,请解答下列问题:(1)请求出y与x的函数关系式(不需要写出自变量的取值范围);(2)若书店购进甲、乙两种图书均不少于1套,则该书店有几种进货方案?(3)在(1)和(2)的条件下,根据市场调查,书店决定将三种图书的售价作如下调整:甲种图书的售价不变,乙种图书的售价上调a(a为正整数)元,丙种图书的售价下调a元,这样三种图书全部售出后,所获得的利润比(2)中某方案的利润多出20元,请直接写出书店是按哪种方案进的货及a的值.53.(2018·四川巴中)学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.54.(2018·湖南益阳)益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:(1)求每次运输的农产品中A,B产品各有多少件?(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元?55.(2018·广西梧州)我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A、B两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A、B两种型号电动自行车的进货单价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y 元.写出y与m之间的函数关系式;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?56.(2018·重庆)如图,在平面直角坐标系中,直线l1:y=12x与直线l2交点A的横坐标为2,将直线l1沿y轴向下平移4个单位长度,得到直线l3,直线l3与y轴交于点B,与直线l2交于点C,点C的纵坐标为-2.直线l2与y轴交于点D.(1)求直线l2的解析式;(2)求△BDC的面积.57.(2018·黑龙江省龙东地区)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B 城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?58.(2018·云南曲靖)某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A型电脑x台.(1)求y关于x的函数解析式;(2)若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元?1.【答案】D【解析】A、正方形的表面积S=6x2,不是正比例函数,故本选项错误;B、梯形的面积S与上底x之间的函数关系:s=3(5)2x,不是正比例函数,故本选项错误;C、物体对桌面的压强P与受力面面积S之间的函数关系:P=100S,不是正比例函数,故本选项错误;D、小球速度v与时间t之间的函数关系:v=2t,是正比例函数,故本选项正确.故选D.2.【答案】A【解析】由题意得:m2=1且m+1≠0,解得m=1,故选A.3.【答案】C【解析】∵点P(-1,3)在正比例函数y=kx(k≠0)的图象上,∴k×(-1)=3,解得k=-3,故选C.4.【答案】B【解析】(1)y=-x是正比例函数,是特殊的一次函数,故正确;(2)y=2x+11符合一次函数的定义,故正确;(3)y=x2属于二次函数,故错误;(4)y=1x属于反比例函数,故错误.综上所述,一次函数的个数是2个.故选B.5.【答案】B【解析】由题意知,k=2>0,b=-1<0时,函数图象经过一、三、四象限.故选B.6.【答案】A【解析】∵0<k<1,∴k-1<0,∴直线y值随x的增大而减小,∵-1<12,∴m>n,故选A.7.【答案】A【解析】由题意得,1030m m -<⎧⎨+>⎩,解得-3<m <1,故选A .8.【答案】-1【解析】由题意得:m −1≠0,|m |=1,解得:m =−1,故答案为:−1. 9.【答案】y =-x +6【解析】直线y =-x +1向上平移5个单位后,得到的直线的解析式是y =-x +1+5,即y =-x +6.故答案为:y =-x +6.10.【解析】(1)∵y 与x +2成正比例,∴可设y =k (x +2),把当x =1时,y =-6代入得-6=k (1+2). 解得:k =-2.故y 与x 的函数关系式为y =-2x -4. (2)把点(a ,2)代入得:2=-2a -4, 解得:a =-3.11.