32代数式

合集下载

专题32代数式(1)单项式-2021-2022学年七年级数学上(解析版)【苏科版】

专题32代数式(1)单项式-2021-2022学年七年级数学上(解析版)【苏科版】

2021-2022学年七年级数学上册尖子生同步培优题典【苏科版】专题3.2代数式(1)单项式姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021•苏州模拟)下列说法正确的是()A.3πxy的系数是3B.3πxy的次数是3C.−23xy2的系数是−23D.−23xy2的次数是2【分析】根据单项式的系数和指数的定义解答即可.【解析】A.系数应该是3π,不符合题意;B.π是数字,次数应该是2,不符合题意;C.正确,符合题意;D.次数应该是3,不符合题意.故选:C.2.(2021•海安市模拟)在下列整式中,次数为3的单项式是()A.a3﹣b3B.xy2C.s3t D.3mn 【分析】直接利用单项式的次数确定方法分析得出答案.【解析】A、a3﹣b3是多项式,故此选项不合题意;B、xy2是次数为3的单项式,符合题意;C、s3t是次数为4的单项式,不合题意;D、3mn是次数为2的单项式,不合题意;故选:B.3.(2020秋•连云港期末)单项式﹣a2b的系数和次数分别是()A.0,﹣2B.1,3C.﹣1,2D.﹣1,3【分析】根据单项式的系数和次数的概念求解即可.【解析】单项式﹣a2b的系数为﹣1,次数为2+1=3,故选:D .4.(2020秋•射阳县期末)已知x +y ,0,﹣a ,﹣3x 2y ,x+y 3,a 4中单项式有( ) A .3个 B .4个 C .5个 D .6个【分析】根据单项式的定义解答:数字或字母的积叫单项式,单独的一个数或子母也是单项式.【解析】x +y ,0,﹣a ,﹣3x 2y ,x+y 3,a 4中单项式有0,﹣a ,﹣3x 2y ,a 4共4个, 故选:B .5.(2020秋•海珠区期末)单项式πxy 23的系数和次数分别是( ) A .π3和3 B .π3和2 C .13和4 D .13和2 【分析】根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数.单项式的次数就是所有字母指数的和.【解析】单项式πxy 23的系数、次数分别是π3,3. 故选:A .6.(2020秋•禅城区期末)下列关于单项式−2x 2y 3的说法中,正确的是( )A .系数是2,次数是2B .系数是﹣2,次数是3C .系数是−23,次数是2D .系数是−23,次数是3 【分析】直接利用单项式次数与系数确定方法分析得出答案.【解析】单项式−2x 2y 3的系数是−23,次数是3. 故选:D .7.(2020秋•砚山县期末)现有四种说法:①﹣a 表示负数;②若|x |=﹣x ,则x <0;③绝对值最小的有理数是0;④3×102x 2y 是5次单项式.其中正确的有( )个.A .1B .2C .3D .4 【分析】根据相反数的定义,绝对值的性质“正数的绝对值是其本身,负数的绝对值是其相反数,0的绝对值是0”,单项式的定义来分析即可.【解析】①当a 是负数时,﹣a 就是正数,所以①错误;②若|x |=﹣x ,x 一定为负数或0,则x ≤0,所以②错误;③根据绝对值的定义绝对值最小的有理数是0,所以③正确;④根据一个单项式中,所有字母的指数的和叫做这个单项式的次数,这个单项式是3次.所以④错误. 所以正确的有1个.故选:A .8.(2018秋•上杭县月考)如果(2﹣m )x n y 4是关于x ,y 的五次单项式,则m ,n 满足的条件是( )A .m =2,n =1B .m ≠2,n =1C .m ≠2,n =5D .m =2,n =5【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解析】∵(2﹣m )是关于x ,y 的五次单项式系数,∴不能为0,即m ≠2;又∵n +4=5,∴n =1.故选:B .9.(2020秋•砚山县期末)单项式﹣3πxy 2z 3的系数和次数分别是( )A .﹣π,5B .﹣1,6C .﹣3π,6D .﹣3,7【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解析】根据单项式系数、次数的定义,单项式﹣3πxy 2z 3的系数和次数分别是﹣3π,6.故选:C .10.(2016秋•单县期末)一组按规律排列的式子:a 2,a 42,a 63,a 84,…,则第2016个式子是( ) A .a 20162015 B .a 20162016 C .a 40302015 D .a 40322016【分析】分母的变化规律是1、2、3、4…,指数的变化规律四2、4、6、8…,根据此规律即可求出第2016个式子.【解析】由a 2,a 42,a 63,a 84,…,可知 第n 个式子为:a 2n n ∴第2016个式子为a 40322016故选:D . 二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020秋•郫都区期末)单项式﹣6x 2y 7的系数为 −67 .【分析】直接利用单项式中的数字因数叫做单项式的系数,进而得出答案.【解析】单项式﹣6x 2y 7的系数为:−67. 故答案为:−67.12.(2018秋•惠山区期中)﹣5的绝对值是 5 ,−x 3y 2的次数是 4 . 【分析】根据绝对值的定义以及单项式的次数定义即可求出答案.【解析】﹣5的绝对值为5,−x 3y 2的次数为4, 故答案为:5,4.13.(2018秋•解放区校级期中)单项式﹣5x 2yz 的系数是m ,次数是n ,则mn = ﹣20 .【分析】根据单项式系数的定义,单项式中数字因数叫做单项式的系数.据此即可求得m ,n 的值,从而求得代数式的值.【解析】∵单项式﹣5x 2yz 的系数是﹣5,次数是4,∴m =﹣5,n =4,∴mn =﹣5×4=﹣20;故答案为:﹣20.14.(2021春•南岗区校级月考)已知(m ﹣3)xy |m |+1是关于x ,y 的五次单项式,则m 的值是 ﹣3 .【分析】根据单项式的次数的概念列出方程,解方程得到答案.【解析】由题意得,|m |+1+1=5,m ﹣3≠0,解得,m =﹣3,故答案为:﹣3.15.(2020秋•岫岩县期中)若(p +2)x 3y 4+8x m y n +1是关于x 、y 的二次单项式,则p 2m +2n +1的值为 ﹣8 .【分析】根据单项式中,所有字母的指数和叫做这个单项式的次数,即可求出p 、m 、n 的值,再根据同底数幂的乘法以及幂的乘方运算法则计算即可.