结构化学课后答案第2章习题原子的结构与性质
结构化学 第二章习题(周公度)
结构化学第二章习题(周公度)第二章原子的结构和性质1氢原子光谱可见波段相邻4条谱线的波长分别为656.47,486.27,434.17, 和410.29nm ,试通过数学处理将谱线的波数归纳成下式表示,并求出常数R 及整数n 1,n 2的数值~=R (1-1) v 22n 1n 2解:数据处理如下表-3222 v /10~(n=1) 1/n(n=2) 1/n(n=3)波数、c m -122(1/n2-1/n2) 12(1/n-1/n)21波数、c m -122(1/n-1/n)21从以上三个图中可以看出当n 1=2时,n 2=3,4,5…数据称直线关系,斜率为0.010912、按Bohr 模型计算氢原子处于基态时电子绕核运动的半径(分别用原子的折合质量和电子的质量计算,并准确到5位有效数字) 和线速度。
解:根据Bohr 模型离心力 = 库仑力m υr2=e224πε0rn h 2π(1)角动量M 为h/2π的整数倍 m υ⋅r = (2)由(1)式可知υ2=2e24πε0mr;由(2)式可知 r =n h 2πm υυ=2e2ε0nh =基态n=1线速度,υ=e (1. 60219*102*8. 854188*10-12-19)2-342ε0h*6. 626*10=2. 18775*10-5基态时的半径,电子质量=9.10953*10-31kgr =nh 2πm υ=6. 626*102*3. 1416*9. 10953*10-34-31*2. 18755*10-5=5. 29196*10-10折合质量,μ=9.10458*10-31kg r =3、对于氢原子(1) 分别计算从第一激发态和第六激发态跃迁到基态的光谱线的波长,说明这些谱线所属的线系及所处的光谱范围(2) 上述两谱线产生的光子能否使;(a) 处于基态的另一个氢原子电离,(b)金属铜钟的铜原子电离(铜的功函数为7.44*10-19J)(3) 若上述两谱线所产生的光子能使金属铜晶体的电子电离,请计算从金属铜晶体表面发射出的光电子的德布罗意波长解:(1) H 原子的基态n=1,第一激发态n=2,第六激发态 n=7 λ=nh 2πμυ=6. 626*102*3. 1416*9. 10458*10-34-31*2. 18755*10-5=5. 29484*10-10hc E 2-E 1hc E 7-E 1=6. 626*10-34*2. 99793*10*6. 02205*104823-13. 595(0. 25-1) *9. 649*106. 626*10-348=1. 2159*1023-7mλ==*2. 99793*10*6. 02205*104-13. 595(0. 0205-1) *9. 649*10=9. 3093*10-8m谱线属于莱曼系,(2) 从激发态跃迁到基态谱线的能量,E=hc/λ E 1= hcλ=6. 626*10-34*2. 999*10-7811. 2159*106. 626*10-34*6. 023*10mol823-1*1. 036*10-5=10. 19eVE 2=hcλ=*2. 999*10-829. 3093*10*6. 023*10mol23-1*1. 036*10-5=13. 31eV基态H 原子电离需要的电离能为 13.6eV ,谱线不能使另一个基态H 原子电离。
结构化学课后答案第二章
02 原子的结构和性质【】氢原子光谱可见波段相邻4条谱线的波长分别为、、和,试通过数学处理将谱线的波数归纳成为下式表示,并求出常数R 及整数n 1、n 2的数值。
221211()R n n ν=-解:将各波长换算成波数:1656.47nm λ= 1115233v cm --=2486.27nm λ= 1220565v cm --= 3434.17nm λ= 1323032v cm --=4410.29nm λ= 1424373v cm --=由于这些谱线相邻,可令1n m =,21,2,n m m =++……。
列出下列4式:()22152331R R m m =-+()22205652R Rm m =-+()22230323R R m m =-+()22243734R Rm m =-+(1)÷(2)得:()()()23212152330.7407252056541m m m ++==+用尝试法得m=2(任意两式计算,结果皆同)。
将m=2带入上列4式中任意一式,得:1109678R cm -=因而,氢原子可见光谱(Balmer 线系)各谱线的波数可归纳为下式:221211v R n n -⎛⎫=- ⎪⎝⎭ 式中,112109678,2,3,4,5,6R cm n n -===。
【】按Bohr 模型计算氢原子处于基态时电子绕核运动的半径(分别用原子的折合质量和电子的质量计算并精确到5位有效数字)和线速度。
解:根据Bohr 提出的氢原子结构模型,当电子稳定地绕核做圆周运动时,其向心力与核和电子间的库仑引力大小相等,即:22204n n n m e r r υπε= n=1,2,3,…… 式中,,,,,n n m r e υ和0ε分别是电子的质量,绕核运动的半径,半径为n r 时的线速度,电子的电荷和真空电容率。
同时,根据量子化条件,电子轨道运动的角动量为: 2n n nh m r υπ=将两式联立,推得:2202n h n r me επ=;202ne h n υε= 当原子处于基态即n=1时,电子绕核运动的半径为:2012h r me επ=()()23412211231196.62618108.854191052.9189.1095310 1.6021910J s C J m pm kg C π------⨯⨯⨯==⨯⨯⨯⨯若用原子的折合质量μ代替电子的质量m ,则:201252.91852.91852.9470.99946h m pm r pm pme επμμ==⨯==基态时电子绕核运动的线速度为:2102e h υε=()21934122111.60219102 6.62618108.8541910C J s C J m -----⨯=⨯⨯⨯⨯612.187710m s -=⨯【】对于氢原子:(a)分别计算从第一激发态和第六激发态跃迁到基态所产生的光谱线的波长,说明这些谱线所属的线系及所处的光谱范围。
(完整版)结构化学课后答案第二章
02 原子的结构和性质【2.1】氢原子光谱可见波段相邻4条谱线的波长分别为656.47、486.27、434.17和410.29nm ,试通过数学处理将谱线的波数归纳成为下式表示,并求出常数R 及整数n 1、n 2的数值。