【解析】(1)由题意得:k +12≠0,k 2-3=1,解得k =±2. ∴当k =±2时,这个函数是正比例函数. (2)当k =2时,正比例函数过第一、三象限,解析式为y =52x . (3)当k =-2时,正比例函数y 随x 的增大而减小,解析式为y =-32x . 12.【解析】当函数y =(m -2)x 3-|m|+m +7是一次函数,则满足:3-|m |=1,且m -2≠0, 解得m =-2. 故答案是:m =-2.13.【解析】(1)由题意可得:|k |=1,k -1≠0,解得:k =-1.(2)当x =3时,y =-2x -3=-9. (3)当y =0时,0=-2x -3, 解得:x =32-. 14.【解析】(1)∵一次函数y kx b =+(k ,b 是常数,0k ≠)的图象过(12)A -,,(04)B -,两点,∴24k b b -=+⎧⎨=-⎩,解得24k b =⎧⎨=-⎩,∴一次函数的解析式为24y x =-. (2)∵24y x =-经过第一、三、四象限, ∴与x 、y 轴交点坐标为(2,0)、(0,-4), ∵3y x m =+中k =3,∴y 随x 的增大而增大,减小而减小,∴直线AB CD ,交于点E ,且E 在第四象限时,m 的最小值为经过点(2,0),m 的最大值为经过(0,-4),∴当x =2,y =0时,m =-6;当x =0,y =-4时,m =-4, ∴m 的取值范围64m -<<-. 15.【答案】B【解析】①②是一次函数;③是反比例函数;④最高次数是2次,是二次函数.则一次函数的个数是2.故选B . 16.【答案】A【解析】因为k =23-<0,所以y 随着x 的增大而减小,因为-4<2,所以y 1>y 2,故选A . 17.【答案】D【解析】y =-x 的图象平分第二、四象限,故选D . 18.【答案】A【解析】由32y kx y kx =+⎧⎨=-+⎩可得1252x ky ⎧=-⎪⎪⎨⎪=⎪⎩,分两种情况讨论:①当k >0时,交点的横坐标为负,纵坐标为正,即交点在第二象限; ②当k <0时,交点的横坐标为正,纵坐标为正,即交点在第一象限.故选A . 19.【答案】A【解析】根据图示知:一次函数y =(a +1)x +b 的图象经过第一、二、三象限,∴a +1>0,即a >-1,且b >0,故选A . 20.【答案】C【解析】∵一次函数y=mx+|m-1|的图象过点(0,2),∴把x=0,y=2代入y=mx+|m-1|得:|m-1|=2,解得:m=3或-1,∵y随x的增大而增大,所以m>0,所以m=3,故选C.21.【答案】A【解析】∵一次函数y=-5x-3中的-5<0,∴该函数图象经过第二、四象限;又∵一次函数y=-5x-3中的-3<0,∴该函数图象与y轴交于负半轴,∴该函数图象经过第二、三、四象限,即不经过第一象限,故选A.22.【答案】B【解析】∵k>0,∴一次函数经过第一、三象限,∴-k<0,则一次函数经过y轴的负半轴,故选B.23.【答案】B【解析】A、在y=-2x+4中k=-2<0,∴y随x的增大而减小,即A正确;B、令y=-2x+4中x=0,则y=4,∴当x<0时,y>4,即B不正确;C、函数的图象向下平移4个单位长度后得到的图象的解析式为y=-2x+4-4=-2x,∴C正确;D、令y=-2x+4中x=0,则y=4,∴函数的图象与y轴的交点坐标是(0,4),即D正确.故选B.24.【答案】B【解析】∵y随着x的增大而减小,∴0k<,所以B选项是正确的,故选B.25.【答案】C【解析】∵函数y=3x+5的图象交y轴于(0,5),∴设函数解析式为y=-3x+k,代入(0,5)得,k=5,∴一次函数的解析式是y=-3x+5,故选C.26.【答案】C【解析】①当mn>0,m,n同号,同正时y=mx+n过1,2,3象限,同负时过2,3,4象限;②当mn<0时,m,n异号,则y=mx+n过1,3,4象限或1,2,4象限.故选C.27.【答案】m<3 5【解析】当5m-3<0时,y随着x的增大而减小,解得35m<,故答案为:35m<.28.【答案】y=52x+5或y=-52x-5【解析】由题意可知:一次函数与x轴的交点坐标为(-2,0),与y轴的交点坐标为(0,5)或(0,-5),设一次函数解析式为y=kx+b,当一次函数图象过点(-2,0),(0,5)时,则205k bb-+=⎧⎨=⎩,解得525kb⎧=⎪⎨⎪=⎩,此时一次函数解析式为y=52x+5;当一次函数图象过点(-2,0),(0,-5)时,则205k bb-+=⎧⎨=-⎩,解得525kb⎧=-⎪⎨⎪=-⎩,此时一次函数解析式为y=-52x-5,综上所述,该函数的解析式为y=52x+5或y=-52x-5,故答案为:y=52x+5或y=-52x-5.29.