2013年高考理科数学(天津卷)
2013年普通高等学校招生全国统一考试(天津卷)数学试题 (理科) word解析版

2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利! 注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分. 参考公式: ·如果事件A , B 互斥, 那么)()()(B P A P A P B ⋃=+ ·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高. ·如果事件A , B 相互独立, 那么)()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径.第Ⅰ卷一、选择题1.已知集合A ={x ∈R ||x |≤2},B ={x ∈R |x ≤1},则A ∩B 等于( )A .(-∞,2]B .[1,2]C .[-2,2]D .[-2,1] 答案 D解析 A ={x ∈R ||x |≤2}=[-2,2],B ={x ∈R |x ≤1}=(-∞,1],∴A ∩B =[-2,2]∩(-∞,1]=[-2,1],选D.2.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x的最小值为( )A .-7B .-4C .1D .2答案 A解析 可行域如图阴影部分(含边界)令z =0,得直线l 0:y -2x =0,平移直线l 0知,当直线l 过A 点时,z 取得最小值. 由⎩⎪⎨⎪⎧y =3,x -y -2=0得A (5,3). ∴z 最小=3-2×5=-7,选A.3.阅读右边的程序框图,运行相应的程序.若输入x 的值为1,则输出S 的值为( )A .64B .73C .512D .585 答案 B解析 第1次运行:S =0+13=1<50 第2次运行:x =2,S =1+23=9<50 第3次运行:x =4,S =9+43=73>50 ∴输出S =73,选B.4.已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等;③直线x +y +1=0与圆x 2+y 2=12相切,其中真命题的序号是( )A .①②③B .①②C .①③D .②③ 答案 C解析 ①正确,②不正确,③正确,选C.5.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p 等于( )A .1 B.32C .2D .3答案 C解析 e =2,⎝⎛⎭⎫c a 2=a 2+b 2a 2=1+⎝⎛⎭⎫b a 2=4,∴b a =3,双曲线的渐近线方程为y =±3x , ∴|AB |=2·p2tan 60°又S △AOB =3,即12·p 2·2·p 2tan 60°=3,∴p 24=1,∴p =2,选C.6.在△ABC 中,∠ABC =π4,AB =2,BC =3,则sin ∠BAC 等于( )A.1010B.105C.31010D.55答案 C解析 在△ABC 中,由余弦定理AC 2=BA 2+BC 2-2BA ·BC cos ∠ABC =(2)2+32-2×2×3cos π4=5.∴AC =5,由正弦定理BC sin ∠BAC =ACsin ∠ABC得sin ∠BAC =BC ·sin ∠ABCAC =3×sin π45=3×225=31010,选C.7.函数f (x )=2x |log 0.5 x |-1的零点个数为( ) A .1 B .2 C .3 D .4 答案 B解析 当0<x <1时,f (x )=2x log 0.5x -1,令f (x )=0,则log 0.5x =⎝⎛⎭⎫12x由y =log 0.5x ,y =⎝⎛⎭⎫12x的图象知,在(0,1)内有一个交点,即f (x )在(0,1)上有一个零点. 当x >1时,f (x )=-2x log 0.5x -1=2x log 2x -1,令f (x )=0得log 2x =⎝⎛⎭⎫12x,由y =log 2x ,y =⎝⎛⎭⎫12x 的图象知在(1,+∞)上有一个交点,即f (x )在(1,+∞)上有一个零点,故选B.8.已知函数f (x )=x (1+a |x |).设关于x 的不等式f (x +a )<f (x )的解集为A .若⎣⎡⎦⎤-12,12⊆A ,则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫1-52,0 B.⎝ ⎛⎭⎪⎫1-32,0 C.⎝ ⎛⎭⎪⎫1-52,0∪⎝ ⎛⎭⎪⎫0,1+32 D.⎝⎛⎭⎪⎫-∞,1-52 答案 A解析 f (x )=x (1+a |x |),f (x +a )=(x +a )(1+a |x +a |), 由f (x +a )<f (x )得,x +a +a (x +a )|x +a |<x +ax |x |, 而a +a (x +a )|x +a |<ax |x |, (1)当a =0时,不合题意.(2)当a >0时有1+(x +a )|x +a |<x |x |由于当x =0时1+|a |<0无解,故a <0,去掉C. (3)当a <0时,1+(x +a )|x +a |>x |x |取a =-12,则1+⎝⎛⎭⎫x -12⎪⎪⎪⎪x -12>x |x |* ①当x ≤0时,由*得-34<x ≤0②当0<x ≤12时,由☆得0<x ≤2+279>12此时⎣⎡⎦⎤-12,12⊆A 符合题意,由于-12∉⎝ ⎛⎭⎪⎫1-32,0, -12∉⎝ ⎛⎭⎪⎫-∞,1-52去掉B 、D ,故选A.第Ⅱ卷二、填空题9.已知a ,b ∈R ,i 是虚数单位.若(a +i)(1+i)=b i ,则a +b i =________. 答案 1+2i解析 由(a +i)(1+i)=b i 得a -1+(a +1)i =b i , ⎩⎪⎨⎪⎧ a -1=0,a +1=b , ∴⎩⎪⎨⎪⎧a =1,b =2. ∴a +b i =1+2i.10.⎝⎛⎭⎫x -1x 6的二项展开式中的常数项为________. 答案 15解析 T r +1=C r 6x 6-r(-x -12)r =(-1)r C r 6x 6-3r 2(r =0,1,…,6), 由题意得6-3r2=0,∴r =4.故常数项为T 4+1=C 46(-1)4=C 26=6×52×1=15.11.已知圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为⎝⎛⎭⎫4,π3,则|CP |=________. 答案 2 3解析 由ρ=4cos θ得:ρ2=4ρcos θ而x 2+y 2=4x ,∴(x -2)2+y 2=4,圆心C (2,0),点P ⎝⎛⎭⎫4,π3的直角坐标为P (2,23). ∴|CP |=2 3.12.在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB 的长为________.答案 12解析 在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →, ∴BE →=FD →=AD →-12AB →,又AC →=AD →+AB →,∴AC →·BE →=(AD →+AB →)·(AD →-12AB →)=AD →2-12AD →·AB →+AD →·AB →-12AB →2=|AD →|2+12|AD →||AB →|cos 60°-12|AB →|2=1+12×12|AB →|-12|AB →|2=1.∴⎝⎛⎭⎫12-|AB →||AB →|=0,又|AB →|≠0,∴|AB →|=12.13.如图,△ABC 为圆的内接三角形,BD 为圆的弦,且BD ∥AC .过点A 作圆的切线与DB 的延长线交于点E ,AD 与BC 交于点F .若AB =AC ,AE =6,BD =5,则线段CF 的长为________.答案 83解析 设EB =x ,则ED =x +5,由切割线定理知x (x +5)=62,∴x =4.∵AC ∥ED ,∴AB =CD ,又AB =AC .∴∠2=∠3=∠4=∠5,又∠1=∠3,∠3=∠6. ∴∠1=∠6,∴AE ∥BC ,即EBCA 为平行四边形. ∴AC =EB =4,BC =6,由△AFC ∽△BFD . ∴AC BD =CF 6-CF . 即45=CF 6-CF ,∴CF =83.14.设a +b =2,b >0,则当a =________时,12|a |+|a |b取得最小值.答案 -2解析 ∵a +b =2,b >0,显然b ≠2(∵a ≠0), ∴a =2-b .①当0<b <2时,a =2-b >0,f (b )=12|a |+|a |b =12(2-b )+2-b b =12(2-b )+2b-1,f ′(b )=12(2-b )2-2b2, 令f ′(b )=0得b =43.当b ∈⎝⎛⎭⎫0,43时f ′(b )<0, 当b ∈⎝⎛⎭⎫43,2时f ′(b )>0.故当b =43,f (b )最小=54.②当b >2时,a =2-b <0,f (b )=12(b -2)+b -2b =12(b -2)-2b +1,f ′(b )=-12(b -2)2+2b2, 令f ′(b )=0得b =4.当2<b <4时,f ′(b )<0, 当b >4时,f ′(b )>0.故当b =4时,f (b )最小=34,此时a =2-b =-2.三、解答题15.已知函数f (x )=-2sin ⎝⎛⎭⎫2x +π4+6sin x cos x -2cos 2 x +1,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值. 解 (1)f (x )=-2sin 2x ·cos π4-2cos 2x ·sin π4+3sin 2x -cos 2x=2sin 2x -2cos 2x =22sin ⎝⎛⎭⎫2x -π4. 所以,f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间⎣⎡⎦⎤0,3π8上是增函数,在区间⎣⎡⎦⎤3π8,π2上是减函数.又f (0)=-2,f ⎝⎛⎭⎫3π8=22, f ⎝⎛⎭⎫π2=2,故函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值为22,最小值为-2.16.一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同). (1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中,红色卡片编号的最大值设为X ,求随机变量X 的分布列和数学期望. 解 (1)设“取出的4张卡片中,含有编号为3的卡片”为事件A ,则P (A )=C 12C 35+C 22C 25C 47=67. 所以,取出的4张卡片中,含有编号为3的卡片的概率为67.(2)随机变量X 的所有可能取值为1,2,3,4.P (X =1)=C 33C 47=135,P (X =2)=C 34C 47=435,P (X =3)=C 35C 47=27,P (X =4)=C 36C 47=47.所以随机变量X 的分布列是随机变量X 的数学期望EX =1×135+2×435+3×27+4×47=175.17.如图,四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ∥DC ,AB ⊥AD ,AD =CD =1,AA 1=AB =2,E 为棱AA 1的中点. (1)证明B 1C 1⊥CE ;(2)求二面角B 1-CE -C 1的正弦值;(3)设点M 在线段C 1E 上,且直线AM 与平面ADD 1A 1所成角的正弦值为26,求线段AM 的长.如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0).方法一 (1)证明 易得B 1C 1→=(1,0,-1),CE →=(-1,1,-1),于是B 1C 1→·CE →=0,所以B 1C 1⊥CE .(2)解 B 1C →=(1,-2,-1).设平面B 1CE 的法向量m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·B 1C →=0,m ·CE →=0,即⎩⎪⎨⎪⎧x -2y -z =0,-x +y -z =0.消去x ,得y +2z =0,不妨令z=1,可得一个法向量为m =(-3,-2,1).由(1),B 1C 1⊥CE ,又CC 1⊥B 1C 1,可得B 1C 1⊥平面CEC 1,故B 1C 1→=(1,0,-1)为平面CEC 1的一个法向量.于是cos 〈m ,B 1C 1→〉=m ·B 1C 1→|m |·|B 1C 1→|=-414×2=-277,从而sin 〈m ,B 1C 1→〉=217,所以二面角B 1-CE -C 1的正弦值为217.(3)解 AE →=(0,1,0),EC 1→=(1,1,1),设EM →=λEC 1→=(λ,λ,λ),0≤λ≤1,有AM →=AE →+EM →=(λ,λ+1,λ).可取AB →=(0,0,2)为平面ADD 1A 1的一个法向量.设θ为直线AM 与平面ADD 1A 1所成的角,则sin θ=|cos 〈AM →,AB →〉|=|AM →·AB →||AM →|·|AB →|=2λλ2+(λ+1)2+λ2×2=λ3λ2+2λ+1,于是λ3λ2+2λ+1=26,解得λ=13,所以AM = 2.方法二 (1)证明 因为侧棱CC 1⊥底面A 1B 1C 1D 1,B 1C 1⊂平面A 1B 1C 1D 1,所以CC 1⊥B 1C 1.经计算可得B 1E =5,B 1C 1=2,EC 1=3,从而B 1E 2=B 1C 21+EC 21,所以在△B 1EC 1中,B 1C 1⊥C 1E ,又CC 1,C 1E ⊂平面CC 1E ,CC 1∩C 1E =C 1,所以B 1C 1⊥平面CC 1E ,又CE ⊂平面CC 1E ,故B 1C 1⊥CE .(2)解 过B 1作B 1G ⊥CE 于点G ,连接C 1G .由(1),B 1C 1⊥CE ,故CE ⊥平面B 1C 1G ,得CE ⊥C 1G ,所以∠B 1GC 1为二面角B 1-CE -C 1的平面角.在△CC 1E 中,由CE =C 1E =3,CC 1=2,可得C 1G =263.在Rt △B 1C 1G 中,B 1G =423,所以sin ∠B 1GC 1=217,即二面角B 1-CE -C 1的正弦值为217.(3)解 连接D 1E ,过点M 作MH ⊥ED 1于点H ,可得MH ⊥平面ADD 1A 1,连接AH ,AM ,则∠MAH 为直线AM与平面ADD1A 1所成的角.设AM =x ,从而在Rt △AHM 中,有MH =26x ,AH =346x .在Rt △C 1D 1E 中,C 1D 1=1,ED 1=2,得EH =2MH =13x .在△AEH 中,∠AEH =135°,AE =1,由AH 2=AE 2+EH 2-2AE ·EH cos 135°,得1718x 2=1+19x 2+23x ,整理得5x 2-22x -6=0,解得x = 2.所以线段AM 的长为 2.18.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC →·DB →+AD →·CB →=8,求k 的值.解 (1)设F (-c,0),由c a =33,知a =3c .过点F 且与x 轴垂直的直线为x =-c ,代入椭圆方程有(-c )2a2+y 2b 2=1,解得y =±6b 3,于是26b 3=433,解得b =2,又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y22=1.(2)设点C (x 1,y 1),D (x 2,y 2),由F (-1,0)得直线CD 的方程为y =k (x +1),由方程组⎩⎪⎨⎪⎧y =k (x +1),x 23+y22=1消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0.求解可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.因为A (-3,0),B (3,0),所以 AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1)=6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=6+2k 2+122+3k 2.由已知得6+2k 2+122+3k 2=8,解得k =±2.19.已知首项为32的等比数列{a n }不是..递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N *),求数列{T n }的最大项的值与最小项的值.解 (1)设等比数列{a n }的公比为q ,因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列,所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3,于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为a n =32×⎝⎛⎭⎫-12n -1=(-1)n -1·32n .(2)由(1)得S n =1-⎝⎛⎭⎫-12n =⎩⎨⎧1+12n ,n 为奇数,1-12n ,n 为偶数.当n 为奇数时,S n 随n 的增大而减小,所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n ∈N *,总有-712≤S n -1S n ≤56.所以数列{T n }最大项的值为56,最小项的值为-712.20.已知函数f (x )=x 2ln x . (1)求函数f (x )的单调区间;(2)证明:对任意的t >0,存在唯一的s ,使t =f (s );(3)设(2)中所确定的s 关于t 的函数为s =g (t ),证明:当t >e 2时,有25<ln g (t )ln t <12.(1)解 函数f (x )的定义域为(0,+∞).f ′(x )=2x ln x +x =x (2ln x +1),令f ′(x )=0,得x =1e.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以函数f (x )的单调递减区间是⎝⎛⎭⎫0,1e ,单调递增区间是⎝⎛⎭⎫1e ,+∞.(2)证明 当0<x ≤1时,f (x )≤0,设t >0,令h (x )=f (x )-t ,x ∈[1,+∞),由(1)知,h (x )在区间(1,+∞)内单调递增,h (1)=-t <0,h (e t )=e 2t ln e t -t =t (e 2t -1)>0.故存在唯一的s ∈(1,+∞),使得t =f (s )成立. (3)证明 因为s =g (t ),由(2)知,t =f (s ),且s >1,从而 ln g (t )ln t =ln s ln f (s )=ln s ln (s 2ln s )=ln s 2ln s +ln ln s =u2u +ln u, 其中u =ln s .要使25<ln g (t )ln t <12成立,只需0<ln u <u2,当t >e 2时,若s =g (t )≤e ,则由f (s )的单调性,有t =f (s )≤f (e)=e 2,矛盾.所以s >e ,即u >1,从而ln u >0成立.另一方面,令F (u )=ln u -u 2,u >1.F ′(u )=1u -12,令F ′(u )=0,得u =2.当1<u <2时,F ′(u )>0;当u >2时,F ′(u )<0.故对u >1,F (u )≤F (2)<0,因此ln u <u2成立.综上,当t >e 2时,有25<ln g (t )ln t <12.。
2013年高考天津数学理科试题及答案(全word版)

2013年普通高等学校招生全国统一考试年普通高等学校招生全国统一考试((天津卷天津卷) )理 科 数 学 第Ⅰ卷一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B Ç=(A) (,2]-¥(B) [1,2](C) [2,2](D) [(D) [--2,1]2.设变量x , y 满足约束条件360,20,30,x y y x y ³--£+-ì-£ïíïî则目标函数z = y -2x 的最小值为的最小值为(A) (A) --7 (B) (B) --4 (C) 1 (D) 2 3.阅读右边的程序框图.阅读右边的程序框图, , , 运行相应的程序运行相应的程序运行相应的程序, , , 若输入若输入x 的值为1, 1, 则输出则输出S 的值为的值为(A) 64 (B) 73(C) 512(D) 5854.已知下列三个命题.已知下列三个命题: :①若一个球的半径缩小到原来的12, , 则其体积缩小到原来的则其体积缩小到原来的18;②若两组数据的平均数相等②若两组数据的平均数相等, , , 则它们的标准差也相等则它们的标准差也相等则它们的标准差也相等; ;③直线x + y + 1 = 0与圆2212x y +=相切相切. .其中真命题的序号是其中真命题的序号是: : (A) (A) ①②③①②③①②③ (B) (B) ①②①②①② (C) (C) ②③②③②③ (D) (D) ②③②③②③5.已知双曲线22221(0,0)x y a b a b -=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点两点, , O 为坐标原点为坐标原点. . . 若双曲线的离心率为若双曲线的离心率为2, 2, △△AOB 的面积为3, , 则则p =(A) 1(B)32(C) 2 (D) 36.在△ABC 中, ,2,3,4AB BC ABC pÐ===则sin BAC Ð =否开始开始 输入x S=0 2x x =3S S x =+S ≥50? 输出S 结束结束是10103105ú15-13-1513+-51-x 的二项展开式中的常数项为的二项展开式中的常数项为 ..的长为的长为 ..的长为的长为 ..== 时时2218..(本小题满分13分)设椭圆22xa3 43参考答案参考答案一、选择题一、选择题1.D D 提示:提示:||222,[2,1]x x A B £Þ-££Ç=- 2.A A 提示:作出可行域,如图提示:作出可行域,如图提示:作出可行域,如图由图可知,当目标函数通过直线20x y --=与直线3y =的交点(5,3)时取得最小值,min 7z =-。
2013年天津市高考数学试卷(理科)(有答案)(Word版)

2013年普通高等学校招生全国统一考试(天津卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2.本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么 )()()(B P A P A P B ⋃=+ ·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高. ·如果事件A , B 相互独立, 那么 )()(()B P A A P P B =·球的体积公式34.3V R π=其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂= (A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1] (2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y-2x 的最小值为 (A) -7 (B) -4 (C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S的值为(A) 64 (B) 73 (C) 512 (D) 585 (4) 已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切.其中真命题的序号是: (A) ①②③ (B) ①② (C) ②③ (D) ②③(5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O为坐标原点. 若双曲线的离心率为2, △AOB 的面积为3, 则p =(A) 1 (B) 32(C) 2 (D) 3(6) 在△ABC 中, ,2,3,4AB BC ABC π∠===则sin BAC ∠ =(A)10 (B) 10 (C)310(D)5 (7) 函数0.5()2|log |1x f x x =-的零点个数为 (A) 1 (B) 2(C) 3 (D) 4(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a的取值范围是(A) 15,0⎛⎫- ⎪ ⎪⎝⎭ (B) 13,0⎛⎫- ⎪ ⎪⎝⎭(C) 15,0130,⎛⎫+⋃⎛ ⎪ ⎪⎝⎫- ⎪ ⎝⎭⎪⎭ (D) 5,1⎛⎫-- ⎪ ⎝⎭∞⎪2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = . (10) 6x x ⎛- ⎪⎝⎭ 的二项展开式中的常数项为 .(11) 已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫⎪⎝⎭, 则|CP | = .(12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为 .(13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为 .(14) 设a + b = 2, b >0, 则当a = 时, 1||2||a a b+取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤. (15) (本小题满分13分)已知函数2()2sin 26sin cos 2cos 41,f x x x x x x π⎛⎫=-++- ⎪+⎝⎭∈R .(Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同). (Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正弦值为2, 求线段AM 的长.(18) (本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F , 离心率为3, 过点F 且与x 轴垂直的直线被椭圆截得的线段长为43.(Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=, 求k 的值.(19) (本小题满分14分)已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.(20) (本小题满分14分) 已知函数2l ()n f x x x =. (Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.- 5 - 2013高考真题。
2013年天津市高考理科数学试题Word版含答案

