王镜岩版生物化学名词解释
王镜岩生化名词解释
王镜岩生化名词解释点击次数:78 发布时间:2011-4-14王镜岩生化名词解释1.核小体(nucleosome):用于包装染色质的结构单位,是由DNA链缠绕一个组蛋白核构成的。
2.DNA变性(DNAdenaturation)在理化因子的作用下,DNA双螺旋的两条互补链松散而成为单链,从而导致DNA的理化性质及生物学性质发生改变,这种现象称DNA的变性。
3.DNA复性:变性的DNA在适当的条件下又可使两条分开的链重新缔合成为双螺旋结构的过程。
4.熔解温度(melting temperature,Tm):在DNA热变性中,紫外吸收增加的中点值所对应的温度。
或称热解链温度。
5.增色效应hyperchromic effect: 当DNA变性后,对260nm处紫外光光吸收度增加的现象。
6.减色效应(hypochromic effect):随着核酸复性,紫外吸收降低的现象。
7.核酸内切酶(exonuclease): 核糖核酸酶和脱氧核糖核酸酶中能够水解核酸分子内磷酸二酯键的酶。
8.核酸外切酶(exonuclease):从核酸链的一端逐个水解核甘酸的酶。
9.限制性内切酶(restriction endonuclease):一种在特殊核甘酸序列处水解双链DNA的内切酶。
Ⅰ型限制性内切酶既能催化宿主DNA的甲基化,又催化非甲基化的DNA的水解;而Ⅱ型限制性内切酶只催化非甲基化的DNA的水解。
10.重组DNA技术(recombination DNA technology):也称之为基因工程(genomic engineering).利用限制性内切酶和载体,按照预先设计的要求,将一种生物的某种目的基因和载体DNA重组后转入另一生物细胞中进行复制、转录和表达的技术。
11.基因(gene):泛指被转录的一个DNA片段。
在某些情况下,基因常用来指编码一个功能蛋白或DNA分子的DNA片段。
12.新陈代谢:生物体与外界环境不断进行的物质和能量交换过程。
王镜岩生化真题名词解释整理汇总
王镜岩——生物化学名词解释(2013年~2002年)[2013年]1.寡聚蛋白质(oligomeric protein):两条或两条以上具有三级结构的多肽链组成的蛋白质。
(也称多聚蛋白质)。
如:血红蛋白(两条α链,两条β链)、己糖激酶(4条α链)。
附:仅由一条多肽链构成的蛋白质称为单体蛋白质。
如:溶菌酶和肌红蛋白 [第三章蛋白质 ](上159)2.酶的转换数(turnover number,TN):即K3,又称催化常数(catalytic constant,K cat)是指在一定条件下每秒钟每个酶分子转换底物的分子数。
(通常来表示酶的催化效率)附:[ 或每秒钟每微摩尔酶分子转换底物的微摩尔数 ] ,大多数酶对它们的天然底物的转换数的变化围是每秒1到104(上321)[第四章酶]3.糖的变旋现象(mutarotation):是当一种旋光异构体,如糖溶于水中转变为几种不同的旋光异构体的平衡混合物时,发生的旋光变化的现象。
[第一章糖类 ](上8;2013、2008)4.油脂的酸值(acid number):是指中和1g油脂中的游离脂肪酸所消耗KOH 的毫克数。
[第二章脂类和生物膜 ](上95)5.激素受体:位于细胞表面或细胞,结合特异激素并引发细胞响应的蛋白质。
[第六章维生素、激素和抗生素]6.乙醛酸循环(glyoxylic acid cycle ,GAC):是一种被修改的三羧酸循环,在两种循环中具有某些一样的酶和产物,但代途径不同,在乙醛酸循环中乙酰CoA首先和草酰乙酸缩合成柠檬酸,然后转变为异柠檬酸,再裂解为琥珀酸和乙醛酸,在这一循环中产生乙醛酸,故称乙醛酸循环。
[第八章糖代](这个循环除两步由异柠檬酸裂合酶和苹果酸合酶催化的反应外,其他的反应都和“柠檬酸循环”一样。
)( 2013、2012)资料2:又称三羧酸循环支路,该途径在动物体不存在,只存在于植物和微生物中,主要在乙醛酸循环体中和线粒体中进行。
生物化学习题及答案(王镜岩编著版)
第一章核酸(一)名词解释1.单核苷酸:核苷与磷酸缩合生成的磷酸酯称为单核苷酸。
2.磷酸二酯键:单核苷酸中,核苷的戊糖与磷酸的羟基之间形成的磷酸酯键。
3.不对称比率:不同生物的碱基组成由很大的差异,这可用不对称比率(A+T)/(G+C)表示。
4.碱基互补规律:在形成双螺旋结构的过程中,由于各种碱基的大小与结构的不同,使得碱基之间的互补配对只能在G…C(或C…G)和A…T(或T…A)之间进行,这种碱基配对的规律就称为碱基配对规律(互补规律)。
5.反密码子:在tRNA链上有三个特定的碱基,组成一个密码子,由这些反密码子按碱基配对原则识别mRNA链上的密码子。
反密码子与密码子的方向相反。
6.顺反子:基因功能的单位;一段染色体,它是一种多肽链的密码;一种结构基因。
7.核酸的变性与复性:当呈双螺旋结构的DNA溶液缓慢加热时,其中的氢键便断开,双链DNA便脱解为单链,这叫做核酸的“溶解”或变性。
在适宜的温度下,分散开的两条DNA链可以完全重新结合成和原来一样的双股螺旋。
这个DNA螺旋的重组过程称为“复性”。
8.退火:当将双股链呈分散状态的DNA溶液缓慢冷却时,它们可以发生不同程度的重新结合而形成双链螺旋结构,这现象称为“退火”。
9.增色效应:当DNA从双螺旋结构变为单链的无规则卷曲状态时,它在260nm处的吸收便增加,这叫“增色效应”。
10.减色效应:DNA在260nm处的光密度比在DNA分子中的各个碱基在260nm处吸收的光密度的总和小得多(约少35%~40%), 这现象称为“减色效应”。
11.噬菌体:一种病毒,它可破坏细菌,并在其中繁殖。
也叫细菌的病毒。
12.发夹结构:RNA是单链线形分子,只有局部区域为双链结构。
这些结构是由于RNA单链分子通过自身回折使得互补的碱基对相遇,形成氢键结合而成的,称为发夹结构。
13.DNA的熔解温度:引起DNA发生“熔解”的温度变化范围只不过几度,这个温度变化范围的中点称为熔解温度(T m)。
2021年北京科技大学338生物化学考研精品资料之王镜岩《生物化学》考研核心题库之名词解释精编
2021年北京科技大学338生物化学考研精品资料之王镜岩《生物化学》考研核心题库之名词解释精编重要提示本书由本机构编写组多位高分在读研究生按照考试大纲、真题、指定参考书等公开信息潜心整理编写,仅供考研复习参考,与目标学校及研究生院官斱无关,如有侵权请联系我们立即处理。
一、名词解释1.ping-pong reaction(兵兵反应)【答案】多底物酶促反应中,酶结合一个底物幵释放出一个产物,留下一个叏代酶,然后该叏代酶再结合第二个底物呾释放出第二个产物,最后酶恢复到它癿起始状态。
2.多糖.【答案】是由10个以上单糖以糖苷键连接而成癿大分子化合物。
3.HMG CoA【答案】HMGCoA即羟甲基戊二酸单酰辅酶A,由乙酰乙酰CoA 呾乙酰CoA由HMGCoA合酶催化缩合而成,是合成胆固醇呾酮体癿中间产物。
4.药物的生物转化(biotransformation)【答案】指体内正常丌应有癿外来有机化合物包括药物戒毒物在体内迚行癿代谢转化。
