数学归纳法完整课件

合集下载

数学归纳法完整版课件

数学归纳法完整版课件

所以当n=k+1时,结论也成立. 综上所述,对一切 n∈N*,0<a2n<14<a2n-1≤1 都成立.
思维升华
(1)利用数学归纳法可以探索与正整数n有关的未知问题、存在性问题, 其基本模式是“归纳—猜想—证明”. (2)“归纳—猜想—证明”的基本步骤是“试验—归纳—猜想—证明”. 高中阶段与数列结合的问题是最常见的问题.
微思考
1.用数学归纳法证题时,证明当n取第一个值n0(n0∈N*)时命题成立.因为 n0∈N*,所以n0=1.这种说法对吗? 提示 不对,n0也可能是2,3,4,….如用数学归纳法证明多边形内角 和为(n-2)π时,初始值n0=3. 2.数学归纳法的第一个步骤可以省略吗? 提示 不可以,数学归纳法的两个步骤相辅相成,缺一不可.

存在
c=14使得
1 a2n<4<a2n-1.
因为 f(x)=4x+4 15,当 x∈(0,1]时,f(x)单调递减,
所以149≤f(x)<145.
因为a1=1,
所以由 an+1=4an+4 15,得 a2=149,a3=37061,且 0<an≤1.
下面用数学归纳法证明 0<a2n<14<a2n-1≤1.
当 n=1 时,因为 0<a2=149<14<a1=1≤1,
所以当n=1时结论成立. 假设当 n=k(k≥1,k∈N*)时结论成立,即 0<a2k<14<a2k-1≤1. 由于 f(x)=4x+4 15为(0,1]上的减函数, 所以 f(0)>f(a2k)>f 14>f(a2k-1)≥f(1), 从而145>a2k+1>14>a2k≥149, 因此 f 145<f(a2k+1)<f 14<f(a2k)≤f 149, 即 0<f 145<a2k+2<14<a2k+1≤f 149≤1,

数学归纳法课件

数学归纳法课件
更深入的学习和研究
通过对数学归纳法的学习和研究,我们可以更深入地理解数学思维和逻辑推理的本质,探 索更多的数学问题和证明方法。
与其他学科的交叉应用
数学归纳法不仅在数学领域有广泛的应用,还可以与其他学科如计算机科学、物理学等进 行交叉应用,为解决实际问题提供新的思路和方法。
个人未来的学习和研究计划
在未来的学习和研究中,我将继续深入学习和研究数学归纳法等数学思维和逻辑推理方法 ,探索更多的应用领域和实际问题,提高自己的学术水平和解决问题的能力。
数学归纳法的扩展概念
归纳法的基本步骤
设置初始条件,递归推理,以及 通过递归关系得出结论
归纳法的局限性
需要注意初始条件是否满足,以 及递归关系是否正确
数学归纳法的证明技巧
选择合适的归纳变量
确保所选择的变量在递归过程 中保持不变,并且能够代表整
个数学命题
确定归纳基础
通常是最小的自然数或者一个 已知的数学事实,作为递归推 理的基础
数学归纳法的难点在于如何证明 归纳步骤,即如何从命题对n成 立推导出命题对n+1也成立。需 要仔细考虑和证明每一步的逻辑
关系。
数学归纳法的意义
数学归纳法是数学思维和逻辑推 理的重要体现,它不仅可以帮助 我们解决各种数学问题,还可以 培养我们的逻辑思维能力和抽象
思维能力。
对未来学习和研究的展望和规划
02
数学归纳法的基本原理
数学归纳法的定义
数学归纳法是一种证明无限等式或不等式的数学方法,它基 于一个初始条件和递推关系,通过有限个步骤来推断无限个 结论。
数学归纳法包括两个步骤:基础步骤和归纳步骤。基础步骤 是证明当n取第一个值时,等式或不等式成立;归纳步骤是证 明如果当n取某一正整数k时等式或不等式成立,那么当n取 k+1时,等式或不等式也成立。