【解析】(1)设y=k(x+2).∵x=4,y=12,∴6k=12,解得k=2.∴y=2(x+2)=2x+4.(2)当y=36时,2x+4=36,解得x=16.(3)当x=-7时,y=2×(-7)+4=-10,∴点(-7,-10)是函数图象上的点.30.【解析】(1)把点(2,-4)的坐标代入正比例函数y=kx得-4=2k,解得k=-2.(2)把点(-1,m)的坐标代入y=-2x得m=2.(3)方法1:因为函数y=-2x中,y随x的增大而减小,-2<12<1,所以y3<y1<y2.方法2:y1=(-2)×12=-1,y2=(-2)×(-2)=4,y3=(-2)×1=-2,所以y3<y1<y2.31.【解析】(1)过点B作BE⊥x轴于点E,如图所示.∵∠BOE =45°,BE ⊥OE , ∴△BOE 为等腰直角三角形, ∴OE =BE ,OBOE . ∵OB, ∴OE =BE =1,∴点B 的坐标为(1,-1). (2)当x =-1时,y =-3, ∴点A 的坐标为(-1,-3).设直线AB 的表达式为y =kx +b (k ≠0), 将(-1,-3)、(1,-1)代入y =kx +b ,31k b k b -+=-⎧⎨+=-⎩,解得12k b =⎧⎨=-⎩, ∴直线AB 的函数表达式为y =x -2. (3)当x =0时,y =-2, ∴点D 的坐标为(0,-2), ∴S △AOD =12OD ·|x A |=12×2×1=1. (4)∵△ODP 与△ODA 的面积相等, ∴x P =-x A =1,当x =1时,y =1-2=-1, ∴点P 的坐标为(1,-1).32.【解析】(1)将(02)B ,、(11)P ,代入11y k x b =+, 121b k b =⎧⎨+=⎩,解得112k b =-⎧⎨=⎩,∴直线1y 的解析式为12y x =-+.(2)当10y =时,有20x -+=,∴2x =,∴点A 的坐标为()2,0. ∴1121122AOP P S AO y =⋅=⨯⨯=△. (3)观察函数图象,可知:当1x <时,直线11y k x b =+在直线22y k x =的上方, ∴12k x b k x +>的解集为1x <.33.【解析】(1)若乙仓库调往A 县农用车x 辆(x ≤6),则乙仓库调往B 县农用车6-x辆,A 县需10辆车,故甲给A 县调农用车10-x 辆,那么甲仓库给B 县调车8-(6-x )=x +2辆,根据各个调用方式的运费可以列出方程如下:y =40(10-x )+80(x +2)+30x +50(6-x ),化简得:y =20x +860(0≤x ≤6).(2)总运费不超过900,即y ≤900,代入函数关系式得20x +860≤900,解得x ≤2,所以x =0,1,2,即如下三种方案:甲往A :10辆;乙往A :0辆;甲往B :2辆;乙往B :6辆,甲往A :9;乙往A :1甲往B :3;乙往B :5,甲往A :8;乙往A :2甲往B :4;乙往B :4.(3)要使得总运费最低,由y =20x +860(0≤x ≤6)知,x =0时y 值最小为860,即上面(2)的第一种方案:甲往A :10辆;乙往A :0辆;甲往B :2辆;乙往B :6辆,总运费最少为860元.34.【答案】C【解析】设该正比例函数的解析式为(0)y kx k =≠,因为正比例函数的图象经过点(21)-,,则12k -=,解得12k =-,所以这个正比例函数的表达式是12y x =-.故选C . 35.【答案】C【解析】直线y=2x向下平移2个单位得到的函数解析式为y=2x-2.故选C.36.【答案】D【解析】∵-1<0,∴一次函数y=-x-2的图象一定经过第二、四象限,又∵-2<0,∴一次函数y=-x-2的图象与y轴交于负半轴,∴一次函数y=-x-2的图象经过第二、三、四象限,故选D.37.【答案】B【解析】∵在一次函数y=(k-2)x+1中,y随x的增大而增大,∴k-2>0,∴k>2,故选B.38.【答案】C【解析】把(-2,0)和(0,1)代入y=kx+b,得201k bb-+=⎧⎨=⎩,解得121kb⎧=⎪⎨⎪=⎩,所以一次函数解析式为y=12x+1,再将A(3,m)代入,得m=12×3+1=52,故选C.39.