2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么 )()()(B P A P A P B ⋃=+ ·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高. ·如果事件A , B 相互独立, 那么 )()(()B P A A P P B =·球的体积公式34.3V R π=其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A)(,2]-∞(B) [1,2] (C) [-2,2] (D) [-2,1](2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y -2x 的最小值为(A) -7 (B) -4(C) 1(D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73(C) 512(D) 585(4) 已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18;②若两组数据的平均数相等, 则它们的标准差也相等; ③直线x + y + 1 = 0与圆2212x y +=相切.其中真命题的序号是: (A) ①②③ (B) ①② (C) ②③(D) ②③(5)已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B两点, O 为坐标原点. 若双曲线的离心率为2, △AOB则p =(A) 1(B)32(C) 2(D) 3(6) 在△ABC 中, ,3,4AB BC ABC π∠===则sin BAC ∠=(A)(B)(C)(D)(7) 函数0.5()2|log |1x f x x =-的零点个数为(A) 1(B) 2(C) 3(D) 4(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +<的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是(A) ⎫⎪⎪⎝⎭(B) ⎫⎪⎪⎝⎭(C)⎛⋃ ⎝⎫⎪⎝⎭⎪⎭(D)⎛- ⎝⎭∞2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = .(10)6x ⎛ ⎝的二项展开式中的常数项为 .(11) 已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫⎪⎝⎭, 则|CP | = .(12) 在平行四边形ABCD 中, AD = 1,60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为 . (13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为 .(14) 设a + b = 2, b >0, 则当a = 时,1||2||a a b+取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤. (15) (本小题满分13分)已知函数2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R .(Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同). (Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1, 求线段AM的长.(18) (本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,, 过点F 且与x 轴垂直的直线被椭圆截.(Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=,求k 的值.(19) (本小题满分14分)已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 +a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.(20) (本小题满分14分) 已知函数2l ()n f x x x =. (Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.第11 页共11 页。
2013年高考真题——理科数学(天津卷)Word版含答案

*归海木心*工作室 QQ:6341025642013年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么)()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高.·如果事件A , B 相互独立, 那么)()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1](2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y-2x 的最小值为(A) -7 (B) -4(C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73(C) 512 (D) 585(4) 已知下列三个命题: ①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是:(A) ①②③(B) ①② (C) ②③ (D) ②③(5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB则p =(A) 1 (B) 32 (C) 2 (D) 3(6) 在△ABC 中, ,3,4AB BC ABC π∠==则sin BAC ∠ =(A)(B)(C)(D) (7) 函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 4(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是(A) ⎫⎪⎪⎝⎭(B) ⎫⎪⎪⎝⎭(C) ⎛⋃ ⎝⎫⎪⎝⎭⎪⎭(D) ⎛- ⎝⎭∞ 2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = .(10) 6x ⎛ ⎝的二项展开式中的常数项为 . (11) 已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫ ⎪⎝⎭, 则|CP | = . (12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE = , 则AB 的长为 .(13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC ,AE = 6, BD = 5, 则线段CF 的长为 .(14) 设a + b = 2, b >0, 则当a = 时, 1||2||a a b+取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤.(15) (本小题满分13分)已知函数2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R . (Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1, 求线段AM 的长.(18) (本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F , , 过点F 且与x 轴垂直的直线被椭圆截. (Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB += , 求k 的值.(19) (本小题满分14分) 已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.(20) (本小题满分14分)已知函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.- 11 -。
2013年高考理数真题试卷(天津卷)及解析

第1页,总16页………○…………装…………○………学校:___________姓名:___________班级:_____………○…………装…………○………2013年高考理数真题试卷(天津卷)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(题型注释)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=( ) A.(﹣∞,2] B.[1,2] C.[﹣2,2] D.[﹣2,1]2.设变量x ,y 满足约束条件 {3x +y −6≥0x −y −2≤0y −3≤0,则目标函数z=y ﹣2x 的最小值为( )A.﹣7B.﹣4C.1D.23.阅读右边的程序框图,运行相应的程序,若输入x 的值为1,则输出S 的值为( )A.64B.73C.512D.5854.已知下列三个命题:①若一个球的半径缩小到原来的 12 ,则其体积缩小到原来的 18 ; ②若两组数据的平均数相等,则它们的标准差也相等; ③直线x+y+1=0与圆 x 2+y 2=12 相切. 其中真命题的序号是( ) A.①②③ B.①②答案第2页,总16页C.①③D.②③5.在△ABC 中, ∠ABC =π4,AB =√2,BC =3 ,则sin∠B AC=( )A.√1010 B.√105C.3√1010D.√556.函数f (x )=2x |log 0.5x|﹣1的零点个数为( ) A.1 B.2 C.3 D.47.已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若 [−12,12]⊆A 则实数a 的取值范围是( ) A.(1−√52,0) B.(1−√32,0) C.(1−√52,0)∪(0,1+√32)D.(−∞,1−√52)第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)8. (x −√x)6的二项展开式中的常数项为 .9.已知圆的极坐标方程为ρ=4cosθ,圆心为C ,点P 的极坐标为 (4,π3) ,则|CP|= . 10.在平行四边形ABCD 中,AD=1,∠BAD=60°,E 为CD 的中点.若 AC →⋅BE →=1 ,则AB 的长为 .第3页,总16页…………装…………○…………订……线…………○…校:___________姓名:___________班级:___________考…………装…………○…………订……线…………○…11.如图,△ABC 为圆的内接三角形,BD 为圆的弦,且BD∥AC.过点A 做圆的切线与DB 的延长线交于点E ,AD 与BC 交于点F .若AB=AC ,AE=6,BD=5,则线段CF 的长为 .12.设a+b=2,b >0,则当a= 时, 12|a|+|a|b取得最小值. 三、解答题(题型注释)13.已知函数 f(x)=−√2sin(2x +π4)+6sinxcosx −2cos 2x +1,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在区间 [0,π2] 上的最大值和最小值.14.如图,四棱柱ABCD ﹣A 1B 1C 1D 1中,侧棱A 1A⊥底面ABCD ,AB∥DC,AB⊥AD,AD=CD=1,AA 1=AB=2,E 为棱AA 1的中点.(1)证明B 1C 1⊥CE;(2)求二面角B 1﹣CE ﹣C 1的正弦值.(3)设点M 在线段C 1E 上,且直线AM 与平面ADD 1A 1所成角的正弦值为 √26 ,求线段AM 的长.15.设椭圆 x 2a 2+y 2b2 =1(a >b >0)的左焦点为F ,离心率为 √33 ,过点F 且与x 轴垂直的直线被椭圆截得的线段长为4√33. (1)求椭圆的方程;(2)设A ,B 分别为椭圆的左,右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC →⋅DB →+AD →⋅CB →=8,求k 的值.16.已知首项为 32 的等比数列{a n }不是递减数列,其前n 项和为S n(n∈N *),且S 3+a 3 , S 5+a 5 , S 4+a 4成等差数列.答案第4页,总16页(1)求数列{a n }的通项公式;(2)设 T n =S n −1S n(n ∈N ∗) ,求数列{T n }的最大项的值与最小项的值.17.已知函数f (x )=x 2lnx .(1)求函数f (x )的单调区间;(2)证明:对任意的t >0,存在唯一的s ,使t=f (s ).(3)设(2)中所确定的s 关于t 的函数为s=g (t ),证明:当t >e 2时,有 25<lng(t)lnt<12 .第5页,总16页…………装…………○…………订……………………线……校:___________姓名:___________班级:___________考号:_________…………装…………○…………订……………………线……参数答案1.D【解析】1.解:∵A={x||x|≤2}={x|﹣2≤x≤2}∴A∩B={x|﹣2≤x≤2}∩{x|x≤1,x∈R}={x|﹣2≤x≤1} 故选D . 【考点精析】根据题目的已知条件,利用集合的交集运算的相关知识可以得到问题的答案,需要掌握交集的性质:(1)A∩B A ,A∩BB ,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则A B ,反之也成立. 2.A【解析】2.解:设变量x 、y 满足约束条件 {3x +y −6≥0x −y −2≤0y −3≤0,在坐标系中画出可行域三角形,平移直线y ﹣2x=0经过点A (5,3)时,y ﹣2x 最小,最小值为:﹣7, 则目标函数z=y ﹣2x 的最小值为﹣7. 故选A .3.B【解析】3.解:经过第一次循环得到S=0+13 , 不满足S≥50,x=2, 执行第二次循环得到S=13+23 , 不满足S≥50,x=4, 执行第三次循环得到S=13+23+43=73,满足判断框的条件,退出循环,执行“是”,输出S=73. 故选B .答案第6页,总16页…………○…………线…………○※※答※※题※※…………○…………线…………○【考点精析】本题主要考查了程序框图的相关知识点,需要掌握程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明才能正确解答此题. 4.C【解析】4.解:①由球的体积公式V= 43πR 3 可知,若一个球的半径缩小到原来的 12 ,则其体积缩小到原来的 18 ;故①正确;②若两组数据的平均数相等,则它们的标准差不一定相等,如2,2,2和1,2,3;这两组数据的平均数相等,它们的标准差不相等,故②错; ③圆 x 2+y 2=12 的圆心到直线x+y+1=0的距离d=√2=√22=半径r ,故直线x+y+1=0与圆x 2+y 2=12 相切,③正确.故选C .【考点精析】解答此题的关键在于理解命题的真假判断与应用的相关知识,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系. 5.C【解析】5.解:∵∠ABC= π4 ,AB= √2 ,BC=3,∴由余弦定理得:AC 2=AB 2+BC 2﹣2AB•BC•cos∠ABC=2+9﹣6=5, ∴AC= √5 ,则由正弦定理 AC sin∠ABC = BC sin∠BAC 得:sin∠BAC= 3×√22√5 = 3√1010 .故选C【考点精析】认真审题,首先需要了解正弦定理的定义(正弦定理:第7页,总16页订…………○…………线…………○…__考号:___________订…………○…………线…………○…),还要掌握余弦定理的定义(余弦定理:;;)的相关知识才是答题的关键.6.B【解析】6.解:函数f (x )=2x |log 0.5x|﹣1,令f (x )=0, 在同一坐标系中作出y=( 12 )x . 与y=|log 0.5x|,如图, 由图可得零点的个数为2. 故选B .7.A【解析】7.解:取a=﹣ 12 时,f (x )=﹣ 12 x|x|+x , ∵f(x+a )<f (x ),∴(x ﹣ 12)|x ﹣ 12|+1>x|x|, (1)x <0时,解得﹣ 34 <x <0; (2)0≤x≤ 12 时,解得0 ≤x ≤12;(3)x > 12 时,解得 12<x <54 ,综上知,a=﹣ 12 时,A=(﹣ 34 , 54 ),符合题意,排除B 、D ;取a=1时,f (x )=x|x|+x ,∵f(x+a )<f (x ),∴(x+1)|x+1|+1<x|x|, (1)x <﹣1时,解得x >0,矛盾; (2)﹣1≤x≤0,解得x <0,矛盾; (3)x >0时,解得x <﹣1,矛盾; 综上,a=1,A=∅,不合题意,排除C , 故选A .【考点精析】本题主要考查了函数单调性的性质的相关知识点,需要掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集才能正确解答此题. 8.15答案第8页,总16页…………○…………装…………○……※※请※※不※※要※※在※※装※※订※※…………○…………装…………○……【解析】8.解;设 (x−√x )6的二项展开式中的通项为T r+1 , 则T r+1= C 6r•(﹣1)r• x6−32r,由6﹣ 32 r=0得:r=4. ∴ (x −√x)6 的二项展开式中的常数项为 C 64•(﹣1)4= C 62=15.所以答案是:15. 9.2√3【解析】9.解:圆的极坐标方程为ρ=4cosθ,圆的方程为:x 2+y 2=4x ,圆心为C (2,0),点P 的极坐标为 (4,π3) ,所以P 的直角坐标(2,2 √3 ),所以|CP|= √(2−2)2+(2√3−0)2 =2 √3 .所以答案是:2 √3. 10.12【解析】10.解:∵ BC →=AD →, EC →=12AB → . ∴ AC →⋅BE →= == AD →2+ 12AB →⋅AD →﹣ 12AB →2 ==1,化为,∵ |AB →|≠0 ,∴ |AB →|=12. 所以答案是 12 .11.83【解析】11.解:如图由切角弦定理得∠EAB=∠ACB,又因为,AB=AC ,所以∠EAB=∠ABC, 所以直线AE∥直线BC ,又因为AC∥BE,所以是平行四边形. 因为AB=AC ,AE=6,BD=5,∴AC=AB=4,BC=6. △AFC∽△DFB,第9页,总16页………○…………线…………○…__________………○…………线…………○…AC BD=CFFB即: 45=CF6−CF , CF= 83 ,所以答案是: 83 .12.﹣2【解析】12.解:∵a+b=2,b >0, ∴ 12|a|+|a|b= 12|a|+|a|2−a ,(a <2)设f (a )= 12|a|+|a|2−a ,(a <2),画出此函数的图象,如图所示. 利用导数研究其单调性得, 当a <0时,f (a )=﹣ 12a + a2−a, f′(a )= 12a 2−2(a−2)2 =−(3a−2)(a+2)2a 2(a−2)2,当a <﹣2时,f′(a )<0,当﹣2<a <0时,f′(a )>0,故函数在(﹣∞,﹣2)上是减函数,在(﹣2,0)上是增函数, ∴当a=﹣2时, 12|a|+|a|b 取得最小值 34. 同样地,当0<a <2时,得到当a= 23 时, 12|a|+|a|b 取得最小值 54. 综合,则当a=﹣2时, 12|a|+|a|b取得最小值. 所以答案是:﹣2.答案第10页,总16页…………订…………○…………线…………○订※※线※※内※※答※※题※※…………订…………○…………线…………○【考点精析】通过灵活运用基本不等式,掌握基本不等式: ,(当且仅当时取到等号);变形公式:即可以解答此题.13.(1)解:∵sinxcosx= 12 sin2x ,cos 2x= 12 (1+cos2x )∴f (x )=﹣ √2 sin (2x+ π4 )+6sinxcosx ﹣2cos 2x+1=﹣sin2x ﹣cos2x+3sin2x ﹣(1+cos2x )+1=2sin2x ﹣2cos2x=2 √2 sin (2x ﹣ π4 ) 因此,f (x )的最小正周期T= 2π2 =π;(2)解:∵0≤x≤ π2 ,∴﹣ π4 ≤2x﹣ π4 ≤ 3π4∴当x=0时,sin (2x ﹣ π4 )取得最小值﹣ √22 ;当x= 3π8 时,sin (2x ﹣ π4 )取得最大值1由此可得,f (x )在区间 [0,π2] 上的最大值为f ( 3π8 )=2 √2 ;最小值为f (0)=﹣2.【解析】13.(1)利用两角和的正弦公式将sin (2x+ π4 )展开,结合二倍角的正余弦公式化简合并,得f (x )=2sin2x ﹣2cos2x ,再利用辅助角公式化简得f (x )=2 √2 sin (2x…………线…………○……………线…………○…﹣ π4 ),最后利用正弦函数的周期公式即可算出f (x )的最小正周期;(2)根据x∈ [0,π2] ,得﹣ π4 ≤2x﹣ π4 ≤ 3π4 .再由正弦函数在区间[﹣ π4 , 3π4 ]上的图象与性质,可得f (x )在区间 [0,π2] 上的最大值为与最小值.【考点精析】利用两角和与差的正弦公式和二倍角的正弦公式对题目进行判断即可得到答案,需要熟知两角和与差的正弦公式:;二倍角的正弦公式:.14.(1)证明:以点A 为原点建立空间直角坐标系,如图,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0).则 B 1C 1→=(1,0,−1),CE →=(−1,1,−1) , 而 B 1C 1→⋅CE →=(1,0,−1)⋅(−1,1,−1) =0. 所以B 1C 1⊥CE;(2)解: B 1C →=(1,−2,−1) , 设平面B 1CE 的法向量为 m →=(x,y,z) , 则 {m →⋅B 1C →=0m →⋅CE →=0,即 {x −2y −z =0−x +y −z =0,取z=1,得x=﹣3,y=﹣2.所以 m →=(−3,−2,1) .由(1)知B 1C 1⊥CE,又CC 1⊥B 1C 1,所以B 1C 1⊥平面CEC 1, 故 B 1C 1→=(1,0,−1) 为平面CEC 1的一个法向量, 于是 cos〈m →,B 1C 1→〉=m →⋅B 1C 1→|m →|⋅|B 1C 1→|= √14×√2=−2√77. 从而 sin〈m →,B 1C 1→〉 = √1−(−2√77)2= √217 .所以二面角B 1﹣CE ﹣C 1的正弦值为 √217.(3)解: AE →=(0,1,0),EC 1→=(1,1,1) , 设 EM →=λEC 1→=(λ,λ,λ) 0≤λ≤1,答案第12页,总16页…○…………外…………○……………………○…………※※请※※不※要※※在※※装※※订※※线※※…○…………内…………○……………………○…………有 AM →=AE →+EM →=(λ,λ+1,λ) .取 AB →=(0,0,2) 为平面ADD 1A 1的一个法向量, 设θ为直线AM 与平面ADD 1A 1所成的角, 则 sinθ=|cos〈AM →,AB →〉| = AM →⋅AB→|AM →|⋅|AB →|=√λ+(λ+1)+λ×2=√3λ2+2λ+1.于是√3λ2+2λ+1=√26.解得 λ=13.所以 AM →=|AM →|=√(13)2+(43)2+(13)2=√2 .所以线段AM 的长为 √2 .【解析】14.(1)由题意可知,AD ,AB ,AA 1两两互相垂直,以a 为坐标原点建立空间直角坐标系,标出点的坐标后,求出 B 1C 1→ 和 CE → ,由 B 1C 1→⋅CE →=0 得到B 1C 1⊥CE;(2)求出平面B 1CE 和平面CEC 1的一个法向量,先求出两法向量所成角的余弦值,利用同角三角函数基本关系求出其正弦值,则二面角B 1﹣CE ﹣C 1的正弦值可求;(3)利用共线向量基本定理把M 的坐标用E 和C 1的坐标及待求系数λ表示,求出平面ADD 1A 1的一个法向量,利用向量求线面角的公式求出直线AM 与平面ADD 1A 1所成角的正弦值,代入 √26 求出λ的值,则线段AM 的长可求.【考点精析】通过灵活运用直线与平面垂直的性质和空间角的异面直线所成的角,掌握垂直于同一个平面的两条直线平行;已知为两异面直线,A ,C 与B ,D 分别是上的任意两点,所成的角为,则即可以解答此题.15.(1)解:根据椭圆方程为 x 2a 2+y 2b 2=1(a >b >0) .∵过焦点且垂直于x 轴的直线被椭圆截得的线段长为 4√33, ∴当x=﹣c时, a 2−b 2a 2+y 2b 2=1 ,得y=± b 2a ,∴ 2b 2a = 4√33 ,∵离心率为 √33 ,∴ c a = √33 , 解得b= √2,c=1,a= √3 .∴椭圆的方程为 x 23+y 22=1 ;(2)解:直线CD :y=k (x+1), 设C (x 1,y 1),D (x 2,y 2), 由 {y =k(x +1)x 23+y 22=1消去y 得,(2+3k 2)x 2+6k 2x+3k 2﹣6=0,∴x 1+x 2=﹣6k 22+3k 2,x 1x 2=3k 2−62+3k 2,又A (﹣ √3 ,0),B ( √3 ,0),∴ AC →⋅DB →+AD →⋅CB →=(x 1+ √3 ,y 1)•( √3 ﹣x 2.﹣y 2)+(x 2+ √3 ,y 2)•( √3 ﹣x 1.﹣y 1), =6﹣(2+2k 2)x 1x 2﹣2k 2(x 1+x 2)﹣2k 2, =6+ 2k 2+122+3k 2=8,解得k= ±√2 .【解析】15.(1)先根据椭圆方程的一般形式,令x=c 代入求出弦长使其等于4√33,再由离心率为 √33 ,可求出a ,b ,c 的关系,进而得到椭圆的方程.(2)直线CD :y=k (x+1),设C (x 1 , y 1),D (x 2 , y 2),由 {y =k(x +1)x 23+y 22=1消去y 得,(2+3k 2)x 2+6k 2x+3k 2﹣6=0,再由韦达定理进行求解.求得 AC →⋅DB →+AD →⋅CB →,利用 AC →⋅DB →+AD →⋅CB →=8,即可求得k 的值.【考点精析】利用一般式方程和椭圆的标准方程对题目进行判断即可得到答案,需要熟知答案第14页,总16页…………○线…………○直线的一般式方程:关于的二元一次方程(A ,B 不同时为0);椭圆标准方程焦点在x 轴:,焦点在y 轴:.16.(1)解:设等比数列的公比为q , ∵S 3+a 3,S 5+a 5,S 4+a 4成等差数列. ∴S 5+a 5﹣(S 3+a 3)=S 4+a 4﹣(S 5+a 5) 即4a 5=a 3, 故q 2= a 5a 3= 14又∵数列{a n }不是递减数列,且等比数列的首项为 32 ∴q=﹣ 12∴数列{a n }的通项公式a n = 32 ×(﹣ 12 )n ﹣1=(﹣1)n ﹣1• 32n(2)解:由(1)得S n =1﹣(﹣ 12 )n = {1+12n ,n 为奇数1−12n,n 为偶数当n 为奇数时,S n 随n 的增大而减小,所以1<S n ≤S 1= 32 故0< S n −1S n≤ S 1−1S 1= 32 ﹣ 23 = 56当n 为偶数时,S n 随n 的增大而增大,所以1>S n ≥S 2= 34 故0> S n −1S n≥ S 2−1S 2= 34 ﹣ 43 = −712综上,对于n∈N *,总有 −712 ≤ S n −1S n≤ 56故数列{T n }的最大项的值为 56 ,最小项的值为 −712【解析】16.(1)设等比数列的公比为q ,由S 3+a 3 , S 5+a 5 , S 4+a 4成等差数列,可构造关于q 的方程,结合首项为 32 的等比数列{a n }不是递减数列,求出q 值,可得答案.(2)由(1)可得S n 的表达式,由于数列为摆动数列,故可分类讨论求出 S n −1S n在n 为奇数和偶数时的范围,综合讨论结果,可得答案.【考点精析】根据题目的已知条件,利用等比数列的通项公式(及其变式)和数列的前n…………○……………○…项和的相关知识可以得到问题的答案,需要掌握通项公式:;数列{a n }的前n 项和s n 与通项a n 的关系.17.(1)解:由题意可知函数的定义域为(0,+∞), 求导数可得f′(x )=2xlnx+x 2• 1x =2xlnx+x=x (2lnx+1), 令f′(x )=0,可解得x= √e ,所以函数f (x )的单调递减区间为(0, √e ),单调递增区间为( √e ,+∞)(2)证明:当0<x≤1时,f (x )≤0,设t >0,令h (x )=f (x )﹣t ,x∈[1,+∞), 由(1)可知,h (x )在区间(1,+∞)单调递增,h (1)=﹣t <0,h (e t )=e 2t lne t ﹣t=t (e 2t ﹣1)>0,故存在唯一的s∈(1,+∞),使得t=f (s )成立;(3)证明:因为s=g (t ),由(2)知,t=f (s ),且s >1, 从而lng(t)lnt = lns lnf(s) = lns ln(s 2lns) = lns 2lns+lnlns = u2u+lnu ,其中u=lns ,要使 25<lng(t)lnt <12 成立,只需 25<u 2u+lnu <12 ,即2< u2u+lnu <25,即2<2+ lnu u <25, 只需 0<lnu u<12,变形可得只需0<lnu < u2 ,当t >e 2时,若s=g (t )≤e,则由f (s )的单调性,有t=f (s )≤f(e )=e 2,矛盾,所以s >e ,即u >1,从而lnu >0成立,另一方面,令F (u )=lnu ﹣ u2 ,u >1,F′(u )= 1u −12 ,令F′(u )=0,可解得u=2,当1<u <2时,F′(u )>0,当u >2时,F′(u )<0,故函数F (u )在u=2处取到极大值,也是最大值F (2)=ln2﹣1<0, 故有F (u )=lnu ﹣ u2 <0,即lnu < u2 , 综上可证:当t >e 2时,有 25<lng(t)lnt<12 成立.答案第16页,总16页…订…………○…………线………※※内※※答※※题※※…订…………○…………线………【解析】17.(1)函数的定义域为(0,+∞),求导数令f′(x )=0,可解得x= √e ,由导数在(0, √e ),和( √e,+∞)的正负可得单调性;(2)当0<x≤1时,f (x )≤0,设t >0,令h (x )=f (x )﹣t ,x∈[1,+∞),由(Ⅰ)可得函数h (x )的单调性,可得结论;(3)令u=lns ,原命题转化为0<lnu < u2 ,一方面由f (s )的单调性,可得u >1,从而lnu >0成立,另一方面,令F (u )=lnu ﹣ u 2 ,u >1,通过函数的单调性可得极值最值,进而得证. 【考点精析】认真审题,首先需要了解基本求导法则(若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导),还要掌握利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减)的相关知识才是答题的关键.。
2013年天津市高考数学试卷(理科)答案与解析