数学归纳法完整PPT课件

数学归纳法完整PPT课件
n=k+1时应增加的式子; 3、第二步中证明n=k+1命题成立是全局的主体,主要注意两个
“凑”:一是“凑”n=k时的形式(这样才好利用归纳假设),二 是“凑”目标式。
.
11
课后作业
1、阅读作业:通读教材 2、书面作业:习题2.3A组第1,2题 3、弹性作业:简析我国古代烽火传递军情的
合理性 (可以上网查阅)
问题 2:数列{an}的通项公式为an=(n2-5n+5)2,计算得 a1=1,a2=1, a3 =1, 于是猜出数列{an}的通项公式为:an=1。
问题3:三角形的内角和为180°,四边形的内角和为2•180°,五边形的内 角和为3•180°,于是有:凸n边形的内角和为(n-2) • 180°。
问题4:这是一盒白色粉笔,怎么证明他们是白的?一一检查 。
归纳基础;第二步是归纳假设,是推理的依据,是判断命题的正确性能
否由特殊推广到一般,它反映了无限递推关系,其中 “假设n=k时成立”
称为归纳假设(注意是“假设”,而不是确认命题成立)。如果没有第一步,
第二步就没有了意义;如果没有第二步,就成了不完全归纳,结论就没 有可靠性;第三步是总体结论,也不可少。
.
12
.
13
则 当n=k+1时,ak+1 = ak + d
= =
a
a
1 1
+(k-1)d+d +[(k+1)-1]d凑结论
∴当n=k+1时,结论也成立。
由(1)和(2)知,等式对于任何n∈ N *都成立。
.
7
注意
由以上可知,用数学归纳法需注意:
1、三个步骤却一不可:第一步是是奠基步骤,是命题论证的基础,称之为

数学归纳法PPT教学课件

数学归纳法PPT教学课件

数学归纳法的未来发展
不断完善理论
随着数学理论的发展,数学归 纳法的理论和应用将不断完善
和丰富。
应用领域拓展
随着科技的发展,数学归纳法的 应用领域将不断拓展,应用于更 多领域。
创新教学方法
随着教育理论的发展,将不断创新 教学方法,提高数学归纳法的教学 效果。
在实际生活中的应用
数据分析
在商业、金融等领域,数学归 纳法被广泛应用于数据分析, 帮助企业做出正确的决策。
组合数学的应用
总结词
数学归纳法在组合数学中的应用非常广泛,通过验证 n=1时结论是否成立,再假设n=k时结论成立,推理出 n=k+1时结论也成立,从而得出所有正整数n的结论都 成立。
详细描述
数学归纳法在组合数学中的应用可以通过以下步骤来体 现:首先,验证n=1时结论是否成立,通常取1作为起 始值;接着,假设n=k时结论成立,即已经得出前k个 组合数的结论;最后,推理出n=k+1时结论也成立, 即通过前k个组合数的结论推导出前k+1个组合数的结 论,从而得出所有正整数n的结论都成立。这种方法通 常用于求解组合数的性质和公式,如C(n,k)、P(n,k)等 。
总结与展望
数学归纳法的优缺点
• 优点总结 • 直观易懂:数学归纳法是一种直观易懂的方法,易于学生理解和掌握。 • 严谨性强:数学归纳法是一种严谨的证明方法,可以有效地避免证明过程中的漏洞和错误。 • 应用广泛:数学归纳法在数学、物理、工程等领域都有广泛的应用。 • 缺点总结 • 使用条件限制:数学归纳法在使用上存在一定的限制,不适用于所有问题。 • 理解难度大:对于初学者来说,数学归纳法的理解难度较大,需要花费更多的时间和精力去掌握。 • 容易出错:在应用数学归纳法时,如果处理不当,容易出现错误和漏洞。

