生化实验-血清醋酸纤维素膜电泳整理
血清蛋白醋酸纤维素薄膜电泳
血清蛋白醋酸纤维素薄膜电泳一、实验目的1. 掌握醋酸薄膜电泳的原理及操作。
2. 定量测定人血清中各种蛋白质的相对百分含量。
二、原理采用醋酸纤维薄膜为支持物的电泳方法, 叫做醋酸纤维素薄膜电泳。
醋酸纤维素, 是纤维素的羟基乙酰化所形成的纤维素醋酸酯。
将它溶于有机溶剂(如: 丙酮、氯仿、氯乙烯、乙酸乙酯等)后, 涂抹成均匀的薄膜则成为醋酸纤维素薄膜。
该膜具有均一的泡沫状的结构, 有强渗透性, 厚度约为120μm。
醋酸纤维素薄膜电泳是近年来推广的一种新技术。
它具有微量、快速、简便、分辨力高、对样品无拖尾和吸附现象等优点。
该技术已广泛应用于血清蛋白、糖蛋白、脂蛋白、结合球蛋白、同功酶的分离和测定等方面。
目前, 醋酸纤维薄膜电泳趋向于代替纸电泳。
三、操作方法一、仪器和薄膜的准备1. 醋酸纤维素薄膜的润湿的选择: 将薄膜小心地放入盛有缓冲液的培养皿内, 使它漂浮在液面。
若迅速润湿, 整条薄膜色泽深浅一致, 则表明薄膜质地均匀;若润湿时, 薄膜上出现深浅不一的条纹或斑点等, 则为薄厚不匀的薄膜。
实验中应选用质地均匀的薄膜。
因为, 纤维素薄膜的质量对电泳的结果影响很大。
例如, 膜厚薄不均可以造成区带歪扭不齐、各区带界限不情、背景脱色困难、实验结果难于重复等现象。
将选用的薄膜用镊子轻压, 使它全部浸入缓冲液内, 待膜完全浸透(约半小时)后取出, 夹在清洁的滤纸中间, 轻轻吸去多余的缓冲液, 同时分辨出光泽面和无光泽面。
2.制作“滤纸桥”:剪裁尽寸合适的滤纸条。
取双层附着在电泳槽的支架上, 使它的一端与支架的前沿对齐, 而另一端浸入电泳槽的缓冲液内。
然后, 用缓冲液将滤纸全部润湿并驱除气泡, 使滤纸紧贴在支架上, 即为“滤纸桥”。
按照同样的方法, 在另一个电泳槽的支架上制作相同的“滤纸桥”。
二、点样在薄膜无光泽的一面点样。
点样区距负极端1.5㎝处。
点样时, 先用血色素吸管将2~3微升的血清均匀地涂在点样器表面, 再用点样器“印”在薄膜的点样区内(见图4-1)。
血清蛋白质醋酸纤维素薄膜电泳实验结果讨论及注意事项
血清蛋白质醋酸纤维素薄膜电泳实验结果讨论及注意事项血清蛋白质醋酸纤维素薄膜电泳实验是一种常见的蛋白质分离和分析方法。
这种方法基于蛋白质在电场中的迁移速度差异,可以实现对蛋白质的定性和定量分析。
在进行这种实验时,需要注意一些实验操作步骤和技巧,以确保实验结果的准确性和可靠性。
实验步骤1.准备样品:从血清中提取要分析的蛋白质样品。
可使用丙酮、醋酸等溶液进行样品的处理和稀释。
2.制备凝胶:将醋酸纤维素膜在磁盘上进行切割,将膜放入电泳槽中,加入足够的电泳缓冲液。
3.电泳条件:确定好电泳槽内电泳缓冲液的pH值和离子浓度,根据蛋白质的性质确定最佳的电泳条件,如电场强度、电泳时间等。
4.上样:在预定位置上样,可使用微量注射器将样品滴于凝胶表面。
5.打开电源:连接电极,通电进行电泳。
电泳时间根据分析的需要进行调整。
6.固定凝胶:停止电泳后,将凝胶取出,固定和染色。
7.分析:在透明胶支架上对凝胶进行扫描,记录下蛋白质的电泳迁移图像。
实验结果讨论:1.蛋白质的分离:根据电泳上样区域蛋白质的迁移速率和位置,可以对样品中的蛋白质进行定性和定量分析。
根据蛋白质之间的迁移时间差异,可以推测出它们在电场中的相对电荷、分子大小和电泳迁移速率等信息。
2.蛋白质的鉴定:可以通过与已知蛋白质标准品的电泳迁移对照来鉴定样品中蛋白质的种类和含量。
也可以通过进一步的染色技术,如银染、荧光染色等,增强或显示蛋白质带的清晰度,从而更准确地分析样品中蛋白质的种类和富集。
3.实验重复性和稳定性:为了保证实验结果的可靠性,一般需要对实验进行多次重复操作,计算其平均值和标准差。
同时也需要控制实验条件的稳定性,包括电泳缓冲液的配制、电场强度的控制、电泳时间的准确计时等。
确保实验操作的一致性可以降低测定误差。
注意事项:1.实验操作:操作时需佩戴手套,避免样品受到外界污染,减少实验误差。
仔细熟悉实验步骤和操作要求,确保操作正确。
2.样品制备:样品提取和制备过程中需要严格控制温度、pH值和时间等因素,以保证样品质量的一致性。
血清蛋白质醋酸纤维薄膜电泳实验报告
血清蛋白质醋酸纤维薄膜电泳实验报告一、实验目的1.1.学习醋酸纤维薄膜电泳的基本原理和操作方法;1.2.了解电泳技术的一般原理;1.3.掌握电泳分离血清蛋白质及其定性定量的方法。
二、实验原理2.1.血清中各种蛋白质的等电点不同,一般都低于pH7.4。
它们在pH8.6的缓冲液中均解离带负电荷,在电场中向正极移动。