【解析】∵(p +2)x 3y 4+8x m y n +1是关于x 、y 的二次单项式,∴p +2=0,m =1,n +1=1,解得:p =﹣2,m =1,n =0,∴p 2m +2n +1=(﹣2)2+1=(﹣2)3=﹣8.故答案为:﹣8.16.如果单项式﹣2xy m z n 和3a 3b n 都是六次单项式,那么m = 2 ,n = 3 .【分析】根据单项式次数的定义进行求解即可.【解析】∵单项式3a 3b n 是六次单项式,∴n =3,又∵单项式﹣2xy m z n 也是六次单项式,∴m =2.故答案为:2,3.17.已知关于x ,y 的代数式(a +4)x |a |y a +2是一个单项式,则a 的值为 a ≠4,0,﹣2 .【分析】根据单项式的概念判断即可.【解析】∵关于x ,y 的代数式(a +4)x |a |y a +2是一个单项式,∴a +4≠0,|a |≠0,a +2≠0可得:a ≠4,0,﹣2.故答案为:a ≠4,0,﹣218.(2020秋•绥棱县期末)有一组按规律排列的式子:﹣x ,x 2,﹣2x 3,3x 4,﹣5x 5,8x 6,﹣13x 7,…,则其中第9个式子是 ﹣34x 9 .【分析】分析可得各个式子的规律为:系数的绝对值为前两个式子的系数的绝对值的和,指数为奇数时,系数是负数,指数为偶数时,系数是正数,从而得出第9个式子.【解析】根据规律可得:第八个数是(8+13)x 8=21x 8,则其中第9个式子是﹣(13+21)x 9=﹣34x 9;故答案为:﹣34x 9.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.下列单项式的系数与次数:32x 2y 3z ;ab 2;49a 2b 3;﹣x ;30%mn . 【分析】直接利用单项式的系数确定方法分别分析得出答案.【解析】32x 2y 3z 系数与次数分别为:32;6;ab 2系数与次数分别为:1;3;49a 2b 3系数与次数分别为:49;5; ﹣x 系数与次数分别为:﹣1,1;30%mn 系数与次数分别为:30%;2.20.分别写出一个符合下列条件的单项式:(1)系数为3;(2)次数为2;(3)系数为﹣1,次数为3;(4)写出系数为﹣1,均只含有字母a ,b 所有五次单项式.【分析】(1)直接利用单项式的系数确定方法分别分析得出答案;(2)直接利用单项式的次数确定方法分别分析得出答案;(3)直接利用单项式的次数与系数确定方法分别分析得出答案;(4)直接利用单项式的系数确定方法分别分析得出答案.【解析】(1)系数为3的单项式可以为:3ab (答案不唯一);(2)次数为2的单项式可以为:x 2(答案不唯一);(3)系数为﹣1,次数为3的的单项式可以为:﹣x 3(答案不唯一);(4)系数为﹣1,均只含有字母a ,b 所有五次单项式分别为:﹣ab 4,﹣a 2b 3,﹣a 3b 2,﹣a 4b .21.填下列表格:单项式 a 2 ﹣xyz 116πb 2 −56x 32x 2y 3z ﹣2.56ab 3系数 1 ﹣1 116π −569 ﹣2.56次数 2 3 2 1 6 4【分析】根据单项式的概念即可求出答案.【解析】a 2的系数为1,次数为2,﹣xyz 的系数为﹣1,次数为3,116π的系数为116π,次数为2,−56的系数为−56,次数为1,32x 2y 3z 的系数为9,次数为6,﹣2.56ab3的系数为﹣2.56,次数为4.故答案为:1,﹣1,116π,−56,9,﹣2.56,2,3,2,1,6,4.22.(1)y9的系数是1,次数是9;(2)−5x2y6的系数是−56次数是3;(3)−m2n2的系数是−12次数是3;(4)﹣5xy的系数是﹣5,次数是2.【分析】直接利用单项式的次数与系数确定方法分别分析得出答案.【解析】(1)y9的系数是:1,次数是:9;(2)−5x2y6的系数是:−56;次数是:3;(3)−m2n2的系数是−12,次数是:3;(4)﹣5xy的系数是:﹣5,次数是:2.故答案为:(1)1,9;(2)−56,3;(3)−12,3;(4)﹣5,2.23.(1)−32x2y m−1是五次单项式,则m=4;(2)若x2y m+1z2是五次单项式,则m=0;(3)若x m y n+1z3是五次单项式,则2m+2n=2;(4)如果﹣5xy m﹣2为四次单项式,则m=5.【分析】(1)直接利用单项式的次数确定方法分别分析得出答案;(2)直接利用单项式的次数确定方法分别分析得出答案;(3)直接利用单项式的次数确定方法分别分析得出答案;(4)直接利用单项式的次数确定方法分别分析得出答案.【解析】(1)∵−32x2y m−1是五次单项式,∴2+m﹣1=5,解得:m=4.故答案为:4;(2)若x2y m+1z2是五次单项式,则2+m+1+2=5,解得:m=0;故答案为:0;(3)若x m y n+1z3是五次单项式,则m+n+1+3=5,则m+n=1,故2m+2n=2;故答案为:2;(4)如果﹣5xy m﹣2为四次单项式,则1+m﹣2=4,解得:m=5.故答案为:5.24.(2016秋•汇川区校级期中)观察下列单项式:﹣x,3x2,﹣5x3,7x4,…,﹣37x19,39x20,…,写出第n个单项式.为了解决这个问题,特提供下面解题思路:(1)这组单项式的系数的符号规律是(﹣1)n(或:负号正号依次出现),系数的绝对值规律是2n ﹣1;(2)这组单项式的次数的规律是从1开始的连续自然数;(3)根据上面的归纳,可以猜想第n个单项式是(只能填写一个代数式)(﹣1)n(2n﹣1)x n;(4)请你根据猜想,写出第2008个、第2009个单项式,它们分别是4015x2008、﹣4017x2009.【分析】所有式子均为单项式,先观察数字因数,可得规律:(﹣1)n(2n﹣1),再观察字母因数,可得规律为:x n;然后代入求值即可【解析】数字为﹣1,3,﹣5,7,﹣9,11,…,为奇数且奇次项为负数,可得规律:(﹣1)n(2n﹣1);字母因数为x,x2,x3,x4,x5,x6,…,可得规律:x n,于是得:(1)(﹣1)n(或:负号正号依次出现;),2n﹣1(或:从1开始的连续奇数);即(﹣1)n(2n﹣1)x n;(2)易得,这组单项式的次数的规律是从1开始的连续自然数.(3)(﹣1)n(2n﹣1)x n.(4)把n=2008、n=2009直接代入解析式即可得到:4015x2008;﹣4017x2009.故答案是:(1)(﹣1)n(或:负号正号依次出现;),2n﹣1(或:从1开始的连续奇数);(2)从1开始的连续自然数.(3)(﹣1)n(2n﹣1)x n.(4)4015x2008;﹣4017x2009.。