药物在体内癿代谢转化有其特殊斱式呾酶系。
5.reducing sugar(还原糖)【答案】羰基碳(异头碳)没有参不形成糖苷键,因此可被氧化充当还原剂癿糖。
6.第二相反应【答案】是指非营养物质通过不某些内源性极性分子戒基团共价结合增加极性呾水溶性,易于随胆汁排出戒经肾脏排泄。
7.色氨酸吡咯酶【答案】色氨酸吡咯酶又称色氨酸加氧酶,催化色氨酸吡咯环加氧断开,是色氨酸提供一碳单元、丙酮酸(生糖)、乙酰乙酰(生酮)以及形成尼兊酸等代谢癿第一步反应。
8.liposome(脂质体)【答案】当磷脂浓度增加到使水-空气界面达到饱呾时,水环境中癿磷脂将以微观癿脂质聚集体癿形式存在。
脂质体是是由包围水相空间癿磷脂双层形成癿囊泡(小泡)。
9.affinity chromatography(亲和色谱)【答案】利用共价连接有特异配体癿色谱介质分离蛋白质混合物中能特异结合配体癿目癿蛋白戒其他分子癿色谱技术。
王镜岩生化真题名词解释整理汇总情况
王镜岩——生物化学名词解释(2013年~2002年)【2013年】1.寡聚蛋白质(oligomeric protein):两条或两条以上具有三级结构的多肽链组成的蛋白质。
(也称多聚蛋白质)。
如:血红蛋白(两条α链,两条β链)、己糖激酶(4条α链)。
附:仅由一条多肽链构成的蛋白质称为单体蛋白质。
如:溶菌酶和肌红蛋白【第三章蛋白质】(上159)2.酶的转换数(turnover number,TN):即K3,又称催化常数(catalytic constant,K cat)是指在一定条件下每秒钟每个酶分子转换底物的分子数。
(通常来表示酶的催化效率)附:[ 或每秒钟每微摩尔酶分子转换底物的微摩尔数] ,大多数酶对它们的天然底物的转换数的变化围是每秒1到104(上321)【第四章酶】3.糖的变旋现象(mutarotation):是当一种旋光异构体,如糖溶于水中转变为几种不同的旋光异构体的平衡混合物时,发生的旋光变化的现象。
【第一章糖类】(上8;2013、2008)4.油脂的酸值(acid number):是指中和1g油脂中的游离脂肪酸所消耗KOH 的毫克数。
【第二章脂类和生物膜】(上95)5.激素受体:位于细胞表面或细胞,结合特异激素并引发细胞响应的蛋白质。
【第六章维生素、激素和抗生素】6.乙醛酸循环(glyoxylic acid cycle ,GAC):是一种被修改的三羧酸循环,在两种循环中具有某些相同的酶和产物,但代谢途径不同,在乙醛酸循环中乙酰CoA首先和草酰乙酸缩合成柠檬酸,然后转变为异柠檬酸,再裂解为琥珀酸和乙醛酸,在这一循环中产生乙醛酸,故称乙醛酸循环。
【第八章糖代谢】(这个循环除两步由异柠檬酸裂合酶和苹果酸合酶催化的反应外,其他的反应都和“柠檬酸循环”相同。
)(2013、2012)资料2:又称三羧酸循环支路,该途径在动物体不存在,只存在于植物和微生物中,主要在乙醛酸循环体中和线粒体中进行。
乙醛酸循环从草酰乙酸与乙酰CoA缩合形成柠檬酸开始,柠檬酸经异构化生成异柠檬酸,与TCA循环不同的是异柠檬酸经异柠檬酸裂解酶裂解为琥珀酸和乙醛酸。
王镜岩版生物化学名词解释
多糖;是由糖苷键结合的糖链,至少要超过10个的单糖组成的聚合糖高分子碳水化合物构型:分子中由于各原子或基团间特有的固定的空间排列方式不同而使它呈现出不同的较定的立体结构构象:由于分子中的某个原子(基团)绕C-C单键自由旋转而形成的不同的暂时性的易变的空间结构形式,不同的构象之间可以相互转变,在各种构象形式中,势能最低、最稳定的构象是优势构象。
旋光率;偏振光通过单位厚度旋光物质后其偏振面旋转的角度。
醛糖:一类单糖,该单糖中氧化数最高的C原子(指定为C-1)是一个醛基,有醇和醛性质。
酮糖:多羟基酮称为酮糖对映体;互为旋光异构体的两种化合物,由于其中一个不对称碳原子的取代基在空间上取向不同而互成物体与镜像的关系,并且两者在空间上不能重叠,它们被称为对映体差象异构体;在立体化学中,含有多个手性碳原子的立体异构体中,只有一个手性碳原子的构型不同,其余的构型都相同的非对映体叫差向异构体。
异头物;是指在羰基碳原子上的构型彼此不同的单糖同分异构体形式。
异头碳;单糖由直链变成环状结构时,羰基碳原子成为新的手性中心,导致C1差向异构化,产生两个非对映异构体。
在环状结构中,半缩醛碳原子称为异头碳原子。
半缩醛;两个含α-H的醛酮分子发生缩合反应,结果生成β-羟基醛酮糖脎,是糖类的苯肼衍生物。
淀粉:D-葡萄糖以α-1,4-糖苷键首尾相连,在支链处为α-1,6-糖苷键的多聚高分子化合物。
糖元;结构与支链淀粉相似,主要是α-D-葡萄糖,按α(1→4)糖苷键缩合失水而成,另有一部分支链通过α(1→6)糖苷键连接纤维素;由D-葡萄糖以β-1,4糖苷键组成的大分子多糖肽聚糖;肽聚糖存在于真细菌中的革兰氏阳性菌和革兰氏阴性菌的细胞壁中。
是由乙酰氨基葡萄糖、乙酰胞壁酸与四到五个氨基酸短肽聚合而成的多层网状大分子结构。
皂化值;皂化1克试样油所需氢氧化钾的毫克数。
碘值;表示有机化合物中不饱和程度的一种指标。
指100g物质中所能吸收碘的克数。
生物化学习题及答案(王镜岩编著版)
生物化学习题及答案(王镜岩编著版)第九章核酸的生物合成(一)名词解释1.半保留复制:双链DNA的复制方式,其中亲代链分离,每一子代DNA分子由一条亲代链和一条新合成的链组成。
2.不对称转录:转录通常只在DNA的任一条链上进行,这称为不对称转录。
3.逆转录:Temin和Baltimore各自发现在RNA肿瘤病毒中含有RNA指导的DNA聚合酶,才证明发生逆向转录,即以RNA为模板合成DNA。
4.冈崎片段:一组短的DNA片段,是在DNA复制的起始阶段产生的,随后又被连接酶连接形成较长的片段。
在大肠杆菌生长期间,将细胞短时间地暴露在氚标记的胸腺嘧啶中,就可证明冈崎片段的存在。
冈崎片段的发现为DNA复制的科恩伯格机理提供了依据。
5.复制叉:复制DNA分子的Y形区域。
在此区域发生链的分离及新链的合成。
6.领头链:DNA的双股链是反向平行的,一条链是5/→3/方向,另一条是3/→5/方向,上述的起点处合成的领头链,沿着亲代DNA 单链的3/→5/方向(亦即新合成的DNA沿5/→3/方向)不断延长。
所以领头链是连续的。
7.随后链:已知的DNA聚合酶不能催化DNA 链朝3/→5/方向延长,在两条亲代链起点的3/ 端一侧的DNA链复制是不连续的,而分为多个片段,每段是朝5/→3/方向进行,所以随后链是不连续的。
8.有意义链:即华森链,华森——克里格型DNA中,在体内被转录的那股DNA链。
简写为W strand。
9.光复活:将受紫外线照射而引起损伤的细菌用可见光照射,大部分损伤细胞可以恢复,这种可见光引起的修复过程就是光复活作用。
10.重组修复:这个过程是先进行复制,再进行修复,复制时,子代DNA链损伤的对应部位出现缺口,这可通过分子重组从完整的母链上,将一段相应的多核苷酸片段移至子链的缺口处,然后再合成一段多核昔酸键来填补母链的缺口,这个过程称为重组修复。
11.内含子:真核生物的mRNA前体中,除了贮存遗传序列外,还存在非编码序列,称为内含子。
王镜岩生物化学名词解释.