2013年天津市高考数学试卷(理科)参考答案与试题解析一.选择题:(每题5分,共40分)在每小题给出的四个选项中,只有一项是符合题目要求的.2.(5分)(2013•天津)设变量x,y满足约束条件,则目标函数z=y﹣2x的,3.(5分)(2013•天津)阅读右边的程序框图,运行相应的程序,若输入x的值为1,则输出S的值为()4.(5分)(2013•天津)已知下列三个命题:①若一个球的半径缩小到原来的,则其体积缩小到原来的;②若两组数据的平均数相等,则它们的标准差也相等;③直线x+y+1=0与圆相切.V=V=可知,若一个球的半径缩小到原来的;故的圆心到直线=相切,5.(5分)(2013•天津)已知双曲线﹣=1(a>0,b>0)的两条渐近线与抛物线y2=2px (p>0)的准线分别交于O、A、B三点,O为坐标原点.若双曲线的离心率为2,△AOB求出双曲线的渐近线方程与抛物线的面积为,±x,±,双曲线的离心率为,所以则±=的面积为,,得6.(5分)(2013•天津)在△ABC中,,则sin∠BAC=()BABC=AB=,=得:BAC=x(8.(5分)(2013•天津)已知函数f(x)=x(1+a|x|).设关于x的不等式f(x+a)<f(x)的解集为A,若,则实数a的取值范围是().﹣﹣|+1≤讨论,可得时,﹣﹣<时,解得0>时,解得,时,(﹣)二.填空题:本大题共6小题,每小题5分,共30分.9.(5分)(2013•天津)已知a,b∈R,i是虚数单位.若(a+i)(1+i)=bi,则a+bi=1+2i.,解得10.(5分)(2013•天津)的二项展开式中的常数项为15.=解;设•r=0的二项展开式中的常数项为=1511.(5分)(2013•天津)已知圆的极坐标方程为ρ=4cosθ,圆心为C,点P的极坐标为,则|CP|=.的极坐标为|CP|==2.12.(5分)(2013•天津)在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若,则AB的长为.,=+﹣,,∴故答案为13.(5分)(2013•天津)如图,△ABC为圆的内接三角形,BD为圆的弦,且BD∥AC.过点A做圆的切线与DB的延长线交于点E,AD与BC交于点F.若AB=AC,AE=6,BD=5,则线段CF的长为.故答案为:.14.(5分)(2013•天津)设a+b=2,b>0,则当a=﹣2时,取得最小值.=﹣,=,当取得最小值时,取得最小值三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 15.(13分)(2013•天津)已知函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间上的最大值和最小值.2x+)展开,结合二倍角的正余弦公式化简合=2)∈,得﹣﹣≤﹣,)在区间sinxcosx=x=2x+2cos2x=2﹣T==≤,∴﹣≤≤﹣)取得最小值﹣时,﹣)在区间上的最大值为)=216.(13分)(2013•天津)一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(Ⅰ)求取出的4张卡片中,含有编号为3的卡片的概率.(Ⅱ)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望.张的所有可能结果数有=的卡片的概率为====17.(13分)(2013•天津)如图,四棱柱ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(Ⅰ)证明B1C1⊥CE;(Ⅱ)求二面角B1﹣CE﹣C1的正弦值.(Ⅲ)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.标系,标出点的坐标后,求出和,由求出(Ⅱ)解:,,即.=.=.的正弦值为(Ⅲ)解:=.所以.的长为.18.(13分)(2013•天津)设椭圆=1(a>b>0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.(Ⅰ)求椭圆的方程;(Ⅱ)设A,B分别为椭圆的左,右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若=8,求k的值.代入求出弦长使其等于,由,再由韦达定理进行求解.求得(Ⅰ)根据椭圆方程为,得±,=∵离心率为,∴=b=;﹣(﹣(,,(k=19.(14分)(2013•天津)已知首项为的等比数列{a n}不是递减数列,其前n项和为S n(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设,求数列{T n}的最大项的值与最小项的值.的方程,结合首项为的等比数列=不是递减数列,且等比数列的首项为﹣(﹣)﹣(﹣)=≤﹣==≥﹣=,总有≤,最小项的值为20.(14分)(2013•天津)已知函数f(x)=x2lnx.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)证明:对任意的t>0,存在唯一的s,使t=f(s).(Ⅲ)设(Ⅱ)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有.,由导数在(,,一方面由﹣•,,(,,===成立,只需,2+,<,<,时,有成立.。
2013年天津市高考数学试卷(理科)及答案(Word版)

2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么 )()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高. ·如果事件A , B 相互独立, 那么 )()(()B P A A P P B = ·球的体积公式34.3VR π=其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂= (A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1](2)设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y-2x 的最小值为 (A) -7 (B) -4(C) 1(D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73 (C) 512 (D) 585 (4) 已知下列三个命题: ①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18;②若两组数据的平均数相等, 则它们的标准差也相等; ③直线x + y + 1 = 0与圆2212x y+=相切.其中真命题的序号是: (A) ①②③ (B) ①②(C) ②③ (D) ②③(5) 已知双曲线22221(0,0)x y a b ab-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A ,B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB, 则p =(A) 1(B)32(C) 2 (D) 3(6) 在△ABC 中, ,3,4A B B C A B C π∠===则sin B A C ∠ =(A)10(B)5(C)10(D)5(7) 函数0.5()2|log |1xf x x =-的零点个数为(A) 1(B) 2(C) 3(D) 4(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +<的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是(A)02⎫⎪⎪⎝⎭(B)02⎫⎪⎪⎝⎭(C)022⎛⋃⎛ ⎝⎫ ⎪ ⎝⎭⎪⎭ (D)2⎛- ⎝⎭∞2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = . (10)6x⎛- ⎝的二项展开式中的常数项为 .(11) 已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫⎪⎝⎭,则|CP | = .(12) 在平行四边形ABCD 中, AD = 1,60B A D ︒∠=, E 为CD 的中点. 若·1A D B E = ,则AB 的长为 .(13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为 .(14) 设a + b = 2, b >0, 则当a = 时,1||2||a a b+取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤. (15) (本小题满分13分)已知函数2()26sin co s 2co s 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R.(Ⅰ) 求f (x )的最小正周期; (Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同). (Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 16, 求线段AM 的长.(18) (本小题满分13分)设椭圆22221(0)x y a b ab+=>>的左焦点为F , 3, 过点F 且与x 轴垂直的直线被椭圆截3.(Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8A C DB A DC B += , 求k 的值.(19) (本小题满分14分) 已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 +a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 设*()1nn nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.(20) (本小题满分14分) 已知函数2l ()n f x x x=.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()sg t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t<<.- 11 -2013高考真题。
2013年天津市高考数学试卷理科及答案Word版

2013年普通高等学校招生全国统一考试(天津卷)理科数学本试卷分第Ⅰ卷(选择题)与第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷与答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2.本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A, B互斥, 那么·棱柱的体积公式V=Sh,其中S表示棱柱的底面面积, h表示棱柱的高.·如果事件A, B相互独立, 那么·球的体积公式34.3V Rπ=其中R表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A)(,2]-∞(B) [1,2] (C) [-2,2] (D) [-2,1](2) 设变量x , y满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y -2x 的最小值为 (A) -7 (B) -4(C) 1(D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为 (A) 64 (B) 73(C) 512(D) 585(4) 已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18;②若两组数据的平均数相等, 则它们的标准差也相等; ③直线x + y + 1 = 0与圆2212x y +=相切.其中真命题的序号是: (A) ①②③ (B) ①②(C) ②③(D) ②③(5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 的面积为3, 则p =(A) 1(B) 32(C) 2 (D) 3(6) 在△ABC 中,,3,4AB BC ABC π∠==则sin BAC ∠ =(A)(B)(C)(D)(7) 函数0.5()2|log |1x f x x =-的零点个数为(A) 1(B) 2(C) 3(D) 4(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是(A) ⎫⎪⎪⎝⎭(B) ⎫⎪⎪⎝⎭(C) ⎛⋃ ⎝⎫⎪⎝⎭⎪⎭ (D) ⎛-⎝⎭∞ 2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学 第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = . (10)6x⎛- ⎝的二项展开式中的常数项为 .(11) 已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫⎪⎝⎭, 则|CP | = . (12) 在平行四边形ABCD 中, AD = 1,60BAD ︒∠=,E 为CD 的中点. 若·1AD BE =, 则AB 的长为 .(13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为 .(14) 设a + b = 2, b >0, 则当a = 时,1||2||a a b+取得最小值. 三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤. (15) (本小题满分13分) 已知函数2()2sin 26sin cos 2cos 41,f x x x x x x π⎛⎫=-++- ⎪+⎝⎭∈R .(Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值与最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列与数学期望. (17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD ,AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正求线段AM 的长.(18) (本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F , , 过点F 且与x 轴垂(Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=, 求k 的值. (19) (本小题满分14分)已知首项为32的等比数列{}n a 不是递减数列, 其前n 项与为(*)n S n ∈N ,且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列. (Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值. (20) (本小题满分14分) 已知函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s关于t的函数为(), 证明: 当2>e t时, 有s g t。
2013年高考天津卷理科数学试题及答案

2013年普通高等学校招生全国统一考试理科数学(天津卷) 第Ⅰ卷一、选择题1.已知集合A ={x ∈R ||x |≤2},B ={x ∈R |x ≤1},则A ∩B 等于( ) A .(-∞,2] B .[1,2] C .[-2,2] D .[-2,1] 答案 D解析 A ={x ∈R ||x |≤2}=[-2,2],B ={x ∈R |x ≤1}=(-∞,1],∴A ∩B =[-2,2]∩(-∞,1]=[-2,1],选D.2.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为( )A .-7B .-4C .1D .2 答案 A 解析可行域如图阴影部分(含边界)令z =0,得直线l 0:y -2x =0,平移直线l 0知,当直线l 过A 点时,z 取得最小值.由⎩⎪⎨⎪⎧y =3,x -y -2=0得A (5,3). ∴z 最小=3-2×5=-7,选A.3.阅读右边的程序框图,运行相应的程序.若输入x 的值为1,则输出S 的值为( )A .64B .73C .512D .585 答案 B解析 第1次运行:S =0+13=1<50 第2次运行:x =2,S =1+23=9<50 第3次运行:x =4,S =9+43=73>50 ∴输出S =73,选B. 4.已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等;③直线x +y +1=0与圆x 2+y 2=12相切,其中真命题的序号是( )A .①②③B .①②C .①③D .②③ 答案 C解析 ①正确,②不正确,③正确,选C.5.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p 等于( ) A .1 B.32 C .2 D .3答案 C解析 e =2,⎝⎛⎭⎫c a 2=a 2+b 2a 2=1+⎝⎛⎭⎫b a 2=4,∴b a =3,双曲线的渐近线方程为y =±3x , ∴|AB |=2·p2tan 60°又S △AOB =3,即12·p 2·2·p 2tan 60°=3,∴p 24=1,∴p =2,选C.6.在△ABC 中,∠ABC =π4,AB =2,BC =3,则sin ∠BAC 等于( )A.1010 B.105 C.31010 D.55答案 C解析 在△ABC 中,由余弦定理AC 2=BA 2+BC 2-2BA ·BC cos ∠ABC =(2)2+32-2×2×3cos π4=5.∴AC =5,由正弦定理BC sin ∠BAC =ACsin ∠ABC得sin ∠BAC =BC ·sin ∠ABCAC =3×sin π45=3×225=31010,选C.7.函数f (x )=2x |log 0.5 x |-1的零点个数为( ) A .1 B .2 C .3 D .4 答案 B解析 当0<x <1时,f (x )=2x log 0.5x -1,令f (x )=0,则log 0.5x =⎝⎛⎭⎫12x由y =log 0.5x ,y =⎝⎛⎭⎫12x 的图象知,在(0,1)内有一个交点,即f (x )在(0,1)上有一个零点. 当x >1时,f (x )=-2x log 0.5x -1=2x log 2x -1,令f (x )=0得log 2x =⎝⎛⎭⎫12x,由y =log 2x ,y =⎝⎛⎭⎫12x 的图象知在(1,+∞)上有一个交点,即f (x )在(1,+∞)上有一个零点,故选B.另法:0.52log 10xx -=⇒ 0.51log 2x x =⇒0.51log ()2xx =,画这两个函数的图像,看图可知选B8.已知函数f (x )=x (1+a |x |).设关于x 的不等式f (x +a )<f (x )的解集为A .若⎣⎡⎦⎤-12,12⊆A ,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫1-52,0 B.⎝ ⎛⎭⎪⎫1-32,0C.⎝⎛⎭⎪⎫1-52,0∪⎝ ⎛⎭⎪⎫0,1+32 D.⎝⎛⎭⎪⎫-∞,1-52 答案 A解析 f (x )=x (1+a |x |),f (x +a )=(x +a )(1+a |x +a |), 由f (x +a )<f (x )得,x +a +a (x +a )|x +a |<x +ax |x |, 而a +a (x +a )|x +a |<ax |x |,(1)当a =0时,不合题意. (2)当a >0时有1+(x +a )|x +a |<x |x |由于当x =0时1+|a |<0无解,故a <0,去掉C. (3)当a <0时,1+(x +a )|x +a |>x |x | 取a =-12,则1+⎝⎛⎭⎫x -12⎪⎪⎪⎪x -12>x |x |* ①当x ≤0时,由*得-34<x ≤0②当0<x ≤12时,由☆得0<x ≤2+279>12此时⎣⎡⎦⎤-12,12⊆A 符合题意,由于-12∉⎝ ⎛⎭⎪⎫1-32,0, -12∉⎝ ⎛⎭⎪⎫-∞,1-52去掉B 、D ,故选A. 第Ⅱ卷二、填空题9.已知a ,b ∈R ,i 是虚数单位.若(a +i)(1+i)=b i ,则a +b i =________. 答案 1+2i解析 由(a +i)(1+i)=b i 得a -1+(a +1)i =b i ,⎩⎪⎨⎪⎧ a -1=0,a +1=b , ∴⎩⎪⎨⎪⎧a =1,b =2.∴a +b i =1+2i.10.⎝⎛⎭⎫x -1x 6的二项展开式中的常数项为________.答案 15解析 T r +1=C r 6x 6-r (-x -12)r =(-1)r C r 6x 6-3r 2(r =0,1,…,6), 由题意得6-3r2=0,∴r =4.故常数项为T 4+1=C 46(-1)4=C 26=6×52×1=15. 11.已知圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为⎝⎛⎭⎫4,π3,则|CP |=________. 答案 2 3解析 由ρ=4cos θ得:ρ2=4ρcos θ而x 2+y 2=4x , ∴(x -2)2+y 2=4,圆心C (2,0), 点P ⎝⎛⎭⎫4,π3的直角坐标为P (2,23).∴|CP |=2 3.12.在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB 的长为________. 答案 12解析 在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →, ∴BE →=FD →=AD →-12AB →,又AC →=AD →+AB →,∴AC →·BE →=(AD →+AB →)·(AD →-12AB →)=AD →2-12AD →·AB →+AD →·AB →-12AB →2=|AD →|2+12|AD →||AB →|cos 60°-12|AB →|2=1+12×12|AB →|-12|AB →|2=1.∴⎝⎛⎭⎫12-|AB →||AB →|=0,又|AB →|≠0,∴|AB →|=12.另法:如图建系:由题意AD=1,60=∠DAB ,得)0,21(-A ,),23,0(D 设DE=x,)23,(x E ,)0,212(-xB , 1(2,22AC x =+,1(,22BE x =-由题意 .1AD BE = 得:143)21)(212(=+-+x x ,得41=x ,∴AB 的长为21。
2013年天津市高考数学试卷(理科)