【数学课件】江苏省连云港市田家炳中学七年级数学《32代数式》课件

【数学课件】江苏省连云港市田家炳中学七年级数学《32代数式》课件
范,符合的在( )里打√,错的打×.
(1) a·3 ( )
(3)ab2 c() (5) (a b)h ()
2
(2) x+5( )
(4)(t-4) ℃ ( )
(6)2·3·x·y ( )
(1)某动物园的门票价格是 : 成人票每张10元,学生票每张 5元。一个旅游团有成人 x 人、 成人票10元 学生 y 人,那么该旅游团应付 学生票5元 多少门票费? (2)如果该旅游团有37个成人、 15个学生,那么他们应付多少 门票费?
初中数学七年级上册 (苏科版)
3.2 代 数 式 1
灌南县田家炳中学 翟华
议议 一一 议 议
代数式:1 mn 3 x a2h b2 有什么特点?
2
5
16
都是由数与字母的乘积组成的, 这样的代数式叫做单项式; 单项式中的数字因数叫做这个单项式的系数 一个单项式中,所有字母的指数的和 叫做这个单项式的次数
不是,代数式中出现了加法运算。
注意:1、 ∏是常数。
2、一个单项式的系数是1或者是-1时, 通常 省略不写。
练一练
单项 式
1 3
r 2h