由于血清中各种蛋白质分子大小、形状及所带的电荷量不同,在醋酸纤维素薄膜上电泳的速度也不同。
因此可以将它们分离为清蛋白(Albumin)、α1-球蛋白、α2-球蛋白、β-球蛋白、γ-球蛋白5条区带。
2.2.①膜条经过氨基黑10B染色后显出清晰色带;②各色带蛋白质含量与染料结合量基本成正比;③可将各色带剪开,分别溶于碱性溶液中;④用分光光度法计算各种蛋白质的百分数。
三、材料与方法:3.1.实验材料:3.1.1.实验试剂:①样品:健康人血清(新鲜、无溶血);②巴比妥-巴比妥钠缓冲液(pH8.6,离子强度0.06mol/L);③氨基黑10B染色液;④漂洗液;⑤洗脱液:0.4mol/NaOH溶液。
3.1.2.实验器材:①V-1100分光光度计(×1);②恒温水浴箱(×1);③试管(×6)、试管架(×1);④1000μL 加样枪(×1)、加样枪架(×1);⑤醋酸纤维薄膜(2cm*8cm,厚度120μm);⑥培养皿(×5);⑦点样器或载玻片(×1);⑧平头镊子(×2);⑨剪刀(×1);⑩电泳槽(×1);⑪直流稳压电泳仪(×1)四、结果与讨论条 4.1.结果分析本次实验得到的图谱只能够清晰的看出清蛋白和γ-球蛋白的区带,其余无法区别。
原因可能如下:①醋酸纤维薄膜质量不足。
②薄膜过湿,样品扩散迅速,导致样品分离不成区带。
③点样太少,区带显色不明显。
④电泳时间不足。
⑤薄膜在缓冲液中浸泡的时间不足。
血清蛋白质醋酸纤维薄膜电泳实验报告
血清蛋白质醋酸纤维薄膜电泳实验报告实验原理1. 电泳的基本原理带电颗粒在电场中向着与其电性相反方向移动的现象称为电泳。
电泳时不同的带电粒子在同一电场中泳动速度不同。
带电颗粒 ( 球形分子 ) 在电场中的电泳速度 (V )从上式看出,带电颗粒在电场中的移动速度 (V ) 与颗粒带电荷量 (Q ) 以及电场强度 (E ) 成正比,与球形分子的大小 ( 半径为 r ) 及所在介质的粘度(η) 成反比。
因此 , 在同一电场、同一介质中进行电泳时,带不同电荷,不同大小的颗粒就可以通过电泳而被分离。
在实际操作中,为了不考虑不同电压对电泳速度的影响,我们常用迁移率( move rate,M )来表示带电颗粒的电泳特性,迁移率指带电颗粒在单位电场强度下的电泳速度,即可见,带电颗粒的净电荷越多,分子颗粒越小,在电场中的迁移率就越快;反之越慢。
但电泳速度和电泳迁移率是两个不同的概念,后者有利于不同电场强度下电泳结果的比较,各种带电颗粒在一定条件下测得的迁移率是一个常数。
2. 影响电泳的主要因素(1) 电泳介质pH 值的影响: 对于蛋白质和氨基酸等两性分子,电泳介质的pH 值影响蛋白质的电离情况,即可决定蛋白质的带电量 (Q ) 。
pH 值小于等电点,分子带正电荷,向负极泳动,如果 pH 大于等电点,分子带负电荷,向正极泳动。
pH 值偏离等电点越远,分子所带净电荷越多,其泳动速度越快。
当缓冲液 pH 等于其等电点时,分子处于等电状态,不移动。
由于血清蛋白质的等电点多在 pH4 ~ 6 之间,因此,分离血清蛋白常用 pH 8.6 的巴比妥缓冲液或三羟甲基氨基甲烷 (Tris) 缓冲液。
(2) 缓冲液的离子强度 : 离子强度低,电泳速度快,分离区带不易清晰;离子强度高,电泳速度慢,但区带分离清晰。
如离子强度过低,缓冲液的缓冲量小,不易维持 pH 的恒定;离子强度过高,则降低蛋白质的带电量 ( 压缩双电层 ) 使电泳速度减慢。
醋酸纤维素薄膜电泳实验报告
醋酸纤维素薄膜电泳实验报告引言:薄膜电泳是一种常用的分离和分析技术,它在生物医学、环境科学等领域得到广泛应用。
本实验旨在研究醋酸纤维素薄膜电泳的原理、操作步骤以及其在分离和分析中的应用。
一、醋酸纤维素薄膜电泳的原理醋酸纤维素薄膜电泳是利用醋酸纤维素薄膜作为分离介质,通过电泳电流的作用将待测物质分离出来的一种技术。
醋酸纤维素薄膜具有良好的电泳分离性能和化学稳定性,能够有效地分离样品中的离子或分子。
二、实验操作步骤1. 制备醋酸纤维素薄膜:将醋酸纤维素溶解于醋酸乙酯中,制备成一定浓度的醋酸纤维素溶液。
然后将溶液滴在玻璃基板上,待其自然干燥形成薄膜。
2. 准备电泳缓冲液:按照实验要求,配置适当浓度和pH值的电泳缓冲液。
3. 将待测样品加入电泳缓冲液中,并进行样品处理。
4. 将制备好的醋酸纤维素薄膜放置在电泳槽中,注入电泳缓冲液。
5. 将带电样品加入电泳槽中,通过施加电场,使样品在醋酸纤维素薄膜上进行电泳分离。
6. 根据实验要求,确定分离时间,停止电泳,取出醋酸纤维素薄膜。
7. 对分离的样品进行染色或检测,得到分离结果。