生物化学名词解释第1. 变构调节 [填空题] *_________________________________(答案:特定物质与酶蛋白活性中心以外的某一部位以非共价键结合,改变酶蛋白构象,从而改变其活性。
)2. 基因 [填空题] *_________________________________(答案:遗传物质的基本单位,主要存在于染色体上)3. 复制 [填空题] *_________________________________(答案:以亲代DNA为模板合成子代DNA 的过程)4. 转录 [填空题] *_________________________________(答案:在DNA指导的RNA聚合酶催化下,按碱基互补配对的原则,以dNTP为原料合成一条与模板DNA链互补的RNA 链的过程)5. 翻译 [填空题] *_________________________________(答案:核糖体以氨基酸为原料,mRNA为模板合成蛋白质的过程)6. 启动子 [填空题] *_________________________________(答案:位于5端上游的DNA序列,能活化DNA聚合酶,使之与模板结合并起始转录)7. 半保留复制 [填空题] *_________________________________(答案:DNA生物合成时,母链DNA解开为两股双链,两条链分别作为模板,按碱基互补配对的原则指导合成一股新的互补链,最终得到与亲代DNA分子完全一样的两个DNA分子,每个子代DNA分子都含有一股亲代DNA链和新生DNA链,这种复制方式为半保留复制。
)8. 拓扑异构酶 [填空题] *_________________________________(答案:具有松弛DNA超螺旋,避免解链过程中打结、缠绕作用的酶)9. 冈崎片段 [填空题] *_________________________________(答案:DNA复制过程中,由于后随链的不连续复制而产生的短的核苷酸片段)10. 端粒 [填空题] *_________________________________(答案:真核生物染色体线性DNA分子末端由DNA和蛋白质组成的一种特殊结构)11. 逆转录 [填空题] *_________________________________(答案:以RNA为模板、dNTP为原料、由逆转录酶催化合成DNA的过程)12. 开放阅读框 [填空题] *_________________________________(答案:从mRNA编码区5端起始密码子到3端终止密码子的一段序列)13. SD序列 [填空题] *_________________________________(答案:位于原核生物mRNA起始密码子AUG上游处一段富含嘌呤的序列)14. 遗传密码 [填空题] *_________________________________(答案:mRNA编码区5端到3端,每三个相邻碱基为一组,每组碱基构成一个遗传密码,称为密码子)15. 终止密码子 [填空题] *_________________________________(答案:提供终止信号并不编码任何氨基酸的密码子)16. 密码子的兼并性 [填空题] *_________________________________(答案:不同的密码子可以编码同一种氨基酸且只编码一种氨基酸)。
考研有用的生物化学名词解释集锦(王镜岩)汇编
生物化学名词解释集锦第一章蛋白质1.两性离子(dipolarion)2.必需氨基酸(essential amino acid)3.等电点(isoelectric point,pI)4.稀有氨基酸(rare amino acid)5.非蛋白质氨基酸(nonprotein amino acid) 6.构型(configuration)7.蛋白质的一级结构(protein primary structure)8.构象(conformation)9.蛋白质的二级结构(protein secondary structure)10.结构域(domain)11.蛋白质的三级结构(protein tertiary structure)12.氢键(hydrogen bond)13.蛋白质的四级结构(protein quaternary structure)14.离子键(ionic bond)15.超二级结构(super-secondary structure) 16.疏水键(hydrophobic bond)17.范德华力( van der Waals force) 18.盐析(salting out)19.盐溶(salting in)20.蛋白质的变性(denaturation)21.蛋白质的复性(renaturation)22.蛋白质的沉淀作用(precipitation) 23.凝胶电泳(gel electrophoresis)24.层析(chromatography)第二章核酸1.单核苷酸(mononucleotide)2.磷酸二酯键(phosphodiester bonds)3.不对称比率(dissymmetry ratio)4.碱基互补规律(complementary base pairing)5.反密码子(anticodon)6.顺反子(cistron)7.核酸的变性与复性(denaturation、renaturation)8.退火(annealing)9.增色效应(hyper chromic effect)10.减色效应(hypo chromic effect)11.噬菌体(phage)12.发夹结构(hairpin structure)13.DNA 的熔解温度(melting temperature T m)14.分子杂交(molecular hybridization)15.环化核苷酸(cyclic nucleotide)第三章酶与辅酶1.米氏常数(K m 值)2.底物专一性(substrate specificity)3.辅基(prosthetic group)4.单体酶(monomeric enzyme)5.寡聚酶(oligomeric enzyme)6.多酶体系(multienzyme system)7.激活剂(activator)8.抑制剂(inhibitor inhibiton)9.变构酶(allosteric enzyme)10.同工酶(isozyme)11.诱导酶(induced enzyme)12.酶原(zymogen)13.酶的比活力(enzymatic compare energy)14.活性中心(active center)第四章生物氧化与氧化磷酸化1.生物氧化(biological oxidation)2.呼吸链(respiratory chain)3.氧化磷酸化(oxidative phosphorylation)4.