《数学归纳法》课件PPT

《数学归纳法》课件PPT

探究?
归纳奠基必不可少
1. 判断下列证明方法对不对?
假设n=k时,等式2+4+6+…+2n = n2+n+1成立,
就是 2+4+6+…+2k = k2+k+1. 那么n=k+1时,
2+4+6+…+2k+2(k+1)=k2+k+1+2(k+1)
等式也成立.
=(k+1)2+(k+1)+1
故,等式 2+4+6+…+2n=n2+n+1对任意的 n N * 都成立.
(1)在第一步中的初始值n0不一定从1取起,证明时应 根据具体情况而定.
(2)在证明递推步骤时,必须使用归纳假设. 分析“n=k+1时”命题是什么,并找出与“n=k” 时命题形式的差别, 弄清左端应增加的项.
(3)两个步骤、一个结论缺一不可,否则结论不能成立.
递推基础不可少, 归纳假设要用到, 结论写明莫忘掉.
12 23
k(k 1) k 1
则n k 1时,
111 1
1
12 23 34
k(k 1) (k 1)(k 2)
k
1
k 1 (k 1)(k 2)
k 1 k 1 k 2 (k 1) 1
即n)知,对一切正整数 n, 等式均成立.
练习: 1.用数学归纳法证明
数学归纳法
第一步 第n0块骨牌倒下 证明n=n0时命题成立
第二步
第k块倒下时, 第K+1块也会倒下
假设n=k(k≥n0)时命题 成立,证明n=k+1时 命题也成立

课件2 :2.3 数学归纳法

课件2 :2.3 数学归纳法
1 +
猜想其通项公式
1
a1
1
1
a2
2
1
an
n
1
a3
3

不完全归纳法
归纳法 :由一系列有限的特殊事例得出一般结论的推理方法
归纳法分为
完全归纳法

不完全归纳法
考察全体对象,得到一
般结论的推理方法
考察部分对象,得到一
般结论的推理方法
结论一定可靠
结论不一定可靠
问题情境二
如何解决不完全归纳法存在的问题呢?
即当 = + 1时等式也成立
由(1)和(2)可知等式对任何 ∈ ∗ 都成立
课堂练习:
1.用数学归纳法证明等式
+ + + ⋯ ( + ) = ( + )( + )时,
当=时,左边所得项是 1+2+3

当=时,左边所得项是1+2+3+4+5 ;
1−+2
+ + + ⋯ … + ( − ) = ,
当 = + 时:
+ + + ⋯ … + ( − ) + [( + ) − ] = + + = ( + ),
所以当 = + 时等式也成立。
由①和②可知,对n∈∗ ,原等式都成立。
(3)由(1)、(2)得出结论
写明结论
才算完整
用上假设
递推才真
2
+1
2.用数学归纳法证明 , ≠ 1 1 + + +⋯ +

4.1数学归纳法课件人教新课标2

4.1数学归纳法课件人教新课标2

[例 3] 平面内有 n 条直线,其中任何两条不平行,任 何三条不共点,求证:这 n 条直线把平面分割成12(n2+n+2) 个区域.
[思路点拨] 用数学归纳法进行证明,关键是考虑:k 条直线将平面分成的部分数与 k+1 条直线将平面分成的部 分数之间的关系,利用该关系可以实施从假设到 n=k+1 时 的证明.
3.用数学归纳法证明:(3n+1)7n-1(n∈N+)能被9整除. 证明:①当n=1时,4×7-1=27能被9整除命题成立. ②假设n=k时命题成立,即(3k+1)·7k-1能被9整除, 当n=k+1时, [(3k+3)+1]·7k+1-1=[3k+1+3]·7·7k-1= 7·(3k+1)·7k-1+21·7k =[(3k+1)·7k-1]+18k·7k+6·7k+21·7k =[(3k+1)·7k-1]+18k·7k+27·7k,
=(k+1 1+k+1 2+…+21k)+2k1+1-2k1+2 =(k+1 2+…+21k+2k1+1)+(k+1 1-2k1+2) =k+1 2+…+21k+2k1+1+2k1+2=右边, 所以,n=k+1 时等式成立. 由①②知,等式对任意 n∈N+都成立.
[例2] 求证:x2n-y2n(n∈N+)能被x+y整除. [思路点拨] 本题是与正整数有关的命题,直接分解出 因式(x+y)有困难,故可考虑用数学归纳法证明. [证明] (1)当n=1时,x2-y2=(x+y)(x-y)能被x+y整 除. (2)假设n=k(k≥1,k∈N+)时,x2k-y2k能被x+y整除, 那么当n=k+1时,x2k+2-y2k+2 =x2·x2k-y2·y2k-x2y2k+x2y2k
=x2(x2k-y2k)+y2k(x2-y2) ∵x2k-y2k与x2-y2都能被x+y整除, ∴x2(x2k-y2k)+y2k(x2-y2)能被x+y整除. 即n=k+1时,x2k+2-y2k+2能被x+y整除. 由(1)(2)可知,对任意正整数n命题均成立.