221211()R n n ν=-解:将各波长换算成波数:1656.47nm λ= 1115233v cm --=2486.27nm λ= 1220565v cm --=3434.17nm λ= 1323032v cm --=4410.29nm λ= 1424373v cm --=由于这些谱线相邻,可令1n m =,21,2,n m m =++……。
列出下列4式:()22152331R R m m =-+()22205652R Rm m =-+()22230323R R m m =-+()22243734R Rm m =-+(1)÷(2)得:()()()23212152330.7407252056541m m m ++==+用尝试法得m=2(任意两式计算,结果皆同)。
将m=2带入上列4式中任意一式,得:1109678R cm -=因而,氢原子可见光谱(Balmer 线系)各谱线的波数可归纳为下式:221211v R n n -⎛⎫=- ⎪⎝⎭ 式中,112109678,2,3,4,5,6R cm n n -===。
【2.2】按Bohr 模型计算氢原子处于基态时电子绕核运动的半径(分别用原子的折合质量和电子的质量计算并精确到5位有效数字)和线速度。
解:根据Bohr 提出的氢原子结构模型,当电子稳定地绕核做圆周运动时,其向心力与核和电子间的库仑引力大小相等,即:22204n n n m e r r υπε= n=1,2,3,…… 式中,,,,,n n m r e υ和0ε分别是电子的质量,绕核运动的半径,半径为n r 时的线速度,电子的电荷和真空电容率。
同时,根据量子化条件,电子轨道运动的角动量为: 2n n nh m r υπ=将两式联立,推得:2202n h n r me επ=;202ne h n υε= 当原子处于基态即n=1时,电子绕核运动的半径为:2012h r me επ=()()23412211231196.62618108.854191052.9189.1095310 1.6021910J s C J m pm kg C π------⨯⨯⨯==⨯⨯⨯⨯若用原子的折合质量μ代替电子的质量m ,则:201252.91852.91852.9470.99946h m pm r pm pme επμμ==⨯==基态时电子绕核运动的线速度为:2102e h υε=()21934122111.60219102 6.62618108.8541910C J s C J m -----⨯=⨯⨯⨯⨯612.187710m s -=⨯【2.3】对于氢原子:(a)分别计算从第一激发态和第六激发态跃迁到基态所产生的光谱线的波长,说明这些谱线所属的线系及所处的光谱范围。
第2章原子的结构和性质-习题与答案
第2章原子的结构和性质-习题与答案1. 在直角坐标系下,Li 2+ 的Schr ?dinger 方程为________________ 。
解:ψψE r εe m h =π-?π-20222438 式中:zy x ??+??+??=?2222222 r = ( x 2+ y 2+ z 2)1/2 2. 已知类氢离子 He +的某一状态波函数为:()022-023021e222241a r a r a ???? ?-???? ??π ( a ) 则此状态的能量为( b) 此状态的角动量的平方值为,( c )此状态角动量在 z 方向的分量为,( d )此状态的 n , l , m 值分别为,( e )此状态角度分布的节面数为。
( f )此状态最大概率密度处的 r 值为,( g )此状态最大概率密度处的径向分布函数值为,( h)此状态径向分布函数最大处的 r 值为解: (a) -13.6 eV; (b) 0; (c) 0; (d) 2,0,0;(e) 0; (f) 0; (g) 0 ; (h) 2.618 a 03. 在多电子原子中,单个电子的动能算符均为2228?π-mh 所以每个电子的动能都是相等的,对吗?解:不对4. 原子轨道是指原子中的单电子波函数,所以一个原子轨道只能容纳一个电子,对吗?解:不对5. 原子轨道是原子中的单电子波函数,每个原子轨道只能容纳______个电子。
解:26. H 原子的()φr,θψ,可以写作()()()φθr R ΦΘ,,三个函数的乘积,这三个函数分别由量子数 (a) ,(b), (c) 来规定。
解: (a) n , l; (b) l , m ; (c) m7. 已知ψ= Y R ? = ΦΘ??R ,其中Y R ,,,ΦΘ皆已归一化,则下列式中哪些成立?---------------------------------(D )(A)?∞=021d r ψ (B)?∞=021d r R (C)??∞=0π2021d d φθY (D)?=π021d sin θθΘ 8. 对氢原子Φ方程求解,(A) 可得复数解()φΦm A m i e x p =(B) 根据归一化条件数解1d ||202=?πφm Φ,可得A=(1/2π)1/2 (C) 根据m Φ函数的单值性,可确定│m │= 0,1,2,…,l (D) 根据复函数解是算符M z的本征函数得M z = mh /2π (E) 由Φ方程复数解线性组合可得实数解以上叙述何者有错?-----------------------------()解: (C), 根据Φ函数的单值性可确定│m │的取值为 0, 1, 2,...,但不能确定其最大取值l , │m │的最大值是由Θ方程求解确定的。
王顺荣编高教版社结构化学习题答案第2章
第二章原子结构与原子光谱赖才英070601319 何雪萍070601319 陈小娟070601319陈杉杉070601316 肖丽霞070601318 王水金0706013471.n、l、m三个量子数的取值范围、相互关系与物理意义。
取值范围及相互关系:n=1、2、3……共n个l=0、1、2……n-1共n个m=0、±1、±2……±l共2l+1个物理意义:主量子数n决定体系能量的高低、对单电子原子:En=-μe2/8ε2h2*Z2/n2=-13.6Z2/n2(eV)角量子数l决定电子的轨道角动量绝对值|M|=l*(l+1) *h/2π磁量子数m决定电子的轨道角动量在磁量子数方向上的分量Mz:Mz=m*h/2π2.为什么P+1与P-1不是分别对应Px与Py?答:决定复波函数的三个量子数都是确定的,可以用两种方式表示。
实波函数Ψnl| m|的磁量子数仅对应| m|,波函数中既有+| m|的成分又有-| m|的成分。
说明仅在m=0时,复波函数和实波函数是一致的,在m≠0时,是一组复波函数对应于一组实波函数,而不是一一对应的关系。
3.如何由氢原子空间波函数确定轨道的名称,求出En、|M|与Mz等力学量的确定值或平均值。