2.035a2b

xy

5 6
x
32 x2 y2z2 13a2bc
系数
1 3

2.035
1

5 6
9
1
次数 3
3
21
6
4
注 意 当单项式的系数为1或 –1时, 这个“1”应省略不写。
解:(1)该旅游团应付的门票费是(10x+5y)元。
(2)把 x=37, y=15 代入代数式 10x+5y,得
10×37+5×15=445

代数式(1、2、3、4、5)

代数式(1、2、3、4、5)

新年华中考奇迹训练营疯狂考场系列系列2 代数式中考考察知识点:代数式及其值、整式及其加减和乘法运算、幂的运算法则、因式分解、乘法公式、分式的性质及其运算、二次根式的性质及其运算 知识难度:★★☆ 中考分值:约13分; 达标要求:100%;READY? GO! 第一组:一、选择题(主要考因式分解和幂的运算法则以及配方法) 1.把多项式8822++x x 分解因式,结果正确的是 A .()242+xB .()242+xC .()222-xD .()222x +2.下列计算正确的是A .325x x x +=B .44x x x ÷= C .325x x x ⋅= D .325()x x =3.把324a ab -分解因式,结果正确的是A .(4)(4)a a b a b +-B .22(4)a a b - C .(2)(2)a a b a b +- D .2(2)a a b -二、填空题(常在填空前两题中某题出现,主要考因式分解和分式或二次根式的性质) 4.分解因式:=-23ab a ______ . 5.若分式41x x +-的值为0,则x 的值为 . 6.若代数式26x x b -+可化为2()1x a --,则b a -的值是 . 7.因式分解:244xy xy x -+=__________________.三、解答题(主要考整式和分式的化简求值,注意不要跳步,看清楚数字和字母,在去括号时注意符号,分式的通分和约分要仔细)8.已知2(1)()3x x x y ---=-,求222x y xy +-的值.9.分解因式:y x xy 34-.10.先化简,再求值: 11a b a b ⎛⎫- ⎪-+⎝⎭÷222b a ab b -+,其中21+=a ,21-=b .11. 已知22150a a +-=,求221412213a a a a a a --⋅++-++的值.12. 已知a 是一元二次方程2320x x +-=的实数根,求代数式2352362a a a a a -⎛⎫÷+- ⎪--⎝⎭的值.【参考答案】 D A C))((b a b a a -+; 4-; 5; 2(2)x y - 8.解:2(1)()3x x x y ---=- ,223x x x y ∴--+=-.3x y ∴-=.22222()39x y xy x y ∴+-=-==.9.解:原式=()24x xy -=())2(2x x xy -+10.解:原式=bb a b a b a b a b a 2)())(()()(-⋅+---+=ba b a +-)(2.当21+=a ,21-=b 时,原式=222222=⨯. 11.原式21(2)(2)12(1)3a a a a a a --+=⋅++-+ 2113a a a -=+-+(2)(3)1(1)(3)a a a a a -++-=-+261(1)(3)a a a a a +-+-=-+22723a a a a +-=+- 因为22150a a +-=,所以2215a a +=所以原式=15782153123-==-12.解: 原式=3(2)(2)53(2)22a a a a a a a -+-⎡⎤÷-⎢⎥---⎣⎦=2393(2)2a a a a a --÷-- =323(2)(3)(3)a a a a a a --⨯-+- =13(3)a a +=2139a a+∵ a 是方程2320x x +-=的实数根, ∴ 232a a += ∴ 原式=21113(3)326a a ==+⨯第二组:一、选择题(主要考因式分解和幂的运算法则以及配方法)1.把代数式a a a +-232分解因式,下列结果中正确的是( ) A .2)1(-a a B .)1(2-a a C .2)1(+a a D .)1)(1(-+a a a2.用配方法将代数式542-+a a 变形,结果正确的是 A .1)2(2-+a B .5)2(2-+a C .4)2(2++a D .9)2(2-+a3.若将代数式中的任意两个字母互相替换,代数式不变,则称这个代数式为完全对称式.如在代数式a +b +c 中,把a 和b 互相替换,得b +a +c ;把a 和c 互相替换,得c +b +a ;把b 和c……;a +b +c 就是完全对称式.下列三个代数式:① (a -b)2;② ab +bc +ca ;③ a 2b+b 2c +c 2a .其中为完全对称式的是A .① ②B .② ③C .① ③D .① ② ③二、填空题(常在填空前两题中某题出现,主要考因式分解和分式或二次根式的性质)4.已知113x y -=,则代数式21422x xy yx xy y----的值为 .5. 若分式223x x --有意义,则x 的取值范围是 .6.分解因式: 322ab ab ab ++= .7.若分式42x x -+的值为0,则x 的值为 .三、解答题(主要考整式和分式的化简求值,注意不要跳步,看清楚数字和字母,在去括号时注意符号,分式的通分和约分要仔细) 8.已知252x y +=,求2255x xy y ++的值.9.化简:2211x x x x+-÷ .10.已知0342=+-x x ,求)x 1(21x 2+--)(的值.11.当x =2010时,求代数式1x 12x x )12x 1(22-++÷-+的值.12.已知m 是方程210x x --=的一个实数根,求代数式21()(1)m m m m--+的值.【参考答案】 A D A 4; 32x ≠; 2(1)a b b +; 4 8. 解: 252=+y x ,∴y xy x5522++=y y x x 5)52(++ =y x 52+=29.解:原式21(1)(1)x x x x x +=+- 1xx =-. 10.解:)x 1(21x 2+--)( x 221x 2x 2--+-= 1x 4x 2--=由,03x 4x 2=+-得3x 4x 2-=- 所以,原式413-=--= 11. 原式=2)--)1x (11)(x (x 2x 1x ++⨯++ = -2x 1x +- ∴当x=2010时, 原式=2010-120102-+ = 20092012- 12.解:∵ m 是方程210x x --=的一个根, ∴ 210m m --=.∴ 21m m -=,21m m -=. ∴ 原式=221()(1)m m m m--+=1(1)mm ⨯+=12⨯=2.…第三组:一、选择题(主要考因式分解和幂的运算法则以及配方法) 1.下列计算中,正确的是( ) A .325a b ab =+ B .33a a a ⋅= C .623÷a a a =D .3262()a b a b =2.把222a ab b -+分解因式,分解结果正确的是( ) A .2()a b - B .2()a b + C .222()a b - D .22a b -3.把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y +D .23()x x y -二、填空题(常在填空前两题中某题出现,主要考因式分解和分式或二次根式的性质) 4.分解因式:24ax a -= .5.若分式142++x x 的值为零,则x 的值为 .6.分解因式:=+-a ax ax 1682.7.分解因式:32232a b a b ab -+= .三、解答题(主要考整式和分式的化简求值,注意不要跳步,看清楚数字和字母,在去括号时注意符号,分式的通分和约分要仔细)8. 已知:2310x x +=,求代数式2(2)(10)5x x x -++-的值.9.计算: 12112---x x10.已知:872=+x x .求代数式1)3()12)(1(2+---+x x x 的值.11.已知:0832=-+x x ,求代数式21144212+--++-⋅-x x x x x x 的值.12.已知a 2+2a=4,求121111122+-+÷--+a a a a a 的值.【参考答案】 D A Da (x +2)(x -2); -2; 2)4(-x a ; 2()ab a b - 8.解: 原式=5104422-+++-x x x x =1622-+x x . 当2310x x +=时, 原式=1)3(22-+x x 191102=-⨯=. 9.12112---x x 11)1)(1(1)1)(1(2)1)(1(1+=-+-=-+--++=x x x x x x x x x 10.19887971961221)96(1221)3()12)(1( 2222222-=-==+-+=+-+--+-=++---+-=+---+原式当解:x x x x x x x x x x x x x x x x x11.解:原式211)2(212+--+-⋅-=x x x x x 2112+--+-=x x x x 2332++-=x x 当0832=-+x x 时,832=+x x原式283+-=103-= 12. 解:原式=1a )1a ()1a )(1a (11a 12+-⋅-+-+2)1a (1a 1a 1+--+= 2)1a (2+=当422=+a a 时,原式2)1a (2+=52=.第四组:一、选择题(主要考因式分解和幂的运算法则以及配方法)1.把24x y y -分解因式,结果正确的是A.()24y x - B.()()22y x x +- C. ()22y x + D. ()22y x -2. 若4=-n m ,则22242n mn m +-的值为A.32B.22C. 12D. 03.二次根式2-x 有意义,则x 的取值范围是( )A. 2≥xB. 2≤xC. 2>xD. 2<x二、填空题(常在填空前两题中某题出现,主要考因式分解和分式或二次根式的性质)4.分解因式:324b b a -= .5.分解因式:224b a a -= .6. 把x x 43-因式分解的结果是7有意义的x 的取值范围是 .三、解答题(主要考整式和分式的化简求值,注意不要跳步,看清楚数字和字母,在去括号时注意符号,分式的通分和约分要仔细)8.已知234x x -=,求22(1)(1)(2)3x x x --+--的值.9.当22310x x ++=时 ,求2(2)(5)28x x x x -+++-的值.10.已知:x 022=-,求代数式11)1(222++--x x x x 的值.11. 已知02=-x x ,求1112421222-÷+--⋅+-x x x x x x 的值.12.已知210x x +-=,求222(1)(1)(1)121x x x x x x x --÷+---+的值.【参考答案】B A A)2)(2(b a b a b -+; ))((2b a b a a -+; )2)(2(-+x x x ; 3x ≥-8.解:22(1)(1)(2)3x x x --+-- ()()2222123x x x x =-+----2224223x x x x =-+-++-23 1.x x =-+当234x x -=时,原式=2(3)1415x x -+=+=.9.解:()()22528x x x x -+++-=2244528x x x x x -++++-=2234x x +-∵2231x x ++=0∴2231x x +=-∴原式=2234x x +-=145--=-10.解:原式=22(1)1)(1)1x x x x x -++-+( =2111x x x x -+++ =112+-+x x x . ∵022=-x ,∴22=x . ∴原式=111112=++=+-+x x x x . 11. 解:1112421222-÷+--⋅+-x x x x x x =)1)(1()1()2)(2(212-+⨯--+⋅+-x x x x x x x =)1)(2(+-x x当02=-x x 时,原式= x 2-x-2=0-2=-2 12.解:222(1)(1)(1)121x x x x x x x --÷+---+ =2121(1)(1)[]11(1)x x x x x x x ---+⋅--+- =11()11x x x x +--- =21x x -- 210x x +-=,∴21x x -=-∴原式=1.一、选择题(主要考因式分解和幂的运算法则以及配方法)1.若把代数式222x x +-化为2()x m k ++的形式,其中,m k 为常数,则m k +的值为 A .- 2B .- 4C . 2D .4二、填空题(常在填空前两题中某题出现,主要考因式分解和分式或二次根式的性质)2在实数范围内有意义,则x 的取值范围是 .3.分解因式2232ab a b a -+= .4.分解因式:=+-a 8a 8a 223 .5、分解因式:=++a ax ax 22 .6.分解因式:32a ab -= .7.分解因式22am am a -+ =_____________.三、解答题(主要考整式和分式的化简求值,注意不要跳步,看清楚数字和字母,在去括号时注意符号,分式的通分和约分要仔细)8、已知228x x -=,求代数式2(2)2(1)5x x x -+--的值.9.已知0342=--x x ,求4)1)(1()1(22--+--x x x 的值.10.已知21=y x ,求y x y y x y x yxy x x -++-⋅+-2222222的值.11.计算11122---a a a12.已知20102009x y ==,,求代数式22xy y x y x x x ⎛⎫---÷ ⎪⎝⎭的值.【参考答案】B0x >; 2)(b a a -; 2)2(2-a a ;2(1)a x +; ()()a a b a b +-; a( m-1)28.解:∵2(2)2(1)5x x x -+--=2244225x x x x -++-- =2361x x --=23(2)1x x --∵228x x -=,∴原式=239.解:4)1)(1()1(22--+--x x x=4)1()12(222---+-x x x=142--x x∴ 原式=1)4(2--x x =213=- 10.解:y x y y x y x y xy x x-++-⋅+-2222222 =yx y y x y x y x y x x-+++-⋅-2))(()(22 = yx y y x x -+-2)(2 = )()(2y x y x -+. 当21=y x 时,x y 2=. 原式=)2()2(2x x x x -+=-6. 11解:2212111(1)(1)1a a a a a a a -=---+-- 21(1)(1)(1)(1)a a a a a a +=-+-+- 2(1)(1)(1)a a a a -+=+-1(1)(1)a a a -=+- 11a =+ 12.解:22xy y x y x x x ⎛⎫---÷ ⎪⎝⎭222x xy y x x x y-+=- 2()x y x x x y-=- x y =-当2010x =,2009y =时,原式=201020091x y -=-=.。