数学归纳法 课件

数学归纳法  课件

数学归纳法
1.数学归纳法的定义
一般地,证明一个与正整数 n 有关的命题,可按下列步骤进行
只要完成这两个步骤,就可以断定命题对从 n0 开始的所 有正整数 n 都成立.这种证明方法叫做数学归纳法.
2.数学归纳法的框图表示
[点睛] 数学归纳法证题的三个关键点 (1)验证是基础 数学归纳法的原理表明:第一个步骤是要找一个数 n0,这个 n0, 就是我们要证明的命题对象对应的最小自然数,这个自然数并不一定 都是“1”,因此“找准起点,奠基要稳”是第一个关键点. (2)递推是关键 数学归纳法的实质在于递推,所以从“k”到“k+1”的过程中, 要正确分析式子项数的变化.关键是弄清等式两边的构成规律,弄清 由 n=k 到 n=k+1 时,等式的两边会增加多少项,增加怎样的项.
(3)利用假设是核心 在第二步证明 n=k+1 成立时,一定要利用归纳假设, 即必须把归纳假设“n=k 时命题成立”作为条件来导出 “n=k+1”,在书写 f(k+1)时,一定要把包含 f(k)的式子 写出来,尤其是 f(k)中的最后一项,这是数学归纳法的核 心.不用归纳假设的证明就不是数学归纳法.
用数学归纳法证明不等式
[典例] 求证:n+1 1+n+1 2+n+1 3+…+31n>56(n≥2,n∈N*) [证明] (1)当 n=2 时,13+14+15+16>56,不等式成立. (2)假设当 n=k(k≥2,k∈N*)时,命题成立. 即k+1 1+k+1 2+…+31k>56.
则当 n=k+1 时,k+11+1+k+11+2+…+31k+3k1+1+
1 3k+2

1 3k+1

1 k+1

1 k+2



1 3k

4-4数学归纳法 课件【共44张PPT】

4-4数学归纳法 课件【共44张PPT】

检测篇·达标小练
1.一个关于自然数 n 的命题,如果证得当 n=1 时命题成立,并在假设当 n= k(k≥1 且 k∈N*)时命题成立的基础上,证明了当 n=k+2 时命题成立,那么综合上 述,对于( B )
A.一切正整数命题成立 B.一切正奇数命题成立 C.一切正偶数命题成立 D.以上都不对
解析:本题证明了当 n=1,3,5,7,…时,命题成立,即命题对一切正奇数成立.A, C,D 不正确.故选 B.
检测篇·达标小练
课时作业
展视野•思维升华
课前篇·自主预习
知识点 数学归纳法
一般地,证明一个与正整数 n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当 n=n0 (n0∈N*)时命题成立; (2)(归纳递推)以“当 n=k(k∈N*,k≥n0) 时命题成立”为条件,推出当 “ n=k+1 时命题也成立”. 只要完成了这两个步骤,就可以断定命题对从 n0 开始的所有正整数 n 都成立, 这种证明方法称为数学归纳法.
=1 时,等式左边是 1+a+a2
.
解析:根据数学归纳法的步骤可知,当 n=1 时,等式的左边应为 1+a+a2.
3.用数学归纳法证明:12-22+32-42+…+(2n-1)2-(2n)2=-n(2n+1).
证明:(1)当 n=1 时,左边=12-22=-3, 右边=-1×(2×1+1)=-3,等式成立. (2)假设当 n=k(k≥1,k∈N+)时,等式成立,即 12-22+32-42+…+(2k-1)2-(2k)2=-k(2k+1). 当 n=k+1 时,12-22+32-42+…+(2k-1)2-(2k)2+(2k+1)2-(2k+2)2=-k(2k +1)+(2k+1)2-[2(k+1)]2=-k(2k+1)-(4k+3)=-(2k2+5k+3)=-(k+1)[2(k+1) +1],所以 n=k+1 时等式也成立, 根据(1)和(2)可知,等式对任何 n∈N+都成立.