氢原子空间波函数为:ψ1、0、0=1/π*(Z/a)3/2*e-zr/a=1/π*(1/a)3/2*e-r/a∵n=1、l=0、m=0∴轨道名称应是:1S 此时En=-13.6*Z2/n2(eV)=-13.6ev∵|M|=l*(l+1) *h/2π=0Mz= m*h/2π=04.研究多电子原子结构碰到什么困难?作了那些近似?用了什么模型?答:困难:多电子原子中存在着复杂的电子间瞬时相互作用,其薛定谔方程无法进行变数分离,不能精确求解;多电子原子中存在能级倒臵,一般用屏蔽效应和钻穿效应解释,但是由于这两个效应都是定性的效应,相互又是关联的,所以,定量地解释能级倒臵的原因较为困难;用SCF法似乎解决了问题,但实际上方程仍无法求解,因为解方程需知ψj,而ψi也是未知的.近似:完全忽略电子间的排斥势能即零级近似;体系近似波函数;体系近似总能量;中心势场是近似的球对称势场;在SCF法中,每个电子的运动与其他电子的瞬时坐标无关,即在多电子原子中,每个电子均在各自的原子轨道上,彼此”独立”地运动.模型:中心势场模型是将原子中其他电子对第i个电子的排斥作用看成是球对称的,只与径向有关的力场。
[结构化学]第二章-原子的结构和性质详解
定态定则: 原子有一系列定态,每一定态都 有一相应的能量E,电子在这些定态上绕核做圆周 运动,既不放出能量,也不吸收能量,而处于稳定
的状态。 M=nh/2π n=1,2,3…
频率规则:当电子由一定态跃迁到另一定态时, 就会吸收或发射频率为v=∆E/h的光子,∆E为两 个定态之间的能量差。
由此可以推倒出Bohr半径:a0=52.92pm 及Rydberg(里德伯)常数:RH=109678cm-1
一.单电子原子的结构
1.单电子原子的Schrödinger方程及其解
单电子原子:指核外只有一个电子的原子(如H)或离子(如 He+,Li2+,Be3+等)。
① 方程的建立
运用定核近似(1927年Born-Oppenheimer提出):在原子和 分子中当电子运动的时候认为原子核是不动的。
V = − Ze2 4π ε0 r
Θ(θ) ∂θ
∂θ
Φ(φ) ∂φ2
同样等号左端只与θ有关,等号右端只与Φ有关,要使两边恒等 ,须等于同一常数c(m2),则有:
sin θ ∂ (sin θ ∂Θ(θ)) + k sin 2 θ = C ⇒ Θ方程
)
)
+
8π 2m
h2
(
E
+
Ze2
4π ε0 r
) R(r )Y
(θ
,φ
)
=
−
R(r )
r 2 sinθ
∂
∂θ
(sinθ
∂Y (θ ,φ)) − ∂θ
R(r )
r 2 sin2 θ
∂2Y (θ ,φ ) ∂φ 2
方程两端同乘以
r2
整理后得:
R(r)Y (θ, φ)
结构化学课后答案第2章习题原子的结构与性质
1.简要说明原子轨道量子数及它们的取值范围解:原子轨道有主量子数 n ,角量子数|,磁量子数m 与自旋量子数s ,对类氢原子(单电子原子)来2说,原子轨道能级只与主量子数n 相关E Z R 。
对多电子原子,能级除了与n 相关,还要考虑电子n间相互作用。
角量子数|决定轨道角动量大小,磁量子数 m 表示角动量在磁场方向(z 方向)分量的大小,自旋量子数s 则表示轨道自旋角动量大小。
1n 取值为 1、2、3••…;| = 0、1、2、••…、n - 1; m = 0、±1 ±2 ……±l 取值只有一。
22.在直角坐标系下,Li 2+的Schr?dinger 方程为 ______________________ 。
解:由于Li 2+属于单电子原子,在采取 “-O'近似假定后,体系的动能只包括电子的动能,则体系的动量z 分量的平均值为多少(2)由于 |M I "J l(l1), l 1=1, l 2=1, l 3=1,又,210 ,211和 31 1 都是归一化的,2 h 2 h C 2 ■ l2 l 2 1 ——C3 ■ l3 l 3 1 o 2 2 2 ------------ h 2 ------------ hc 2 11 1 ——c 3 11 1 ——2 2 2h 222故C i 2 M iC 2 M1c ; M 2 C 3 M 3 能算符:T?h 2 8 2m2;体系的势能算符:\?Ze 2 3e 2 故Li 2+的 Schr?dinger 方程为:h 22式中:22 ____x 2y 23.对氢原子,C 1210的。
那么波函数所描述状态的(4 0r3e 22r = ( x 2+ y 2+ z 2F 2z 2C 2211C 331 能量平均值为多少( 1,其中4 0r211和 31 1都是归一化2)角动量出现在 ..2h 2的概率是多少,角动解:由波函数C 1210C 2211C 3 31 1 得:n 1=2, h=1,m 1=0; n 2=2, b=1,m 2=1;出=3,l 3=1,m 3=-1;(1)由于2210, 211 和 31 1都是归一化的,且单电子原子E 13.6―(eV )故E■i C 1 E12 2 C 2 E2C 3 E32 C 11 2 113.6 =eV 22 cf 13.6 peV22113.6 ?eV13.6 2 4 C1c ; eV 13.99c j eV 2 ---------------- hC 1 ■. l1 l 1 12c : J1 1 1 — 2则角动量为、、2h2出现的概率为: 1h,m1=0,m2=1,m3=-1;又210, 211和311都是归一化的,故M z' CMih2c|m22 c 2 * 2G 0 C2 1 C32 h°3 m3h1 -22 2C2 C34.已知类氢离子He+的某一状态波函数为:321 222re-2r2a。
结构化学习题解答2(北大)
0
0
1 3 32a 0
2 r a0
e
2
r a0
d 0 d 1 3 dr dr 32a 0
解之得:
r a 0
e
r 1 r a0 re 2 0 5 a0 32a 0
dr sin d d
0 0
4 a0 27 3 4 a 0 216
1 a0 2
因为 r 的增大而单调下降,所以不能用令一阶导数为0 2 的方法求其最大值离核的距离。分析 1s 的表达式可见, =0
2 1s 随着
27 (c) e 3 a 0
2 1s
e
2
r a0
cos2
由式可见,若r相同,则当θ=00或θ=1800时ρ最大(亦 可令 ),以ρ0表示,即: sin 0, 0 0 或180 0
r 0 r , 0 ,180 a 0 将 0 对r微分并使之为0,有:
试问下列问题: (a) 原子轨道能E=? (b) 轨道角动量|M|=?轨道磁距|μ|=? (c) 轨道角动量M和Z轴的夹角是多少度? (d) 列出计算电子离核平均距离的公式(不必计算出 具体 的数值)。 (e) 节面的个数、位置和形状怎样? (f) 几率密度极大值的位置在何处? (g) 画出径向分布图。
I 2 E He
2 2 13 .595 eV 2 1
54 .38eV
(b)从原子的电离能的定义出发,按下述步骤求He原子基 态的能量:
He ( g ) He g e He g He
结构化学练习题带答案
结构化学复习题一、选择填空题第一章量子力学基础知识1.实物微粒和光一样,既有性,又有性,这种性质称为性。