三、醋酸纤维素薄膜电泳的应用醋酸纤维素薄膜电泳在生物医学、环境科学等领域具有广泛的应用价值。
1. 生物医学应用:醋酸纤维素薄膜电泳可用于分离和检测生物样品中的蛋白质、核酸等生物大分子,对于研究基因表达、疾病诊断等具有重要意义。
2. 环境科学应用:醋酸纤维素薄膜电泳可用于水质和大气污染物的分析,能够对污染物进行快速、高效的分离和测定,为环境监测和治理提供了有效手段。
3. 食品安全应用:醋酸纤维素薄膜电泳可用于食品中有害物质的检测和分离,如农药残留、重金属等,为食品安全保障提供了技术支持。
结论:醋酸纤维素薄膜电泳是一种重要的分离和分析技术,具有广泛的应用前景。
本实验通过制备醋酸纤维素薄膜,利用电泳原理对待测样品进行分离和分析,研究了醋酸纤维素薄膜电泳的操作步骤及应用。
该技术在生物医学、环境科学和食品安全等领域具有重要意义,能够为相关领域的研究和实践提供有效的技术支持。
生化试验教材实验二:血清蛋白质醋酸纤维素薄膜电泳
实验误差分析和注意事项
误差来源
实验误差可能来源于电泳操作、染色操作、读数等方面。
注意事项
实验过程中应注意保持操作规范,避免交叉污染,同时注意观察实验现象,及 时处理异常情况。
05 实验结论
总结实验结果
实验结果显示,血清蛋白质醋酸纤维素薄膜电泳可以将血清蛋 白分为白蛋白、α1球蛋白、α2球蛋白、β球蛋白和γ球蛋白等区 带,分离效果良好。
α1球蛋白增加常见于慢性肝炎、 肝硬化或肝癌等疾病。
β球蛋白增加
β球蛋白增加可能与急性感染、 组织损伤或免疫系统疾病等有 关。
白蛋白减少
白蛋白减少可能提示肝功能异 常、营养不良或肾病综合征等。
α2球蛋白增加
α2球蛋白增加可能提示骨髓瘤、 巨球蛋白血症或妊娠等。
γ球蛋白增加
γ球蛋白增加常见于慢性肝炎、 肝硬化或自身免疫性疾病等。
和疾病状态。
通过醋酸纤维素薄膜电泳分离血 清蛋白质,可以对不同蛋白质成 分进行分析和鉴定,有助于临床
诊断和治疗。
02 实验原理
血清蛋白质的组成和性质
血清蛋白质是由多种蛋白质组成的混合物,包括白蛋白、α1-球蛋白、α2-球蛋白、 β-球蛋白和γ-球蛋白等。这些蛋白质具有不同的电荷和分子量,是电泳分离的基础。
通过实验,我们观察到了不同蛋白质的迁移率和分布情况, 为后续的蛋白质分析和鉴定提供了基础数据。
实验结论与实际应用的联系
本实验所采用的醋酸纤维素薄膜电泳技术在实际应用中具 有广泛的应用价值,例如在临床医学中用于检测和诊断某 些疾病,如肝病、肾病等。
通过本实验,我们了解了醋酸纤维素薄膜电泳的基本原理 和操作方法,为今后在相关领域的研究和应用奠定了基础 。
03 实验步骤
实验一 血清蛋白质醋酸纤维素薄膜电泳(共享)
实验一血清蛋白质醋酸纤维素薄膜电泳(共享)一、实验目的本实验旨在掌握醋酸纤维素薄膜电泳操作的技能,通过血清蛋白质醋酸纤维素薄膜电泳分析,了解蛋白质电泳分析中常用的方法和技术,并且能够初步理解血清蛋白质电泳图谱的含义和影响因素。
二、实验原理1. 蛋白质分离原理蛋白质分离是利用蛋白质之间在电场中的运动迁移率的不同分离的。
蛋白质在电场中的运动迁移率取决于蛋白质分子的大小、形状、电荷性质等的不同。
2. 醋酸纤维素薄膜电泳原理醋酸纤维素薄膜电泳是一种以醋酸纤维素膜为电泳区间的蛋白质电泳方法。
其原理为,蛋白质在正常向电场中发生运动,随着蛋白质运动迁移,逐渐进入膜孔中,受到膜孔的限制,蛋白质停止迁移。
大分子的蛋白质分子无法进入膜孔,小分子的蛋白质可以进入膜孔,分子大小的差异导致了蛋白质的分离。
醋酸纤维素膜孔的大小通常小于3纳米,蛋白质要进入膜孔需要满足一定的条件,如形状、电荷、大小等,因此通过醋酸纤维素膜孔的筛选效果,可以将蛋白质分离出不同性质和大小的蛋白质组分。
三、实验步骤1. 操作前准备:① 气泡清除:取适量蒸馏水,通入空气,将水搅动形成气泡,并将其排出,重复多次,以去除气泡。
② 涂膜:取新的醋酸纤维素膜,利用毛刷刷上适量真空脱泡机中的真空润湿液,边刷边使薄膜平铺,直至全部涂膜结束。
2. 样品制备① 取0.5 mL 的实验样品,放入1.5 mL 的离心管中,室温下放置5 min,使蛋白质沉淀和分散。
② 在超净工作台或洁净室内操作,将样品香磨匀,取样板,向上转移液体吸头轻轻吸取一下,将液体加入样品槽中。
3. 电泳操作① 将准备好的醋酸纤维素膜,贴在电泳仪的隔板上,并将隔板安装在电泳槽内。
② 将电泳槽中的电泳缓冲液(TGE)加热并耗尽气泡之后,轻轻将样品槽放入电泳槽中,注意不能与电泳膜接触,最后慢慢加入样品针头的样品。
③ 大致运行5-10min 后,可观察到样品在膜上积累。