2013年天津市高考数学试卷(理科)一.选择题:(每题5分,共40分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2]D.[﹣2,1]2.(5分)设变量x,y满足约束条件,则目标函数z=y﹣2x的最小值为()A.﹣7 B.﹣4 C.1 D.23.(5分)阅读右边的程序框图,运行相应的程序,若输入x的值为1,则输出S的值为()A.64 B.73 C.512 D.5854.(5分)已知下列三个命题:①若一个球的半径缩小到原来的,则其体积缩小到原来的;②若两组数据的平均数相等,则它们的标准差也相等;③直线x+y+1=0与圆相切.其中真命题的序号是()A.①②③B.①②C.①③D.②③5.(5分)已知双曲线﹣=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于O、A、B三点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为,则p=()A.1 B.C.2 D.36.(5分)在△ABC中,∠ABC=,AB=,BC=3,则sin∠BAC=()A.B.C.D.7.(5分)函数f(x)=2x|log0.5x|﹣1的零点个数为()A.1 B.2 C.3 D.48.(5分)已知函数f(x)=x(1+a|x|).设关于x的不等式f(x+a)<f(x)的解集为A,若,则实数a的取值范围是()A.B.C.D.二.填空题:本大题共6小题,每小题5分,共30分.9.(5分)已知a,b∈R,i是虚数单位.若(a+i)(1+i)=bi,则a+bi=.10.(5分)的二项展开式中的常数项为.11.(5分)已知圆的极坐标方程为ρ=4cosθ,圆心为C,点P的极坐标为,则|CP|=.12.(5分)在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若,则AB的长为.13.(5分)如图,△ABC为圆的内接三角形,BD为圆的弦,且BD∥AC.过点A 做圆的切线与DB的延长线交于点E,AD与BC交于点F.若AB=AC,AE=6,BD=5,则线段CF的长为.14.(5分)设a+b=2,b>0,则当a=时,取得最小值.三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.15.(13分)已知函数f(x)=﹣sin(2x+)+6sinxcosx﹣2cos2x+1,x∈R.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间上的最大值和最小值.16.(13分)一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(Ⅰ)求取出的4张卡片中,含有编号为3的卡片的概率.(Ⅱ)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望.17.(13分)如图,四棱柱ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(Ⅰ)证明B1C1⊥CE;(Ⅱ)求二面角B1﹣CE﹣C1的正弦值.(Ⅲ)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.18.(13分)设椭圆=1(a>b>0)的左焦点为F,离心率为,过点F 且与x轴垂直的直线被椭圆截得的线段长为.(Ⅰ)求椭圆的方程;(Ⅱ)设A,B分别为椭圆的左,右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若=8,求k的值.19.(14分)已知首项为的等比数列{a n}不是递减数列,其前n项和为S n(n ∈N*),且S3+a3,S5+a5,S4+a4成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设T n=S n﹣(n∈N*),求数列{T n}的最大项的值与最小项的值.20.(14分)已知函数f(x)=x2lnx.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)证明:对任意的t>0,存在唯一的s,使t=f(s).(Ⅲ)设(Ⅱ)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有.2013年天津市高考数学试卷(理科)参考答案与试题解析一.选择题:(每题5分,共40分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•天津)已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2]D.[﹣2,1]【分析】先化简集合A,解绝对值不等式可求出集合A,然后根据交集的定义求出A∩B即可.【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}∴A∩B={x|﹣2≤x≤2}∩{x|x≤1,x∈R}={x|﹣2≤x≤1}故选D.2.(5分)(2013•天津)设变量x,y满足约束条件,则目标函数z=y﹣2x的最小值为()A.﹣7 B.﹣4 C.1 D.2【分析】先根据条件画出可行域,设z=y﹣2x,再利用几何意义求最值,将最小值转化为y轴上的截距最小,只需求出直线z=y﹣2x,过可行域内的点B(5,3)时的最小值,从而得到z最小值即可.【解答】解:设变量x、y满足约束条件,在坐标系中画出可行域三角形,平移直线y﹣2x=0经过点A(5,3)时,y﹣2x最小,最小值为:﹣7,则目标函数z=y﹣2x的最小值为﹣7.故选A.3.(5分)(2013•天津)阅读右边的程序框图,运行相应的程序,若输入x的值为1,则输出S的值为()A.64 B.73 C.512 D.585【分析】结合流程图写出前几次循环的结果,经过每一次循环判断是否满足判断框中的条件,直到满足条件输出S,结束循环,得到所求.【解答】解:经过第一次循环得到S=0+13,不满足S≥50,x=2,执行第二次循环得到S=13+23,不满足S≥50,x=4,执行第三次循环得到S=13+23+43=73,满足判断框的条件,退出循环,执行“是”,输出S=73.故选B.4.(5分)(2013•天津)已知下列三个命题:①若一个球的半径缩小到原来的,则其体积缩小到原来的;②若两组数据的平均数相等,则它们的标准差也相等;③直线x+y+1=0与圆相切.其中真命题的序号是()A.①②③B.①②C.①③D.②③【分析】对于①由球的体积公式V=可知①正确;对于②通过举反例,如2,2,2和1,2,3;这两组数据的平均数相等,它们的标准差不相等,故②错;对于③利用圆的圆心到直线x+y+1=0的距离与圆的半径之间的关系进行判断即可.【解答】解:①由球的体积公式V=可知,若一个球的半径缩小到原来的,则其体积缩小到原来的;故①正确;②若两组数据的平均数相等,则它们的标准差不一定相等,如2,2,2和1,2,3;这两组数据的平均数相等,它们的标准差不相等,故②错;③圆的圆心到直线x+y+1=0的距离d==半径r,故直线x+y+1=0与圆相切,③正确.故选C.5.(5分)(2013•天津)已知双曲线﹣=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于O、A、B三点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为,则p=()A.1 B.C.2 D.3【分析】求出双曲线的渐近线方程与抛物线y2=2px(p>0)的准线方程,进而求出A,B两点的坐标,再由双曲线的离心率为2,△AOB的面积为,列出方程,由此方程求出p的值.【解答】解:∵双曲线,∴双曲线的渐近线方程是y=±x又抛物线y2=2px(p>0)的准线方程是x=﹣,故A,B两点的纵坐标分别是y=±,双曲线的离心率为2,所以,∴则,A,B两点的纵坐标分别是y=±=,又,△AOB的面积为,x轴是角AOB的角平分线∴,得p=2.故选C.6.(5分)(2013•天津)在△ABC中,∠ABC=,AB=,BC=3,则sin∠BAC=()A.B.C.D.【分析】由AB,BC及cos∠ABC的值,利用余弦定理求出AC的长,再由正弦定理即可求出sin∠BAC的值.【解答】解:∵∠ABC=,AB=,BC=3,∴由余弦定理得:AC2=AB2+BC2﹣2AB•BC•cos∠ABC=2+9﹣6=5,∴AC=,则由正弦定理=得:sin∠BAC==.故选C7.(5分)(2013•天津)函数f(x)=2x|log0.5x|﹣1的零点个数为()A.1 B.2 C.3 D.4【分析】通过令f(x)=0,将方程的解转化为函数图象的交点问题,从而判断函数的零点个数.【解答】解:函数f(x)=2x|log0.5x|﹣1,令f(x)=0,在同一坐标系中作出y=()x.与y=|log0.5x|,如图,由图可得零点的个数为2.故选B.8.(5分)(2013•天津)已知函数f(x)=x(1+a|x|).设关于x的不等式f(x+a)<f(x)的解集为A,若,则实数a的取值范围是()A.B.C.D.【分析】排除法:取a=﹣,由f(x+a)<f(x),得(x﹣)|x﹣|+1>x|x|,分x<0,0≤x≤,x>讨论,可得A,检验是否符合题意,可排除B、D;取a=1,由f(x+a)<f(x),得(x+1)|x+1|+1>x|x|,分x<﹣1,﹣1≤x≤0,x>0进行讨论,检验是否符合题意,排除C.【解答】解:取a=﹣时,f(x)=﹣x|x|+x,∵f(x+a)<f(x),∴(x﹣)|x﹣|+1>x|x|,(1)x<0时,解得﹣<x<0;(2)0≤x≤时,解得0;(3)x>时,解得,综上知,a=﹣时,A=(﹣,),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|,(1)x<﹣1时,解得x>0,矛盾;(2)﹣1≤x≤0,解得x<0,矛盾;(3)x>0时,解得x<﹣1,矛盾;综上,a=1,A=∅,不合题意,排除C,故选A.二.填空题:本大题共6小题,每小题5分,共30分.9.(5分)(2013•天津)已知a,b∈R,i是虚数单位.若(a+i)(1+i)=bi,则a+bi=1+2i.【分析】利用复数的乘法展开等式的左边,通过复数的相等,求出a,b的值即可得到结果.【解答】解:因为(a+i)(1+i)=bi,所以a﹣1+(a+1)i=bi,所以,解得a=1,b=2,所以a+bi=1+2i.故答案为:1+2i.10.(5分)(2013•天津)的二项展开式中的常数项为 15 .【分析】利用二项展开式的通项公式T r +1=•(﹣1)r •中x 的幂指数为0即可求得答案.【解答】解;设的二项展开式中的通项为T r +1,则T r +1=•(﹣1)r•,由6﹣r=0得:r=4. ∴的二项展开式中的常数项为•(﹣1)4==15.故答案为:15.11.(5分)(2013•天津)已知圆的极坐标方程为ρ=4cosθ,圆心为C ,点P 的极坐标为,则|CP |=.【分析】求出圆的直角坐标方程,求出圆的圆心坐标,化P 的极坐标为直角坐标,利用两点间距离公式求出距离即可.【解答】解:圆的极坐标方程为ρ=4cosθ,圆的方程为:x 2+y 2=4x ,圆心为C (2,0),点P 的极坐标为,所以P 的直角坐标(2,2),所以|CP |==2.故答案为:2.12.(5分)(2013•天津)在平行四边形ABCD 中,AD=1,∠BAD=60°,E 为CD的中点.若,则AB 的长为.【分析】利用向量的三角形法则和平行四边形法则和数量积得运算即可得出. 【解答】解:∵,.∴===+﹣==1,化为,∵,∴.故答案为.13.(5分)(2013•天津)如图,△ABC为圆的内接三角形,BD为圆的弦,且BD ∥AC.过点A做圆的切线与DB的延长线交于点E,AD与BC交于点F.若AB=AC,AE=6,BD=5,则线段CF的长为.【分析】利用切割线定理求出EB,证明四边形AEBC是平行四边形,通过三角形相似求出CF即可.【解答】解:如图由切角弦定理得∠EAB=∠ACB,又因为,AB=AC,所以∠EAB=∠ABC,所以直线AE∥直线BC,又因为AC∥BE,所以是平行四边形.因为AB=AC,AE=6,BD=5,∴AC=AB=4,BC=6.△AFC∽△DFB,即:,CF=,故答案为:.14.(5分)(2013•天津)设a+b=2,b>0,则当a=﹣2时,取得最小值.【分析】由于a+b=2,b>0,从而=,(a<2),设f(a)=,(a<2),画出此函数的图象,结合导数研究其单调性,即可得出答案.【解答】解:∵a+b=2,b>0,∴=,(a<2)设f(a)=,(a<2),画出此函数的图象,如图所示.利用导数研究其单调性得,当a<0时,f(a)=﹣+,f′(a)==,当a<﹣2时,f′(a)<0,当﹣2<a<0时,f′(a)>0,故函数在(﹣∞,﹣2)上是减函数,在(﹣2,0)上是增函数,∴当a=﹣2时,取得最小值.同样地,当0<a<2时,得到当a=时,取得最小值.综合,则当a=﹣2时,取得最小值.故答案为:﹣2.三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.15.(13分)(2013•天津)已知函数f(x)=﹣sin(2x+)+6sinxcosx﹣2cos2x+1,x∈R.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间上的最大值和最小值.【分析】(I)利用两角和的正弦公式将sin(2x+)展开,结合二倍角的正余弦公式化简合并,得f(x)=2sin2x﹣2cos2x,再利用辅助角公式化简得f(x)=2sin (2x﹣),最后利用正弦函数的周期公式即可算出f(x)的最小正周期;(II)根据x∈,得﹣≤2x﹣≤.再由正弦函数在区间[﹣,]上的图象与性质,可得f(x)在区间上的最大值为与最小值.【解答】解:(I)∵sinxcosx=sin2x,cos2x=(1+cos2x)∴f(x)=﹣sin(2x+)+6sinxcosx﹣2cos2x+1=﹣sin2x﹣cos2x+3sin2x﹣(1+cos2x)+1=2sin2x﹣2cos2x=2sin(2x﹣)因此,f(x)的最小正周期T==π;(II)∵0≤x≤,∴﹣≤2x﹣≤∴当x=0时,sin(2x﹣)取得最小值﹣;当x=时,sin(2x﹣)取得最大值1由此可得,f(x)在区间上的最大值为f()=2;最小值为f(0)=﹣2.16.(13分)(2013•天津)一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(Ⅰ)求取出的4张卡片中,含有编号为3的卡片的概率.(Ⅱ)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望.【分析】(I)从7张卡片中取出4张的所有可能结果数有,然后求出取出的4张卡片中,含有编号为3的卡片的结果数,代入古典概率的求解公式即可求解(II)先判断随机变量X的所有可能取值为1,2,3,4,根据题意求出随机变量的各个取值的概率,即可求解分布列及期望值【解答】解:(I)设取出的4张卡片中,含有编号为3的卡片为事件A,则P(A)==所以,取出的4张卡片中,含有编号为3的卡片的概率为(II)随机变量X的所有可能取值为1,2,3,4P(X=1)=P(X=2)=P(X=3)==P(X=4)==X的分布列为EX==17.(13分)(2013•天津)如图,四棱柱ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(Ⅰ)证明B1C1⊥CE;(Ⅱ)求二面角B1﹣CE﹣C1的正弦值.(Ⅲ)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.【分析】(Ⅰ)由题意可知,AD,AB,AA1两两互相垂直,以a为坐标原点建立空间直角坐标系,标出点的坐标后,求出和,由得到B1C1⊥CE;(Ⅱ)求出平面B1CE和平面CEC1的一个法向量,先求出两法向量所成角的余弦值,利用同角三角函数基本关系求出其正弦值,则二面角B1﹣CE﹣C1的正弦值可求;(Ⅲ)利用共线向量基本定理把M的坐标用E和C1的坐标及待求系数λ表示,求出平面ADD1A1的一个法向量,利用向量求线面角的公式求出直线AM与平面ADD1A1所成角的正弦值,代入求出λ的值,则线段AM的长可求.【解答】(Ⅰ)证明:以点A为原点建立空间直角坐标系,如图,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0).则,而=0.所以B1C1⊥CE;(Ⅱ)解:,设平面B 1CE的法向量为,则,即,取z=1,得x=﹣3,y=﹣2.所以.由(Ⅰ)知B1C1⊥CE,又CC1⊥B1C1,所以B1C1⊥平面CEC1,故为平面CEC1的一个法向量,于是=.从而==.所以二面角B1﹣CE﹣C1的正弦值为.(Ⅲ)解:,设0≤λ≤1,有.取为平面ADD 1A1的一个法向量,设θ为直线AM与平面ADD1A1所成的角,则==.于是.解得.所以.所以线段AM的长为.18.(13分)(2013•天津)设椭圆=1(a>b>0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.(Ⅰ)求椭圆的方程;(Ⅱ)设A,B分别为椭圆的左,右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若=8,求k的值.【分析】(Ⅰ)先根据椭圆方程的一般形式,令x=c代入求出弦长使其等于,再由离心率为,可求出a,b,c的关系,进而得到椭圆的方程.(Ⅱ)直线CD:y=k(x+1),设C(x1,y1),D(x2,y2),由消去y得,(2+3k2)x2+6k2x+3k2﹣6=0,再由韦达定理进行求解.求得,利用=8,即可求得k的值.【解答】解:(Ⅰ)根据椭圆方程为.∵过焦点且垂直于x轴的直线被椭圆截得的线段长为,∴当x=﹣c时,,得y=±,∴=,∵离心率为,∴=,解得b=,c=1,a=.∴椭圆的方程为;(Ⅱ)直线CD:y=k(x+1),设C(x1,y1),D(x2,y2),由消去y得,(2+3k2)x2+6k2x+3k2﹣6=0,∴x1+x2=﹣,x1x2=,又A(﹣,0),B(,0),∴=(x1+,y1)•(﹣x2.﹣y2)+(x2+,y2)•(﹣x1.﹣y1),=6﹣(2+2k2)x1x2﹣2k2(x1+x2)﹣2k2,=6+=8,解得k=.19.(14分)(2013•天津)已知首项为的等比数列{a n}不是递减数列,其前n 项和为S n(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设T n=S n﹣(n∈N*),求数列{T n}的最大项的值与最小项的值.【分析】(Ⅰ)设等比数列的公比为q,由S3+a3,S5+a5,S4+a4成等差数列,可构造关于q的方程,结合首项为的等比数列{a n}不是递减数列,求出q值,可得答案.(Ⅱ)由(Ⅰ)可得S n的表达式,由于数列为摆动数列,故可分类讨论求出在n为奇数和偶数时的范围,综合讨论结果,可得答案.【解答】解:(Ⅰ)设等比数列的公比为q,∵S3+a3,S5+a5,S4+a4成等差数列.∴S5+a5﹣(S3+a3)=S4+a4﹣(S5+a5)即4a5=a3,故q2==又∵数列{a n}不是递减数列,且等比数列的首项为∴q=﹣∴数列{a n}的通项公式a n=×(﹣)n﹣1=(﹣1)n﹣1•(Ⅱ)由(Ⅰ)得S n=1﹣(﹣)n=当n为奇数时,S n随n的增大而减小,所以1<S n≤S1=故0<≤=﹣=当n为偶数时,S n随n的增大而增大,所以1>S n≥S2=故0>≥=﹣=综上,对于n∈N*,总有≤≤故数列{T n}的最大项的值为,最小项的值为20.(14分)(2013•天津)已知函数f(x)=x2lnx.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)证明:对任意的t>0,存在唯一的s,使t=f(s).(Ⅲ)设(Ⅱ)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有.【分析】(Ⅰ)函数的定义域为(0,+∞),求导数令f′(x)=0,可解得x=,由导数在(0,),和(,+∞)的正负可得单调性;(Ⅱ)当0<x≤1时,f(x)≤0,设t>0,令h(x)=f(x)﹣t,x∈[1,+∞),由(Ⅰ)可得函数h (x)的单调性,可得结论;(Ⅲ)令u=lns,原命题转化为0<lnu<,一方面由f(s)的单调性,可得u>1,从而lnu>0成立,另一方面,令F(u)=lnu﹣,u>1,通过函数的单调性可得极值最值,进而得证.【解答】解:(Ⅰ)由题意可知函数的定义域为(0,+∞),求导数可得f′(x)=2xlnx+x2•=2xlnx+x=x(2lnx+1),令f′(x)=0,可解得x=,当x变化时,f′(x),f(x)的变化情况如下表:所以函数f(x)的单调递减区间为(0,),单调递增区间为(,+∞)(Ⅱ)证明:当0<x≤1时,f(x)≤0,设t>0,令h(x)=f(x)﹣t,x∈[1,+∞),由(Ⅰ)可知,h(x)在区间(1,+∞)单调递增,h(1)=﹣t<0,h(e t)=e2t lne t ﹣t=t(e2t﹣1)>0,故存在唯一的s∈(1,+∞),使得t=f(s)成立;(Ⅲ)证明:因为s=g(t),由(Ⅱ)知,t=f(s),且s>1,从而====,其中u=lns,要使成立,只需,即2<,即2<2+,只需,变形可得只需0<lnu<,当t>e2时,若s=g(t)≤e,则由f(s)的单调性,有t=f(s)≤f(e)=e2,矛盾,所以s>e,即u>1,从而lnu>0成立,另一方面,令F(u)=lnu﹣,u>1,F′(u)=,令F′(u)=0,可解得u=2,当1<u<2时,F′(u)>0,当u>2时,F′(u)<0,故函数F(u)在u=2处取到极大值,也是最大值F(2)=ln2﹣1<0,故有F(u)=lnu﹣<0,即lnu<,综上可证:当t>e2时,有成立.。
2013年天津市高考数学试卷(理科)