【答案】B【解析】由一次函数图象可知关于x的不等式kx+3>0的解集是x<2,故选B.40.【答案】A【解析】方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(-3,0),∴方程ax+b=0的解是x=-3,故选A.41.【答案】C【解析】将直线y=x-1向上平移2个单位长度后得到直线y=x-1+2=x+1,A、直线y=x+1经过第一、二、三象限,错误;B、直线y=x+1与x轴交于(-1,0),错误;C、直线y=x+1与y轴交于(0,1),正确;D、直线y=x+1,y随x的增大而增大,错误,故选C.42.【答案】A【解析】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.43.【答案】A【解析】由点(12)A -,,(13)B ,可知,当1x <时,y 随x 的增大而增大,故A 正确;由(13)B ,,(21)C ,知,当1<x <2时,y 随x 的增大而减小,故B 错误; 由(21)C ,,(65)D ,知,当2x >时,y 随x 的增大而增大,故C 、D 错误,故选A .44.【答案】k <0【解析】∵一次函数y =kx -2的函数值y 随自变量x 的增大而减小,∴k <0,故答案为:k <0.45.【答案】>【解析】∵直线y =-3x +2中,k =-3<0,∴此函数是减函数,∵-5<4,∴a >b ,故答案为:>.46.【答案】-4≤m ≤4【解析】∵点M 在直线y =-x 上,∴M (m ,-m ),∵MN ⊥x 轴,且点N 在直线y =x 上,∴N (m ,m ),∴MN =|-m -m |=|2m |,∵MN ≤8,∴|2m |≤8,∴-4≤m ≤4,故答案为:-4≤m ≤4.47.【答案】(30)80)--,,,【解析】当y =0时,x =-8,即A (-8,0),当x =0时,y =4,即B (0,4),∴OA =8,OB =4,在Rt △ABO 中,AB =若AP =AB OP =AP -AO 8,∴点P (8,0),若AP '=BP ',在Rt △BP 'O 中,BP '2=BO 2+P 'O 2=16+(AO -BP ')2.∴BP '=AP '=5,∴OP '=3,∴P '(-3,0),综上所述:点P (-3,0),(-8,0),故答案为:(-3,0),(8,0).48.【答案】-2<x <2【解析】∵一次函数y =-x -2的图象过点P (n ,-4),∴-4=-n -2,解得n =2,∴P (2,-4),又∵y =-x -2与x 轴的交点是(-2,0),∴关于x 的不等式组2220x m x x +<--⎧⎨--<⎩的解集为22x -<<.故答案为:22x -<<.49.【答案】1x >【解析】∵直线y 1=-x +a 与y 2=bx -4相交于点P ,已知点P 的坐标为(1,-3),∴关于x 的不等式-x +a <bx -4的解集是x >1,故答案为:x >1.50.【答案】2【解析】∵直线y =2x 与线段AB 有公共点,∴2n ≥3,∴n ≥32,故答案为:2. 51.【答案】x =2【解析】∵一次函数y =ax +b 的图象与x 轴相交于点(2,0),∴关于x 的方程ax +b =0的解是x =2,故答案为:x =2.52.【解析】(1)根据题意得购进丙种图书(20-x -y )套,则有500x +400y +250(20-x -y )=7700, 所以解析式为:y =-53x +18. (2)根据题意得:51813x -+≥, 解得1105x x ≤, 又∵x ≥1, ∴11105x x ≤≤, 因为x ,y ,(20-x -y )为整数,∴x =3,6,9,即有三种购买方案:①甲、乙、丙三种图书分别为3套,13套,4套,②甲、乙、丙三种图书分别为6套,8套,6套,③甲、乙、丙三种图书分别为9套,3套,8套,(3)若按方案一:则有13a -4a =20,解得a =209(不是正整数,不符合题意), 若按方案二:则有8a -6a =20,解得a =10(符合题意),若按方案三:则有3a -8a =20,解得a =-4(不是正整数,不符合题意),所以购买方案是:甲种图书6套,乙种图书8套,丙种图书6套,a =10.53.【解析】(1)设A 型桌椅的单价为a 元,B 型桌椅的单价为b 元,根据题意知,2200033000a ba b+=⎧⎨+=⎩,解得600800 ab=⎧⎨=⎩,即:A,B两型桌椅的单价分别为600元,800元.