3.2代数式(教案)

3.2代数式(教案)
3.重点难点解析:在讲授过程中,我会特别强调代数式的分类和运算这两个重点。对于难点部分,比如合并同类项和代数式的乘除运算,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与代数式相关的实际问题,如速度、面积、体积等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过实际测量和计算,让学生们验证长方形面积的计算公式。
3.2代数式(教案)
一、教学内容
本节课选自教材第三章第二节,主题为“代数式”。内容包括:
1.代数式的概念:用字母和数字表示数量关系的式子。
2.代数式的分类:单项式、多项式。
-单项式:只含有一个项的代数式,如32xy、3x³-4x²+5x-6。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解代数式的基本概念。代数式是用字母和数字表示数量关系的式子。它在数学中非常重要,可以帮助我们解决各种实际问题。
2.案例分析:接下来,我们来看一个具体的案例。比如,一个长方形的面积可以用代数式a*b表示,其中a和b分别表示长方形的两个相邻边长。
在教学过程中,教师要针对这些重点和难点内容,通过讲解、举例、练习等多种形式,帮助学生深刻理解代数式的概念、分类、运算和应用,确保学生能够掌握核心知识,突破难点,提高代数思维能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《3.2代数式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要用字母和数字来表示数量关系的情况?”比如,我们用t表示时间,v表示速度,那么速度和时间的关系就可以表示为s=vt。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索代数式的奥秘。

代数式的值

代数式的值

3、为了便于计算,常把圆柱形钢管堆成如图形 状,下面比上面一层多放一根,只要数出顶层的 根数a,底层的根数b和层数n,就可以用公式
n (a+b)/2算出这堆钢管的根数。当n=6,a=5,b=10时, 求这堆钢管的根数。
a
解:当n=6,a=5,b=10时
n (a+b)/2
= 6×(5+10)/2
=45
1、我们在探索规律时,要认真观察数据,先把数据中不变的量分离出来, 再把变化中的共同规律归纳出来,列成式子,然后进行验证, 从而得出正确的能反应数量关系的规律。
2、有些代数式没有给出字母的值,却已知与字母相关的一个 “小代数 式”的值,而原代数式的值恰好是由这样的“小代数式”构成的, 这时,把“小代数式”看成一个整体,用整体代入法求值。
代数式的值
知识点复习 列式时: ①数与字母、字母与字母相乘省略乘号; ②数与字母相乘时数字在前; ③式子中出现除法运算时,一般按分数形式来写; ④带分数与字母相乘时,把带分数化成假分数; ⑤带单位时,适当加括号.
例题
8.有一组等式:
12 22 22 3;2
22 32 62 7;2
32 42 122 13;2
例.当x=2,y=-3时,求代数式x(x-y)的值
解:当x=2,y=-3时 x(x-y) = 2×[2-(-3)] =2 ×5 =10
从这个例题可以看到,
(1)代数式中的字母用负数来替代时,负数要添上括 号。并且注意改变原来的括号。
(2)数字与数字相乘,要写“×”号,因此,如果原 代数式中有乘法运算,当其中的字母用数字在替代 时,要恢复“×”号。
42 52 202 21;2
请你观察它们的构成规律,用你发现的规律写出第 8 个等式为

代数部分

代数部分

代数部分第一章代数初步知识本章对小学中的代数知识,包括字母表示数、列代数式、求代数式的值、公式与简易方程等内容进行比较系统的归纳和复习.学习时要注意:1.字母表示数的范围,代数式中的字母可以取什么值,要根据具体问题来确定.2.字母与代数式都表示数,那么数的有关运算规律也适用于代数式. 3.养成验算的好习惯.1.1 代数式【双基同步训练】1.填空(1)用代数式表示比a的5倍小3的数是 .(2)用代数式表示:m与n的平方和加上m、n的积的2倍是 .(3)某校学生总数是m,其中男生占52%,男生人数是 .(4)甲同学每天晨练跑a千米,乙同学每天跑b千米,两同学x天共跑千米.(5)每件上衣a元,6件上衣值元.(6)买单价m元的笔记本n本,付出30元,应找回元.(7)某厂去年生产x台机器,今年比去年增加15%,今年生产机器台.(8)甲数是x,乙数比甲数的2倍少3,用代数式表示乙数 .(9)用字母表示:①加法交换律 .②乘法结合律 .③乘法分配律 .(10)一本练习本0.50元,一支圆珠笔1.20元,买5本练习本、2支圆珠笔共需元。

(11)某班有男生a人,男生比女生少3人,则这班共有人。

(12)木工厂一天能做课桌a套,做300套要做天。

(13)原来温度是15℃,升高t℃后的温度是℃。

(14)一种小麦磨成面粉后重量要减少15%,m千克小麦磨成面粉后,面粉的重量是千克。

(15)一个长方形,宽是20厘米,宽比长少8厘米,这个长方形周长是厘米,面积是平方厘米。

(16)某船在静水中的速度是18千米/小时,水速为2千米/小时,该船逆水行了4小时,共行千米,这段路程顺水行需小时。

(17)梯形的上底长2厘米,下底是上底的2倍多1厘米,上底比高少1厘米,则梯形面积为平方厘米。

(18)如右图,在一个底为a、高为h的的三角形铁皮上剪去一个半径为r的半圆,则剩下铁皮(阴影部分)的面积为 。

若三角形的另两边分别为b+2和a+b ,则剩下的铁皮的周长为 。

3.2 代数式的值(课件)人教版(2024)数学七年级上册

3.2 代数式的值(课件)人教版(2024)数学七年级上册

处于平衡. 测得x 与y 的几组对应数据如下表:
x/g 0
2
4
6 10
y/mm 10 14 18 22 30
中考风向标
由表中数据的规律可知,当x=20 时,y=___5_0___.
中考风向标
试题评析:本题考查学生根据提供的数据总结规律 并用代数式表示,然后求代数式值的能力,综合性 较强. 当秤盘放入2 g 物品时,秤砣所挂位置与提纽的距离 为10+2×2=14(mm);
中考风向标
当秤盘放入4 g 物品时,秤砣所挂位置与提纽的距离 为10+2×4 =1 8(mm); 当秤盘放入6 g 物品时,秤砣所挂位置与提纽的距离 为10+2×6 =2 2(mm); 当秤盘放入1 0 g 物品时,秤砣所挂位置与提纽的距 离为10+2×1 0 =3 0(mm); ……
中考风向标
5. [新视角 结论开放题]写一个只含有字母a的代数式,使 得这个代数式中不论a取何值,该代数式的值总是负数, 你写的代数式是_-__a_2_-__1_(答__案__不__唯__一__)_ .
综合素养训练
6. [立德树人 红色旅游]赓续红色文化,传承红色基 因. 学校组织学生参加红色研学活动,共有m 名教师 与n 名学生参加.学校咨询了A,B 两家旅行社,两 家旅行社给出了不同的报价如下,A旅行社:教师全 价,80元/ 人,学生半价,40元/ 人;B旅行社:全部 成员,六折优惠,即48元/ 人.两家旅行社提供的服 务项目与服务质量相同.
综合应用创新
题型 4 根据变化规律求值
例 8 [新考法 归纳法]如图3.2-3 是按照一定规律摆放棋子组 成的图案,照这样的规律摆下去,请解答下列问题:
综合应用创新
解题秘方:
综合应用创新