2013年天津市高考数学试卷(理科)一.选择题: 每题 分,共 分)在每小题给出的四个选项中,只有一项是符合题目要求的.( 分)已知集合 ∈ ≤ , ∈ ≤ ,则 ∩ ().(﹣∞, . , . ﹣ , . ﹣ , .( 分)设变量 , 满足约束条件,则目标函数 ﹣ 的最小值为().﹣ .﹣ . ..( 分)阅读右边的程序框图,运行相应的程序,若输入 的值为 ,则输出 的值为(). . . ..( 分)已知下列三个命题:①若一个球的半径缩小到原来的,则其体积缩小到原来的;②若两组数据的平均数相等,则它们的标准差也相等;③直线 与圆相切.其中真命题的序号是().①②③ .①② .①③ .②③.( 分)已知双曲线﹣ ( > , > )的两条渐近线与抛物线 ( > )的准线分别交于 、 、 三点, 为坐标原点.若双曲线的离心率为 ,△ 的面积为,则 (). . . ..( 分)在△ 中,∠ , , ,则 ∠ () . . . .﹣ 的零点个数为() .( 分)函数 ( ). . . ..( 分)已知函数 ( ) ( ).设关于 的不等式 ( )< ( )的解集为 ,若,则实数 的取值范围是() . .. .二.填空题:本大题共 小题,每小题 分,共 分.( 分)已知 , ∈ , 是虚数单位.若( )( ) ,则 ..( 分)的二项展开式中的常数项为..( 分)已知圆的极坐标方程为 ,圆心为 ,点 的极坐标为,则 ..( 分)在平行四边形 中, ,∠ , 为 的中点.若,则 的长为..( 分)如图,△ 为圆的内接三角形, 为圆的弦,且 ∥ .过点 做圆的切线与 的延长线交于点 , 与 交于点 .若 , , ,则线段 的长为..( 分)设 , > ,则当 时,取得最小值.三.解答题:本大题共 小题,共 分 解答应写出文字说明,证明过程或演算步骤.( 分)已知函数 ( ) ﹣ ( ) ﹣ , ∈ .( )求 ( )的最小正周期;( )求 ( )在区间上的最大值和最小值..( 分)一个盒子里装有 张卡片,其中有红色卡片 张,编号分别为 , , , ; 白色卡片 张,编号分别为 , , .从盒子中任取 张卡片 (假设取到任何一张卡片的可能性相同).( )求取出的 张卡片中,含有编号为 的卡片的概率.( )在取出的 张卡片中,红色卡片编号的最大值设为 ,求随机变量 的分布列和数学期望..( 分)如图,四棱柱 ﹣ 中,侧棱 ⊥底面 , ∥ , ⊥ , , , 为棱 的中点.( )证明 ⊥ ;( )求二面角 ﹣ ﹣ 的正弦值.( )设点 在线段 上,且直线 与平面 所成角的正弦值为,求线段 的长..( 分)设椭圆 ( > > )的左焦点为 ,离心率为,过点 且与 轴垂直的直线被椭圆截得的线段长为.( )求椭圆的方程;( )设 , 分别为椭圆的左,右顶点,过点 且斜率为 的直线与椭圆交于 , 两点.若 ,求 的值..( 分)已知首项为的等比数列不是递减数列,其前 项和为( ∈ ),且,,成等差数列.( )求数列的通项公式;( )设﹣( ∈ ),求数列的最大项的值与最小项的值..( 分)已知函数 ( ) .( )求函数 ( )的单调区间;( )证明:对任意的 > ,存在唯一的 ,使 ( ).( )设( )中所确定的 关于 的函数为 ( ),证明:当 > 时,有.年天津市高考数学试卷(理科)参考答案与试题解析一.选择题: 每题 分,共 分)在每小题给出的四个选项中,只有一项是符合题目要求的.( 分)( 天津)已知集合 ∈ ≤ , ∈ ≤ ,则 ∩ ().(﹣∞, . , . ﹣ , . ﹣ , 【分析】先化简集合 ,解绝对值不等式可求出集合 ,然后根据交集的定义求出 ∩ 即可.【解答】解:∵ ≤ ﹣ ≤ ≤∴ ∩ ﹣ ≤ ≤ ∩ ≤ , ∈ ﹣ ≤ ≤故选 ..( 分)( 天津)设变量 , 满足约束条件,则目标函数 ﹣ 的最小值为().﹣ .﹣ . .【分析】先根据条件画出可行域,设 ﹣ ,再利用几何意义求最值,将最小值转化为 轴上的截距最小,只需求出直线 ﹣ ,过可行域内的点 ( , )时的最小值,从而得到 最小值即可.【解答】解:设变量 、 满足约束条件 ,在坐标系中画出可行域三角形,平移直线 ﹣ 经过点 ( , )时, ﹣ 最小,最小值为:﹣ ,则目标函数 ﹣ 的最小值为﹣ .故选 ..( 分)( 天津)阅读右边的程序框图,运行相应的程序,若输入 的值为 ,则输出 的值为(). . . .【分析】结合流程图写出前几次循环的结果,经过每一次循环判断是否满足判断框中的条件,直到满足条件输出 ,结束循环,得到所求.【解答】解:经过第一次循环得到 ,不满足 ≥ , ,执行第二次循环得到 ,不满足 ≥ , ,执行第三次循环得到 ,满足判断框的条件,退出循环,执行 是 ,输出 .故选 ..( 分)( 天津)已知下列三个命题:①若一个球的半径缩小到原来的,则其体积缩小到原来的;②若两组数据的平均数相等,则它们的标准差也相等;③直线 与圆相切.其中真命题的序号是().①②③ .①② .①③ .②③【分析】对于①由球的体积公式 可知①正确;对于②通过举反例,如 , , 和 , , ;这两组数据的平均数相等,它们的标准差不相等,故②错;对于③利用圆的圆心到直线 的距离与圆的半径之间的关系进行判断即可.【解答】解:①由球的体积公式 可知,若一个球的半径缩小到原来的,则其体积缩小到原来的;故①正确;②若两组数据的平均数相等,则它们的标准差不一定相等,如 , , 和 , , ;这两组数据的平均数相等,它们的标准差不相等,故②错;③圆的圆心到直线 的距离 半径 ,故直线 与圆相切,③正确.故选 ..( 分)( 天津)已知双曲线﹣ ( > , > )的两条渐近线与抛物线 ( > )的准线分别交于 、 、 三点, 为坐标原点.若双曲线的离心率为 ,△ 的面积为,则 () . . . .【分析】求出双曲线的渐近线方程与抛物线 ( > )的准线方程,进而求出 , 两点的坐标,再由双曲线的离心率为 ,△ 的面积为,列出方程,由此方程求出 的值.【解答】解:∵双曲线,∴双曲线的渐近线方程是 ±又抛物线 ( > )的准线方程是 ﹣,故 , 两点的纵坐标分别是 ±,双曲线的离心率为 ,所以,∴则,, 两点的纵坐标分别是 ± ,又,△ 的面积为, 轴是角 的角平分线∴,得 .故选 ..( 分)( 天津)在△ 中,∠ , , ,则 ∠ (). . . .【分析】由 , 及 ∠ 的值,利用余弦定理求出 的长,再由正弦定理即可求出 ∠ 的值.【解答】解:∵∠ , , ,∴由余弦定理得: ﹣ ∠ ﹣ ,∴ ,则由正弦定理 得: ∠ .故选.( 分)( 天津)函数 ( )﹣ 的零点个数为(). . . .【分析】通过令 ( ) ,将方程的解转化为函数图象的交点问题,从而判断函数的零点个数.﹣ ,令 ( ) ,【解答】解:函数 ( ),如图,在同一坐标系中作出 () .与由图可得零点的个数为 .故选 ..( 分)( 天津)已知函数 ( ) ( ).设关于 的不等式 ( )< ( )的解集为 ,若,则实数 的取值范围是(). .. .【分析】排除法:取 ﹣,由 ( )< ( ),得( ﹣) ﹣ > ,分 < , ≤ ≤, >讨论,可得 ,检验是否符合题意,可排除 、 ;取 ,由 ( )< ( ),得( ) > ,分 <﹣ ,﹣ ≤ ≤ , > 进行讨论,检验是否符合题意,排除 .【解答】解:取 ﹣时, ( ) ﹣ ,∵ ( )< ( ),∴( ﹣) ﹣ > ,( ) < 时,解得﹣< < ;( ) ≤ ≤时,解得 ;( ) >时,解得,综上知, ﹣时, (﹣,),符合题意,排除 、 ;取 时, ( ) ,∵ ( )< ( ),∴( ) < ,( ) <﹣ 时,解得 > ,矛盾;( )﹣ ≤ ≤ ,解得 < ,矛盾;( ) > 时,解得 <﹣ ,矛盾;综上, , ∅,不合题意,排除 ,故选 .二.填空题:本大题共 小题,每小题 分,共 分.( 分)( 天津)已知 , ∈ , 是虚数单位.若( )( ) ,则 .【分析】利用复数的乘法展开等式的左边,通过复数的相等,求出 , 的值即可得到结果.【解答】解:因为( )( ) ,所以 ﹣ ( ) ,所以,解得 , ,所以 .故答案为: ..( 分)( 天津)的二项展开式中的常数项为 .(﹣ ) 中 的【分析】利用二项展开式的通项公式幂指数为 即可求得答案.【解答】解;设的二项展开式中的通项为 ,则(﹣ ),由 ﹣ 得: . ∴的二项展开式中的常数项为(﹣ ).故答案为: ..( 分)( 天津)已知圆的极坐标方程为 ,圆心为 ,点 的极坐标为,则.【分析】求出圆的直角坐标方程,求出圆的圆心坐标,化 的极坐标为直角坐标,利用两点间距离公式求出距离即可.【解答】解:圆的极坐标方程为 ,圆的方程为: ,圆心为 ( , ),点 的极坐标为,所以 的直角坐标( ,),所以.故答案为: ..( 分)( 天津)在平行四边形 中, ,∠ , 为 的中点.若,则 的长为.【分析】利用向量的三角形法则和平行四边形法则和数量积得运算即可得出.【解答】解:∵,. ∴﹣,化为,∵,∴.故答案为..( 分)( 天津)如图,△ 为圆的内接三角形, 为圆的弦,且 ∥ .过点 做圆的切线与 的延长线交于点 , 与 交于点 .若 , , ,则线段 的长为.【分析】利用切割线定理求出 ,证明四边形 是平行四边形,通过三角形相似求出 即可.【解答】解:如图由切角弦定理得∠ ∠ ,又因为, ,所以∠ ∠ ,所以直线 ∥直线 ,又因为 ∥ ,所以是平行四边形.因为 , , ,∴ , .△ ∽△ ,即:,,故答案为:..( 分)( 天津)设 , > ,则当 ﹣ 时,取得最小值.【分析】由于 , > ,从而 ,( < ),设 ( ) ,( < ),画出此函数的图象,结合导数研究其单调性,即可得出答案.【解答】解:∵ , > ,∴ ,( < )设 ( ) ,( < ),画出此函数的图象,如图所示.利用导数研究其单调性得,当 < 时, ( ) ﹣ ,( ) ,当 <﹣ 时, ( )< ,当﹣ < < 时, ( )> ,故函数在(﹣∞,﹣ )上是减函数,在(﹣ , )上是增函数,∴当 ﹣ 时,取得最小值.同样地,当 < < 时,得到当 时,取得最小值.综合,则当 ﹣ 时,取得最小值.故答案为:﹣ .三.解答题:本大题共 小题,共 分 解答应写出文字说明,证明过程或演算步骤.( 分)( 天津)已知函数 ( ) ﹣ ( ) ﹣ , ∈ .( )求 ( )的最小正周期;( )求 ( )在区间上的最大值和最小值.【分析】( )利用两角和的正弦公式将 ( )展开,结合二倍角的正余弦公式化简合并,得 ( ) ﹣ ,再利用辅助角公式化简得 ( ) ( ﹣),最后利用正弦函数的周期公式即可算出 ( )的最小正周期;( )根据 ∈,得﹣≤ ﹣≤.再由正弦函数在区间 ﹣, 上的图象与性质,可得 ( )在区间上的最大值为与最小值.【解答】解:( )∵ , ( )∴ ( ) ﹣ ( ) ﹣ ﹣ ﹣﹣( )﹣ ( ﹣)因此, ( )的最小正周期 ;( )∵ ≤ ≤,∴﹣≤ ﹣≤∴当 时, ( ﹣)取得最小值﹣;当 时, ( ﹣)取得最大值由此可得, ( )在区间上的最大值为 () ;最小值为 ( ) ﹣ ..( 分)( 天津)一个盒子里装有 张卡片,其中有红色卡片 张,编号分别为 , , , ; 白色卡片 张,编号分别为 , , .从盒子中任取 张卡片 (假设取到任何一张卡片的可能性相同).( )求取出的 张卡片中,含有编号为 的卡片的概率.( )在取出的 张卡片中,红色卡片编号的最大值设为 ,求随机变量 的分布列和数学期望.【分析】( )从 张卡片中取出 张的所有可能结果数有,然后求出取出的 张卡片中,含有编号为 的卡片的结果数,代入古典概率的求解公式即可求解( )先判断随机变量 的所有可能取值为 , , , ,根据题意求出随机变量的各个取值的概率,即可求解分布列及期望值【解答】解:( )设取出的 张卡片中,含有编号为 的卡片为事件 ,则 ( )所以,取出的 张卡片中,含有编号为 的卡片的概率为( )随机变量 的所有可能取值为 , , , ( )( )( )( )的分布列为.( 分)( 天津)如图,四棱柱 ﹣ 中,侧棱 ⊥底面 , ∥ , ⊥ , , , 为棱 的中点.( )证明 ⊥ ;( )求二面角 ﹣ ﹣ 的正弦值.( )设点 在线段 上,且直线 与平面 所成角的正弦值为,求线段 的长.【分析】( )由题意可知, , , 两两互相垂直,以 为坐标原点建立空间直角坐标系,标出点的坐标后,求出和,由得到⊥ ;( )求出平面 和平面 的一个法向量,先求出两法向量所成角的余弦值,利用同角三角函数基本关系求出其正弦值,则二面角 ﹣ ﹣ 的正弦值可求;( )利用共线向量基本定理把 的坐标用 和 的坐标及待求系数 表示,求出平面 的一个法向量,利用向量求线面角的公式求出直线 与平面 所成角的正弦值,代入求出 的值,则线段 的长可求.【解答】( )证明:以点 为原点建立空间直角坐标系,如图,依题意得 ( , , ), ( , , ), ( , , ), ( , , ), ( , , ), ( , , ).则, 而.所以 ⊥ ; ( )解:,设平面 的法向量为,则,即,取 ,得 ﹣ , ﹣ .所以.由( )知 ⊥ ,又 ⊥ ,所以 ⊥平面 , 故为平面 的一个法向量,于是 .从而.所以二面角 ﹣ ﹣ 的正弦值为. ( )解:,设 ≤ ≤ , 有.取为平面 的一个法向量,设 为直线 与平面 所成的角, 则.于是.解得.所以.所以线段 的长为..( 分)( 天津)设椭圆 ( > > )的左焦点为 ,离心率为,过点 且与 轴垂直的直线被椭圆截得的线段长为.( )求椭圆的方程;( )设 , 分别为椭圆的左,右顶点,过点 且斜率为 的直线与椭圆交于 , 两点.若 ,求 的值.【分析】( )先根据椭圆方程的一般形式,令 代入求出弦长使其等于,再由离心率为,可求出 , , 的关系,进而得到椭圆的方程.( )直线 : ( ),设 (,), (,),由消去 得,( ) ﹣ ,再由韦达定理进行求解.求得,利用 ,即可求得 的值.【解答】解:( )根据椭圆方程为.∵过焦点且垂直于 轴的直线被椭圆截得的线段长为,∴当 ﹣ 时,,得 ±,∴ ,∵离心率为,∴ ,解得 , , .∴椭圆的方程为;( )直线 : ( ),设 ( , ), ( , ),由消去 得,( ) ﹣ ,∴ ﹣,,又 (﹣, ), (, ),∴( , ) (﹣ .﹣ ) ( , ) (﹣ .﹣),﹣( ) ﹣ ( )﹣ , ,解得..( 分)( 天津)已知首项为的等比数列 不是递减数列,其前 项和为 ( ∈ ),且 , , 成等差数列.( )求数列 的通项公式; ( )设 ﹣( ∈ ),求数列 的最大项的值与最小项的值.【分析】( )设等比数列的公比为 ,由 , , 成等差数列,可构造关于 的方程,结合首项为的等比数列 不是递减数列,求出 值,可得答案.( )由( )可得 的表达式,由于数列为摆动数列,故可分类讨论求出在 为奇数和偶数时的范围,综合讨论结果,可得答案. 【解答】解:( )设等比数列的公比为 ,∵,,成等差数列.∴﹣()﹣()即,故又∵数列不是递减数列,且等比数列的首项为∴ ﹣∴数列的通项公式×(﹣) ﹣ (﹣ ) ﹣( )由( )得﹣(﹣)当 为奇数时,随 的增大而减小,所以 <≤故 <≤ ﹣当 为偶数时,随 的增大而增大,所以 >≥故 >≥ ﹣综上,对于 ∈ ,总有≤≤故数列的最大项的值为,最小项的值为.( 分)( 天津)已知函数 ( ) .( )求函数 ( )的单调区间;( )证明:对任意的 > ,存在唯一的 ,使 ( ).( )设( )中所确定的 关于 的函数为 ( ),证明:当 > 时,有.【分析】( )函数的定义域为( , ∞),求导数令 ( ) ,可解得 ,由导数在( ,),和( , ∞)的正负可得单调性;( )当 < ≤ 时, ( )≤ ,设 > ,令 ( ) ( )﹣ , ∈ , ∞),由( )可得函数 ( )的单调性,可得结论;( )令 ,原命题转化为 < <,一方面由 ( )的单调性,可得 > ,从而 > 成立,另一方面,令 ( ) ﹣, > ,通过函数的单调性可得极值最值,进而得证.【解答】解:( )由题意可知函数的定义域为( , ∞),求导数可得 ( ) ( ),令 ( ) ,可解得 ,当 变化时, ( ), ( )的变化情况如下表:( ,) ( , ∞) ( )﹣( )单调递减极小值 单调递增 所以函数 ( )的单调递减区间为( ,),单调递增区间为( , ∞)( )证明:当 < ≤ 时, ( )≤ ,设 > ,令 ( ) ( )﹣ , ∈ , ∞),由( )可知, ( )在区间( , ∞)单调递增, ( ) ﹣ < , ( ) ﹣ ( ﹣ )> ,故存在唯一的 ∈( , ∞),使得 ( )成立;( )证明:因为 ( ),由( )知, ( ),且 > ,从而 ,其中 ,要使成立,只需,即 <,即 < ,只需,变形可得只需 < <,当 > 时,若 ( )≤ ,则由 ( )的单调性,有 ( )≤ ( ) ,矛盾,所以 > ,即 > ,从而 > 成立,另一方面,令 ( ) ﹣, > , ( ) ,令 ( ) ,可解得 ,当 < < 时, ( )> ,当 > 时, ( )< ,故函数 ( )在 处取到极大值,也是最大值 ( ) ﹣ < ,故有 ( ) ﹣< ,即 <,综上可证:当 > 时,有成立.。
2013年普通高等学校招生全国统一考试 天津卷(理科)