(2)根据题意知,y=600x+800(200-x)+200×10=-200x+162000(120≤x≤140).(3)由(2)知,y=-200x+162000(120≤x≤140),∴当x=140时,总费用最少,即:购买A型桌椅140套,购买B型桌椅60套,总费用最少,最少费用为134000元.54.【解析】(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y 件,根据题意得,45251200 30201200300x yx y+=⎧⎨+=-⎩,解得1030 xy=⎧⎨=⎩,答:每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件.(2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W 元,增加供货量后A产品的数量为(10+m)件,B产品的数量为30+(8-m)=(38-m)件,根据题意得:W=30(10+m)+20(38-m)=10m+790,由题意得:38-m≤2(10+m),解得:m≥6,即6≤m≤8,∵一次函数W随m的增大而增大,∴当m=6时,W最小=850,答:产品件数增加后,每次运费最少需要850元.55.【解析】(1)设A、B两种型号电动自行车的进货单价分别为x元、(x+500)元,由题意:50000x=60000+500x,解得:x=2500,经检验:x=2500是分式方程的解,答:A、B两种型号电动自行车的进货单价分别为2500元3000元.(2)y=300m+500(30-m)=-200m+15000(20≤m≤30).(3)∵y=300m+500(30-m)=-200m+15000,∵-200<0,20≤m≤30,∴m=20时,y有最大值,最大值为11000元.56.【解析】(1)把x=2代入y=12x,得y=1,∴A的坐标为(2,1).∵将直线l1沿y轴向下平移4个单位长度,得到直线l3,∴直线l3的解析式为y=12x-4,∴x=0时,y=-4,∴B(0,-4).将y=-2代入y=12x-4,得x=4,∴点C的坐标为(4,-2).设直线l2的解析式为y=kx+b,∵直线l2过A(2,1)、C(4,-2),∴2142k bk b+=⎧⎨+=-⎩,解得324kb⎧=-⎪⎨⎪=⎩,∴直线l2的解析式为y=-32x+4.(2)∵y=-32x+4,∴x=0时,y=4,∴D(0,4).∵B(0,-4),∴BD=8,∴△BDC的面积=12×8×4=16.57.【解析】(1)设A城有化肥a吨,B城有化肥b吨,根据题意得,500100 b ab a+=⎧⎨-=⎩,解得200300 ab=⎧⎨=⎩,答:A城和B城分别有200吨和300吨肥料.(2)设从A城运往C乡肥料x吨,则运往D乡(200-x)吨,从B城运往C乡肥料(240-x)吨,则运往D乡(60+x)吨,设总运费为y元,根据题意,则:y=20x+25(200-x)+15(240-x)+24(60+x)=4x+10040,∵20002400600xxxx≥⎧⎪-≥⎪⎨-≥⎪⎪+≥⎩,∴0≤x≤200,由于函数是一次函数,k=4>0,所以当x=0时,运费最少,最少运费是10040元.(3)从A城运往C乡肥料x吨,由于A城运往C乡的运费每吨减少a(0<a<6)元,所以y=(20-a)x+25(200-x)+15(240-x)+24(60+x)=(4-a)x+10040,当4-a>0时,即0<a<4时,y随着x的增大而增大,∴当x=0时,运费最少,A城200吨肥料都运往D乡,B城240吨运往C乡,60吨运往D乡;当4-a=0时,即a=4时,y=10040,在0≤x≤200范围内的哪种调运方案费用都一样;当4-a<0时,即4<a<6时,y随着x的增大而减小,∴当x=240时,运费最少,此时A城200吨肥料都运往C乡,B城40吨运往C乡,260吨运往D乡.58.【解析】(1)由题意得,0.6x+0.4×(35-x)=y,整理得,y=0.2x+14(0<x<35).(2)由题意得,35-x≤2x,解得,x≥353,则x的最小整数为12,∵k=0.2>0,∴y随x的增大而增大,∴当x=12时,y有最小值16.4,答:该公司至少需要投入资金16.4万元.。
一次函数练习题与答案