数学归纳法PPT课件

数学归纳法PPT课件

归纳步骤的正确性
归纳步骤必须严谨、准确, 确保从$n=k$到 $n=k+1$的推理过程无误, 才能保证数学归纳法的正 确性。
03 数学归纳法的证明方法
直接证明法
总结词
通过直接验证n=1和归纳假设验证n=k+1,逐步推导归纳步骤。
详细描述
在直接证明法中,首先验证基础步骤(n=1),然后提出归纳假设,即假设对 于某个自然数k,结论成立。接着利用归纳假设推导n=k+1时的结论,从而完成 归纳步骤。
归纳基础的作用
归纳基础的作用是提供一个初始 的判断依据,为后续的归纳步骤 提供支撑和依据。
归纳步骤
01
02
03
归纳假设
归纳假设是数学归纳法的 核心,即在$n=k$时命题 成立的基础上,推导出 $n=k+1$时命题也成立。
归纳推理
在归纳假设的基础上,通 过逻辑推理和演绎,推导 出$n=k+1$时命题成立的 过程称为归纳推理。
反向证明法
总结词
通过证明结论的反面不成立,从而证明原结论成立。
详细描述
在反向证明法中,首先提出结论的反面,然后试图证明这个反面不成立。如果反 面不成立,那么原结论必然成立。反向证明法常常用于解决一些不易直接证明的 问题,通过反证发现矛盾,从而得出原结论的正确性。
04 数学归纳法的应用实例
数列求和
详细描述
数学归纳法的变种包括但不限于超数 学归纳法、双数学归纳法和反向数学 归纳法等。这些变种可以使得证明更 加简洁、直观和易于理解。
THANKS FOR WATCHING
感谢您的观看
详细描述
二项式定理的证明过程可以通过数学归纳 法进行推导。通过归纳法的应用,我们可 以逐步推导出二项式定理的各项展开式, 从而证明了二项式定理的正确性。

《数学归纳法》课件

《数学归纳法》课件
数学归纳法
REPORTING
• 数学归纳法简介 • 数学归纳法的原理 • 数学归纳法的应用实例 • 数学归纳法的注意事项 • 数学归纳法的扩展与深化
目录
PART 01
数学归纳法简介
REPORTING
数学归纳法的定义
数学归纳法是一种证明数列、组合数学等数学问题的方法,通过递推的方式,将 问题从n-1的情形推广到n的情形,从而完成对所有情形的证明。
详细描述
在应用数学归纳法时,首先需要验证初始条 件是否满足。初始条件通常是数学表达式在 某个特定值或某些特定值下的结果。验证初 始条件是为了确保递推的基础是正确的,从 而保证整个证明的正确性。
归纳递推步骤的正确性
总结词
确保归纳递推步骤的正确性是数学归纳法的 核心。
详细描述
归纳递推步骤是将问题从n个情况简化为n1个情况的推理过程。这个步骤必须正确无 误,否则整个证明就会失败。在验证归纳递 推步骤的正确性时,需要仔细检查每个步骤 的逻辑推理和数学运算,确保它们是正确的
归纳步骤
使用归纳假设来证明下一个 整数的结论,并逐步推导到 所有正整数。
PART 03
数学归纳法的应用实例
REPORTING
等差数列求和公式的证明
总结词
通过数学归纳法证明等差数列求和公式
详细描述
首先,验证基础步骤,当$n=1$时,公式成立。然后,假设当$n=k$时公式成立,推导当$n=k+1$时公式的成 立。最后,根据归纳法原理,得出结论:等差数列求和公式对所有正整数$n$都成立。
VS
详细描述
首先,验证基础步骤,当$n=1$时,公式 成立。然后,假设当$n=k$时公式成立, 推导当$n=k+1$时公式的成立。最后, 根据归纳法原理,得出结论:几何级数求 和公式对所有正整数$n$都成立。