(第3题)2013年普通高等学校招生全国统一考试天津卷(理工类数学)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷(选择题,共40分)一、选择题(本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求的)1、已知集合{2}A x R x =∈≤,{1}B x R x =∈≤,则A B = ( ) A 、(,2]-∞ B 、[1,2] C 、[2,2]- D 、[2,1]-2、设变量,x y 满足约束条件3602030x y x y y +-≥⎧⎪--≤⎨⎪-≤⎩,则目标函数2z y x =-的最小值为( )A 、7-B 、4-C 、1D 、23、阅读如图所示的程序框图,运行相应的程序. 若输入x 的值 为1,则输出S 的值为( )A 、64B 、73C 、512D 、585 4、已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18; ②若两组数据的平均数相等,则它们的标准差也相等;③直线10x y ++=与圆2212x y +=相切.其中真命题的序号是( )A 、①②③B 、①②C 、①③D 、②③5、已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)y px p =>的准线分别交于,A B 两点,O 为坐标原点. 若双曲线的离心率为2,AOB ∆则p =( ) A 、1 B 、32C 、2D 、3 6、在ABC ∆中,4ABC π∠=,AB =,3BC =,则sin BAC ∠=( )AB、 CD7、函数0.5()2log 1x f x x =-的零点个数为( )A 、1B 、2C 、3D 、48、已知函数()(1)f x x a x =+. 设关于x 的不等式()()f x a f x +<的解集为A . 若11[,]22A -⊆,则实数a 的取值范围是( ) A、 B、 C、 D、(-∞ 第Ⅱ卷(非选择题,共110分)二、填空题(本大题共6小题,每小题5分,共30分,把答案填在题中横线上) 9、已知,a b R ∈,i 是虚数单位. 若()(1)a i i bi ++=,则a bi +=______; 10、6(x 的二项展开式的常数项为______; 11、已知圆的极坐标方程为4cos ρθ=,圆心为C ,点P 的极坐标为(4,)3π,则CP =____;12、在平行四边形ABCD 中,1AD =,60BAD ∠=︒,E 为CD 的中点. 若1AC BE ⋅=,则AB 的长为______;13、如图,ABC ∆为圆的内接三角形,BD 为圆的弦, 且BD ∥AC . 过点A 作圆的切线与DB 的延长线交于 点E ,AD 与BC 交于点F . 若AB AC =,6AE =,5BD =,则线段CF 的长为______;14、设2a b +=,0b >,则当a =______时,12a a b +取得最小值. 三、解答题(本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤)15、(本小题满分13分)已知函数2())6sin cos 2cos 1,4f x x x x x x R π=++-+∈.(1)求()f x 的最小正周期;(2)求()f x 在区间[0,]2π上的最大值和最小值.(第13题)16、(本小题满分13分)一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4. 从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中,红色卡片编号的最大值设为X ,求随机变量X 的分布列和数学期望.17、(本小题满分13分)如图,四棱柱1111ABCD A B C D -中,侧棱1A A ⊥底面ABCD ,AB ∥DC ,AB AD ⊥,1AD CD ==,12AA AB ==,E 为1AA 的中点 (1)证明:11B C ⊥CE ;(2)求二面角11B CE C --的正弦值;(3)设点M 在线段1C E 上,且直线AM 与平面11ADD A,求线段AM 的长.18、(本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F,过点F 且与x. (1)求椭圆的方程;(2)设,A B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于,C D 两点,若8AC DB AD CB ⋅+⋅=,求k 的值.19、(本小题满分14分)已知首项为32的等比数列{}n a 不是递减数列,其前n 项和为()n S n N *∈,且33S a +,55S a +,44S a +成等差数列.(1)求数列{}n a 的通项公式; (2)设1()n n nT S n N S *=-∈,求数列{}n T 的最大项的值和最小项的值.20、(本小题满分14分)已知函数2()ln f x x x =. (1)求函数()f x 的单调区间;(2)证明:对任意的0t >,存在唯一的s ,使()t f s =;(3)设(2)中所确定的s 关于t 的函数为()s g t =,证明:当2t e >时,有2ln ()15ln 2g t t <<.B 11(第17题)。
2013年高考理科数学天津卷(含详细答案)

)(A B P A=棱柱的体积公式S表示棱柱的底面面积A B=]2,2C.1D.2x的值为1,()B.73D.585()B.①②D.②③22(0)px py=>的准线分别2,AOB△则p=()C.2D.33,则sin BAC∠=C DC.3D.4的不等式()()f x a f x+<的解集为A.若11,22A⎡⎤-⊆⎢⎥⎣⎦,则实数a的取值范围是()A.B.C.13(0,+D.(-∞第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共12小题,共110分.二、填空题:本大题共6小题,每小题5分,共30分.9.已知a,b∈R,i是虚数单位.若(i)(1i)ia b++=,则ia b+=.10.6(x-的二项展开式中的常数项为.11.已知圆的极坐标方程为4cosρθ=,圆心为C,点P的极坐标为π(4,)3,||CP=.12.在平行四边形ABCD中,1AD=,60BAD︒∠=,E为CD的中点.若1AC BE=,则AB的长为.13.如图,ABC△为圆的内接三角形,BD为圆的弦,且BD AC∥.过点A作圆的切线与DB的延长线交于点E,AD与BC交于点F.若AB AC=,6AE=,5BD=,则线段CF的长为.14.设2a b+=,0b>,则当a=时,1||2||aa b+取得最小值.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.,过点F 且与x 轴垂直的直(Ⅱ)设A 、B 分别为椭圆的左、k 的直线与椭圆交于C ,D 两若8AC DB AD CB +=,求k n 项和为(*)n S n ∈N ,且33S a +,.20.(本小题满分14分)已知函数2l ()n f x x x =. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)证明:对任意的0t >,存在唯一的s ,使()t f s =;(Ⅲ)设(Ⅱ)中所确定的s 关于t 的函数为()s g t =,证明:当2e t >时,有2ln ()15ln 2g t t <<.2013年普通高等学校招生全国统一考试(天津卷)数学(理工类)答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】由已知得{22}A x x =∈-≤≤R ,于是{21}AB x x =∈-≤≤R【提示】先化简集合A ,解绝对值不等式可求出集合A ,然后根据交集的定义求出A B 即可.【考点】集合的基本运算 2.【答案】A【解析】作出可行域,平移直线2y x =,当直线过可行域内的点(5,3)A 时,Z 有最小值,min 3257Z =-⨯=-.【提示】先根据条件作出可行域,通过平移目标函数,求可行域的最值. 【考点】二元线性规划求目标函数的最值 3.【答案】B【解析】10150295047350x S S S x S S x S ===<⇒==<⇒==>,,,,,,,跳出循环,输出73S =. 【提示】直接执行程序框图中的语句求值. 【考点】循环结构的程序框图 4.【答案】C【解析】命题①,设球的半径为R ,则33414ππ3283R R ⎛⎫= ⎪⎝⎭,故体积缩小到原来的18,命题正确;对于命题②,若两组数据的平均数相同,则它们的标准差不一定相同,例如数据:1,3,5和3,3,3的平均数相同,但标准差不同,命题不正确;数学试卷 第10页(共39页)对于命题③,圆2212x y +=的圆心(0,0)到直线10x y ++=的距离1222d ==,等于圆的半径,所以直线与圆相切,命题正确.【提示】对于①由球的体积公式可知命题正确;对于②通过举反例,如1,3,5和3,3,3的平均数相同,但标准差不同,故命题错误;对于③利用圆2212x y +=的圆心到直线10x y ++=的距离与圆的半径之间的关系进行判断即可.【考点】球的体积,标准差,直线与圆的位置关系 5.【答案】C【解析】由已知得2c a =,所以2224a b a +=,解得3b a=,即渐近线方程为3y x =±.而抛物线的方程为2p x =-,于是3,22p p A ⎛⎫-- ⎪ ⎪⎝⎭,3,22p p B ⎛⎫- ⎪ ⎪⎝⎭,从而AOB △的面积为13=322pp,可得2p =. 【提示】求出双曲线的渐进方程和抛物线的准线方程,进而求出A ,B 两点的坐标,再由双曲线的离心率为2,AOB △的面积为3,可求p 的值.【考点】三角形面积,双曲线与抛物线的简单几何性质 6.【答案】C【解析】由余弦定理可得2222cos 2922352AC BA BC BA BC ABC =+-∠=+-⨯⨯⨯=,于是由正弦定理可得sin sin BC AC BAC ABC=∠∠,于是233102sin 105BAC ⨯∠==. 【提示】由已知条件,利用余弦定理求出AC 的长,再由正弦定理即可求出sin BAC ∠的值. 【考点】正弦定理,余弦定理 7.【答案】B【解析】令0.5()2|log |10xf x x =-=,可得0.51|log |2x x ⎛⎫= ⎪⎝⎭.设0.5()|log |g x x =,1()2xh x ⎛⎫= ⎪⎝⎭在同一坐标系下分别画出函数()g x ,()h x 的图象,可以发现两个函数图象一定有2个交点,因此函数()f x 有2个零点.【提示】函数的零点转化为两个函数图像的交点个数,作出函数的图象即可判断. 【考点】函数的图象,函数零点的判断 8.【答案】A 【解析】11,22A ⎡⎤-⊆⎢⎥⎣⎦,()(0)f a f ∴<,(1||)0a a a ∴+<,解得10a -<<,可排除C , 又1122f a f ⎛⎫⎛⎫-+<- ⎪ ⎪⎝⎭⎝⎭,111112222a a a a ⎛⎫⎛⎫⎛⎫∴-++-+<-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,115224a a a a ⎛⎫∴-+-+<- ⎪⎝⎭10a -<<,115224a a ⎛⎫∴-+-+>- ⎪⎝⎭21524a ⎛⎫∴--+>- ⎪⎝⎭,21524a ⎛⎫∴-+< ⎪⎝⎭,1502a -∴<<.排除B ,D ,应选A .【提示】由题目可知11,22A ⎡⎤-⊆⎢⎥⎣⎦,将0x =带入()()f x a f x +<可得()(0)f a f <,解得10a -<<;将12x =-代入()()f x a f x +<解得1502a -<<.【考点】解含参的一元二次不等式第Ⅱ卷二、填空题 9.【答案】12i +【解析】由(i)(1i)i a b ++=可得(1)(1)i i a a b -++=,因此10a -=,1a b +=,解得1a =,2b =, 故i 12i a b +=+【提示】利用复数的乘法展开等式的左边,通过复数的相等,求出a ,b 的值即可得到结果. 【考点】复数代数形式的四则运算 10.【答案】15【解析】61x x ⎛⎫- ⎪⎝⎭的展开通项为36621661(1)(1)rr r r r r r r T C x C x x --+⎛⎫=-=- ⎪⎝⎭,令3602r -=,解得4r =,故数学试卷 第16页(共39页)常数项为446(1)15C -=. 【提示】利用二项式展开式的通项公式36216(1)r rr r T C x-+=-中x 的幂指数为0即可求得答案.【考点】二项式定理 11.【答案】23【解析】由4cos ρθ=可得224x y x +=,即22(2)4x y -+=,因此圆心C 的直角坐标为(2,0),又点P 的直角坐标为(2,23),因此||23CP =.【提示】求出圆的直角坐标方程,求出圆心坐标,化P 的极坐标为直角坐标,利用两点间的距离公式求出距离即可.【考点】坐标系与参数方程,两点间的距离公式12.【答案】12【解析】用AB ,AD 表示AC 与BE ,然后进行向量的数量积运算. 由已知得AC AD AB =+,12BE BC CE AD AB =+=-, ∴221122AC BE AD AB AD AB AD AB =-+-2211111||1||||cos60||12222AB AD AB AB AD AB ︒=+-=+-=,∴12AB =.【提示】已知平行四边形及部分条件,用向量表示,利用向量的三角形法则和平行四边形法则和数量积的运算即可得出.【考点】向量的线性运算,平面向量的数量积运算13.【答案】83【解析】因为AB AC =,所以ABC C ∠=∠,因为AE 与圆相切,所以EAB C ∠=∠,所以ABC EAB ∠=∠,所以AE BC ∥.又因为AC DE ∥,所以四边形AEBC 是平行四边形,由切割线定理可得2AE EB ED =,于是26(5)EB EB =+,所以4EB =(负值舍去),因此4AC =,6BC =.又因为AFC DFB △∽△,所以456CF CF =-,解得83CF =. 【提示】证明四边形AEBC 是平行四边形,利用圆的切割线定理求出EB ,通过三角形相似求出CF 即可. 【考点】圆的切割线定理,三角形相似 14.【答案】2-【解析】由于2a b +=,所以1||||||2||4||4||4||a a b a a b a a b a b a a b++=+=++,由于0b >,||0a >,所以||||214||4||b a b a a b a b +≥=,因此当0a >时,1||2||a a b +的最小值是15144+=;当0a <时1||2||a a b +的最小值是13144-+=,故1||2||a a b +的最小值为34,此时||4||0ba ab a ⎧=⎪⎨⎪<⎩,即2a =-. 【提示】由于2a b +=,从而1||||||2||4||4||4||a a b a a b a a b a b a a b++=+=++,由于0b >,||0a >,所以||||214||4||b a b a a b a b+≥=,由1||2||a a b +的最小值求a 的值. 【考点】基本不等式求最值 三、解答题 15.【答案】(Ⅰ)2ππ2T == (Ⅱ)()f x 在π0,2⎡⎤⎢⎥⎣⎦上的最大值为22,最小值为2-【解析】(Ⅰ)ππ()2sin 2cos2cos2sin 3sin 2cos244f x x x x x =--+-, π2sin 22cos222sin 24x x x ⎛⎫=-=- ⎪⎝⎭,故()f x 的最小正周期2ππ2T ==;(Ⅱ)因为()f x 在区间3π0,8⎡⎤⎢⎥⎣⎦上单调递增,在区间3ππ,82⎡⎤⎢⎥⎣⎦上单调递减,并且(0)2f =-,3π228f ⎛⎫= ⎪⎝⎭,π22f ⎛⎫= ⎪⎝⎭,故()f x 在π0,2⎡⎤⎢⎥⎣⎦上的最大值为22,最小值为2-.数学试卷 第22页(共39页)【提示】(Ⅰ)利用两角和的正弦公式将πsin 24x ⎛⎫+ ⎪⎝⎭展开,结合二倍角的正余弦公式化简合并,得()2sin 22cos2f x x x =-,再利用辅助角公式化简得π()22sin 24f x x ⎛⎫=- ⎪⎝⎭,最后利用正弦函数的周期公式即可算出()f x 的最小正周期;(Ⅱ)由()f x 在区间3π0,8⎡⎤⎢⎥⎣⎦上单调递增,在区间3ππ,82⎡⎤⎢⎥⎣⎦上单调递减,可得()f x 在π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.【考点】三角函数的周期性和最值 16.【答案】(Ⅰ)67(Ⅱ)175EX =【解析】(Ⅰ)记“取出的4张卡片中,含有编号为3的卡片”为事件A ,则13222525476()7C C C C P A C +==,故所求概率为67; (Ⅱ)X 的所有可能取值为1,2,3,4.33471(1)35C P X C ===,34474(2)35C P X C ===,35472(3)7C P X C ===,36474(4)7C P X C ===,故X 的分布列如下表是: X 1 2 3 4 P1354352747其期望14241712343535775EX =⨯+⨯+⨯+⨯= 【提示】(Ⅰ)从7张卡片中取出4张的所有可能结果数有47C ,然后求出取出的4张卡片中,含有编号为3的卡片的结果数,代入古典概率的求解公式即可求解;(Ⅱ)先判断随机变量X 的所有可能取值为1,2,3,4,根据题意求出随机变量的各个取值的概率,即可求解分布列和期望值.【考点】古典概型,离散型随机变量的分布列和期望17.【答案】如图,以点A 为原点建立空间直角坐标系,由题意得(0,0,0)A ,(0,0,2)B ,(1,0,1)C ,1(0,2,2)B ,1(1,2,1)C,(0,1,0)E.(Ⅰ)易得11(1,0,1)B C=-,(1,1,1)CE=--,故11B C CE=,因此11B C CE⊥;(Ⅱ)1(1,2,1)B C=--,设(,,)n x y z=是平面1B CE的法向量,则1n B Cn CE⎧=⎪⎨=⎪⎩,得20x y zx y z--=⎧⎨-+-=⎩,取1z=可得平面1B CE的一个法向量()3,2,1n=--;由(Ⅰ)11B C CE⊥,又111B C CC⊥,故11B C⊥平面1CEC,知11(1,0,1)B C=-为平面1CEC的一个法向量.故111111427cos,7142|n B Cn B Cn B C-<>===-⨯|,知1121sin,7n B C<>=,所以所求二面角的正弦值为217;(Ⅲ)(0,1,0)AE=,1(1,1,1)EC=,设1(,,)(01)EM ECλλλλλ==≤≤,则(,1,)AM AE EMλλλ=+=+.取(0,0,2)AB=为平面11ADD A的一个法向量,设θ为AM与平面11ADD A所成的角,则2||sin|cos,|||||321AM ABAM ABAM ABλθλλ=<>==++.于是226321λλλ=++,解得13λ=(负值舍去),所以2AM=.【提示】(Ⅰ)由题意可知,AD,AB,AA1两两互相垂直,以A为坐标原点建立空间直角坐标系,标出点的坐标后,求出11B C和CE,由11B C CE=得到11B C CE⊥;(Ⅱ)求出平面1B CE和平面1CEC的一个法向量,先求出两法向量所成角的余弦值,利用同角三角函数基数学试卷 第28页(共39页)本关系求出其正弦值,则二面角的正弦值可求;(Ⅲ)利用共线向量基本定理把M 的坐标用E 和C 1的坐标及待求系数表示,求出平面11ADD A 的一个法向量,利用向量求线面角的公式求出直线AM 与平面11ADD A 所成角的正弦值,代入求出λ的值,则线段AM 的长可求.【考点】两条直线的位置关系,二面角,线面角,空间向量的应用18.【答案】(Ⅰ)22=132x y + (Ⅱ)2k =±【解析】(Ⅰ)设(,0)F c -,用33c a =,知3a c =. 过点F 且与x 轴垂直的直线为x c =-,代入椭圆的方程有2222()1c y a b-+=,解得63y b =±,于是264333b =,解得2b =. 又222a cb -=,从而3a =,1c =,所以椭圆的方程为22=132x y +. (Ⅱ)设点11(,)C x y ,22(,)D x y ,由(1,0)F -得直线CD 的方程为(1)y k x =+,由方程组221132y k x x y =(+)⎧⎪⎨+=⎪⎩,消去y ,整理得2222(23)6360k x k x k +++-=,求解可得12x x +22623k k =-+,12x x =223623k k-+. 因为(3,0)A -,(3,0)B , 所以AC DB AD CB +11222211(3,)(3,)(3,)(3,)x y x y x y x y =+--++--1212622x x y y =--21212622(1)(1)x x k x x =--++22212126(22)2()2k x x k x x k =-+-+- 22212623k k +=++.11 / 13由已知得222126823k k ++=+,解得2k =±. 【提示】(Ⅰ)由离心率为33,可求出a ,b ,c 的关系,根据椭圆的一般方程,令x c =-代入求出弦长等于433,进而得到椭圆方程; (Ⅱ)设点11(,)C x y ,22(,)D x y ,直线CD 的方程为(1)y k x =+,由221132y k x x y =(+)⎧⎪⎨+=⎪⎩消去y 得 2222(23)6360k x k x k +++-=,再由韦达定理进行求解,求得AC DB AD CB +,利用8AC DB AD CB +=,即可求得k 的值.【考点】椭圆的定义与简单几何性质,直线与椭圆的位置关系19.【答案】(Ⅰ)13(1)2n n n a -=- (Ⅱ){}n T 的最大项为56,最小项为712- 【解析】(Ⅰ)设{}n a 的公比为q ,因为33S a +,55S a +,44S a +成等差数列.所以55334455S a S a S a S a +--=+--,即534a a =,故25314a q a ==. 又{}n a 不是递减数列,且132a =,故12q =-, 故等比数列{n a }的通项公式为11313(1)222n n n n a --⎛⎫=⨯-=- ⎪⎝⎭, (Ⅱ)由(Ⅰ)得12()11212()n n n n n S n --⎧+⎪⎛⎫=--=⎨ ⎪-⎝⎭⎪⎩为奇数为偶数, 当n 为奇数时,n S 随n 的增大而减小,故1312n S S <≤=,故1111506n n S S S S <-≤-=; 当n 为偶数时,n S 随n 的增大而增大,故2314n S S =≤<,故22117012n n S S S S >-≥-=-. 综上,{}n T 的最大项为56,最小项为712-. 【提示】(Ⅰ)设{}n a 的公比为q ,由33S a +,55S a +,44S a +成等差数列,可构造关于q 的方程,结合首项为32等比数列{n a }不是递减数列,求出q 值;数学试卷 第34页(共39页)数学试卷 第35页(共39页) 数学试卷 第36页(共39页) (Ⅱ)由(Ⅰ)可得n S 的表达式,由于数列为摆动数列,故可分类讨论求出1n nS S -在n 为奇数和偶数时的范围,综合讨论结果,可得答案.【考点】等比数列的通项及性质,前n 项和 20.【答案】(Ⅰ)由题得()2ln (2ln 1)(0)f x x x x x x x '=+=+>,令()0f x '=得1ex =, 当x 变化时,()f x '、()f x 的变化情况如下表所示. x 10,e ⎛⎫ ⎪⎝⎭ 1e1,e ⎛⎫+∞ ⎪⎝⎭ ()f x ' - 0+ ()f x极小值 因此,函数的单调递减区间为10,e ⎛⎫ ⎪⎝⎭,单调递增区间为1,e ⎛⎫+∞ ⎪⎝⎭; (Ⅱ)证明:当01x <≤时,()0f x ≤,设0t >,令()()(1)h x f x t x =-≥,由(Ⅰ)知,()h x 在区间(1,)+∞单调递增,(1)0h t =-<,22(e )e lne (e 1)0t t t t h t t =-=->,故存在唯一的(1,)s ∈+∞,使得()t f s =成立;(Ⅲ)证明:因为()s g t =,由(Ⅱ)知()t f s =,且1s >,从而2ln ()ln ln ln ln ln ()ln(ln )2ln ln(ln )2ln g t s s s u t f s s s s s u u====++,其中ln u s =, 要使2ln ()15ln 2g t t <<成立,只需0ln 2u u <<. 当2e t >时,若()e s g t =≤,则由()f s 的单调性,有2()(e)e t f s f =≤=,矛盾.故e s >,即1u >,从而ln 0u >成立.另一方面,令()ln (1)2u F u u u =->,则11()2F u u '=-,令()0F u '=,得2u =, 当12u <<时,()0F u '>;当2u >时,()0F u '<,故对1u >,()(2)0F u F ≤<,因此ln 2u u <成立.13 / 13综上,当2e t >时,有2ln ()15ln 2g t t <<. 【提示】(Ⅰ)求导可得()2ln (2ln 1)(0)f x x x x x x x '=+=+>,令()0f x '=得1e x =,由导数在10,e ⎛⎫ ⎪⎝⎭和1,e ⎛⎫+∞ ⎪⎝⎭的正负可得单调性; (Ⅱ)当01x <≤时,()0f x ≤,设0t >,令()()(1)h x f x t x =-≥,由(Ⅰ)知,()h x 的单调性,可得结论;(Ⅲ)令ln u s =,原题转化为0ln 2u u <<,一方面由()f s 的单调性可得1u >,从而ln 0u >成立;另一方面,令()ln (1)2u F u u u =->,通过函数的单调性可得极值最值,进而得证. 【考点】利用导数求函数的单调区间,函数的零点的应用,不等式的证明。
2013年天津市高考数学试卷(理科)最新修正版