一次函数练习题与答案一次函数练习题与答案一次函数是初中数学中的重要知识点,也是解决实际问题中常用的数学模型。
它的一般形式为y=ax+b,其中a和b为常数,x为自变量,y为因变量。
一次函数的图像是一条直线,具有许多有趣的性质和应用。
下面,我们将通过一些练习题来加深对一次函数的理解,并给出详细的答案解析。
练习题1:已知一次函数y=2x+1,求当x=3时的函数值。
解析:将x=3代入函数中,得到y=2×3+1=7。
所以当x=3时,函数值为7。
练习题2:已知一次函数y=-3x+5,求使得函数值等于0的x的值。
解析:当函数值等于0时,即-3x+5=0。
解这个方程得到x=5/3。
所以使得函数值等于0的x的值为5/3。
练习题3:已知一次函数y=4x-2和y=-2x+6,求它们的交点坐标。
解析:当两个函数的函数值相等时,即4x-2=-2x+6。
解这个方程得到x=1。
将x=1代入其中一个函数中,得到y=4×1-2=2。
所以它们的交点坐标为(1, 2)。
练习题4:已知一次函数的图像通过点(2, 3)和(-1, 1),求这个函数的解析式。
解析:设这个函数的解析式为y=ax+b。
将点(2, 3)代入函数中,得到3=2a+b;将点(-1, 1)代入函数中,得到1=-a+b。
解这个方程组,得到a=2,b=-1。
所以这个函数的解析式为y=2x-1。
练习题5:已知一次函数的图像与x轴交于点(3, 0),求这个函数的解析式。
解析:当函数与x轴交于点(3, 0)时,即y=a×3+b=0。
解这个方程得到a=-b/3。
所以这个函数的解析式为y=(-b/3)x+b。
通过以上练习题,我们可以看到一次函数的一些基本特点和求解方法。
一次函数的图像是一条直线,它的斜率决定了直线的倾斜程度。
当斜率为正数时,直线向上倾斜;当斜率为负数时,直线向下倾斜;当斜率为零时,直线平行于x 轴。
截距则决定了直线与y轴的交点。
一次函数的应用非常广泛,可以用来解决许多实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数练习及答案一.选择题1.对于函数y=2x+1,下列结论正确的是()A.它的图象必经过点(0,1)B.它的图象经过第一、三、四象限C.当x>时,y<0D.y的值随x值的增大而减小2.已知一次函数的函数表达式为y=kx+b,若k+b=﹣6,kb=5,则一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.已知:实数x满足2a﹣3≤x≤2a+2,y1=x+a,y2=﹣2x+a+3,对于每一个x,p都取y1,y2中的较大值.若p的最小值是a2﹣1,则a的值是()A.0或﹣3 B.2或﹣1 C.1或2 D.2或﹣34.一次函数y=kx+b的图象如图,那么下列说法正确的是()A.x>0时,y>0 B.x<0时,y>0 C.x>2时,y>0 D.x<2时,y>0 5.如图中的直线l1:y=k1x+b1,l2:y=k2x+b2,l3:y=k3x+b3,则()A.k1<k3<k2B.k3<k1<k2C.k3<k2<k1D.k1<k2<k3 6.设min{a,b}表示a,b这两个数中的较小的一个,如min{﹣1,1}=﹣1,min{3,2}=2,则关于x的一次函数y=min{x,3x﹣4}可以表示为()A.y=x B.y=3x﹣4C.y=D.y=7.已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.﹣4 B.﹣6 C.14 D.68.从﹣3、﹣2、﹣1、1、2、3六个数中任选一个数记为k,若数k使得关于x的分式方程=k﹣2有解,且使关于x的一次函数y=(k+)x+2不经过第四象限,那么这6个数中,所有满足条件的k的值之和是()A.﹣1 B.2 C.3 D.49.设一次函数y=kx+b(k≠0)的图象经过点(1,﹣3),且y的值随x的值增大而增大,则该一次函数的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.已知一个口袋中装有六个完全相同的小球,小球上分别标有1,2,5,7,8,13六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m,则使得一次函数y=﹣mx+10﹣m经过一、二、四象限,且关于x的分式方程的解为整数,则所有符合条件的m值是()A.1,2,5,7 B.1,5,7,8 C.1,2,7 D.1,2,7,8 11.