第10讲32代数式(教师版)

第10讲32代数式(教师版)

3.2代数式学习目标1.了解代数式、单项式、单项式的系数和次数、多项式、多项式的次数、整式的概念.2.用代数式表示简单问题的数量关系,解释一些简单代数式的实际背景或几何意义.3.通过具体例子感受“同一个代数式可以表示不同的实际意义“,”理解符号所代表的数量关系“,初步感受模型思想.考点考频1.列代数式。

(必考点)2.识别单项式、多项式、整式。

(常考点)3.确定一个单项式的系数、次数.(常考点)4.确定一个多项式的项、次数.(常考点)知识点1代数式的概念(重点;掌握)1.代数式的概念用基本的运算符号把数或表示数的字母连接而成的式子叫做代数式.单独一个数或一个字母也是代数式.2.代数式的书写注意点(1)乘法书写注意点:①字母与字母相乘时,乘号通常不写或简写“·”;②数字与字母(或式子)相乘时,要把数字写在字母(或式子)的前面;③数与数相乘时乘号不能省略.(2)除法书写注意点:一般按照分数的写法书写,即被除数作为分子,除数作为分母. (3)单位书写注意点:①结果是乘除关系的,直接在后面写单位;②结果是加减关系的,先把式子用括号括起来,再在括号后面写单位.(4)添括号注意点:①表示与数的运算顺序一致的运算,列代数式时不添加括号;②表示与数的运算顺序不一致的运算,列代数式时要添加括号.例1(1)下列各式:9,x + y,5x,s = a2.其中,代数式的个数为()A.1B.2C.3D.4(2)下列各式:①113x;②2·3;③20%x;④a b ÷c;⑤m2+n26;⑥x5千克.其中,不符合代数式书写要求的有()A.5个B.4个C.3个D.2个练习1(1)下列各式中,是代数式的为()①2πr,②m+n2,③a + b = 4,①x1< 0,⑤S = πr2,⑥ab + cdA.①②③④⑤⑥B.①②⑤⑥C.③④⑤D.①②⑥(2)下列符合代数式书写要求的是()A.m ÷nB.213x C.14ab3D.a·10%1.(1)D(2)C知识点2列代数式(重难点;掌握)列代数式就是把实际问题中的数量关系用数学式子表示出来,其本质就是将文字语言转化为数学语言.例2用代数式表示:(1)m的3倍与n的和.(2)x与y的倒数的差(y≠0).(3)a,b两数和的平方减去它们差的平方.练习2设某数为m,那么代数式2m2+12表示()A.某数的2倍的平方加上1除以2B.某数的2倍加上1的一半C.某数与1和的2倍除以2D.某数的平方的2倍与1的和的一半2.D知识点3单项式及其相关测念概念(重点;掌握)1.单项式数字与字母的积所组成的代数式叫做单项式.单独一个数或一个字母也是单项式.[注意]单项式中的运算只能是乘法或乘方,不能含有加、减、除运算,分母中不含字母,如代数式(x+1)2不是单项式;字母不能出现在分母里,如 4a不是单项式.2.单项式的系数与次数单项式中的数字因数叫做单项式的系数.单项式中各个字母的指数的和叫做单项式的次数.[注意]判断单项式的系数:π是常数,可以作为系数;一个单项式的系数是1或1时,“1”通常省略不写,如“ 1” × “ab”写成“ ab”;若系数是带分数,要化成假分数. 例3下列说法正确的个数是()①单项式a的系数为0,次数为0;②ab−12是单项式;③xyz的系数为1,次数是1;④π是单项式,而2不是单项式.A.0B.1C.2D.3 练习3(2020•扬州江都区期末)单项式3x^22的系数是()A.−32B.3 C.−12D.323.A练习4下面说法正确的是()A. 5的倒数是15B. 0是最小的非负数C.1x是单项式D.单项式43πab2的系数和次数分别为−43和44.B[提示:A.5的倒数是15,故此选项错误:B.最小的非负数是0.正确:C.1x不是单项式,故此选项错误;D.单项式43πab2的系数和次数分别为43π和3.故此选项错误.]知识点4多项式及其相关概念(重点;掌握)1.多项式几个单项式的和叫做多项式.[特别提醒]判断多项式:有加减号;分母中不含有字母. 2.多项式的项多项式里含有几项,就把这个多项式叫做几项式. 多项式的每一项都包括它前面的符号. 3.多项式的次数多项式中,次数最高的项的次数叫做这个多项式的次数,不含字母的项叫常数项. 例4x 2y−16是( )A .二次二项式B .二次三项式C .三次二项式D .单项式练习5下列说法正确的是( ) A .3a 5的项是3a ,5B .2x 2y + xy 2 + x 2是二次三项式C . 1x 是单项式D . a +b2 和x 2 + 2xy + y 2都是多项式5.D [提示:A .3a 5的项是3a , 5,故此选项错误:B .2x 2y + x y 2 + x 2是三次三项式,故此选项错误;C . 1 x 不是单项式,故此选项错误:D . a +b2 和x 2 + 2xy + y 2都是多项式.正确.]知识点5整式(重点;掌握)1.单项式和多项试统称整式.2.代数式包括整式、整式是单项式与多项式的统称.如 1xy ,x + 2y 都是代数式,但其中只有 x4 ,x + 2y 是整式.而 1x 的分母中含有字母,不是整式.例5(2020·哈尔滨南岗区校级期中)下列式子:x 2 + 5, 1, 3x + 2,π 5x x 2 + 1x +1,5x ,其中整式有( ) A .3个B .4个C .5个D .6个练习6(2020·上海徐汇区校级月考)①12;②1x+3;③x−15;④a中,整式有_________ (只需填入相应的序号).6.①③④——题型总结——题型1用代数式表示多位数例1一个三位数,百位数字为x,十位数字比百位数字大2,个位数字比百位数字的2倍小3,用代数式表示这个三位数为()A.x(x + 2)(2x3)B.100x + 10(x2)+ 2x 3C.100x + 10(x + 2)+ 2x 3D.100x + 10(x2)+ 2x + 3练习1把一个两位数m放在一个三位数n的前面,组成一个五位数,这个五位数可表示为 .1000 m + n题型2列代数式例2(2020·徐州邳州市期中)某商品原价为a元,因销量下滑,经营者连续两次降价,每次降价10%,后因供不应求,又一次提价20%,则现在这种商品的价格是()A.1.08a元B.0.88a元C.0.972a元D.0.968a元练习2某校计划组织七年级师生去绍兴鲁迅故居研学.若学校租用可载乘客30人的客车x辆,则有15人无法乘坐;若租用可载乘客45人的客车,则可少租用2辆,且最后一辆车还没坐满.那么乘坐最后一辆可载乘客45人的客车的人数是 _________(用含x的代数式表示).30x + 15 45(x3)题型3阐述代数式的意义例3下列赋于4 m实际意义的叙述中不正确的是()A.