《数学归纳法》课件ppt

《数学归纳法》课件ppt
= (k +1)[1+(2k +1)] = (k+1)2 ?为什么?
2
例:用数学归纳法证明
12 + 22 + 32 + + n2 = n(n +1)(2n +1) 6
注意 1. 用数学归纳法进行证明时,要分两个 步骤,两个步骤缺一不可.
2 (1)(归纳奠基)是递推的基础. 找准n0
(2)(归纳递推)是递推的依据
的值都是质数,提出猜想得到的.半个世 纪后,18世纪伟大的瑞士科学家欧拉
(Euler)发现 225 =41294 967 297=
6700417×641,从而否定了费马的推
测.没想到当n=5这一结论便不成立.
举例说明:
一个数列的通项公式是:
an= (n2-5n+5)2 请算出a1=1,a2= 1,a3=1 ,a4= 1
观 察 数 列{an },已 知a1
1, an1
an 1 an
,
二、数学归纳法的概念:
证明某些与自然数有关的数学题,可用下列方法
来证明它们的正确性:
(1)验证当n取第一个值n0(例如n0=1)时命题成立, (2)假设当n=k(kN* ,kn0 )时命题成立,
证明当n=k+1时命题也成立 完成这两步,就可以断定这个命题对从n0开始的所 有正整数n都成立。这种证明方法叫做数学归纳法。
{ 归纳法
完全归纳法 不完全归纳法
特点: 由特殊
一般
a2=a1+d a3=a1+2d a4…=a…1+3d
an=a1+(n-1)d
如何证明:1+3+5+…+(2n-1)=n2 (n∈N*)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2:已知数列{an },其通项公式为 an = 2n - 1 ,试猜想该 数列的前n和公式 s n ,并用数学归纳法证明你的结论。
解:(1)
证明:(1)当n=1时,左边=1,右边=1,等式成立。 (2)假设当n=k时等式成立,即1+3+5+…+(2k-1)= 则当n=k+1时,1+3+5…+(2k-1)+[2(k+1)-1] = k 2 + [2(k+1)-1] = (k + 1)2
数学归纳法
(一)
太康县第二高级中学 郭伟峰
引入
问题1:从前一个地主的孩子学写字,学过一二三后得出结论四就是四 横五就是五横。
问题 2:数列{an}的通项公式为an=(n2-5n+5)2,计算得 a1=1,a2=1,
a3 =1, 于是猜出数列{an}的通项公式为:an=1。
问题3:三角形的内角和为180°,四边形的内角和为2•180°,五边形 的内 角和为3•180°,于是有:凸n边形的内角和为(一,课本第95页练习1,2。 二,试着归纳本节课所学内容。
小结
1、用数学归纳法证明问题,三个步骤缺一不可;
2、注意证明等式时第一步中n=1时左右两边的形式,第二步中 n=k+1时应增加的式子;
3、第二步中证明n=k+1命题成立是全局的主体,主要注意两个 “凑”:一是“凑”n=k时的形式(这样才好利用归纳假设),二 是“凑”目标式。