二次函数y=ax2+bx+c的图象如图所示,其对称轴是直线,则一次函数y=(a+b)x+ac的图象必不经过()A.第一象限B.第二象限C.第三象限D.第四象限12.已知:a,b,c满足关系式a=bc,下列说法:①如果a表示路程,b表示速度,c 表示时间,当速度b一定时,a随着c的增大而增大;②a、b、c一定满足b=;③a (a≠0)一定时,b和c成反比例关系;④当a=0时,则b=0,c=0.其中不正确的是()A.①B.②④C.③D.①③二.填空题13.若a、b、c是△ABC的三条边,且=k,则一次函数y=kx﹣1的图象不经过第象限.14.已知关于x的一次函数y=(m﹣3)x+m+2的图象经过第一、二四象限,则关于x的一次函数y=(m+2)x﹣m+3必经过第象限.15.如图,直线y=﹣x+1与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,如果在第二象限内有一点,且△ABP 的面积与△ABC的面积相等,则a的值为.16.如图所示,长方形OABC的顶点A在x轴上,C在y轴上,点B坐标为(4,2),若直线y=mx﹣1恰好将长方形分成面积相等的两部分,则m的值为.17.如图,矩形OABC中,D为对角线AC,OB的交点,直线AC的解析式为y=2x+4,点P是y轴上一动点,当△PBD的周长最小时,线段OP的长为.三.解答题18.请你用学习“一次函数”时积累的经验和方法解决下列问题:(1)在平面直角坐标系中,画出函数y=|x|的图象:①列表填空:x…﹣3 ﹣2 ﹣1 0 1 2 3 …y……②描点、连线,画出y=|x|的图象;(2)结合所画函数图象,写出y=|x|两条不同类型的性质;(3)结合所画函数图象,求方程|x|﹣2x﹣1=0的解.19.若两个一次函数y=k1x+b1(k1≠0),y=k2x+b2(k2≠0),则称函数y=(k1+k2)x+b1b2为这两个函数的组合函数.(1)一次函数y=3x+2与y=﹣4x+3的组合函数为;若一次函数y=ax﹣2,y =﹣x+b的组合函数为y=3x+2,则a=,b=.(2)已知一次函数y=﹣x+b与y=kx﹣3的组合函数的图象经过第一、二、四象限,求常数k、b满足的条件;(3)已知一次函数y=﹣2x+m与y=3mx﹣6,则不论何值,它们的组合函数一定经过的定点坐标是.20.已知一次函数y=(2m+3)x+m﹣1,(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴上的截距为﹣3,求m的值;(3)若函数图象平行于直线y=x+1,求m的值;(4)若该函数的值y随自变量x的增大而减小,求m的取值范围;(5)该函数图象不经过第二象限,求m的取值范围.参考答案一.选择题1.解:∵函数y=2x+1,∴当x=0时,y=1,故选项A正确;它的图象经过第一、二、三象限,故选项B错误;当x=时,y=1,故当x>时,y>1,故选项C错误;该函数y随x的增大而增大,故选项D错误;故选:A.2.解:∵k+b=﹣6<0,kb=5>0,∴k<0,b<0,∴一次函数y=kx+b的图象经过第二、三、四象限,即一次函数的图象不经过第一象限,故选:A.3.解:解方程x+a=﹣2x+a+3,解得x=1,当x=1时,y1=a+1,所以直线y1=x+a,y2=﹣2x+a+3的交点坐标为(1,a+1),所以对任意一个x,若p都取y1,y2中的最大值,则p的最小值是a+1.所以a2﹣1=a+1所以(a﹣2)(a+1)=0.所以a=2或a=﹣1.故选:B.4.解:A、如图所示,当x>0时,y<4,故本选项错误;B、如图所示,当x<0时,y>4,故本选项错误;C、如图所示,当x>2时,y<0,故本选项错误;D、如图所示,当x<2时,y>0,故本选项正确;故选:D.5.解:由题意得:k1为负数,k2>k3,∴k1,k2,k3的大小关系是k1<k3<k2.故选:A.6.解:根据已知,在没有给出x的取值范围时,不能确定2x和x+3的大小.当x<3x﹣4时,即x>2时,可表示为y=x.当x≥3x﹣4时,即x≤2时,可表示为y=3x﹣4.故选:D.7.解:联立两函数的解析式,得:,解得;即两函数图象交点为(﹣3,﹣2),在﹣5≤x≤5的范围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而增大;因此当x=5时,m值最大,即m=6.故选:D.8.