2.光的微粒性由实验证实,电子波动性由实验证实。
3.电子具有波动性,其波长与下列哪种电磁波同数量级?(A)X射线(B)紫外线(C)可见光(D)红外线4.电子自旋的假设是被下列何人的实验证明的?(A)Zeeman (B)Gouy (C)Stark (D)Stern-Gerlach5.如果f和g是算符,则 (f+g)(f-g)等于下列的哪一个?(A)f2-g2; (B)f2-g2-fg+gf; (C)f2+g2; (D)(f-g)(f+g)6.在能量的本征态下,下列哪种说法是正确的?(A)只有能量有确定值;(B)所有力学量都有确定值;(C)动量一定有确定值;(D)几个力学量可同时有确定值;7.试将指数函数e±ix表示成三角函数的形式------8.微观粒子的任何一个状态都可以用来描述;表示粒子出现的概率密度。
9.Planck常数h的值为下列的哪一个?(A)1.38×10-30J/s (B)1.38×10-16J/s (C)6.02×10-27J·s (D)6.62×10-34J·s 10.一维势箱中粒子的零点能是答案: 1.略. 2.略. 3.A 4.D 5.B 6.D 7.略 8.略 9.D 10.略第二章原子的结构性质1.用来表示核外某电子的运动状态的下列各组量子数(n, 1, m, m s)中,哪一组是合理的?(A)2,1,-1,-1/2;(B)0,0,0,1/2;(C)3,1,2,1/2;(D)2,1,0,0。
2.若氢原子中的电子处于主量子数n=100的能级上,其能量是下列的哪一个:(A)13.6Ev; (B)13.6/10000eV; (C)-13.6/100eV; (D)-13.6/10000eV;3.氢原子的p x状态,其磁量子数为下列的哪一个?(A)m=+1; (B)m=-1; (C)|m|=1; (D)m=0;4.若将N原子的基电子组态写成1s22s22p x22p y1违背了下列哪一条?(A)Pauli原理;(B)Hund规则;(C)对称性一致的原则;(D)Bohr理论5.B原子的基态为1s22s2p1,其光谱项为下列的哪一个?(A) 2P;(B)1S; (C)2D; (D)3P;6.p2组态的光谱基项是下列的哪一个?(A)3F;(B)1D ;(C)3P;(D)1S;7.p电子的角动量大小为下列的哪一个?(A)h/2π;(B)31/2h/4π;(C)21/2h/2π;(D)2h/2π;8.采用原子单位,写出He原子的SchrÖdinger方程。
结构化学02chapter2习题答案
2 4
B. 3P,1S C.1P,1S D.3P,1P
B.5 项
C.2 项
D.4 项
B.4P5/2
C.4D7/2
D.4D1/2
F3/2
6. Cl 原子的电子组态为 [ Ne ] 3s 3p5, 它的能量最低的光谱支项 2 P3/2 7. Ti 原子 (Z = 22) 基态时能量最低的光谱支项 Ti [Ar] 4s23d2
E 13.6Z 2 n 2 13.6 2 2 32 6.042 eV M l l 1 22 1 6
M z m =0, 说明角动量与 z 轴垂直,即夹角为 90°
总节面数=n-1=3-1=2 个 其中球节面数 n-l-1=3-2-1=0 个 角节面数 l=2 个 由 3 cos θ -1=0 得 θ 1=57.74°, θ 2=125.26° 角节面为两个与 z 轴成 57.74°和 125.26°的圆锥 5. 已知 H 原子的
P 4 3 a0 e
0
2 0 0
2 2 1s
r sin θdθdφdr
1 3 a0
2 a0
0
r 2 e 2 r a0 dr dφ sin θdθ
0 0 2 a0
2
2 a0
0
r e
2 2 r a0
2 3 r a0 4 2 r a 0 a0 r 2 a 0 dr 3 e 2 2 4 a0 0 2 a0
2
E 13.6Z 2 n 2 13.6 12 32 1.51eV M 6h 2
该波函数为实函数, 3d xy
ψ320 ψ322 M
(完整版)结构化学课后答案第二章
02 原子的结构和性质【2.1】氢原子光谱可见波段相邻4条谱线的波长分别为656.47、486.27、434.17和410.29nm ,试通过数学处理将谱线的波数归纳成为下式表示,并求出常数R 及整数n 1、n 2的数值。
221211(R n n ν=- 解:将各波长换算成波数:1656.47nm λ= 1115233v cm --=2486.27nm λ= 1220565v cm --=3434.17nm λ= 1323032v cm --=4410.29nm λ=1424373v cm --=由于这些谱线相邻,可令1n m =,21,2,n m m =++……。
列出下列4式:()22152331R Rm m =-+()22205652R R m m =-+()22230323R R m m =-+()22243734R R m m =-+(1)÷(2)得:()()()23212152330.7407252056541m m m ++==+用尝试法得m=2(任意两式计算,结果皆同)。
将m=2带入上列4式中任意一式,得:1109678R cm -=因而,氢原子可见光谱(Balmer 线系)各谱线的波数可归纳为下式:221211v R n n -⎛⎫=- ⎪⎝⎭式中,112109678,2,3,4,5,6R cm n n -===。
【2.2】按Bohr 模型计算氢原子处于基态时电子绕核运动的半径(分别用原子的折合质量和电子的质量计算并精确到5位有效数字)和线速度。
解:根据Bohr 提出的氢原子结构模型,当电子稳定地绕核做圆周运动时,其向心力与核和电子间的库仑引力大小相等,即:22204n n n m e r r υπε=n=1,2,3,……式中,,,,,n n m r e υ和0ε分别是电子的质量,绕核运动的半径,半径为n r 时的线速度,电子的电荷和真空电容率。
同时,根据量子化条件,电子轨道运动的角动量为:2n n nh m r υπ=将两式联立,推得:2202n h n r me επ=;202n e h nυε=当原子处于基态即n=1时,电子绕核运动的半径为:2012h r me επ=()()23412211231196.62618108.854191052.9189.1095310 1.6021910J s C J m pmkg C π------⨯⨯⨯==⨯⨯⨯⨯A A A 若用原子的折合质量μ代替电子的质量m ,则:201252.91852.91852.9470.99946h m pm r pm pme επμμ==⨯==基态时电子绕核运动的线速度为:2102e h υε=()21934122111.60219102 6.62618108.8541910C J s C J m -----⨯=⨯⨯⨯⨯A A A 612.187710m s-=⨯A 【2.3】对于氢原子:(a)分别计算从第一激发态和第六激发态跃迁到基态所产生的光谱线的波长,说明这些谱线所属的线系及所处的光谱范围。