磷氧比P/O(P/O)5.底物水平磷酸化(substrate level phosphorylation)6.能荷(energy charg第五章糖代谢1.糖异生(glycogenolysis)2.Q 酶(Q-enzyme)3.乳酸循环(lactate cycle)4.发酵(fermentation)5.变构调节(allosteric regulation)6.糖酵解途径(glycolytic pathway)7.糖的有氧氧化(aerobic oxidation)8.肝糖原分解(glycogenolysis)9.磷酸戊糖途径(pentose phosphate pathway) 10.D-酶(D-enzyme)11.糖核苷酸(sugar-nucleotide)第六章脂类代谢1.必需脂肪酸(essential fatty acid)2.脂肪酸的α-氧化(α- oxidation)3.脂肪酸的β-氧化(β- oxidation)4.脂肪酸的ω-氧化(ω- oxidation)5.乙醛酸循环(glyoxylate cycle)6.柠檬酸穿梭(citriate shuttle)7.乙酰CoA 羧化酶系(acetyl-CoA carnoxylase)8.脂肪酸合成酶系统(fatty acid synthase system)第八章含氮化合物代谢1.蛋白酶(Proteinase)2.肽酶(Peptidase)3.氮平衡(Nitrogen balance)4.生物固氮(Biological nitrogen fixation)5.硝酸还原作用(Nitrate reduction)6.氨的同化(Incorporation of ammonium ions into organic molecules)7.转氨作用(Transamination)8.尿素循环(Urea cycle)9.生糖氨基酸(Glucogenic amino acid)10.生酮氨基酸(Ketogenic amino acid)11.核酸酶(Nuclease)12.限制性核酸内切酶(Restriction endonuclease)13.氨基蝶呤(Aminopterin)14.一碳单位(One carbon unit)第九章核酸的生物合成1.半保留复制(semiconservative replication)2.不对称转录(asymmetric trancription)3.逆转录(reverse transcription)4.冈崎片段(Okazaki fragment)5.复制叉(replication fork)6.领头链(leading strand)7.随后链(lagging strand)8.有意义链(sense strand)9.光复活(photoreactivation)10.重组修复(recombination repair)11.内含子(intron)12.外显子(exon)13.基因载体(genonic vector)14.质粒(plasmid)第十一章代谢调节1.诱导酶(Inducible enzyme)2.标兵酶(Pacemaker enzyme)3.操纵子(Operon)4.衰减子(Attenuator)5.阻遏物(Repressor)6.辅阻遏物(Corepressor)7.降解物基因活化蛋白(Catabolic gene activator protein)8.腺苷酸环化酶(Adenylate cyclase)9.共价修饰(Covalent modification)10.级联系统(Cascade system)11.反馈抑制(Feedback inhibition)12.交叉调节(Cross regulation)13.前馈激活(Feedforward activation)14.钙调蛋白(Calmodulin)第十二章蛋白质的生物合成1.密码子(codon)2.反义密码子(synonymous codon) 3.反密码子(anticodon)4.变偶假说(wobble hypothesis)5.移码突变(frameshift mutant)6.氨基酸同功受体(isoacceptor)7.反义RNA(antisense RNA)8.信号肽(signal peptide)9.简并密码(degenerate code)10.核糖体(ribosome)11.多核糖体(poly some)12.氨酰基部位(aminoacyl site)13.肽酰基部位(peptidy site)14.肽基转移酶(peptidyl transferase) 15.氨酰- tRNA 合成酶(amino acy-tRNA synthetase)16.蛋白质折叠(protein folding)17.核蛋白体循环(polyribosome) 18.锌指(zine finger)19.亮氨酸拉链(leucine zipper)20.顺式作用元件(cis-acting element)21.反式作用因子(trans-acting factor) 22.螺旋-环-螺旋(helix-loop-helix)第一章蛋白质1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。
王镜岩生化真题名词解释整理汇总
王镜岩——生物化学名词解释(2013年~2002年)【2013年】1.寡聚蛋白质(oligomeric protein):两条或两条以上具有三级结构的多肽链组成的蛋白质。
(也称多聚蛋白质)。
如:血红蛋白(两条α链,两条β链)、己糖激酶(4条α链)。
附:仅由一条多肽链构成的蛋白质称为单体蛋白质。
如:溶菌酶和肌红蛋白【第三章蛋白质】(上159)2.酶的转换数(turnover number,TN):即K3,又称催化常数(catalytic constant,K cat)是指在一定条件下每秒钟每个酶分子转换底物的分子数。
(通常来表示酶的催化效率)附:[ 或每秒钟每微摩尔酶分子转换底物的微摩尔数] ,大多数酶对它们的天然底物的转换数的变化范围是每秒1到104(上321)【第四章酶】3.糖的变旋现象(mutarotation):是当一种旋光异构体,如糖溶于水中转变为几种不同的旋光异构体的平衡混合物时,发生的旋光变化的现象。
【第一章糖类】(上8;2013、2008)4.油脂的酸值(acid number):是指中和1g油脂中的游离脂肪酸所消耗KOH 的毫克数。
【第二章脂类和生物膜】(上95)5.激素受体:位于细胞表面或细胞内,结合特异激素并引发细胞响应的蛋白质。
【第六章维生素、激素和抗生素】6.乙醛酸循环(glyoxylic acid cycle ,GAC):是一种被修改的三羧酸循环,在两种循环中具有某些相同的酶和产物,但代谢途径不同,在乙醛酸循环中乙酰CoA首先和草酰乙酸缩合成柠檬酸,然后转变为异柠檬酸,再裂解为琥珀酸和乙醛酸,在这一循环中产生乙醛酸,故称乙醛酸循环。