若葡萄的价格是4元/千克,则4 m表示买m千克葡萄的金额B.若m表示一个正方形的边长,则4 m表示这个正方形的周长C.将一个小木块放在水平桌面上,若4表示小木块与桌面的接触面积,m表示桌面受到的压强,则4 m表示小木块对桌面的压力D.若一个两位数中的十位数字为4,个位数字为m,则4 m表示这个两位数练习3请你用实例解释下列代数式的意义.(1)4 + 3;(2)3a;(3)(1 2 )33.解:答案不唯一.(1) 4 + 3表示气温从4℃上升3℃的温度.(2)3a表示一辆车以akm/h的速度行驶3小后的路程.(3)表示棱长为12的正方体的体积.题型4求单项式与多项式中字母的值例4如果(a+1)2x2y n1是关于x,y的五次单项式,那么a,n应满足的条件是_________ .练习4(2020·苏州高新区期末)多项式− 13 x|m|+(m4)x + 7是关于x的四次三项式,则m的值是( )A.4B. 2C. 4D.4或 4 C题型5探究单项式中的规律例5观察下列单项式:x,3x2,5x3,7x4,…,37x19,39x^20……写出第n个单项式.为了解决这个问题,特提供下面解题思路:(1)这组单项式的系数的符号规律是 _______ ,系数的绝对值规律是 ________ ;(2)这组单项式的次数的规律是 _________ ;(3)根据上面的归纳,可以猜想第n个单项式是 ______(只能填写一个代数式);(4)请你根据猜想,写出第2018个、第2019个单项式,它们分别是_________ .练习5观察下列单项式:x,2x2,4x3,8x4,16x5…根据你发现的规律写出第10个单项式为 _________ ,第n个单项式为 _________ .29x10 (1)n + 12n1)x n题型6多项式中的“不含”问题例6已知(a2)x2 + (b + 1)xy x + y7是关于x,y的多项式,如果该多项式不含二次项,求3a + 8b的值.练习6多项式(2b + a)xy3x + y7是关于x,y的多项式,若该多项式不含二次项,求4b + 2a的值.6.解:由题意知2b + a = 0,则4b + 2a = 2(2b + a)= 0.——能力培优训练——能力通关1.下列代数式的写法,正确的是()A.“负x的平方”记作x2B.“y与113的积”记作y13C.“x的3倍”记作x3D.“2a除以3b的商”记作2a3b1.D2.多项式2x3 + 4y25的二次项的系数与常数项的和等于()A.1B.9C.9D. 12.D[提示:因为二次项的系数为4,常数项为5,所以4 5 = 1.]3.(2020·南通市海安期末)二次三项式2x23x1的二次项系数、一次项系数、常数项分别是()A.2,3,1B.2,3,1C.2,3,1D.2,3,13.A4.多项式2x2y x3+ 1是 ______ 次 ______ 项式.4.三三5.用代数式表示:(1)某班共有x名学生,其中男生人数占45%,则女生人数为 _________ .(2)a的立方的2倍与1的和为 _________ .(3)m与n两数差的平方减去它们平方的和: _________ .5.(1)0.55x (2)2a31 (3)(mn)2(m2+n2)6.一个三位数,百位数字是a,十位数字和个位数字组成的两位数是b,用式子表示这个三位数是 _________ .6.100a + b7.已知多项式3x2y2 + 1 + r3y3x41是五次四项式.且单项式3x2y2的次数与该多项式的次数相同.(1)求m,n的值:(2)把这个多项式按x的升幂排列.7.解:(1)因为3x2y(m+1)+ x3y3x41是五次四项式,所以2 + m + 1 = 5,解得m = 2,因为单项式3x2n y^2 m的次数与该多项式的次数相同,所以2n + 2 m = 5,即2n + 2 2 = 5.解得n = 5 2.(2)把这个多项式按x的升幂排列为 1 3x233 + x3y3x4.巅峰训练8.(2020·杭州萧山区期中)一组按规律排列的单项式:a2,3a4,5a6,7a8,…,则第n(n为正整数)个式子表示最恰当的是()A.±(2n1)a2nB.±(2n + 1)a2nC.(1)n(2n1)a2nD.(1)n(2n + 1)a2n8.C9.(2020·哈尔滨平房区模拟)甲、乙两个商家对标价相同的同一件商品进行价格调整,甲的方案是:先提价8%,再降价8%;乙的方案是:先降价8%,再提价8%;则甲、乙两个商家对这件商品的最终定价()A.甲比乙多B.乙比甲多C.甲、乙一样多D.无法确定9.C素养提升10.(2020·南京玄武区期中)为响应国家节能减排的号召,鼓励人们节约用电,保护能源,某市实施用电“阶梯价格”收费制度.收费标准如下表:已知小刚家上半年的用电情况如下表(以200千瓦时为标准,超出200千瓦时记为正、低于200千瓦时记为负):根据上述数据、解答下列问题:(1)小刚家用电量最多的是 _________ 月份,实际用电量为 _________ 千瓦时:(2)小刚家一月份应缴纳电费 _________ 元;(3)若小刚家七月份用电量为x千瓦时,求小刚家七月份应缴纳的电费(用含x的代数式表示).10.(1)五236[提示:由表格可知五月份用电量最多,实际用电量为200 + 36 = 236(千瓦时).](2)85[提示:小刚家一月份用电:200 + (50)= 150(千瓦时),小刚家一月份应缴纳电费:0.5 × 50 + (150 50)× 0.6 = 25 + 60 = 85(元).] (3)解:当0 < x≤50时,电费为0.5x元:当50 < x≤200时,电费为0.5 × 50 + (x50)× 0.6 = 25 + 0.6x30 = 0.6x5(元);当x > 200时,电费为0.5 × 50 + 0.6 × 150 + (x200)× 0.8 = 25 + 90 + 0.8x160 = 0.8x45(元).11.现代营养学家用身体质量指数来判断人体的健康状况.这个指数等于人体体重(千克)除以人体身高(米)的平方所得的商.一个健康人的身体质量指数在20~25之间;身体质量指数低于18,属于不健康的瘦;身体质量指数高于30,属于不健康的胖.(1)若一个人的体重为w(千克),身高为h(米),求他的身体质量指数p (即用含w,h的式子表示p);(2)小张的身高是1.75米,体重是68千克,请你判断小张的身体是否健康.11.解:(1)由题意可得p = w h2.(2)w=68,h=1.75时,p = wh2≈ 22.2.因为20 < 22.2 < 25.所以小张的身体健康.。