2013年天津市高考数学试卷(理科)一.选择题:(每题5分,共40分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2]D.[﹣2,1]2.(5分)设变量x,y满足约束条件,则目标函数z=y﹣2x的最小值为()A.﹣7 B.﹣4 C.1 D.23.(5分)阅读右边的程序框图,运行相应的程序,若输入x的值为1,则输出S的值为()A.64 B.73 C.512 D.5854.(5分)已知下列三个命题:①若一个球的半径缩小到原来的,则其体积缩小到原来的;②若两组数据的平均数相等,则它们的标准差也相等;③直线x+y+1=0与圆相切.其中真命题的序号是()A.①②③B.①②C.①③D.②③5.(5分)已知双曲线﹣=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A、B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为,则p=()A.1 B.C.2 D.36.(5分)在△ABC中,∠ABC=,AB=,BC=3,则sin∠BAC=()A.B.C.D.7.(5分)函数f(x)=2x|log0.5x|﹣1的零点个数为()A.1 B.2 C.3 D.48.(5分)已知函数f(x)=x(1+a|x|).设关于x的不等式f(x+a)<f(x)的解集为A,若,则实数a的取值范围是()A.B.C.D.二.填空题:本大题共6小题,每小题5分,共30分.9.(5分)已知a,b∈R,i是虚数单位.若(a+i)(1+i)=bi,则a+bi=.10.(5分)的二项展开式中的常数项为.11.(5分)已知圆的极坐标方程为ρ=4cosθ,圆心为C,点P的极坐标为,则|CP|=.12.(5分)在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若,则AB的长为.13.(5分)如图,△ABC为圆的内接三角形,BD为圆的弦,且BD∥AC.过点A 做圆的切线与DB的延长线交于点E,AD与BC交于点F.若AB=AC,AE=6,BD=5,则线段CF的长为.14.(5分)设a+b=2,b>0,则当a=时,取得最小值.三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.15.(13分)已知函数f(x)=﹣sin(2x+)+6sinxcosx﹣2cos2x+1,x∈R.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间上的最大值和最小值.16.(13分)一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(Ⅰ)求取出的4张卡片中,含有编号为3的卡片的概率.(Ⅱ)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望.17.(13分)如图,四棱柱ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(Ⅰ)证明B1C1⊥CE;(Ⅱ)求二面角B1﹣CE﹣C1的正弦值.(Ⅲ)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.18.(13分)设椭圆=1(a>b>0)的左焦点为F,离心率为,过点F 且与x轴垂直的直线被椭圆截得的线段长为.(Ⅰ)求椭圆的方程;(Ⅱ)设A,B分别为椭圆的左,右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若=8,求k的值.19.(14分)已知首项为的等比数列{a n}不是递减数列,其前n项和为S n(n ∈N*),且S3+a3,S5+a5,S4+a4成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设T n=S n﹣(n∈N*),求数列{T n}的最大项的值与最小项的值.20.(14分)已知函数f(x)=x2lnx.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)证明:对任意的t>0,存在唯一的s,使t=f(s).(Ⅲ)设(Ⅱ)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有.2013年天津市高考数学试卷(理科)参考答案与试题解析一.选择题:(每题5分,共40分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2]D.[﹣2,1]【分析】先化简集合A,解绝对值不等式可求出集合A,然后根据交集的定义求出A∩B即可.【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}∴A∩B={x|﹣2≤x≤2}∩{x|x≤1,x∈R}={x|﹣2≤x≤1}故选:D.【点评】本题主要考查了绝对值不等式,以及交集及其运算,同时考查了运算求解的能力,属于基础题.2.(5分)设变量x,y满足约束条件,则目标函数z=y﹣2x的最小值为()A.﹣7 B.﹣4 C.1 D.2【分析】先根据条件画出可行域,设z=y﹣2x,再利用几何意义求最值,将最小值转化为y轴上的截距最小,只需求出直线z=y﹣2x,过可行域内的点B(5,3)时的最小值,从而得到z最小值即可.【解答】解:设变量x、y满足约束条件,在坐标系中画出可行域三角形,平移直线y﹣2x=0经过点A(5,3)时,y﹣2x最小,最小值为:﹣7,则目标函数z=y﹣2x的最小值为﹣7.故选:A.【点评】借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.3.(5分)阅读右边的程序框图,运行相应的程序,若输入x的值为1,则输出S的值为()A.64 B.73 C.512 D.585【分析】结合流程图写出前几次循环的结果,经过每一次循环判断是否满足判断框中的条件,直到满足条件输出S,结束循环,得到所求.【解答】解:经过第一次循环得到S=0+13,不满足S≥50,x=2,执行第二次循环得到S=13+23,不满足S≥50,x=4,执行第三次循环得到S=13+23+43=73,满足判断框的条件,退出循环,执行“是”,输出S=73.故选:B.【点评】本题主要考查了循环结构,先执行后判定是直到型循环,解决程序框图中的循环结构时,常采用写出前几次循环的结果,找规律.4.(5分)已知下列三个命题:①若一个球的半径缩小到原来的,则其体积缩小到原来的;②若两组数据的平均数相等,则它们的标准差也相等;③直线x+y+1=0与圆相切.其中真命题的序号是()A.①②③B.①②C.①③D.②③【分析】对于①由球的体积公式V=可知①正确;对于②通过举反例,如2,2,2和1,2,3;这两组数据的平均数相等,它们的标准差不相等,故②错;对于③利用圆的圆心到直线x+y+1=0的距离与圆的半径之间的关系进行判断即可.【解答】解:①由球的体积公式V=可知,若一个球的半径缩小到原来的,则其体积缩小到原来的;故①正确;②若两组数据的平均数相等,则它们的标准差不一定相等,如2,2,2和1,2,3;这两组数据的平均数相等,它们的标准差不相等,故②错;③圆的圆心到直线x+y+1=0的距离d==半径r,故直线x+y+1=0与圆相切,③正确.故选:C.【点评】本题主要考查了命题的真假判断与应用,主要考查了球的体积公式、平均数和方差、直线与圆的位置关系等,属于基础题.5.(5分)已知双曲线﹣=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A、B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为,则p=()A.1 B.C.2 D.3【分析】求出双曲线的渐近线方程与抛物线y2=2px(p>0)的准线方程,进而求出A,B两点的坐标,再由双曲线的离心率为2,△AOB的面积为,列出方程,由此方程求出p的值.【解答】解:∵双曲线,∴双曲线的渐近线方程是y=±x又抛物线y2=2px(p>0)的准线方程是x=﹣,故A,B两点的纵坐标分别是y=±,双曲线的离心率为2,所以,∴则,A,B两点的纵坐标分别是y=±=,又,△AOB的面积为,x轴是角AOB的角平分线∴,得p=2.故选:C.【点评】本题考查圆锥曲线的共同特征,解题的关键是求出双曲线的渐近线方程,解出A,B两点的坐标,列出三角形的面积与离心率的关系也是本题的解题关键,有一定的运算量,做题时要严谨,防运算出错.6.(5分)在△ABC中,∠ABC=,AB=,BC=3,则sin∠BAC=()A.B.C.D.【分析】由AB,BC及cos∠ABC的值,利用余弦定理求出AC的长,再由正弦定理即可求出sin∠BAC的值.【解答】解:∵∠ABC=,AB=,BC=3,∴由余弦定理得:AC2=AB2+BC2﹣2AB•BC•cos∠ABC=2+9﹣6=5,∴AC=,则由正弦定理=得:sin∠BAC==.故选:C.【点评】此题考查了正弦、余弦定理,熟练掌握正弦、余弦定理是解本题的关键.7.(5分)函数f(x)=2x|log0.5x|﹣1的零点个数为()A.1 B.2 C.3 D.4【分析】通过令f(x)=0,将方程的解转化为函数图象的交点问题,从而判断函数的零点个数.【解答】解:函数f(x)=2x|log0.5x|﹣1,令f(x)=0,在同一坐标系中作出y=()x.与y=|log0.5x|,如图,由图可得零点的个数为2.故选:B.【点评】本题考查函数的零点,函数的图象的作法,考查数形结合与转化思想.8.(5分)已知函数f(x)=x(1+a|x|).设关于x的不等式f(x+a)<f(x)的解集为A,若,则实数a的取值范围是()A.B.C.D.【分析】排除法:取a=﹣,由f(x+a)<f(x),得(x﹣)|x﹣|+1>x|x|,分x<0,0≤x≤,x>讨论,可得A,检验是否符合题意,可排除B、D;取a=1,由f(x+a)<f(x),得(x+1)|x+1|+1>x|x|,分x<﹣1,﹣1≤x≤0,x >0进行讨论,检验是否符合题意,排除C.【解答】解:取a=﹣时,f(x)=﹣x|x|+x,∵f(x+a)<f(x),∴(x﹣)|x﹣|+1>x|x|,(1)x<0时,解得﹣<x<0;(2)0≤x≤时,解得0;(3)x>时,解得,综上知,a=﹣时,A=(﹣,),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|,(1)x<﹣1时,解得x>0,矛盾;(2)﹣1≤x≤0,解得x<0,矛盾;(3)x>0时,解得x<﹣1,矛盾;综上,a=1,A=∅,不合题意,排除C,故选:A.【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用.二.填空题:本大题共6小题,每小题5分,共30分.9.(5分)已知a,b∈R,i是虚数单位.若(a+i)(1+i)=bi,则a+bi=1+2i.【分析】利用复数的乘法展开等式的左边,通过复数的相等,求出a,b的值即可得到结果.【解答】解:因为(a+i)(1+i)=bi,所以a﹣1+(a+1)i=bi,所以,解得a=1,b=2,所以a+bi=1+2i.故答案为:1+2i.【点评】本题考查复数代数形式的混合运算,复数相等条件的应用,考查计算能力.10.(5分)的二项展开式中的常数项为15.【分析】利用二项展开式的通项公式T r+1=•(﹣1)r•中x的幂指数为0即可求得答案.【解答】解;设的二项展开式中的通项为T r+1,则T r+1=•(﹣1)r•,由6﹣r=0得:r=4.∴的二项展开式中的常数项为•(﹣1)4==15.故答案为:15.【点评】本题考查二项式系数的性质,利用其二项展开式的通项公式求得r=4是关键,考查运算能力,属于中档题.11.(5分)已知圆的极坐标方程为ρ=4cosθ,圆心为C,点P的极坐标为,则|CP|=.【分析】求出圆的直角坐标方程,求出圆的圆心坐标,化P的极坐标为直角坐标,利用两点间距离公式求出距离即可.【解答】解:圆的极坐标方程为ρ=4cosθ,圆的方程为:x2+y2=4x,圆心为C(2,0),点P的极坐标为,所以P的直角坐标(2,2),所以|CP|==2.故答案为:2.【点评】本题考查圆的极坐标方程与直角坐标方程的互化,点的极坐标与直角坐标的互化,两点的距离公式的应用,考查计算能力.12.(5分)在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若,则AB的长为.【分析】利用向量的三角形法则和平行四边形法则和数量积得运算即可得出.【解答】解:∵,.∴===+﹣==1,化为,∵,∴.故答案为.【点评】熟练掌握向量的三角形法则和平行四边形法则和数量积得运算是解题的关键.13.(5分)如图,△ABC为圆的内接三角形,BD为圆的弦,且BD∥AC.过点A 做圆的切线与DB的延长线交于点E,AD与BC交于点F.若AB=AC,AE=6,BD=5,则线段CF的长为.【分析】利用切割线定理求出EB,证明四边形AEBC是平行四边形,通过三角形相似求出CF即可.【解答】解:如图由切角弦定理得∠EAB=∠ACB,又因为,AB=AC,所以∠EAB=∠ABC,所以直线AE∥直线BC,又因为AC∥BE,所以是平行四边形.因为AB=AC,AE=6,BD=5,∴AC=AB=4,BC=6.△AFC∽△DFB,即:,CF=,故答案为:.【点评】本题考查圆的切割线定理,三角形相似,考查逻辑推理能力与计算能力.14.(5分)设a+b=2,b>0,则当a=﹣2时,取得最小值.【分析】由于a+b=2,b>0,从而=,(a<2),设f(a)=,(a<2),画出此函数的图象,结合导数研究其单调性,即可得出答案.【解答】解:∵a+b=2,b>0,∴=,(a<2)设f(a)=,(a<2),画出此函数的图象,如图所示.利用导数研究其单调性得,当a<0时,f(a)=﹣+,f′(a)==,当a<﹣2时,f′(a)<0,当﹣2<a<0时,f′(a)>0,故函数在(﹣∞,﹣2)上是减函数,在(﹣2,0)上是增函数,∴当a=﹣2时,取得最小值.同样地,当0<a<2时,得到当a=时,取得最小值.综合,则当a=﹣2时,取得最小值.故答案为:﹣2.【点评】本题考查导数在最值问题的应用,考查数形结合思想,属于中档题.三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.15.(13分)已知函数f(x)=﹣sin(2x+)+6sinxcosx﹣2cos2x+1,x∈R.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间上的最大值和最小值.【分析】(I)利用两角和的正弦公式将sin(2x+)展开,结合二倍角的正余弦公式化简合并,得f(x)=2sin2x﹣2cos2x,再利用辅助角公式化简得f(x)=2sin (2x﹣),最后利用正弦函数的周期公式即可算出f(x)的最小正周期;(II)根据x∈,得﹣≤2x﹣≤.再由正弦函数在区间[﹣,]上的图象与性质,可得f(x)在区间上的最大值为与最小值.【解答】解:(I)∵sinxcosx=sin2x,cos2x=(1+cos2x)∴f(x)=﹣sin(2x+)+6sinxcosx﹣2cos2x+1=﹣sin2x﹣cos2x+3sin2x﹣(1+cos2x)+1=2sin2x﹣2cos2x=2sin(2x﹣)因此,f(x)的最小正周期T==π;(II)∵0≤x≤,∴﹣≤2x﹣≤∴当x=0时,sin(2x﹣)取得最小值﹣;当x=时,sin(2x﹣)取得最大值1由此可得,f(x)在区间上的最大值为f()=2;最小值为f(0)=﹣2.【点评】本小题主要考查两角和与差的正弦公式、二倍角的正弦与余弦公式、三角函数的最小正周期和函数y=Asin(ωx+φ)的单调性等知识,考查基本运算能力,属于中档题.16.(13分)一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(Ⅰ)求取出的4张卡片中,含有编号为3的卡片的概率.(Ⅱ)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望.【分析】(I)从7张卡片中取出4张的所有可能结果数有,然后求出取出的4张卡片中,含有编号为3的卡片的结果数,代入古典概率的求解公式即可求解(II)先判断随机变量X的所有可能取值为1,2,3,4,根据题意求出随机变量的各个取值的概率,即可求解分布列及期望值【解答】解:(I)设取出的4张卡片中,含有编号为3的卡片为事件A,则P(A)==所以,取出的4张卡片中,含有编号为3的卡片的概率为(II)随机变量X的所有可能取值为1,2,3,4P(X=1)=P(X=2)=P(X=3)==P(X=4)==X的分布列为EX==【点评】本题主要考查了古典概型及计算公式,互斥事件、离散型随机变量的分布列及期望值的求解,考查了运用概率知识解决实际问题的能力.17.(13分)如图,四棱柱ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(Ⅰ)证明B1C1⊥CE;(Ⅱ)求二面角B1﹣CE﹣C1的正弦值.(Ⅲ)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.【分析】(Ⅰ)由题意可知,AD,AB,AA1两两互相垂直,以a为坐标原点建立空间直角坐标系,标出点的坐标后,求出和,由得到B1C1⊥CE;(Ⅱ)求出平面B1CE和平面CEC1的一个法向量,先求出两法向量所成角的余弦值,利用同角三角函数基本关系求出其正弦值,则二面角B1﹣CE﹣C1的正弦值可求;(Ⅲ)利用共线向量基本定理把M的坐标用E和C1的坐标及待求系数λ表示,求出平面ADD1A1的一个法向量,利用向量求线面角的公式求出直线AM与平面ADD1A1所成角的正弦值,代入求出λ的值,则线段AM的长可求.【解答】(Ⅰ)证明:以点A为原点建立空间直角坐标系,如图,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0).则,而=0.所以B1C1⊥CE;(Ⅱ)解:,设平面B 1CE的法向量为,则,即,取z=1,得x=﹣3,y=﹣2.所以.由(Ⅰ)知B1C1⊥CE,又CC1⊥B1C1,所以B1C1⊥平面CEC1,故为平面CEC1的一个法向量,于是=.从而==.所以二面角B1﹣CE﹣C1的正弦值为.(Ⅲ)解:,设0≤λ≤1,有.取为平面ADD 1A1的一个法向量,设θ为直线AM与平面ADD1A1所成的角,则==.于是.解得.所以.所以线段AM的长为.【点评】本题考查了直线与平面垂直的性质,考查了线面角和二面角的求法,运用了空间向量法,运用此法的关键是建立正确的空间坐标系,再就是理解并掌握利用向量求线面角及面面角的正弦值和余弦值公式,是中档题.18.(13分)设椭圆=1(a>b>0)的左焦点为F,离心率为,过点F 且与x轴垂直的直线被椭圆截得的线段长为.(Ⅰ)求椭圆的方程;(Ⅱ)设A,B分别为椭圆的左,右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若=8,求k的值.【分析】(Ⅰ)先根据椭圆方程的一般形式,令x=c代入求出弦长使其等于,再由离心率为,可求出a,b,c的关系,进而得到椭圆的方程.(Ⅱ)直线CD:y=k(x+1),设C(x1,y1),D(x2,y2),由消去y得,(2+3k2)x2+6k2x+3k2﹣6=0,再由韦达定理进行求解.求得,利用=8,即可求得k的值.【解答】解:(Ⅰ)根据椭圆方程为.∵过焦点且垂直于x轴的直线被椭圆截得的线段长为,∴当x=﹣c时,,得y=±,∴=,∵离心率为,∴=,解得b=,c=1,a=.∴椭圆的方程为;(Ⅱ)直线CD:y=k(x+1),设C(x1,y1),D(x2,y2),由消去y得,(2+3k2)x2+6k2x+3k2﹣6=0,∴x1+x2=﹣,x1x2=,又A(﹣,0),B(,0),∴=(x1+,y1)•(﹣x2.﹣y2)+(x2+,y2)•(﹣x1.﹣y1),=6﹣(2+2k2)x1x2﹣2k2(x1+x2)﹣2k2,=6+=8,解得k=.【点评】本题主要考查椭圆的标准方程、椭圆的简单性质等,考查方程思想.在椭圆中一定要熟练掌握a,b,c之间的关系、离心率、准线方程等基本性质.19.(14分)已知首项为的等比数列{a n}不是递减数列,其前n项和为S n(n ∈N*),且S3+a3,S5+a5,S4+a4成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设T n=S n﹣(n∈N*),求数列{T n}的最大项的值与最小项的值.【分析】(Ⅰ)设等比数列的公比为q,由S3+a3,S5+a5,S4+a4成等差数列,可构造关于q的方程,结合首项为的等比数列{a n}不是递减数列,求出q值,可得答案.(Ⅱ)由(Ⅰ)可得S n的表达式,由于数列为摆动数列,故可分类讨论求出在n为奇数和偶数时的范围,综合讨论结果,可得答案.【解答】解:(Ⅰ)设等比数列的公比为q,∵S3+a3,S5+a5,S4+a4成等差数列.∴S5+a5﹣(S3+a3)=S4+a4﹣(S5+a5)即4a5=a3,故q2==又∵数列{a n}不是递减数列,且等比数列的首项为∴q=﹣∴数列{a n}的通项公式a n=×(﹣)n﹣1=(﹣1)n﹣1•(Ⅱ)由(Ⅰ)得S n=1﹣(﹣)n=当n为奇数时,S n随n的增大而减小,所以1<S n≤S1=故0<≤=﹣=当n为偶数时,S n随n的增大而增大,所以1>S n≥S2=故0>≥=﹣=综上,对于n∈N*,总有≤≤故数列{T n}的最大项的值为,最小项的值为【点评】本小题主要考查等差数列的概念,等比数列的概念、通项公式、前n 项和公式,数列的基本性质等基础知识,考查分类讨论思想,考查运算能力、分析问题和解析问题的能力.20.(14分)已知函数f(x)=x2lnx.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)证明:对任意的t>0,存在唯一的s,使t=f(s).(Ⅲ)设(Ⅱ)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有.【分析】(Ⅰ)函数的定义域为(0,+∞),求导数令f′(x)=0,可解得x=,由导数在(0,),和(,+∞)的正负可得单调性;(Ⅱ)当0<x≤1时,f(x)≤0,设t>0,令h(x)=f(x)﹣t,x∈[1,+∞),由(Ⅰ)可得函数h (x)的单调性,可得结论;(Ⅲ)令u=lns,原命题转化为0<lnu<,一方面由f(s)的单调性,可得u>1,从而lnu>0成立,另一方面,令F(u)=lnu﹣,u>1,通过函数的单调性可得极值最值,进而得证.【解答】解:(Ⅰ)由题意可知函数的定义域为(0,+∞),求导数可得f′(x)=2xlnx+x2•=2xlnx+x=x(2lnx+1),令f′(x)=0,可解得x=,当x变化时,f′(x),f(x)的变化情况如下表:所以函数f(x)的单调递减区间为(0,),单调递增区间为(,+∞)(Ⅱ)证明:当0<x≤1时,f(x)≤0,设t>0,令h(x)=f(x)﹣t,x∈[1,+∞),由(Ⅰ)可知,h(x)在区间(1,+∞)单调递增,h(1)=﹣t<0,h(e t)=e2t lne t ﹣t=t(e2t﹣1)>0,故存在唯一的s∈(1,+∞),使得t=f(s)成立;(Ⅲ)证明:因为s=g(t),由(Ⅱ)知,t=f(s),且s>1,从而====,其中u=lns,要使成立,只需,即2<,即2<2+,只需,变形可得只需0<lnu<,当t>e2时,若s=g(t)≤e,则由f(s)的单调性,有t=f(s)≤f(e)=e2,矛盾,所以s>e,即u>1,从而lnu>0成立,另一方面,令F(u)=lnu﹣,u>1,F′(u)=,令F′(u)=0,可解得u=2,当1<u<2时,F′(u)>0,当u>2时,F′(u)<0,故函数F(u)在u=2处取到极大值,也是最大值F(2)=ln2﹣1<0,故有F(u)=lnu﹣<0,即lnu<,综上可证:当t>e2时,有成立.【点评】本题考查利用导数研究函数的单调性,涉及极值的求解和不等式的证明,属中档题.。
【VIP专享】2013年高考天津数学理科试题及答案(全word版)