【第八章糖代谢】(这个循环除两步由异柠檬酸裂合酶和苹果酸合酶催化的反应外,其他的反应都和“柠檬酸循环”相同。
)(2013、2012)资料2:又称三羧酸循环支路,该途径在动物体内不存在,只存在于植物和微生物中,主要在乙醛酸循环体中和线粒体中进行。
王镜岩《生物化学》名词解释(打印版)
王镜岩生物化学名词解释1.氨基酸(amino acid):是含有一个碱性氨基(-NH2)和一个酸性羧基(-COOH)的有机化合物,氨基一般连在α-碳上。
氨基酸是蛋白质的构件分子。
2.必需氨基酸(essential amino acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。
3.非必需氨基酸(nonessential amino acid):指人(或其它脊椎动物)自己能由简单的前体合成,不需要从食物中获得的氨基酸。
4.等电点(pI,isoelectric point):使氨基酸处于兼性离子状态,在电场中不迁移(分子的静电荷为零)的pH值。
5.茚三酮反应(ninhydrin reaction):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸及羟脯氨酸反应生成黄色)化合物的反应。
6.层析(chromatography):按照在移动相和固定相(可以是气体或液体)之间的分配比例将混合成分分开的技术。
7.离子交换层析(ion-exchange column):一种用离子交换树脂作支持剂的层析技术。
8.透析(dialysis):利用蛋白质分子不能通过半透膜的性质,使蛋白质和其他小分子物质如无机盐、单糖等分开的一种分离纯化技术。
9.凝胶过滤层析(gel filtration chromatography,GPC):也叫做分子排阻层析/凝胶渗透层析。
一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。
10.亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。
11.高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术。
12.凝胶电泳(gel electrophoresis):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。
王镜岩-生物化学(第三版)配套练习及详解
第一章蛋白质化学I 主要内容一、蛋白质的生物学意义蛋白质是生物体内最为重要的有机化学物质之一,它几乎参与了生物体所有的生命活动,如生物体的构成、机体的运动、化学催化、机体的免疫保护、生物遗传信息的传递与表达等等,可以说蛋白质是一切生命活动的重要支柱,没有蛋白质就没有生命现象的存在,因此,蛋白质化学是生物化学中一个重要的研究方面。
二、蛋白质的元素组成蛋白质是由C、H、O、N、S等几种元素构成,其中C 50-55%、H 6-8%、O 20-30%、 N 15-17%、S 0-4%,且含量基本相同,因此通过测定蛋白质样品中元素含量就可以推测出样品中蛋白质的含量。
三、蛋白质的氨基酸组成(一)氨基酸的结构及特点一般的蛋白质都是由20种氨基酸构成,这些氨基酸都是在蛋白质的合成过程中直接加进去的,并有专门的遗传密码与其对应,这些构成蛋白质的基本氨基酸称为天然氨基酸(通用氨基酸)。
天然氨基酸具有如下特点:1. 20种天然氨基酸均有专门的遗传密码与其对应,它们在蛋白质的合成中是直接加上去的。
2. 除甘氨酸外,其它氨基酸至少含有一个手性碳原子。
3. 除脯氨酸外,其它氨基酸均为 -氨基酸。
4. 氨基酸虽有D、L–型之分,但存在于天然蛋白质中的氨基酸均为L-型氨基酸。
(二)天然氨基酸的分类1.根据氨基酸分子中氨基和羧基的相对数量进行分类2.根据氨基酸分子结构分类3.根据氨基酸侧链基团极性分类氨基酸根据其侧链基团在近中性的pH条件下是否带电荷以及带电荷的种类分成四类:非极性氨基酸、极性不带电荷氨基酸、极性带正电荷氨基酸、极性带负电荷氨基酸。
(三)稀有蛋白质氨基酸这部分主要是指虽然在蛋白质中有所存在,含量却较少的一类氨基酸。
蛋白质中的稀有氨基酸是在蛋白质合成后的加工过程中通过化学的方法在天然氨基酸的基础上增加某些基团而形成的。
(四)非蛋白质氨基酸非蛋白质氨基酸是细胞中不参与天然蛋白质合成的一类氨基酸。
(五)氨基酸的重要理化性质1. 一般理化性质2. 氨基酸的酸碱性质与等电点3. 氨基酸的主要化学性质(1)茚三酮反应(2)桑格反应(Sanger reaction)(3)埃德曼反应(Edman reaction )4. 氨基酸的光学性质由于氨基酸分子中除甘氨酸外都有不对称碳原子的存在,因此,天然氨基酸中除甘氨酸外均有旋光现象的存在。
生物化学知识点汇总(王镜岩版)
生物化学知识点汇总(王镜岩版)————————————————————————————————作者:————————————————————————————————日期:生物化学讲义(2003)孟祥红绪论(preface)一、生物化学(biochemistry)的含义:生物化学可以认为是生命的化学(chemistryoflife)。
生物化学是用化学的理论和方法来研究生命现象。
1、生物体是有哪些物质组成的?它们的结构和性质如何?容易回答。
2、这些物质在生物体内发生什么变化?是怎样变化的?变化过程中能量是怎样转换的?(即这些物质在生物体内怎样进行物质代谢和能量代谢?)大部分已解决。
3、这些物质结构、代谢和生物功能及复杂的生命现象(如生长、生殖、遗传、运动等)之间有什么关系?最复杂。
二、生物化学的分类根据不同的研究对象:植物生化;动物生化;人体生化;微生物生化从不同的研究目的上分:临床生物化学;工业生物化学;病理生物化学;农业生物化学;生物物理化学等。
糖的生物化学、蛋白质化学、核酸化学、酶学、代谢调控等。
三、生物化学的发展史1、历史背景:从十八世下半叶开始,物理学、化学、生物学取得了一系列的重要的成果(1)化学方面法国化学家拉瓦锡推翻“燃素说”并认为动物呼吸是像蜡烛一样的燃烧,只是动物体内燃烧是缓慢不发光的燃烧——生物有氧化理论的雏形瑞典化学家舍勒——发现了柠檬酸、苹果酸是生物氧化的中间代谢产物,为三羧酸循环的发现提供了线索。
(2)物理学方面:原子论、x-射线的发现。
(3)生物学方面:《物种起源——进化论》发现。
2、生物化学的诞生:在19世纪末20世纪初,生物化学才成为一门独立的科学。
德国化学家李比希:1842年撰写的《有机化学在生理与病理学上的应用》一书中,首次提出了新陈代谢名词。
另一位是德国医生霍佩赛勒:1877年他第一次提出Biochemie这个名词英文译名是Biochemistry(orBiologicalchemistry)汉语翻译成生物化学。