王顺荣编高教版社结构化学习题答案第2章
第二章原子结构与原子光谱赖才英070601319 何雪萍070601319 陈小娟070601319陈杉杉070601316 肖丽霞070601318 王水金0706013471.n、l、m三个量子数的取值范围、相互关系与物理意义。
取值范围及相互关系:n=1、2、3……共n个l=0、1、2……n-1共n个m=0、±1、±2……±l共2l+1个物理意义:主量子数n决定体系能量的高低、对单电子原子:En=-μe2/8ε2h2*Z2/n2=-13.6Z2/n2(eV)角量子数l决定电子的轨道角动量绝对值|M|=l*(l+1) *h/2π磁量子数m决定电子的轨道角动量在磁量子数方向上的分量Mz:Mz=m*h/2π2.为什么P+1与P-1不是分别对应Px与Py?答:决定复波函数的三个量子数都是确定的,可以用两种方式表示。
实波函数Ψnl| m|的磁量子数仅对应| m|,波函数中既有+| m|的成分又有-| m|的成分。
说明仅在m=0时,复波函数和实波函数是一致的,在m≠0时,是一组复波函数对应于一组实波函数,而不是一一对应的关系。
3.如何由氢原子空间波函数确定轨道的名称,求出En、|M|与Mz等力学量的确定值或平均值。
氢原子空间波函数为:ψ1、0、0=1/π*(Z/a)3/2*e-zr/a=1/π*(1/a)3/2*e-r/a∵n=1、l=0、m=0∴轨道名称应是:1S 此时En=-13.6*Z2/n2(eV)=-13.6ev∵|M|=l*(l+1) *h/2π=0Mz= m*h/2π=04.研究多电子原子结构碰到什么困难?作了那些近似?用了什么模型?答:困难:多电子原子中存在着复杂的电子间瞬时相互作用,其薛定谔方程无法进行变数分离,不能精确求解;多电子原子中存在能级倒臵,一般用屏蔽效应和钻穿效应解释,但是由于这两个效应都是定性的效应,相互又是关联的,所以,定量地解释能级倒臵的原因较为困难;用SCF法似乎解决了问题,但实际上方程仍无法求解,因为解方程需知ψj,而ψi也是未知的.近似:完全忽略电子间的排斥势能即零级近似;体系近似波函数;体系近似总能量;中心势场是近似的球对称势场;在SCF法中,每个电子的运动与其他电子的瞬时坐标无关,即在多电子原子中,每个电子均在各自的原子轨道上,彼此”独立”地运动.模型:中心势场模型是将原子中其他电子对第i个电子的排斥作用看成是球对称的,只与径向有关的力场。
结构化学第二章原子的结构和性质习题及答案
一、填空题1. 已知:类氢离子He +的某一状态Ψ=0202/30)22()2(241a re a r a -⋅-⋅π此状态的n ,l ,m 值分别为_____________________.其能量为_____________________,角动量平方为_________________.角动量在Z 轴方向分量为_________.2. He +的3p z 轨道有_____个径向节面, 有_____个角度节面。
3. 如一原子轨道的磁量子数m=0,主量子数n ≤2,则可能的轨道为__________。
二、选择题1. 在外磁场下,多电子原子的能量与下列哪些量子数有关( );A. n,lB. n,l,mC. nD. n,m2. 用来表示核外某电子运动状况的下列各组量子数(n ,l ,m ,ms )中,哪一组是合理的()A. (2,1,-1,-1/2)B. (0,0,0,1/2)C. (3,1,2,1/2)D.(2,1,0,0)3. 如果一个原子的主量子数是4,则它( )A. 只有s 、p 电子B. 只有s 、p 、d 电子C. 只有s 、p 、d 和f 电子D. 有s 、p 电子4. 对氢原子Φ方程求解,下列叙述有错的是( ).A. 可得复函数解Φ=ΦΦim m Ae )(.B. 由Φ方程复函数解进行线性组合,可得到实函数解.》C. 根据Φm (Φ)函数的单值性,可确定|m|=0.1.2 (I)D. 根据归一化条件1)(220=ΦΦΦ⎰d m π求得π21=A5. He +的一个电子处于总节面数为3的d 态问电子的能量应为 ( ).9 C.1/4 166. 电子在核附近有非零几率密度的原子轨道是( ).A.Ψ3PB. Ψ3dC.Ψ2PD.Ψ2S7. 氢原子处于下列各状态 (1)ψ2px (2) ψ3dxz (3) ψ3pz (4) ψ3dz 2 (5)ψ322 ,问哪些状态既是M 2算符的本征函数,又是M z 算符的本征函数A. (1) (3)B. (2) (4)C. (3) (4) (5)D. (1) (2) (5)8. Fe的电子组态为[Ar]3d64s2,其能量最低的光谱支项( )B. 3P2C. 5D0D. 1S0@9. 立方箱中在E 6h2/4ml2的能量范围内,能级数和状态数为()。
结构化学章节习题(含答案)
结构化学章节习题(含答案)第⼀章量⼦⼒学基础⼀、单选题: 1、32/sinx l lπ为⼀维势箱的状态其能量是:( a ) 22229164:; :; :; :8888h h h hA B C D ml ml ml ml 2、Ψ321的节⾯有( b )个,其中( b )个球⾯。
A 、3 B 、2 C 、1 D 、03、⽴⽅箱中2246m lh E ≤的能量范围内,能级数和状态数为( b ). A.5,20 B.6,6 C.5,11 D.6,174、下列函数是算符d /dx的本征函数的是:( a );本征值为:( h )。
A 、e 2xB 、cosXC 、loge xD 、sinx 3E 、3F 、-1G 、1H 、2 5、下列算符为线性算符的是:( c )A 、sine xB 、C 、d 2/dx 2D 、cos2x6、已知⼀维谐振⼦的势能表达式为V = kx 2/2,则该体系的定态薛定谔⽅程应当为( c )。
A [-m 22 2?+21kx 2]Ψ= E ΨB [m 22 2?- 21kx 2]Ψ= E Ψ C [-m 22 22dx d +21kx 2]Ψ= E Ψ D [-m 22 -21kx 2]Ψ= E Ψ 7、下列函数中,22dx d ,dxd的共同本征函数是( bc )。