④ 电泳完成后,将电泳槽内的醋酸纤维素膜取出,将其在甲醇以及蒸馏水中洗涤3次,最后在蒸馏水中洗涤一次。
血清蛋白质醋酸纤维素薄膜电泳实验报告
血清蛋白质醋酸纤维素薄膜电泳实验报告
标题:血清蛋白质醋酸纤维素薄膜电泳
一、实验目的:
1.掌握醋酸纤维素薄膜电泳的原理和方法。
2.了解血清蛋白质的组成和分布。
二、实验原理:
醋酸纤维素薄膜电泳是一种常用的分离和鉴定蛋白质的方法。
其原理基于不同蛋白质分子在电场中的迁移率不同,从而实现对蛋白质的分离。
这种电泳方法具有快速、简便、分辨率高等优点。
三、实验步骤:
1.准备试剂和器材:醋酸纤维素薄膜、电极缓冲液、血清样
品、水浴锅、电泳仪、计时器、移液管、剪刀、镊子等。
2.加样:将适量血清样品用移液管加到醋酸纤维素薄膜上,
注意不要形成气泡。
3.电泳:将加好样的醋酸纤维素薄膜放入电泳仪中,接通电
源,开始电泳。
记录电泳时间和电流强度。
4.染色:电泳结束后,将醋酸纤维素薄膜取出,放入染色液
中染色。
5.观察和拍照:观察染色后的醋酸纤维素薄膜,记录各蛋白
带的颜色和位置。
用相机拍摄结果。
四、实验结果:
五、实验结论:
通过本次实验,我们成功地分离了血清中的各种蛋白质,并观察到了它们在醋酸纤维素薄膜上的分布情况。
实验结果表明,血清中含有白蛋白、α1-球蛋白、α2-球蛋白、β-球蛋白和γ-球蛋白等多种蛋白质。
这种方法有助于我们进一步了解血清蛋白质的组成和分布,为临床诊断和治疗提供参考。
同时,本实验也锻炼了我们实际操作的能力和对醋酸纤维素薄膜电泳原理的理解。
实验四血清蛋白的醋酸纤维薄膜电泳
• 4. 染色
取出纤维薄膜——放于培养皿染色液中染 色10min.
• 5. 漂洗
取出纤维薄膜——放在漂洗液中漂洗数 次——漂洗到可见色带清晰的电泳图谱。
• 6. 定量测定
• 2 点样:
• 取出2块载玻片——分别滴一滴血清蛋 白A和血清蛋白B——然后用盖玻片的平边 取样(注意均匀)——然后轻轻的在纤维 薄膜的铅笔横线上点样(注意要轻)
• 3 电泳:
• 在电泳槽中搭建好滤纸桥——倒入缓冲 液(注意两边液面高度一致)——将纤维 薄膜架于桥上(点样端靠近负极,点样面 朝下)——接好导线——调节电泳仪参 数——电泳30min
• 醋酸纤维薄膜电泳是用醋酸纤维薄 膜作为支持物的电泳方法。
• 醋酸纤维薄膜由二乙酸纤维素制成,ቤተ መጻሕፍቲ ባይዱ它具有均一的泡沫样的结构,有强渗透 性,对分子移动无阻力,作为区带电泳 的支持物进行蛋白电泳有简便、快速、 样品用量少,应用范围广,分离清晰, 没有吸附现象等优点。
二 实验步骤
• 1. 浸泡
用镊子取醋酸纤维薄膜1张——分别 光泽面和粗糙面——然后在粗糙面离 边缘2cm处用铅笔轻轻的画一条与边 缘平行的直线(为了点样方便)—— 然后将薄膜放在巴比妥缓冲液中浸泡 20min——用镊子取出纤维薄膜——y 用滤纸吸干——平置于载玻片上(粗 糙面朝上)
血清蛋白质醋酸纤维薄膜电泳实验报告
血清蛋白质醋酸纤维薄膜电泳实验报告一、实验目的1、掌握血清蛋白质醋酸纤维薄膜电泳的基本原理。
2、熟悉电泳操作的基本技术和方法。
3、了解血清蛋白质的组成和相对含量。
二、实验原理血清中含有多种蛋白质,它们在 pH 值为 86 的缓冲液中均带负电荷,在电场中会向正极移动。
由于各种蛋白质分子大小、形状及所带电荷量不同,在电场中的迁移速度也就不同,从而可将血清蛋白质分离成不同的区带。
醋酸纤维薄膜具有均一的泡沫样结构,渗透性强,对蛋白质吸附极少,因此适合用于电泳。
三、实验材料1、器材电泳仪、电泳槽、醋酸纤维薄膜(2×8cm)、点样器、镊子、培养皿、滤纸、铅笔、直尺。
2、试剂巴比妥缓冲液(pH 86,离子强度 006)、染色液(氨基黑 10B)、漂洗液。
3、样本新鲜血清四、实验步骤1、准备醋酸纤维薄膜将醋酸纤维薄膜浸泡于巴比妥缓冲液中,浸泡时间约为 30 分钟,直至薄膜完全浸透。
2、点样取出浸透的薄膜,用滤纸吸去多余的缓冲液,在无光泽面距一端15cm 处,用铅笔轻轻划一条横线作为点样线。
然后,用点样器蘸取血清,均匀地点在点样线上,使血清形成一条细窄的直线。
点样量要适中,过多会导致蛋白质区带扩散,过少则不易观察到清晰的区带。
3、电泳将点样后的薄膜小心地放入电泳槽中,点样端靠近负极,使薄膜平整地贴在电泳槽的支架上。
盖上电泳槽盖,接通电源,调节电压为120V,电泳时间约为 50 60 分钟。
4、染色电泳结束后,取出薄膜,直接放入染色液中浸泡 5 10 分钟,使蛋白质区带染上颜色。
5、漂洗将染色后的薄膜取出,放入漂洗液中漂洗数次,直至背景无色,蛋白质区带清晰可见。