王镜岩生物化学pdf
王镜岩生物化学pdf王镜岩生物化学简介1. 定义:王镜岩生物化学(英文名称Jingyan Wang Biochemistry)是一门利用生物化学方法,研究动物和植物生长,发育,代谢,能量代谢,遗传变异,病原体抗药性,疾病分析和防治,工农业活性物质等生命过程,综合运用细胞生理学,基因工程学,植物学,病原生物学,分子生物学的科学,是生物化学的一个关键学科。
2. 特点:王镜岩生物化学融合了基因工程学,细胞生物学,遗传学及生物物理学等多学科和多研究领域,批判性思维及系统思维加上原子分子结构、生命过程及其调控的复杂性与可变性,都是影响王镜岩生物化学研究的重要因素。
3. 领域:王镜岩生物化学的领域有大量的实验来支持,全面探讨了不同种类的生物体的内源环境、各种自身因素和外在环境对生命体的影响,揭示了复杂的生物体的系统结构层面的研究,系统思考、系统考察、系统概念是王镜岩生物化学研究的基础。
4. 研究方法:王镜岩生物化学主要研究途径包括:系统理论范式,系统思维范式,量子机理论,化学迷宫和模型计算,开发和优化实验设计,生物传感器开发,大数据系统,以及研究具体相关课题,如非编码RNA调控机制,蛋白质结构及功能,细胞病毒感染调控机制,核糖体系统及其在细胞内移动调控机制等。
5. 展望:随着王镜岩生物化学研究在细胞病毒感染、细胞内移动、蛋白质结构及功能、遗传变异、内源环境调控以及农业活性物质等领域取得的一系列成果,王镜岩生物化学在全球发展中扮演者越来越重要的角色,成为生物学的全新的研究方向。
未来王镜岩生物化学将追求与以生物学和遗传学为主的多领域融合发展,为机体的系统正常发育和功能恢复提供支持,最终达到让机体更耐受各种外界刺激、抵御疾病、保护生物资源、提供更多有益物质及元素、减少污染和最重要的是可持续发展,更加关注环境保护。
王镜岩_生物化学_第三版_考研笔记
第二章糖类提要一、定义糖、单糖、寡糖、多糖、结合糖、呋喃糖、吡喃糖、糖苷、手性二、结构1.链式:Glc、Man、Gal、Fru、Rib、dRib2.环式:顺时针编号,D型末端羟甲基向下,α型半缩醛羟基与末端羟甲基在两侧。
3.构象:椅式稳定,β稳定,因其较大基团均为平键。
三、反应1.与酸:莫里斯试剂、西里万诺夫试剂。
2.与碱:弱碱互变,强碱分解。
3.氧化:三种产物。
4.还原:葡萄糖生成山梨醇。
5.酯化6.成苷:有α和β两种糖苷键。
7.成沙:可根据其形状与熔点鉴定糖。
四、衍生物氨基糖、糖醛酸、糖苷五、寡糖蔗糖、乳糖、麦芽糖和纤维二糖的结构六、多糖淀粉、糖原、纤维素的结构粘多糖、糖蛋白、蛋白多糖一般了解七、计算比旋计算,注意单位。
第一节概述一、糖的命名糖类是含多羟基的醛或酮类化合物,由碳氢氧三种元素组成的,其分子式通常以Cn(H2O)n 表示。
由于一些糖分子中氢和氧原子数之比往往是2:1,与水相同,过去误认为此类物质是碳与水的化合物,所以称为"碳水化合物"(Carbohydrate)。
实际上这一名称并不确切,如脱氧核糖、鼠李糖等糖类不符合通式,而甲醛、乙酸等虽符合这个通式但并不是糖。
只是"碳水化合物"沿用已久,一些较老的书仍采用。
我国将此类化合物统称为糖,而在英语中只将具有甜味的单糖和简单的寡糖称为糖(sugar)。
二、糖的分类根据分子的聚合度分,糖可分为单糖、寡糖、多糖。
也可分为:结合糖和衍生糖。
单糖是不能水解为更小分子的糖。
葡萄糖,果糖都是常见单糖。
根据羰基在分子中的位置,单糖可分为醛糖和酮糖。
根据碳原子数目,可分为丙糖,丁糖,戊糖,己糖和庚糖。
寡糖由2-20个单糖分子构成,其中以双糖最普遍。
寡糖和单糖都可溶于水,多数有甜味。
多糖由多个单糖(水解是产生20个以上单糖分子)聚合而成,又可分为同聚多糖和杂聚多糖。
同聚多糖由同一种单糖构成,杂聚多糖由两种以上单糖构成。
生物化学名词解释(王镜岩)
醛糖(aldose):一类单糖,该单糖中氧化数最高的C原子(指定为C-1)是一个醛基。
酮糖(ketose):一类单糖,该单糖中氧化数最高的C原子(指定为C-2)是一个酮基。
异头物(anomer):仅在氧化数最高的C原子(异头碳)上具有不同构形的糖分子的两种异构体。
异头碳(anomer carbon):环化单糖的氧化数最高的C原子,异头碳具有羰基的化学反应性。
变旋(mutarotation):吡喃糖,呋喃糖或糖苷伴随它们的α-和β-异构形式的平衡而发生的比旋度变化。
单糖(monosaccharide):由3个或更多碳原子组成的具有经验公式(CH2O)n的简糖。
糖苷(dlycoside):单糖半缩醛羟基与别一个分子的羟基,胺基或巯基缩合形成的含糖衍生物。
糖苷键(glycosidic bond):一个糖半缩醛羟基与另一个分子(例如醇、糖、嘌呤或嘧啶)的羟基、胺基或巯基之间缩合形成的缩醛或缩酮键,常见的糖醛键有O—糖苷键和N—糖苷键。
寡糖(oligoccharide):由2~20个单糖残基通过糖苷键连接形成的聚合物。
多糖(polysaccharide):20个以上的单糖通过糖苷键连接形成的聚合物。
多糖链可以是线形的或带有分支的。
还原糖(reducing sugar):羰基碳(异头碳)没有参与形成糖苷键,因此可被氧化充当还原剂的糖。
淀粉(starch):一类多糖,是葡萄糖残基的同聚物。
有两种形式的淀粉:一种是直链淀粉,是没有分支的,只是通过α-(1→4)糖苷键的葡萄糖残基的聚合物;另一类是支链淀粉,是含有分支的,α-(1→4)糖苷键连接的葡萄糖残基的聚合物,支链在分支处通过α-(1→6)糖苷键与主链相连。
糖原(glycogen): 是含有分支的α-(1→4)糖苷键的葡萄糖残基的同聚物,支链在分支点处通过α-(1→6)糖苷键与主链相连。
极限糊精(limit dexitrin):是指支链淀粉中带有支链的核心部位,该部分经支链淀粉酶水解作用,糖原磷酸化酶或淀粉磷酸化酶作用后仍然存在。
王镜岩生物化学下册名词解释总结
第十章DNA 的复制和修复DNA 半保留复制(semiconservative replication): DNA复制时双链解开,根据碱基互补原则,分别按照每条单链的核苷酸顺序合成新链,以组成新的DNA分子。
这样每个子代DNA分子中的一条链来自亲代DNA,另一条链是新合成的,这种复制方式称为半保留复制。
DNA 半不连续复制(semidiscotinuous replication): 新合成的两条DNA子链中,一条链是按5'→3'方向连续合成的,称为前导链;另一条链的合成是不连续的,先按5'→3'方向合成若干短片断(冈崎片断),再通过连接酶将这些短片段连在一起,构成第二条子链,称为滞后链,这种复制过程称半不连续复制。
复制子(replicon):指基因组上能独立进行复制的单位。
含有复制的起点,并可能含有复制的终点。
复制体(replisome):在DNA合成的生长点上,即复制叉上,分布着各种各样与复制有关的酶和蛋白质因子,它们构成的复合物称复制体。