A cos kxB e –kxC e –ikxD e –kx2 8、粒⼦处于定态意味着:( c )A 、粒⼦处于概率最⼤的状态B 、粒⼦处于势能为0的状态C 、粒⼦的⼒学量平均值及概率密度分布都与时间⽆关系的状态.D 、粒⼦处于静⽌状态9、氢原⼦处于下列各状态 (1)ψ2px (2) ψ3dxz (3) ψ3pz (4) ψ3dz 2 (5)ψ322 ,问哪些状态既是M 2算符的本征函数,⼜是M z 算符的本征函数?( c )A. (1) (3)B. (2) (4)C. (3) (4) (5)D. (1) (2) (5) 10、+He 离⼦n=4的状态有( c )(A )4个(B )8个(C )16个(D )20个 11、测不准关系的含义是指( d ) (A) 粒⼦太⼩,不能准确测定其坐标; (B)运动不快时,不能准确测定其动量(C) 粒⼦的坐标的动量都不能准确地测定;(D )不能同时准确地测定粒⼦的坐标与动量12、若⽤电⼦束与中⼦束分别作衍射实验,得到⼤⼩相同的环纹,则说明⼆者( b ) (A) 动量相同 (B) 动能相同 (C) 质量相同13、为了写出⼀个经典⼒学量对应的量⼦⼒学算符,若坐标算符取作坐标本⾝,动量算符应是(以⼀维运动为例) ( a )(A) mv (B) i x ?? (C)222x ?-? 14、若∫|ψ|2d τ=K ,利⽤下列哪个常数乘ψ可以使之归⼀化:( c )(A) K (B) K 2 (C) 1/K15、丁⼆烯等共轭分⼦中π电⼦的离域化可降低体系的能量,这与简单的⼀维势阱模型是⼀致的,因为⼀维势阱中粒⼦的能量( b )(A) 反⽐于势阱长度平⽅ (B) 正⽐于势阱长度 (C) 正⽐于量⼦数16、对于厄⽶算符, 下⾯哪种说法是对的( b )(A) 厄⽶算符中必然不包含虚数 (B) 厄⽶算符的本征值必定是实数(C) 厄⽶算符的本征函数中必然不包含虚数17、对于算符?的⾮本征态Ψ( c )(A) 不可能测量其本征值g . (B) 不可能测量其平均值.(C) 本征值与平均值均可测量,且⼆者相等18、将⼏个⾮简并的本征函数进⾏线形组合,结果( b )(A) 再不是原算符的本征函数(B) 仍是原算符的本征函数,且本征值不变 (C) 仍是原算符的本征函数,但本征值改变19. 在光电效应实验中,光电⼦动能与⼊射光的哪种物理量呈线形关系:( B )A .波长B. 频率C. 振幅20. 在通常情况下,如果两个算符不可对易,意味着相应的两种物理量( A)A .不能同时精确测定B .可以同时精确测定C .只有量纲不同的两种物理量才不能同时精确测定 21. 电⼦德布罗意波长为(C )A .λ=E /h B. λ=c /ν C. λ=h /p 22. 将⼏个⾮简并的本征函数进⾏线形组合,结果( A) A .再不是原算符的本征函数B .仍是原算符的本征函数,且本征值不变C .仍是原算符的本征函数,但本征值改变23. 根据能量-时间测不准关系式,粒⼦在某能级上存在的时间τ越短,该能级的不确定度程度ΔE (B)A .越⼩ B. 越⼤ C.与τ⽆关24. 实物微粒具有波粒⼆象性, ⼀个质量为m 速度为v 的粒⼦的德布罗意波长为:A .h/(mv)B. mv/hC. E/h25. 对于厄⽶算符, 下⾯哪种说法是对的 ( B )A .厄⽶算符中必然不包含虚数B .厄⽶算符的本征值必定是实数C .厄⽶算符的本征函数中必然不包含虚数 26. 对于算符?的⾮本征态Ψ (A ) A .不可能测得其本征值g. B .不可能测得其平均值.C .本征值与平均值均可测得,且⼆者相等 27. 下列哪⼀组算符都是线性算符:( C )A . cos, sinB . x, logC . x d dx d dx,,22⼆填空题1、能量为100eV 的⾃由电⼦的德布罗依波波长为( 122.5pm )2、函数:①xe ,②2x ,③x sin 中,是算符22dxd 的本征函数的是( 1,3 ),其本征值分别是( 1,—1;)3、Li 原⼦的哈密顿算符,在(定核)近似的基础上是:(()23213212232221223222123332?r e r e r e r e r e r e mH +++---?+?+?-= )三简答题1. 计算波长为600nm(红光),550nm(黄光),400nm(蓝光)和200nm(紫光)光⼦的能量。
结构化学课后答案第二章
2r
2
2
e 2r 2r 2 2r 1
1 e 2r
4
r
根据此式列出 P(r)-r 数据表:
r/a0
0
0.5
1.0
1.5
2.0
P(r)
1.000 0.920 0.677 0.423 0.238
2.5 0.125
3.0 0.062
3.5 0.030
4.0 0.014
根据表中数据作出 P(r)-r 图示于图 2.7 中:
R
2
m2
R 23032 m2
R
2
m3
R 24373 m2
R
2
m4
(1) ÷(2) 得:
15233 20565
2
2m 1 m 2
3
4m 1
0.740725
用尝试法得 m=2(任意两式计算,结果皆同) 。将 m=2 带入上列 4 式中任意一式,得:
R 109678 cm 1
因而,氢原子可见光谱( Balmer 线系)各谱线的波数可归纳为下式:
1
r
2pz
exp 4 2 a03 a0
r a0 cos ,试回答下列问题:
(a)原子轨道能 E=?
(b)轨道角动量 |M|=? 轨道磁矩 |μ |=?
(c) 轨道角动量 M 和 z 轴的夹角是多少度?
(d)列出计算电子离核平均距离的公式(不算出具体的数值)
' 6
6.626 10 34 J s
1 415 pm
(2 9.1095 10 31 kg) (2.14 10 18 J 7.44 10 19 J) 2
【 2.4 】请通过计算说明,用氢原子从第六激发态跃迁到基态所产生的光子照射长度为
结构化学习题(含答案)
___________;若体系的能量为
7h2 4ma
2
,
其简并度是_______________。
二. 选择题
1. 若用电子束与中子束分别作衍射实验,得到大小相同的环纹,则说明二者( )
A. 动量相同
B. 动能相同
C. 质量相同
2. 任一自由的实物粒子,其波长为,今欲求其能量,须用下列哪个公式 ( )
量为_________;它有_____个径向节面,_____个角度节面。 3. 已知氢原子的某一状态波函数为:
n,l,m r, ,
1 26
a0
3 / 2 r e r / 2a0 .
a0
2
3 cos
则此状态角度分布的节面数为____ ,径向节面为_____个。处于该状态时,氢原 子的能量为________eV,其角动量的绝对值为|M|=______,此状态角动量在 z 方向
4. 微粒在间隔为 1eV 的二能级之间跃迁所产生的光谱线的波数 v~ 应为( )cm-1 (已知
1eV=1.602×10-19J)
A. 4032
B. 8065
C. 16130 D. 2016
5. 已知任一自由实物粒子的波长 λ,欲求其能量,须用下列( )公式
A. E h c
B.
E
h2 2m2
C.
A. d dx
B. 2
C.用常数乘 D.
E.积分
28. 在长 l=1 nm 的一维势箱中运动的 He 原子, 其零点能约为( )
A.16.5×10-24J B.9.5×10-7 J
C.1.9×10-6 J
D.8.3×10-24J
29.