五、实验结果经过染色和漂洗后,在醋酸纤维薄膜上可以观察到清晰的血清蛋白质区带。
从正极到负极依次为清蛋白、α1-球蛋白、α2-球蛋白、β球蛋白和γ球蛋白。
通过与标准图谱对比,可以大致估算出各蛋白质组分的相对含量。
六、结果分析1、影响电泳结果的因素(1)点样不均匀或点样量过多过少都会导致区带不清晰或不完整。
血清蛋白醋酸纤维薄膜电泳实验报告
血清蛋白醋酸纤维薄膜电泳实验报告一、实验介绍血清蛋白醋酸纤维薄膜电泳是一种常用的生物化学实验,用于分离血清中的蛋白质。
该实验利用电泳原理,将血清中的蛋白质按照它们的电荷、大小和形状进行分离。
这种技术可以帮助诊断一些疾病,并可作为治疗方案的参考。
二、实验步骤1. 样品制备:取少量血清,加入等量的缓冲液,混合均匀。
2. 样品处理:将样品加入SDS-PAGE样品缓冲液,煮沸5分钟。
3. 准备凝胶:将凝胶混合物倒入凝胶模板中,待凝胶固化后倒掉上层溶液。
4. 加载样品:将处理好的样品加入凝胶孔中。
5. 电泳:将凝胶放入电泳槽中,连接电源进行电泳。
6. 染色:取出凝胶,在染色溶液中染色15分钟至2小时。
7. 脱色:取出凝胶,在脱色溶液中脱色至背景清晰。
三、实验结果实验结果可通过观察凝胶图谱来进行分析。
在凝胶上,蛋白质会被分离成多个带状区域,每个区域代表一种蛋白质。
观察带状区域的大小、形状和颜色,可以判断样品中蛋白质的种类和含量。
四、实验注意事项1. 样品处理时需要加入SDS-PAGE样品缓冲液,以去除蛋白质的天然电荷。
2. 凝胶制备时需要严格按照说明书操作,确保凝胶固化均匀。
3. 电泳槽中需要加入足够的电泳缓冲液,并保证电极完全浸入缓冲液中。
4. 染色和脱色时需要注意时间控制,过长或过短都会影响染色效果。
5. 实验过程中应注意安全,避免接触电源和有毒溶液。
五、实验应用血清蛋白醋酸纤维薄膜电泳广泛应用于临床诊断和治疗方案的制定。
例如,在肝功能异常的患者中,可以通过该技术检测血清中的蛋白质种类和含量,以判断肝脏功能是否正常。
此外,该技术还可用于研究蛋白质结构和功能,以及新药物的筛选。
六、实验优化为了提高实验效率和准确性,可以对实验进行优化。
例如,可以选择不同类型的凝胶和电泳缓冲液来适应不同的样品类型;也可以尝试不同的染色方法来提高染色效果。
此外,在实验过程中还需要注意控制变量,以确保实验结果的可靠性。
七、总结血清蛋白醋酸纤维薄膜电泳是一种常用的生物化学实验,用于分离血清中的蛋白质。
血清蛋白质醋酸纤维素薄膜电泳实验报告
血清蛋白质醋酸纤维素薄膜电泳实验报告引言:血清蛋白质是构成血浆中主要蛋白质的一类物质,对于人体的健康状况具有重要的指示作用。
醋酸纤维素薄膜电泳技术是一种常用的分离和检测血清蛋白质的方法。
本实验旨在探究血清蛋白质醋酸纤维素薄膜电泳的原理、操作步骤以及实验结果的分析和讨论。
一、实验原理血清蛋白质醋酸纤维素薄膜电泳是一种基于电荷和大小的分离技术。
首先,将血清样品与醋酸盐缓冲液混合,并加载到预制的醋酸纤维素薄膜中。
然后,将电泳槽中的电源接通,利用电场作用使蛋白质在薄膜上移动。
不同的蛋白质根据其分子量和电荷大小的不同,在电场作用下向阳极或阴极方向移动,从而实现蛋白质的分离。
二、实验步骤1. 准备工作:将醋酸纤维素薄膜剪成适当的大小,并在电泳槽中放置好阳极和阴极。
2. 样品制备:取适量的血清样品,加入醋酸盐缓冲液,并充分混合。
3. 样品加载:将样品缓冲液混合物加载到醋酸纤维素薄膜中,并确保完全覆盖薄膜表面。
4. 电泳条件设置:根据实验需要,设置适当的电场强度和电泳时间。
5. 开始电泳:将电泳槽连接电源,开启电源使电泳进行。
6. 实验结束:根据设定的电泳时间,关闭电源,取出醋酸纤维素薄膜。
三、实验结果分析和讨论通过血清蛋白质醋酸纤维素薄膜电泳实验,可以观察到不同蛋白质在薄膜上的迁移情况。
根据迁移距离和迁移速度,可以初步判断不同蛋白质的分子量和电荷大小。
在实验中,我们可以根据薄膜上不同蛋白质的迁移位置,进行进一步的分析和鉴定。
血清蛋白质醋酸纤维素薄膜电泳还可以用于检测某些疾病的诊断。
例如,肝功能异常时,血清中白蛋白和球蛋白的比例会发生变化,通过血清蛋白质醋酸纤维素薄膜电泳可以明确出现异常的蛋白质成分,为临床诊断提供重要依据。
实验中需要注意的是,样品的制备和加载过程要尽量避免氧化、污染和杂质的引入,以保证实验结果的准确性。
此外,在设置电泳条件时,应根据样品特性和实验目的进行合理选择,以获得最佳的分离效果。
结论:血清蛋白质醋酸纤维素薄膜电泳是一种常用的分离和检测血清蛋白质的方法。
醋酸纤维薄膜电泳分离血清蛋白
⑶加样量
电泳过程应选择合适的电流强度,一般电流强度为宽膜为宜。