冈崎片段(Okazaki fragment):新合成的两条DNA子链中,一条链是按5'→3'方向连续合成的,称为前导链;另一条链的合成是不连续的,先按5'→3'方向合成若干短片断(冈崎片断)端粒(telomere):真核生物线性染色体末端的特殊结构,由许多成串短的重复顺序组成,具有稳定染色体末端结构的功能。
端粒酶(telomerase):含有RNA链的逆转录酶,可以所含RNA为模板来合成DNA端粒结构。
错配修复(mismatch repair):复制后的DNA在短时间内GATC序列是半甲基化的,一旦发现错配碱基,包括错配碱基在内的未甲基化的新链可被切除,并以甲基化的链为模板进行修复合成。
光复活(photoreactivation repair):可见光激活光复活酶,其可以分解由于紫外线照射形成的嘧啶二聚体,恢复DNA的正常结构。
生物化学王镜岩第三版
生物化学的发展历程
01
02
03
早期探索
自古以来,人类就对生物 体内的物质变化产生了兴 趣,如酿酒、制药等。
学科形成
19世纪末,随着生物学和 化学的独立发展,生物化 学逐渐形成一门交叉学科。
现代发展
随着科学技术的发展,生 物化学在分子生物学、遗 传学等领域取得了重要突 破。
生物化学的应用领域
医学研究
酶的活性中心
酶分子中与底物结合并催化反应的区域。
酶的活性调节
酶的活性受到多种因素的调节,如抑制剂、 激活剂等。
03 生物代谢途径与调控
糖代谢途径与调控
糖酵解
葡萄糖在无氧条件下被分解为丙酮酸, 产生少量ATP。
糖异生
由非糖物质转变为葡萄糖或糖原的过 程。
磷酸戊糖途径
葡萄糖氧化分解的一种方式,主要产 生NADPH和戊糖。
蛋白质的二级结构
指蛋白质中局部主链的折叠方式, 如α-螺旋、β-折叠等。
蛋白质的三级结构
指整条肽链中全部氨基酸残基 的相对空间位置,由二级结构 单元的排列顺序和连接方式决 定。
蛋白质的性质
蛋白质具有两性解离、沉淀、 变性、结晶等性质。
核酸的结构与性质
01
02
03
04
DNA的结构
DNA由两条反向平行的多核 苷酸链组成,通过碱基配对形
成双螺旋结构。
DNA的理化性质
DNA具有紫外吸收、热变性 、酸碱稳定性等。
RNA的结构
RNA由单链核糖核酸组成, 分为mRNA、tRNA和rRNA
等类型。
RNA的理化性质
RNA具有碱基配对、热不稳 定性和水解性质等。
酶的结构与性质
酶的化学本质
生物化学--(王镜岩)精心整理 精要知识点速览
生物化学精要速览(希望对广大生化初学者有助)第一章绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。
2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多糖;是由糖苷键结合的糖链,至少要超过10个的单糖组成的聚合糖高分子碳水化合物构型:分子中由于各原子或基团间特有的固定的空间排列方式不同而使它呈现出不同的较定的立体结构构象:由于分子中的某个原子(基团)绕C-C单键自由旋转而形成的不同的暂时性的易变的空间结构形式,不同的构象之间可以相互转变,在各种构象形式中,势能最低、最稳定的构象是优势构象。
旋光率;偏振光通过单位厚度旋光物质后其偏振面旋转的角度。
醛糖:一类单糖,该单糖中氧化数最高的C原子(指定为C-1)是一个醛基,有醇和醛性质。
酮糖:多羟基酮称为酮糖对映体;互为旋光异构体的两种化合物,由于其中一个不对称碳原子的取代基在空间上取向不同而互成物体与镜像的关系,并且两者在空间上不能重叠,它们被称为对映体差象异构体;在立体化学中,含有多个手性碳原子的立体异构体中,只有一个手性碳原子的构型不同,其余的构型都相同的非对映体叫差向异构体。
异头物;是指在羰基碳原子上的构型彼此不同的单糖同分异构体形式。
异头碳;单糖由直链变成环状结构时,羰基碳原子成为新的手性中心,导致C1差向异构化,产生两个非对映异构体。
在环状结构中,半缩醛碳原子称为异头碳原子。
半缩醛;两个含α-H的醛酮分子发生缩合反应,结果生成β-羟基醛酮糖脎,是糖类的苯肼衍生物。
淀粉:D-葡萄糖以α-1,4-糖苷键首尾相连,在支链处为α-1,6-糖苷键的多聚高分子化合物。
糖元;结构与支链淀粉相似,主要是α-D-葡萄糖,按α(1→4)糖苷键缩合失水而成,另有一部分支链通过α(1→6)糖苷键连接纤维素;由D-葡萄糖以β-1,4糖苷键组成的大分子多糖肽聚糖;肽聚糖存在于真细菌中的革兰氏阳性菌和革兰氏阴性菌的细胞壁中。
是由乙酰氨基葡萄糖、乙酰胞壁酸与四到五个氨基酸短肽聚合而成的多层网状大分子结构。
皂化值;皂化1克试样油所需氢氧化钾的毫克数。
碘值;表示有机化合物中不饱和程度的一种指标。
指100g物质中所能吸收碘的克数。
乙酰值;指1g乙酰化的油脂分解出的乙酸用KOH中和时所需KOHmg数,称为乙酰化值。
酸值,指中和脂肪或其他类似物质1克中含有的游离脂肪酸所需氢氧化钾的重量(毫克数)。
兼性离子;亦称偶极离子:指一个分子具有两个以上的可离子化的基。
两性电解质;就是既能当酸又能当碱用的电解质。
发夹结构;RNA单链分子通过自身回折使得互补的碱基对相遇,形成氢键结合而成的,称为发夹结构。
无规则卷曲;无规卷曲是一种无定规律的结构,主要指那些不能被归入明确的二级结构,其本身也具有一定的稳定性。
模体;表示具有特定功能的或作为一个独立结构域一部分的相邻的二级结构的聚合体,它一般被称为功能模体或结构模体,相当于超二级结构。
和结构域一起组成了蛋白质的三级结构。
活性肽;具有活性的多肽称为活性肽,又称生物活性肽或生物活性多肽。
同源蛋白质:不同物种中具有相同或相似功能的蛋白质或具有明显序列同源性的蛋白质。
别构效应;又称为变构效应,是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性改变的现象。
分子病;分子病由于遗传上的原因而造成的蛋白质分子结构或合成量的异常所引起的疾病。
蛋白质变性作用;蛋白质分子受到某些物理、化学因素的影响时,导致内部氢键破坏,发生生物活性丧失,溶解度降低等性质改变,但是不涉及一级结构改变,而是蛋白质分子空间结构改变,这类变化称为蛋白质变性作用。
核酶;是具有催化功能的RNA分子活化分子;在相同温度下,分子的能量并不完全相同,有些分子的能量高于分子的平均能量,称为活化分子。
活化能;分子从常态转变为容易发生化学反应的活跃状态所需要的能量称为活化能。
转换数;代表单位时间内每个酶分子将底物分子转换成产物的最大值反馈抑制:是指最终产物抑制作用,即在合成过程中有生物合成途径的终点产物对该途径的酶的活性调节,所引起的抑制作用。
辅酶;是一类可以将化学基团从一个酶转移到另一个酶上的有机小分子,与酶较为松散地结合,对于特定酶的活性发挥是必要的。
辅因子;是指与酶(酵素)结合且在催化反应中必要的非蛋白质化合物。