解:∵关于x的一次函数y=(k+)x+2不经过第四象限,∴k+>0,解得,k>﹣1.5,∵关于x的分式方程=k﹣2有解,∴当k=﹣1时,分式方程=k﹣2的解是x=,当k=1时,分式方程=k﹣2无解,当k=2时,分式方程=k﹣2无解,当k=3时,分式方程=k﹣2的解是x=1,∴符合要求的k的值为﹣1和3,∵﹣1+3=2,∴所有满足条件的k的值之和是2,故选:B.9.解:因为一次函数y=kx+b的图象经过点(1,﹣3),且y的值随x值的增大而增大,所以k>0,b<0,即函数图象经过第一,三,四象限,故选:B.10.解:一次函数y=﹣mx+10﹣m经过一、二、四象限,则﹣m<0,10﹣m>0,解得:0<m<10,将分式方程两边同乘以x﹣8得:mx=8x﹣3(x﹣8),解得:x=,∵x≠8,故m≠8,当x=1,2,7时,0<m<10,故选:C.11.解:∵抛物线的开口向上,∴a>0;∵与y轴的交点为在y轴的负半轴上,∴c<0;∵对称轴为x=<0,∴b>0;所以函数y=(a+b)x+ac的图象必不经过第二象限.故选:B.12.解:∵a,b,c满足关系式a=bc,则①如果a表示路程,b表示速度,c表示时间,当速度b一定时,时间越长走的距离越远,因此正确;②当C≠0时,a、b、c一定满足b=,不正确;③因为a=bc,所以,a(a≠0)一定时,b和c成反比例关系,正确;④当a=0时,则a和c至少有一个为0,不正确.故选:B.二.填空题(共5小题)13.解:∵a、b、c是△ABC的三条边,∴b+c>a,c+a>b,a+b>c,∴=k>1,一次函数y=kx﹣1的图象经过一、三、四象限,∴一次函数y=kx﹣1的图象不经过第二象限;故答案为:二14.解:函数经过第一、二、四象限,则m﹣3<0,m+2>0,解得:﹣2<m<3,∴m+2>0,﹣m+3>0,∴关于x的一次函数y=(m+2)x﹣m+3经过第一,二、三象限;故答案为:一,二、三15.解:连接PO,由已知易得A(,0),B(0,1),OA=,OB=1,AB=2,∵等腰Rt△ABC中,∠BAC=90°,∴S△ABP=S△ABC=2,S△AOP=,S△BOP=﹣,S△ABP=S△BOP+S△AOB﹣S△AOP=2,即﹣=2,解得a=.故答案为:.16.解:∵直线y=mx﹣1恰好将长方形分成面积相等的两部分,∴直线y=mx﹣1经过长方形的对角线交点(2,1).把点(2,1)代入可得y=mx﹣1,得2m﹣1=1,解得m=1.故答案为:1.17.解:作点D关于y轴的对称点D′,连接BD′交y轴于点P,则点P即为所求,直线AC的解析式为y=2x+4,当x=0时,y=4,当y=0时,x=﹣2,∴点A的坐标为(﹣2,0),点C的坐标为(0,4),∴点D的坐标为(﹣1,2),点B的坐标为(﹣2,4),∴点D′的坐标为(1,2),设过点B和点D′的直线解析式为y=kx+b,,解得,,∴过点B和点D′的直线解析式为y=,当x=0时,y=,即点P的坐标为(0,),∴OP=,故答案为:.三.解答题(共3小题)18.解:(1)①填表;x…﹣3 ﹣2 ﹣1 0 1 2 3 …y… 3 2 1 0 1 2 3 …故答案为:3,2,1,0,1,2,3;②画函数图象如图:(2)①增减性:x<0时,y随x的增大而减小x>0时,y随x的增大而增大②对称性:图象关于y轴对称③函数的最小值为0;(3)由图象可得:方程|x|﹣2x﹣1=0的解为x=﹣;19.解:(1)一次函数y=3x+2与y=﹣4x+3的组合函数为y=(3﹣4)x+2×3,即y=﹣x+6;∵一次函数y=ax﹣2,y=﹣x+b的组合函数为y=(a﹣1)x﹣2b,∴a﹣1=3,﹣2b=2,∴a=4,b=﹣1;(2)∵一次函数y=﹣x+b与y=kx﹣3的组合函数为y=(﹣1+k)x﹣3b,又图象经过第一、二、四象限,∴﹣1+k<0,﹣3b>0,∴k<1,b<0;(3)∵一次函数y=﹣2x+m与y=3mx﹣6的组合函数为y=(﹣2+3m)x﹣6m,即y=m(3x﹣6)﹣2x,∴当x=2时,y=﹣4,∴此函数的图象一定过定点(2,﹣4).故答案为:(1)y=﹣x+6;4,﹣1;(3)(2,﹣4).20.解:(1)∵函数图象经过原点,∴m﹣1=0,解得m=1;(2)∵函数图象在y轴上的截距为﹣3,∴当x=0时,y=﹣3,即m﹣1=﹣3,解得m=﹣2;(3)∵函数图象平行于直线y=x+1,∴2m+3=1,解得m=﹣1;(4)∵该函数的值y随自变量x的增大而减小,∴2m+3<0,解得m<﹣;(5)∵该函数图象不经过第二象限,∴,解得﹣<m≤1.。