电流强度高,则热效应高,尤其在温度较高的环境中,可引起蛋白变性或由于热效应引起缓冲液中水分蒸发,使缓冲液浓度增加,造成膜片干涸。电流过低,则样品泳动速度慢且易扩散。
染色 通电完毕后用镊子将薄膜取出,直接浸于氨基黑10B的染色液中,染5 min取出,立即浸入盛有漂洗液的培养皿中,反复漂洗数次,直至背景漂净为止。用滤纸吸干薄膜。
定量
1
本实验不要求进行定量分析,如有需要,可采用薄层扫描仪进行扫描定量,或采用洗脱后再进行比色的方法进行定量。下面为后者的具体操作步骤:
02
⑸染色液的选择
透明液应临用前配制,以免冰乙酸及乙醇挥发而影响透明效果。这些试剂最好选用分析纯。透明前,薄膜应完全干燥。透明时间应掌握好,如在透明乙液中浸泡时间太长则薄膜溶解,太短则透明度不佳。
透明后的薄膜完全干燥后才能浸入液体石蜡中,使薄膜软化。如有水,则液体石蜡不易浸入,薄膜不易展平。
1
2
⑹透明及保存
02
图3-5正常人血清醋酸纤维素薄膜电泳示意图 1为清蛋白,2,3,4,5分别α1-,α2-,β-及 γ-球蛋白,6为点样原点
这些区带经洗脱后可用分光光度法定量,也可直接进行光吸收扫描自动绘出区带吸收峰及相对百分比。
此法由于操作简单,快速,分辨率高及重复性好等优点。它不仅可用于分离血清蛋白,还可用于分离脂蛋白、血红蛋白及同工酶的分离测定。
取一张干净滤纸(10×10cm),在距纸边1.5cm处用铅笔划一平行线,此线为点样标志区。
用竹夹子取出浸透的薄膜,夹在两层滤纸间以吸去多余的缓冲液。无光泽面向上平放在点样模板上,使其底边与模板底边对齐。点样区距阴极端1.5cm处。点样时,先用玻璃棒或血色素吸管取2-3µL血清,均匀涂在加样器上,再将点样器轻轻印在点样区内,如图3-6所示,使血清完全渗透至薄膜内,形成一定宽度、粗细均匀的直线。
实验三、血清蛋白质醋酸纤维素薄膜电泳
血清蛋白质的分类和特性
分类:白蛋白、球蛋白、纤维蛋白原等 特性:白蛋白具有维持血浆渗透压、运输物质等功能;球蛋白具有免疫、防御等功能;纤维蛋白原具有参与凝 血的作用。
电泳分离血清蛋白质的机制
血清蛋白质带电性质:蛋白质分子带电在电场中向相反电极移动 电场作用:电场使蛋白质分子在电场中移动不同蛋白质分子移动速度不同 分离原理:利用蛋白质分子量、电荷和形状的差异实现蛋白质的分离 醋酸纤维素薄膜的作用:作为支持物使蛋白质分子在电场中分离
03
实验材料
实验所需的材料
血清蛋白质溶液
电泳缓冲液
添加标题
添加标题
醋酸纤维素薄膜
添加标题
添加标题
染色液和脱色液
材料的质量和来源
血清:应选用新鲜、无溶血、无污染的血清样本 醋酸纤维素薄膜:应选用孔径一致、无杂质、无气泡的薄膜 电泳缓冲液:应选用质量稳定、浓度适宜的电泳缓冲液 染色液和脱色液:应选用质量稳定、染色效果好的染色液和脱色液
准备实验器具和玻璃器皿确保清 洁干燥。
添加标题
添加标题
添加标题
添加标题
准备电泳仪和电源检查仪器是否 正常工作。
熟悉实验步骤和注意事项确保实 验安全可靠。
操作步骤及注意事项
添加项标题
准备实验器材和试剂确保干净、无菌。
添加项标题
将血清样品与染色剂混合摇匀后滴加在醋酸纤维素薄膜上。
添加项标题
将薄膜放入电泳槽中加入电极缓冲液接通电源进行电泳。
解读:实验结论表明醋酸纤维素薄膜电泳是一 种有效的血清蛋白质分离和分析方法具有操作 简便、分离效果好、分辨率高等优点。
意义:实验结论对于临床诊断、疾病监测、疗效评 估等方面具有重要的应用价值可以帮助医生更好地 了解患者病情为制定治疗方案提供依据。
醋酸纤维薄膜电泳分离血清蛋白实验结果
醋酸纤维薄膜电泳分离血清蛋白实验结果引言醋酸纤维薄膜电泳是一种常用于生物分离和分析的技术,可以通过电场作用将带电粒子在纤维薄膜上移动,实现对混合物的分离。
本实验旨在利用醋酸纤维薄膜电泳技术对血清蛋白进行分离,以便进一步研究其组成和功能。
实验方法1.准备醋酸纤维薄膜:将醋酸纤维薄膜切割成所需尺寸,并在实验室条件下保持干燥。
2.准备电泳槽:将醋酸纤维薄膜放置在电泳槽中,确保其与电极接触良好。
3.准备样品:采集血清样品,并将其稀释至适当浓度。
4.进行电泳分离:将稀释后的血清样品均匀地涂抹在醋酸纤维薄膜上,然后施加适当电场使样品在薄膜上移动。
5.停止电泳:根据需要的分离程度,适时停止电泳过程。
6.分析结果:观察血清蛋白在醋酸纤维薄膜上的分离情况,并记录相关数据。
实验结果血清蛋白分离图谱根据实验结果,我们观察到在醋酸纤维薄膜上成功地分离了血清蛋白。
下图展示了血清蛋白分离图谱,其中纵轴表示电迁移率,横轴表示时间。
1.血清蛋白A的电迁移率为X,迁移时间为Y。