新课
一、概念
1、归纳法: 对于某类事物,由它的一些特殊事例或其全部可能情况, 归纳出一般结论的推理方法,叫归纳法。
归纳法
{ 不完全归纳法
完全归纳法
❋用不完全归纳法得出的结论不一定正确,如问题1,2。 ❋用完全归纳法得出的结论可靠,可不便操作。 提出问题:如何找到一个科学有效的方法证明结论的 正确性呢?
问题4:这是一盒白色粉笔,怎么证明他们是白的?一一检查 。
请问:以上四个结论正确吗?为什么? 得出以上结论所用的方法有什么共同点和什么不同点 1、错; 2、错,a5=25≠1; 3、对; 4、对。
共同点:均用了归纳法得出结论;不同点:问题1、2、3是用的不完 全归纳法,问题4是用的完全归纳法。
注意
由以上可知,用数学归纳法需注意:
1、三个步骤却一不可:第一步是是奠基步骤,是命题论证的基础,称之为 归纳基础;第二步是归纳假设,是推理的依据,是判断命题的正确性能 否由特殊推广到一般,它反映了无限递推关系,其中 “假设n=k时成立” 称为归纳假设(注意是“假设”,而不是确认命题成立)。如果没有第一步, 第二步就没有了意义;如果没有第二步,就成了不完全归纳,结论就没 有可靠性;第三步是总体结论,也不可少。 2、在第二步的证明中必须用到前面的归纳假设,否则就不是数学归纳法了。 3、数学归纳法只适用于和正整数有关的命题。
实验演示,探索解题途径
在多米诺骨牌游戏中,要让这些骨牌全部倒下,必 须具备 哪些条件呢? (1)第一块骨牌倒下; (2)任意相邻的两块骨牌,前一块倒下一定导致后一 块倒下。

思考:
第一块不推倒行吗?从中间拿走几块行吗?
演示小节:可以看出条件(2)事实上给出了一个递推关系; 当第k块倒下时,相邻的第k+1块也会倒下。这样, 只要第一块倒下,其他所有的骨牌就能够相继倒下。
课后作业

1、阅读作业:通读教材 2、书面作业:习题2.3A组第1,2题 3、弹性作业:简析我国古代烽火传递军情的 合理性 (可以上网查阅)
二,数学归纳法原理:
我们知道,有一些命题是和正整数有关的,如果这个命题的情况 有无限种,那么我们不可能用完全归纳法逐一进行证明,而不完全归 纳法又不可靠,怎么办?
常采用下面的方法来证明他们的正确性 步骤:①验证n=n0时命题成立。(n0为n取的第一个值) ②假设n=k(k∈N ,k≥n0)时命题成立,证明n=k+1 时命题也成立。 ③根据①②得出命题成立。 这种证明方法叫做数学归纳法
数学归纳法用框图标表示就是
验证n=n0时 命题成立
若n=k(k≥n0)时命题成立, 证明n=k+1时命题也成立
命题对从n0开始所 有的正整数n都成立
应用
例1、例1如果{ an }是一个等差数列,那么对于 an = a1 + (n - 1)d 一切n∈N*都成立。用数学归纳法证明。
证明: (1)当n=1时,左边=a1 ,右边= a1+(1-1)d= a1 , 结 论成立。 (2)假设当n=k时结论成立, 即 ak + 1 = ak +(k-1)d ak + 1 = ak + d 则 当n=k+1时, = a1 +(k-1)d+d = a1 +[(k+1)-1]d凑结论 ∴当n=k+1时,结论也成立。 * 由(1)和(2)知,等式对于任何n∈ N 都成立。
sn = n , 问题转化为证明: 2 1+3+5+…+(2n+1)= n
(2)猜想
s1 = a1 = 1 s2 = s1 + a2 = 4 s3 = s2 + a3 = 4 + 5 = 9 , s4 = s3 + a4 = 9 + 7 = 16
2
k2
\ 当n=k+1时,等式也成立。
* 由(1)和(2)知,等式对任何 n Î N 都成立。
相关文档
最新文档