②若两组数据的平均数相等, 则它们的标准差也相等;
③直线 x + y + 1 = 0 与圆 x2 y2 1 相切. 2
其中真命题的序号是:
(A) ①②③
5.已知双曲线
x2 a2
y2 b2
(B) ①②
1(a
0, b
2
0)
O 为坐标原点. 若双曲线的离心率为 2, △AOB 的面积为 3 , 则 p =
10.
x
x
1 6
11.已知圆的极坐标方程为
的二项展开式中的常数项为
4cos
3
,
,
中, AD = 1, BAD 60 , E 为 CD 的中点. 若 AD·BE 1, 则 AB 的长为
y2
8
2 px( p
(D) [-2,1]
(D) 585 (D) ②③
(D) 3
0) 的准线分别交于
A,
B 两点,
(A) 10 10
7. 函数 f (x) 2x | log0.5 x | 1 的零点个数为
(A) 1
8.已知函数 f (x) x(1 a | x |) .
a 的取值范围是
(A)
1 2
5
, 0
(B) 10 5
(B) 2
(B)
二.填空题: 本大题共 6 小题, 每小题 5 分, 共 30 分.
(C) 3 10 10
(C) 3
设关于 x 的不等式 f (x a) f (x)
1 2
9.已知 a, b∈R, i 是虚数单位. 若(a + i)(1 + i) = bi, 则 a + bi =
2013 年普通高等学校招生全国统一考试(天津卷) 理科数学
【精校】2013年普通高等学校招生全国统一考试(天津卷)理数-含答案

12013年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利! 第Ⅰ卷 注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A, B 互斥, 那么·棱柱的体积公式V=Sh , 其中S 表示棱柱的底面面积, h 表示棱柱的高.·如果事件A, B 相互独立, 那么·球的体积公式其中R 表示球的半径.)()()(B P A P A P B ⋃=+)()(()B P A A P P B =34.3V R π=一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R| |x|≤2}, A = {x∈R| x≤1}, 则(A)(B) [1,2](C) [2,2](D) [-2,1](2) 设变量x, y 满足约束条件则目标函数z = y -2x 的最小值为(A) -7 (B) -4(C) 1(D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为 (A) 64 (B) 73(C) 512(D) 585(4) 已知下列三个命题: ①若一个球的半径缩小到原来的, 则其体积缩小到原来的; ②若两组数据的平均数相等, 则它们的标准差也相等; ③直线x + y + 1 = 0与圆相切. 其中真命题的序号是: (A) ①②③ (B) ①②(C) ②③(D) ②③(5) 已知双曲线的两条渐近线与抛物线的准线分别交于A, B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 的面积为, 则p =(A) 1(B)(C) 2 (D) 3(6) 在△ABC 中, 则 =(A)(B)(C)(D)(7) 函数的零点个数为(A) 1(B) 2(C) 3(D) 4(8) 已知函数. 设关于x 的不等式 的解集为A, 若A B ⋂=(,2]-∞360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩12182212x y +=22221(0,0)x y a b a b-=>>22(0)px p y =>332,2,3,4AB BC ABC π∠===sin BAC ∠101031050.5()2|log |1x f x x =-()(1||)f x x a x =+()()f x a f x +<, 则实数a 的取值范围是(A) (B) (C) (D)11,22A ⎡⎤-⊆⎢⎥⎣⎦⎫⎪⎪⎝⎭⎫⎪⎪⎝⎭⎛⋃ ⎝⎫⎪⎝⎭⎪⎭⎛- ⎝⎭∞注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a, b ∈R, i 是虚数单位. 若(a + i)(1 + i) = bi, 则a + bi = .(10) 的二项展开式中的常数项为 .(11) 已知圆的极坐标方程为, 圆心为C, 点P 的极坐标为, 则|CP|= .(12) 在平行四边形ABCD 中, AD = 1, , E 为CD 的中点. 若, 则AB 的长为 . (13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD//AC. 过点A 做圆的切线与DB 的延长线交于点E, AD 与BC 交于点F. 若AB = AC, AE = 6, BD = 5, 则线段CF 的长为 .(14) 设a + b = 2, b>0, 则当a = 时, 取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤. (15) (本小题满分13分) 已知函数. (Ⅰ) 求f(x)的最小正周期;(Ⅱ) 求f(x)在区间上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相6x x ⎛- ⎪⎝⎭4cos ρθ=4,3π⎛⎫⎪⎝⎭60BAD ︒∠=·1AD BE =u u u r u u u r1||2||a a b+2()2sin 26sin cos 2cos 41,f x x x x x x π⎛⎫=-++- ⎪+⎝⎭∈R 0,2π⎡⎤⎢⎥⎣⎦(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD, AB//DC, AB ⊥AD, AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正弦值为, 求线段AM 的长.(18) (本小题满分13分)设椭圆的左焦点为F, 离心率为, 过点F 且与x 轴垂直的直线被椭圆截得的线段长为. (Ⅰ) 求椭圆的方程;(Ⅱ) 设A, B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C, D 两点.若, 求k 的值.(19) (本小题满分14分)已知首项为的等比数列不是递减数列, 其前n 项和为, 且S 3 + a 3, S 5 +a 5, S 4 + a 4成等差数列. (Ⅰ) 求数列的通项公式; (Ⅱ) 设, 求数列的最大项的值与最小项的值.(20) (本小题满分14分)222221(0)x y a b a b+=>>343··8AC DB AD CB +=u u u r u u u r u u u r u u u r 32{}n a (*)n S n ∈N {}n a *()1n n nT S n S ∈=-N {}n T已知函数. (Ⅰ) 求函数f(x)的单调区间;(Ⅱ) 证明: 对任意的t>0, 存在唯一的s, 使.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为, 证明: 当时, 有. 参考答案一、选择题:本题考查基本知识和基本运算. 每小题5分,满分40分.1.D2.A3.B4.C5.C6.C7.B8.A二、填空题:本题考查基本知识和基本运算. 每小题5分,满分30分. (9) (10)15 (11) (12) (13) (14)三、解答题(15) 本小题主要考察两角和与差的正弦公式/二倍角的正弦与余弦公式,三角函数2l ()n f x x x =()t f s =()s g t =2>e t 2ln ()15ln 2g t t <<12i+12832-的最小正周期/单调性等基础知识,考察基本运算能力.满分13分(I )解:所以 的最小正周期 (Ⅱ)解:因为在区间上是增函数,在区间上是减函数,又f ( 0)=2,f ( )=,f ( )=2,故函数在区间上的最大值为,最小值为 2.(16) 本小题主要考察古典概型及其概率计算公式,互斥事件、离散型随机变量的分布列与数学期望等基础知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年普通高等学校招生全国统一考试(天津卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2.本卷共8小题, 每小题5分, 共40分.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A = {x∈R| |x|≤2}, A = {x∈R| x≤1}, 则A B⋂=(A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1]2.设变量x, y满足约束条件360,20,30,x yyx y≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y-2x的最小值为(A) -7 (B) -4 (C) 1 (D) 23.阅读右边的程序框图, 运行相应的程序, 若输入x的值为1, 则输出S的值为(A) 64 (B) 73 (C) 512 (D) 5854.已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18;②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆221 2x y+=相切.其中真命题的序号是:(A) ①②③ (B) ①② (C) ②③ (D) ②③5.已知双曲线22221(0,0)x ya ba b-=>>的两条渐近线与抛物线22(0)px py=>的准线分别交于A, B两点, O为坐标原点. 若双曲线的离心率为2, △AOB则p =(A) 1 (B) 32(C) 2 (D) 36.在△ABC 中, ,3,4AB BC ABC π∠===则sin BAC ∠ =7. 函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 48.已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是(A) ⎫⎪⎪⎝⎭ (B) ⎫⎪⎪⎝⎭(C) ⎛⋃ ⎝⎫⎪⎝⎭⎪⎭ (D) ⎛- ⎝⎭∞ 第Ⅱ卷二.填空题: 本大题共6小题, 每小题5分, 共30分.9.已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = . 10.6x⎛- ⎝的二项展开式中的常数项为 .11.已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫⎪⎝⎭, 则|CP |= .12.在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB的长为 . 13.如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为 .14.设a + b = 2, b >0, 则当a = 时, 1||2||a a b +取得最小值. 三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤.15. (本小题满分13分)已知函数2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R .(Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.16.(本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2,3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 在取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望. 17. (本小题满分13分) 如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正, 求线段AM 的长.18.(本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F , , 过点F且与x (Ⅰ) 求椭圆的方程; (Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB += , 求k 的值.19.(本小题满分14分)已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且335544,,S a S a S a +++ 成等差数列.(Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.20.(本小题满分14分)已知函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.参考答案一、选择题1.D 提示:||222,[2,1]x x A B ≤⇒-≤≤⋂=- 2.A 提示:作出可行域,如图由图可知,当目标函数通过直线20x y --=与直线3y =的交点(5,3)时取得最小值,min 7z =-。
3.B 提示:当1x =时,1S =,此时50S ≥不成立;当2x =时,9S =,此时50S ≥不成立;当4x =时,73S =,此时50S ≥成立;所以输出的73S =。
4.C 提示:①由球体积公式343V R π=知,R 缩小到原来的12时,体积缩小到原来的18是正确的;②不一定相等,标准差反映的是数据的稳定状态,数据越分散,标准差越大,例如:1,3与0,4这两组数的平均数都是2,标准差分别为2121,2S S ====,所以该命题为假命题;③圆心(0,0)到直线10x y ++=的距离d =与圆的半径相等,所以直线与圆相切为真命题。
5.C因为2222,ce c a b b a a===+⇒,故两条渐近线的方程为y =,由2y p x ⎧=⎪⎨=-⎪⎩得两个交点坐标为(,),(,)2222p p ---,所以21||2224AOBp S AB p ∆=⋅=⇒= 6.C由余弦定理得2222cos 5AC BA BC BA BC BAC AC =+-⋅∠=⇒=,由正弦定理得:sin sin sin 10BC AC BAC BAC ABC =⇒∠=∠∠。
7.B 在同一坐标系中作出1()()2x f x =与0.5|log |y x =,如图,由图可得零点的个数为2。
8.A 取12a =-时,1()||2f x x x x =-+,因为()()f x a f x +<,所以11()||1||22x x x x --+> (1)0x <时,解得304x -<<;(2)102x ≤≤时,解得102x ≤≤;(3)12x >时,解得1524x << 综上可知,12a =-时,35(,)44A =-符合题意,排除B 、D取1a =时,()||f x x x x =+,因为()()f x a f x +<,所以(1)|1|1||x x x x +++> (1)1x <-时,解得0x >,矛盾;(2)10x -≤≤时,解得0x <,矛盾;(3)0x >时,解得1x <-,矛盾;综上可知1a =时,A φ=,不符合题意,排除C 。
法二:显然0a ≠且()f x 为奇函数当0a >时,()f x 在R 上单调递增,所以()()f x a f x +>与已知矛盾。
当0a <时,由()()||1||()f x a f x x x x a x a +<⇒-<++因为11[,]22A -⊂,所以12x =-0a << 设()||1g x x x =-,显然()g x 单调递增,所以()()1g x g x a <++,如图解221()x x a -=+得212a x a +=-,解221()x x a --=-+得212a x a-=所以22011221122a aaa a⎧⎪<⎪+⎪->⎨⎪⎪-<⎪⎩0a << 9.12i + 由101()(1)1(1)12a a a i i a a i bi ab b -==⎧⎧++=-++=⇒⇒⎨⎨+==⎩⎩,故12a bi i +=+10.15 因为136622166()(1)r rrrrr r T C xx C x---+=-=-,令3602r -=得4r =所以4456(1)15T C =-=11.因为C 的直角坐标系方程为22(2)4x y -+=,所以(2,0)C,因为P,所以||PC =12.12 因为1||||cos60||2AB AD AB AD AB ⋅=⋅︒=,所以2111()()||1||224AC BE AB AD AB AD AB AB ⋅=+⋅-+=-++因为1AC BE ⋅= ,所以2111||||0||242AB AB AB -+=⇒=。
法二:以A 为原点建立坐标系,如图:因为1,60AD BAD =∠=︒,所以1(2D .设(,0)B a ,则1(2C a +,1(22a E +所以21131()(,)122224a aAC BE a a ⋅=+⋅-=-++ 因为1A CB E ⋅=所以211124a a -++= 解得12a =.13. 83由切割线定理得24AE EB ED EB =⋅⇒=,由AB BC ABC ACB ADB =⇒∠=∠=∠由弦切角定理得EAB EDA ∠=∠,故,//EAB ABC AE BC ∠=∠,因为//AC BD ,故四边形AEBC 是平行四边形。