2.血清蛋白B的电迁移率为X,迁移时间为Y。
3.血清蛋白C的电迁移率为X,迁移时间为Y。
4.…血清蛋白组成分析根据血清蛋白分离图谱,我们可以进一步分析血清蛋白的组成。
通过与已知标准品进行比对,我们确定了以下血清蛋白的组成及相对含量:1.血清蛋白A占总蛋白的X%。
2.血清蛋白B占总蛋白的X%。
3.血清蛋白C占总蛋白的X%。
4.…血清蛋白功能研究根据血清蛋白的组成分析结果,我们可以进一步研究血清蛋白的功能。
以下是我们对某些血清蛋白功能的初步研究结果:血清蛋白A的功能1.血清蛋白A在某种生理过程中起到重要的调节作用。
2.进一步研究表明血清蛋白A可能与X疾病的发生和发展有关。
血清蛋白B的功能1.血清蛋白B与免疫系统的调节密切相关。
2.研究发现血清蛋白B在X疾病的治疗中具有潜在的应用价值。
血清蛋白C的功能1.血清蛋白C参与了血液凝固过程的调控。
2.进一步研究表明血清蛋白C可能与X疾病的预后有关。
生化实验-血清醋酸纤维素膜电泳整理
自由界面电泳 区带电泳
根据电泳系统pH是否连续分为:
连续pH电泳 不连续pH电泳
按支持物的装置形式不同分为:
水平板式电泳 垂直板式电泳 垂直柱式电泳
根据电泳物质类别不同分为:
细胞电泳,核酸电泳,蛋白质电泳等
按其介质的物理性状不同可分为:
凝胶电泳 粉末电泳 线丝电泳 纤维膜电泳等
2. 点样(关键) 在薄膜的粗糙面点样。点样时,先用吸管 将 3 微升血清均匀地涂在点样器表面,再用点样 器“印”在薄膜的点样区内,样品呈线状,宽约 1~2mm。
注意:点样时动作要轻、稳,用力不能太大,以免损坏 膜片或印出凹陷影响电泳区带分离效果 。 另外操作过程要防止指纹污染。
3. 电泳 将点样后的薄膜使粗糙面(点样面)向下,点样 端置于负极,贴在电泳槽支架的“滤纸桥”上,平 衡5min。 打开电源,调节电压和电流强度。调节电压至90100V左右,电流强度为 0.4~ 0.6mA/cm 薄膜条宽, 电泳时间40min-1h左右。 点样端
临床意义
急慢性肾炎、肾病综合征、肾功能衰竭:白蛋白降低, α1、 α2
和β
球蛋白升高;
慢性活动性肝炎、肝硬化:白蛋白降低,β、γ球蛋白升高;
急性炎症:α1、α2球蛋白升高;
慢性炎症:白蛋白降低、α2、γ球蛋白升高; 红斑狼疮、类风湿关节炎:白蛋白降低,γ球蛋白显著升高; 多发性骨髓瘤:白蛋白降低,γ球蛋白升高,β
1.滤纸桥 2.电泳槽 3.醋酸纤维素薄膜 4.电泳槽膜支架 5.电极室中央隔板
4. 染色 电泳完毕立即取出薄膜,直接浸入染色液中, 染色5min。 5. 漂洗
用漂洗液漂洗,不停摆动薄膜条,每 3-5min 左右换一次液,连续更换三次,可使背景颜色脱 去。将膜夹在干净滤纸中,吸去多余溶液。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标准差
3.75 0.68
正常范围 (M±2SD)
57.45%-71.73% 1.76%-4.48%
α2-球蛋白
β-球蛋白 γ-球蛋白 A/G
6.16
9.09 17.41 1.80
1.06
1.15 2.78 0.28
4.04%-8.28%
6.79%-11.39% 11.85%-22.9% 1.24-2.36
实验三
血清醋酸纤维素
薄膜电泳
生物化学的四大研究技术:
◈电泳技术 ◈分光光度技术 ◈层析技术 ◈离心技术
电 泳 技 术
带电粒子在电场中移动的现象称为电泳。 电泳技术即是利用样品中各种带电粒子的带电性
质、分子大小、形状等的差异,在电场中的迁移 速度不同,从而对样品分子进行分离、鉴定、纯 化和制备。
血清醋酸纤维素薄膜电泳
基本原理
本实验以醋酸纤维素为电泳支持物,分离各种血 清蛋白。 血清中含有清蛋白、α-球蛋白、β-球蛋白、γ-球 蛋白和各种脂蛋白等。各种蛋白质由于氨基酸组成、 分子量、等电点及形状不同,在电场中的迁移速度 不同。
以醋酸纤维素薄膜为支持物,正常人血清在 pH8.6的缓冲体系中电泳,染色后可显示5条区带。 其中清蛋白的泳动速度最快,其余依次为α1-、α2-、 β-及γ-球蛋白。
2. 点样(关键) 在薄膜的粗糙面点样。点样时,先用吸管 将 3 微升血清均匀地涂在点样器表面,再用点样 器“印”在薄膜的点样区内,样品呈线状,宽约 1~2mm。
注意:点样时动作要轻、稳,用力不能太大,以免损坏 膜片或印出凹陷影响电泳区带分离效果 。 另外操作过程要防止指纹污染。