在一立方势箱中,势箱宽度为
结构化学课后答案第二章
02 原子的结构和性质【】氢原子光谱可见波段相邻4条谱线的波长分别为、、和,试通过数学处理将谱线的波数归纳成为下式表示,并求出常数R 及整数n 1、n 2的数值。
221211()R n n ν=-解:将各波长换算成波数:1656.47nm λ= 1115233v cm --=2486.27nm λ= 1220565v cm --= 3434.17nm λ= 1323032v cm --=4410.29nm λ= 1424373v cm --=由于这些谱线相邻,可令1n m =,21,2,n m m =++……。
列出下列4式:()22152331R Rm m =-+()22205652R Rm m =-+()22230323R R m m =-+()22243734R Rm m =-+(1)÷(2)得:()()()23212152330.7407252056541m m m ++==+用尝试法得m=2(任意两式计算,结果皆同)。
将m=2带入上列4式中任意一式,得:1109678R cm -=因而,氢原子可见光谱(Balmer 线系)各谱线的波数可归纳为下式:221211v R n n -⎛⎫=- ⎪⎝⎭式中,112109678,2,3,4,5,6R cm n n -===。
【】按Bohr 模型计算氢原子处于基态时电子绕核运动的半径(分别用原子的折合质量和电子的质量计算并精确到5位有效数字)和线速度。
解:根据Bohr 提出的氢原子结构模型,当电子稳定地绕核做圆周运动时,其向心力与核和电子间的库仑引力大小相等,即:22204n nn m e r r υπε=n=1,2,3,…… 式中,,,,,n n m r e υ和0ε分别是电子的质量,绕核运动的半径,半径为n r 时的线速度,电子的电荷和真空电容率。
同时,根据量子化条件,电子轨道运动的角动量为:2n n nh m r υπ=将两式联立,推得:2202n h n r me επ=; 202ne h n υε= 当原子处于基态即n=1时,电子绕核运动的半径为:2012h r me επ=()()23412211231196.62618108.854191052.9189.1095310 1.6021910J s C J m pm kg C π------⨯⨯⨯==⨯⨯⨯⨯若用原子的折合质量μ代替电子的质量m ,则:201252.91852.91852.9470.99946h m pm r pm pme επμμ==⨯==基态时电子绕核运动的线速度为:2102e h υε=()21934122111.60219102 6.62618108.8541910C J s C J m -----⨯=⨯⨯⨯⨯612.187710m s -=⨯【】对于氢原子:(a)分别计算从第一激发态和第六激发态跃迁到基态所产生的光谱线的波长,说明这些谱线所属的线系及所处的光谱范围。
北师大_结构化学课后习题答案
北师大 结构化学 课后习题第一章 量子理论基础习题答案1 什么是物质波和它的统计解释?参考答案:象电子等实物粒子具有波动性被称作物质波。
物质波的波动性是和微粒行为的统计性联系在一起的。
对大量粒子而言,衍射强度(即波的强度)大的地方,粒子出现的数目就多,而衍射强度小的地方,粒子出现的数目就少。
对一个粒子而言,通过晶体到达底片的位置不能准确预测。
若将相同速度的粒子,在相同的条件下重复多次相同的实验,一定会在衍射强度大的地方出现的机会多,在衍射强度小的地方出现的机会少。
因此按照波恩物质波的统计解释,对于单个粒子,ψψ=ψ*2代表粒子的几率密度,在时刻t ,空间q 点附近体积元τd 内粒子的几率应为τd 2ψ;在整个空间找到一个粒子的几率应为12=ψ⎰τd 。
表示波函数具有归一性。
2 如何理解合格波函数的基本条件?参考答案合格波函数的基本条件是单值,连续和平方可积。
由于波函数2ψ代表概率密度的物理意义,所以就要求描述微观粒子运动状态的波函数首先必须是单值的,因为只有当波函数ψ在空间每一点只有一个值时,才能保证概率密度的单值性;至于连续的要求是由于粒子运动状态要符合Schrödinger 方程,该方程是二阶方程,就要求波函数具有连续性的特点;平方可积的是因为在整个空间中发现粒子的概率一定是100%,所以积分⎰τψψd *必为一个有限数。
3 如何理解态叠加原理?参考答案在经典理论中,一个波可由若干个波叠加组成。
这个合成的波含有原来若干波的各种成份(如各种不同的波长和频率)。
而在量子力学中,按波函数的统计解释,态叠加原理有更深刻的含义。
某一物理量Q 的对应不同本征值的本征态的叠加,使粒子部分地处于Q 1状态,部分地处于Q 2态,……。
各种态都有自己的权重(即成份)。
这就导致了在态叠加下测量结果的不确定性。
但量子力学可以计算出测量的平均值。
4 测不准原理的根源是什么?参考答案根源就在于微观粒子的波粒二象性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、 简要说明原子轨道量子数及它们得取值范围?解:原子轨道有主量子数n ,角量子数,磁量子数m 与自旋量子数s ,对类氢原子(单电子原子)来说,原子轨道能级只与主量子数n 相关。
对多电子原子,能级除了与n 相关,还要考虑电子间相互作用。
角量子数决定轨道角动量大小,磁量子数m 表示角动量在磁场方向(z 方向)分量得大小,自旋量子数s 则表示轨道自旋角动量大小。
n 取值为1、2、3……;=0、1、2、……、n -1;m =0、±1、±2、……±l;s 取值只有。
2、 在直角坐标系下,Li 2+ 得Schrödinger 方程为________________ 。
解:由于Li 2+属于单电子原子,在采取“BO” 近似假定后,体系得动能只包括电子得动能,则体系得动能算符:;体系得势能算符:故Li 2+ 得Schrödinger 方程为:式中:,r = ( x 2+ y 2+ z 2)1/23、 对氢原子,,其中都就是归一化得。
那么波函数所描述状态得(1)能量平均值为多少?(2)角动量出现在 得概率就是多少?,角动量 z 分量得平均值为多少?解: 由波函数得:n 1=2, l 1=1,m 1=0; n 2=2, l 2=1,m 2=1; n 3=3, l 3=1,m 3=1; (1)由于都就是归一化得,且单电子原子 故(2) 由于, l 1=1,l 2=1,l 3=1,又都就是归一化得, 故则角动量为出现得概率为: (3) 由于, m 1=0,m 2=1,m 3=1; 又都就是归一化得, 故4、 已知类氢离子 He +得某一状态波函数为:(1)此状态得能量为多少?(2)此状态得角动量得平方值为多少? (3)此状态角动量在 z 方向得分量为多少? (4)此状态得 n , l , m 值分别为多少? (5)此状态角度分布得节面数为多少?解:由He +得波函数,可以得到:Z=2,则n =2, l =0, m =0()eV c eV c c eV c eV c eV c E c E c E c E cE ii i 232221223222221323222121299.1346.13316.13216.13216.13-+-=⎪⎭⎫⎝⎛⨯-+⎪⎭⎫ ⎝⎛⨯-+⎪⎭⎫ ⎝⎛⨯-=++==∑(1) He +为类氢离子,,则 (2) 由l =0,,得(3) 由|m |=0,,得(4) 此状态下n =2, l =0, m =0(5) 角度分布图中节面数= l,又l =0 ,故此状态角度分布得节面数为0。
5、 求出Li 2+ 1s 态电子得下列数据:(1)电子径向分布最大值离核得距离;(2)电子离核得平均距离;(3)单位厚度球壳中出现电子概率最大处离核得距离;(4)比较2s 与2p 能级得高低次序;(5) Li 原子得第一电离能。