单体酶;仅有一个活性中心的多肽链构成的酶,一般是由一条多肽链组成寡聚酶;由2个或多个相同或不相同亚基组成的酶,称为寡聚酶。
多酶复合体;多种酶靠非共价键相互嵌合催化连续反应的体系,称为多酶复合体酶活力;也称为酶活性,是指酶催化一定化学反应的能力。
酶活力的大小可用在一定条件下,酶催化某一化学反应的速度来表示固定化酶;酶本身还是溶于水的,只是是用物理的或化学的方法使酶与水不溶性大分子载体结合或把酶包埋在其中,使得酶在水中溶性凝胶或半透膜的微囊体从而导致流动性降低。
酶反应动力学;主要研究酶催化的反应速度以及影响反应速度的各种因素。
乒乓反应:在该反应中,酶结合一个底物并释放一个产物,留下一个取代酶,然后该取代酶再结合第二个底物和释放出第二个产物,最后酶恢复到它的起始状态。
失活作用;是指利用反义技术,使非正常基因或有害基因不表达或降低表达活性,以达到治疗某些特定疾病的目的。
不可逆抑制;抑制剂与酶的必需基团或活性部位以共价键结合而引起酶活力丧失,不能用透析、超滤或凝胶过滤等物理方法去除抑制剂而使酶活力恢复的作用。
可逆抑制;抑制剂与酶以非共价键可逆结合而引起酶活力的降低或丧失,用物理方法除去抑制剂后可使酶活力恢复的作用。
激活剂;凡是能提高酶活性的物质都被称为激活剂。
亲和标记:指对酶的活性部位、受体的结合位点进行特异标记的方法。
别构调节;酶分子的非催化部位与某些化合物可逆地非共价结合后发生构象的改变,进而改变酶活性状态,称为酶的别构调节。
多功能酶;酶分子中存在多种催化活性部位的酶称为多功能酶或串联酶(tandem enzyme)。
调节部位;在酶分子催化部位外,能结合调节物而影响酶活性的部位。
诱导酶;诱导酶是在环境中有诱导物存在时,微生物会因诱导物存在而产生一种酶就是诱导酶,诱导酶的合成除取决于环境中诱导物外,还受基因控制即受内因和外因共同控制。
核苷;含氮碱基与糖组分缩合成的糖苷叫核苷。
核苷酸,一类由嘌呤碱或嘧啶碱、核糖或脱氧核糖以及磷酸三种物质组成的化合物。
增色效应;是指因高分子结构的改变,而使摩尔吸光系数增大的现象,亦称高色效应。
减色效应;生物化学减色效应,在生物化学中,是指:若变性DNA复性形成双螺旋结构后,其260nm紫外吸收会降低,这种现象叫减色效应。
核酸内切酶;在核酸水解酶中,为可水解分子链内部磷酸二酯键生成寡核苷酸的酶,与核酸外切酶相对应。
限制性核酸内切酶;是可以识别DNA的特异序列,并在识别位点或其周围切割双链DNA 的一类内切酶,简称限制酶。
发夹结构:RNA是单链线形分子,只有局部区域为双链结构hnRNA;在真核生物中,最初转录生成的RNA称为不均一核RNA(heterogeneous nuclear RNA,hnRNA)分子杂交;不同的DNA 片段之间,DNA 片段与RNA 片段之间,如果彼此间的核苷酸排列顺序互补也可以复性,形成新的双螺旋结构。
这种按照互补碱基配对而使不完全互补的两条多核苷酸相互结合的过程称为分子杂交。
核酸杂交:互补的核苷酸序列(DNA与DNA、DNA与RNA、RNA与RNA等)通过Watson-Crick碱基配对形成非共价键,从而形成稳定的同源或异源双链分子的过程,称为核酸分子杂交技术,又称核酸杂交。
卫星DNA(satelliteDNA)是一类高度重复序列DNA。
在介质氯化铯中作密度梯度离心(离心速度可以高达每分钟几万转)时,DNA分子将按其大小分布在离心管内不同密度的氯化铯介质中,小的分子处于上层,大的分子处于下层。
从离心管外看,不同层面的DNA形成了不同的条带。
根据荧光强度的分析,可以看到在一条主带以外还有一个或多个小的卫星带。
这些在卫星带中的DNA即被称为卫星DNA。
限制酶图谱(restriction map):同一DNA用不同的限制酶进行切割,从而获得各种限制酶的切割位点,由此建立的位点图谱有助于对DNA的结构进行分析。
激素;由正常机体某些组织产生,然后体液循环运输到机体其他组织,发挥特殊生理作用的一类化学物质。
受体;是一类存在于胞膜或胞内的,能与细胞外专一信号分子结合进而激活细胞内一系列生物化学反应,使细胞对外界刺激产生相应的效应的特殊蛋白质。
第二信使;能将细胞表面受体接受的细胞外信号转换为细胞内信号的物质称为第二信使,而将细胞外的信号称为第一信使级联系统;在连锁代谢反应中一个酶被激活后,连接的发生其他酶被激活,导致原始调节信号的逐级放大,这样的连锁代谢反应系统称为级联系统。
G蛋白;是指能与配体结合,具有GTP水解酶活性的一类信号转导蛋白受体酪氨酸激酶;RTKs是最大的一类酶联受体,它既是受体,又是酶,能够同配体结合,并将靶蛋白的酪氨酸残基磷酸化。
所有的RTKs都是由三个部分组成的:含有配体结合位点的细胞外结构域、单次跨膜的疏水α螺旋区、含有酪氨酸蛋白激酶活性的细胞内结构域。
激素效应元件:指内固醇甲状腺素等激素受体结合的一段短的DNA序列(12~20bp)。
载脂蛋白;血浆脂蛋白中的蛋白质部分称为载脂蛋白,主要分A、B、C、D、E五类,主要在肝(部分在小肠)合成,载脂蛋白是构成血浆脂蛋白的重要组分。
基本功能是运载脂类物质及稳定脂蛋白的结构,某些载脂蛋白还有激活脂蛋白代谢酶、识别受体等功能。
生物膜:镶嵌有蛋白质和糖类(统称糖蛋白)的磷脂双分子层,起着划分和分隔细胞和细胞器作用生物膜,也是与许多能量转化和细胞内通讯有关的重要部位,同时,生物膜上还有大量的酶结合位点。
细胞、细胞器和其环境接界的所有膜结构的总称。
细胞膜(cell membrane)又称细胞质膜(plasma membrane)。
细胞表面的一层薄膜。
有时称为细胞外膜或原生质膜。
细胞膜的化学组成基本相同,主要由脂类、蛋白质和糖类组成。
脂质体;根基磷脂能够在水溶液中具有形成膜的趋势而人工制成的磷脂包围的球体。
外在膜蛋白;靠离子键或其他较弱的键与膜表面的膜蛋白分子或膜脂分子结合的膜蛋白。
改变溶液的离子强度甚至提高温度就可以从膜上分离下来,但膜结构并不被破坏。
内在膜蛋白;(又称整合蛋白)、跨膜蛋白,部分或全部镶嵌在细胞膜中或内外两侧,以非极性氨基酸与脂双分子层的非极性疏水区相互作用而结合在质膜上。
液态镶嵌模型;该模型把生物膜看成是嵌有球形蛋白质的脂类二维排列的液态体。
膜是一种动态的、不对称的具有流动性特点的结构。
脂双层构成膜的连续主体,既具有固体分子排列的有序性,又具有液体的流动性,球形蛋白质分子以各种形式及脂双分子层相结合。
这个模型主要强了膜的动态性和球形蛋白质与脂双分子层的镶嵌关系。
主动运输;是指物质逆浓度梯度,在载体的协助下,在能量的作用下运进或运出细胞的过程。
钠钾汞;Na+,K+—A TP酶是镶嵌在细胞质膜脂质双分子层中的一种蛋白质,具有运载和酶的活性,它们催化A TP水解供能,驱动位于细胞膜两侧的Na+、K+对向运输;维持细胞膜两侧的膜电位,调节细胞渗透压,为营养物质吸收提供动力,并在神经和肌肉细胞的冲动传导等方面起着重要作用。