3. 电泳 将点样后的薄膜使粗糙面(点样面)向下,点样 端置于负极,贴在电泳槽支架的“滤纸桥”上,平 衡5min。 打开电源,调节电压和电流强度。调节电压至90100V左右,电流强度为 0.4~ 0.6mA/cm 薄膜条宽, 电泳时间40min-1h左右。 点样端
B C
6.2 8.0
60.000 28.000
(注:使用pH7的电泳缓冲液,点样端置于负极)
临床意义
急慢性肾炎、肾病综合征、肾功能衰竭:白蛋白降低, α1、 α2
和β
球蛋白升高;
慢性活动性肝炎、肝硬化:白蛋白降低,β、γ球蛋白升高;
急性炎症:α1、α2球蛋白升高;
慢性炎症:白蛋白降低、α2、γ球蛋白升高; 红斑狼疮、类风湿关节炎:白蛋白降低,γ球蛋白显著升高; 多发性骨髓瘤:白蛋白降低,γ球蛋白升高,β
剪下各蛋白区带 0.02mol/L NaOH洗脱 将洗脱液用分光光度计比色 结果计算
每种蛋白质占总蛋 白质量的相对含量
=
该种蛋白管光密度读数 各管光密度读数之和
×100%
2、光密度计扫描法
清蛋白 1 2
清蛋白 1
2
血清中各蛋白组分的含量
蛋白质类型
白蛋白 α1-球蛋白
平均值
试剂和耗材
试剂 巴比妥缓冲液,染色液,漂洗液 材料 血清,醋酸纤维素薄膜
器材 电泳仪,培养皿,点样器,玻璃板
粗滤纸,铅笔,加样枪,镊子等。
操作步骤
1. 准备 醋酸纤维素薄膜的预处理: 将薄膜小心放入盛有缓冲液的培养皿内,使其 漂浮在液面;用镊子轻压,使其全部浸入缓冲液内。 待膜完全浸透(约半小时)后取出,夹在清洁的滤 纸中间,轻轻吸去多余的缓冲液,同时分辨出光滑 面和粗糙面。 标记:在粗糙面上用铅笔距薄膜条一端 1.5cm处划 线即为点样线并作好标记。
+++++++++++++++++ 表面带正电荷 --------------------------- 带负电荷的水层
电泳的影响因素:
1、影响电泳迁移率的外界因素:
电场强度 溶液的pH值 溶液的离子强度 电渗现象
2.影响电泳迁移率的内在因素:
质点所带净电荷的量 质点的大小和形状
电泳的分类
1.滤纸桥 2.电泳槽 3.醋酸纤维素薄ห้องสมุดไป่ตู้ 4.电泳槽膜支架 5.电极室中央隔板
4. 染色 电泳完毕立即取出薄膜,直接浸入染色液中, 染色5min。 5. 漂洗
用漂洗液漂洗,不停摆动薄膜条,每 3-5min 左右换一次液,连续更换三次,可使背景颜色脱 去。将膜夹在干净滤纸中,吸去多余溶液。
操作中,注意控制染色和漂洗的时间,防止 背景过深或某些区带太浅。
在生物医学领域,该技术多用于分离,纯化、鉴
定蛋白质、核酸等大分子物质。
1809 年,俄国物理学家 Peиce 首次发 现电泳现象; 1937 年 , Kaurin Tiselius 发 明 了 Tiselius 电泳仪,建立了自由界面电泳, 首次证明人血清蛋白的组分; 1948年, Wieland和 Fischer 以滤纸作 为支持介质的电泳; 1959 年, Raymond 和 Weintraub 利用 人工合成凝胶作为介质 —— 聚丙烯酰 胺 凝 胶 电 泳 : 生 物 大 分 子 的 “ Last Check”!
Kaurin Tiselius (19021971)因研究电泳和吸 附分析,特别是发现 关于血清蛋白的复杂 本质而获奖 1948 诺贝 尔生理医学奖。
(-)
+
( +)
----------------------------表面带负电荷 ++++++++++++++++ 带正电荷的水层
(-)
+
(+)
6、注 意 事 项
分清薄膜的点样面
注意点样样品的宽度和力度
注意薄膜放置的方向
控制染色及漂洗时间
保持良好的实验秩序
预期结果
一般的染色后的薄膜上可显现清楚的五 条区带。从正极端起,依次为清蛋白、α1 球 蛋白、α2球蛋白、β球蛋白和γ球蛋白。
清蛋白 1 2
各蛋白组分的定量
1、洗脱法:
根据电泳中是否使用支持介质分为:
自由界面电泳 区带电泳
根据电泳系统pH是否连续分为:
连续pH电泳 不连续pH电泳
按支持物的装置形式不同分为:
水平板式电泳 垂直板式电泳 垂直柱式电泳
根据电泳物质类别不同分为:
细胞电泳,核酸电泳,蛋白质电泳等
按其介质的物理性状不同可分为:
凝胶电泳 粉末电泳 线丝电泳 纤维膜电泳等
和γ球蛋白区带之间
出现“M”带。
小 结
1、本次课重要概念、原理。 2、结合基本原理和实验结果,综合分析实验 操作中存在的问题。 3、醋酸纤维素薄膜电泳实验操作的细节及影 响实验结果的关键因素。 4、电泳结果与临床意义。
思考题
利用本次实验课所学知识,分析以下表格中个各蛋 白质的混合物在醋酸纤维薄膜电泳实验中的电泳结果?绘 图表示并说明原因。 蛋白质 A 等电点 4.5 分子量(KDa) 34.000