解:(1) Li 2+ 1s 态电子得 则又1s 电子径向分布最大值在距核 处。
(2)电子离核得平均距离(3) ,因为随着r 得增大而单调下降,所以不能用令一阶导数为0得方法求其最大值离核得距离。
分析 得表达式可见,r=0时 最大,因而 也最大。
但实际上r 不能为0(电子不可能落到原子核上),因此更确切得说法就是r 趋近于0时1s 电子得几率密度最大。
(4) Li 2+为单电子“原子”,组态得能量只与主量子数有关,所以2s 与2p 态简并,即即 E 2s = E 2p (5) Li 原子得基组态为(1s)2(2s)1 。
对2s 电子来说,1s 电子为其相邻内一组电子,σ=0、85。
因而:根据Koopmann 定理,Li 原子得第一电离能为:6、 已知 H 原子得试回答:(1) 原子轨道能 E 值; (2) 轨道角动量绝对值│M │; (3) 轨道角动量与 z 轴夹角得度数。
解:由H 原子得波函数可以得到其主量子数n =2,角量子数l =1,磁量子数m =0621081082744062301623063022121=⎪⎪⎭⎫⎝⎛-==⨯==---r a sr a r a sse r a r a D dr d e r aear r D ππψπ04030200063302630211*121421627sin 27sin 2700a a a d d dr e r a d drd r e a r d r d r r r a r a s s s=⨯⨯=====⎰⎰⎰⎰⎰⎰∞--∧ππφθθπφθθπτψτψψππ(1) 对单电子原子,故原子轨道能为:(2)由轨道角动量得大小,则轨道角动量为:(3)由轨道角动量在磁场方向(Z轴得方向)上得分量,设轨道角动量M与Z轴得夹角为θ,则:则 =90°7、一个电子主量子数为4, 这个电子得l, m, m s等量子数可取什么值?这个电子共有多少种可能得状态?解:(1)由电子主量子数为n= 4,角量子数l得取值范围为0,1,2,…,n1, 则l=0, 1, 2, 3(2)由磁量子数m得取值范围为0,±1,±2,…±l,则m=0,±1,±2,±3(3)对单个电子m s=±1/2(4)这个电子l=0, 1, 2, 3,s=1/2,对于每一个不同得l、s值,对应(2l+1) (2 s +1)个可能得状态,则这个电子共有:(2×0+1)(2×1/2+1)+(2×1+1)(2×1/2+1)+(2×2+1)(2×1/2+1)+ (2×3+1)(2×1/2+1) =2+6+10+14=328、碳原子1s22s22p2组态共有1S0,3P0,3P1,3P2,1D2等光谱支项,试写出每项中微观能态数目及按照Hund 规则排列出能级高低次序。
解:碳原子1s22s22p2组态对应光谱支项有:1S0,3P0,3P1,3P2,1D2,则每个谱项对应得各量子数见下表:(1)根据Hund 规则,原子在同一组态下S值最大者能级最低:则由上表可以得到:3P0、3P1、3P2能量相对较低;对于一定L与S值,在电子壳层半满前(2p2),J值愈小,能级愈低,则该3个谱项得能级高低顺序为:3P2>3P1>3P0;由原子在同一组态下S值相同,L值最大者,能级最低,则剩余两个谱项得能级高低顺序为:1S0>1D2 , 由此可以得到5个谱项得能级高低顺序为:1S0>1D2>3P2>3P1>3P0(2)由于在磁场中光谱支项分裂为:(2J+1)个能级,因此光谱支项1S0、1D2、3P2、3P1、3P0对应得微观能态数目为1、5、5、3、1。
9、求下列谱项得各支项,及相应于各支项得状态数:2P; 3P; 3D; 2D; 1D解:(1)由谱项2P可以得到对应得S=1/2、L=1,对于L≥S,J=L+S,L+S1,…,|LS|,则J=3/2、1/2,对应得光谱支项为2P3/2、2P1/2;每个光谱支项对应得微观状态数为:(2J+1),其状态数分别为4与2。
(2) 由谱项3P可以得到对应得S=1、L=1, 则J=2、1、0, 光谱支项为3P2 , 3P1 , 3P0 , 其状态数分别为5, 3, 1 。
(3)由谱项3D可以得到对应得S=1、L=2, 则J=3、2、1,光谱支项为3D3 , 3D2 , 3D1 , 其状态数分别为7, 5,3 。
(4)由谱项2D可以得到对应得S=1/2、L=2, 则J=5/2、3/2,光谱支项为2D5/2 , 2D3/2, 其状态数分别为6, 4。
(5) 由谱项1D可以得到对应得S=0、L=2, 则J=2,光谱支项为1D2 , 其状态数为5 。
10、给出1s, 2p 与3d 电子轨道角动量得大小及其波函数得径向与角度部分得节面数。
解:1s, 2p 与3d 电子对应得主量子数、角量子数、角动量、径向分布节面数、角度部分节面数,分别见下表: 轨道主量子数角量子数角动量径向分布节面数角度部分节面数n l nl1 l 1s 1 1 0 0 02p 2 1 0 13d 3 2 0 211、已知Li2+处于,根据节面规律判断,n,为多少?并求该状态得能量。
解:(1)根据角度函数部分,xy平面为节面,角节面只有一个,=1。
(2)根据径向节面数为n1,径向函数部分只有当,才有径节面,r=2a0为1个径节面,则n1=1,。
Li2+属于单电子原子,故12、下面各种情况最多能填入多少电子:(1) 主量子数为n得壳层;(2) 量子数为n与l得支壳层;(3) 一个原子轨道;(4) 一个自旋轨道。
解:(1) 对于每一个n值,有n个不同得l值,每一个l值又有(2l+1)个不同得m值,所以每一个n值共有个独立得状态,每一个状态可以填充2个电子(m s=1/2、m s=1/2),故主量子数为n得壳层最多能填入2n2个电子。
(2)对于每一个l值,对应于(2l+1)个不同得m值,每一个m值又对应于2个m s值(m s=1/2、m s=1/2),因此量子数为n与l得支壳层,最多能填入2(2l+1) 个电子。
(3)一个原子轨道最多放自选方向相反得2个电子。
(4)一个自旋轨道最多能填入1个电子。
13、某元素得原子基组态可能就是s2d3,也可能就是s1d4 ,实验确定其能量最低得光谱支项为6D1/2,请确定其组态。
解:(1)若原子基组态可能就是s2d3s2d3得电子排布为: m 2 1 0 1 2, L=3对d3电子数少于半充满,J小者能量低,则J=LS=3/2 谱项为4F3/2(2) s1d4得电子排布为:m0 2 1 0 1 2, L=2电子数少于半充满,J小者能量低,则J=| L –S |=1/2,谱项为6D1/2根据题意该原子得基组态为s1d4。
也可用多重态2S+1=6, S=5/2 必为s1d4组态来解。
14、H原子中得归一化波函数所描述得状态得能量、角动量与角动量得z轴分量得平均值各为多少?就是H原子得归一化波函数。
解:由波函数得n1=3, l1=1,m1=1; n2=3, l2=2,m2=0; n3=2, l3=1,m3= 1;(1)由于波函数都就是归一化得,且对单电子波函数,可得:R为里德堡常数(13、6 eV)(2) 由于波函数都就是归一化得,且,可得:(3) 由于波函数都就是归一化得,且,15、已知He+处于态,式中求其能量E、轨道角动量┃M┃、轨道角动量与z轴夹角,并指出该状态波函数得节面个数。
解:根据题意该状态n=3,l=2, m=0, He+, Z=2(1)He+属于单电子原子,(2) 轨道角动量(3)、轨道角动量在磁场(Z轴)方向上得分量,=0, 说明角动量与z轴垂直,即夹角为90°(4)总节面数=n1=31=2个其中径节面数= nl1=321=0个角节面数= l=2个由1=0 得1=57、74°, 2=125、26°角节面为两个与z轴成57、74°与125、26°得圆锥面。