32代数式的值教案-人教版七年级数学上册

32代数式的值教案-人教版七年级数学上册

发现学习、自主、合作、探究
知识与技能:掌握代数式的值的概念,能解释代数式的值的实际意义.会求代数式的值,进一步理解代数式的应用.
过程与方法:经历观察、猜想,验证等数学活动过程,初步体会到数学中抽象概况的思维方法.在代数式求值过程中,培养准确运算的能力.
情感态度价值观:通过求代数式的值,对问题进行探索猜想,进一步体会由具体到抽象、有特殊到一般和由一般到特殊的过程,发展合理推理能力.
重点:深入体会列代数式和代数式的值的实际意义,当所含字母取某一定值时,能够求出代数式的值.
难点:从特例入手,发现规律,推导出题目中的数量关系.体会特殊与一般相互转化在实际问题重点意义.。

初中数学32_代数式的值_教案5

初中数学32_代数式的值_教案5

3.2代数式的值 教学任务分析教学流程安排课前安排教学过程设计问题与情境师生行为设计意图活动1问题1 试一试有四个同学做传数游戏A 任意报一个数给B ,B 把这个数加1传给C ,C 把听到的数平方后传给D ,D 把听到的数减1报出答案.请裁判D 的答案是否正确.问题2 你是怎样快速判断出D 的答案是否正确的?问题3(1)代数式(x+1)2-1的值与什么有关?是否确定?(2)你认为什么是代数式的值?活动2问题1.例1:当a=2,b=-1,c=-3时,求下列代数式的值.(1)b2-4ac(2)a2+b2+c2+2ab+2bc+2ac(3)(a+b+c)2问题2.教材96页练习1、2活动3问题1观察例1中的(2)、(3)两题的结果,你有何想法?问题2再取一组数值试一试,看看结果如何,并在小组内交流你的结论.活动4问题1例2某企业去年的年产值为a 亿元,今年比去年增长了10%.请你预测一教师提出问题1.学生分组进行传数、裁判. 教师提出问题2.学生思考、回答、交流..教师提出问题3.学生思考、交流、回答问题,自我建构平方根的定义.教师应关注学生的:(1)抽象概括能力;(2)对代数式的值的解释;(3)部分同学的参与水平.教师出示例1学生自由练习,互相纠正错误,确定好的解题格式与方法,有利于调动学生的积极性,促进学生能力的提高. 在活动2中,教师关注学生:(1)书写规范;(2)准确计算. 教师提出问题1.学生思考、回答、验证、总结. 在活动3中教师要关注学生:(1)是否愿意与同伴交流各自的想法;(2)动手实践问题1中数学游戏有挑战性,易激发学生的学习兴趣. 问题2的目的在于引导学生将游戏与代数式 (x+1)2-1的值联系起来. 学生通过大胆的猜想、多次取值、验证,发现规律,激活了学生的思维,提高计算推理的能力.学生经历操作、确认等数学活动过程,发展了合情推理能力.学生巩固、提高、发展。

2019届中考数学专题提升(二)代数式的化简与求值

2019届中考数学专题提升(二)代数式的化简与求值

专题提升(二) 代数式的化简与求值类型之一 整式的化简与求值【经典母题】已知x +y =3,xy =1,你能求出x 2+y 2的值吗?(x -y)2呢?解:x 2+y 2=(x +y)2-2xy =32-2×1=7;(x -y)2=(x +y)2-4xy =32-4×1=5.【思想方法】 利用完全平方公式求两数平方和或两数积等问题,在化简求值、一元二次方程根与系数的关系中有广泛应用,体现了整体思想、对称思想,是中考热点考题.完全平方公式的一些主要变形有:(a +b)2+(a -b)2=2(a 2+b 2),(a +b)2-(a -b)2=4ab ,a 2+b 2=(a +b)2-2ab =(a -b)2+2ab ,在四个量a +b ,a -b ,ab 和a 2+b 2中,知道其中任意的两个量,能求出(整体代换)其余的两个量.【中考变形】1.已知(m -n)2=8,(m +n)2=2,则m 2+n 2的值为( C ) A .10 B .6 C .5 D .32.已知实数a 满足a -1a =3,则a 2+1a 2的值为__11__. 【解析】 将a -1a =3两边平方,可得a 2-2+1a 2=9,即a 2+1a 2=11. 3.[2019·重庆B 卷]计算:(x +y)2-x(2y -x).解:原式=x 2+2xy +y 2-2xy +x 2=2x 2+y 2.4.[2019·漳州]先化简(a +1)(a -1)+a(1-a)-a ,再根据化简结果,你发现该代数式的值与a 的取值有什么关系(不必说明理由)?解:原式=a 2-1+a -a 2-a =-1.故该代数式的值与a 的取值没有关系.【中考预测】先化简,再求值:(a -b)2+a(2b -a),其中a =-12, b =3.解:原式=a 2-2ab +b 2+2ab -a 2=b 2.当a =-12,b =3时,原式=32=9. 类型之二 分式的化简与求值【经典母题】计算:(1)a b -b a -a 2+b 2ab ;(2)⎝ ⎛⎭⎪⎫3x x -2-x x +2·x 2-4x . 解:(1)原式=a 2-b 2ab -a 2+b 2ab =-2b 2ab =-2b a; (2)原式=3x (x +2)-x (x -2)(x -2)(x +2)·x 2-4x =2x 2+8x x 2-4·x 2-4x=2x +8. 【思想方法】 (1)进行分式混合运算时,一定要注意运算顺序,并结合题目的具体情况及时化简,以简化运算过程;(2)注意适当地利用运算律,寻求更合理的运算途径;(3)分子分母能因式分解的应进行分解,并注意符号的处理,以便寻求组建公分母而约分化简;(4)要注意分式的通分与解分式方程去分母的区别.【中考变形】 1.[2019·重庆A 卷]计算:⎝ ⎛⎭⎪⎫3a +2+a -2÷a 2-2a +1a +2. 解:原式=⎝ ⎛⎭⎪⎫3a +2+a 2-4a +2÷(a -1)2a +2 =(a +1)(a -1)a +2·a +2(a -1)2=a +1a -12.[2019·攀枝花]先化简,再求值:⎝ ⎛⎭⎪⎫1-2x +1÷x 2-1x 2+x,其中x =2. 解:原式=x +1-2x +1·x (x +1)(x +1)(x -1)=x -1x +1·x (x +1)(x +1)(x -1)=x x +1. 当x =2时,原式=22+1=23. 【中考预测】先化简,再求值:⎝ ⎛⎭⎪⎫x 2-4x +3x -3-13-x ⎝ ⎛⎭⎪⎫x2-2x +1x 2-3x +2-2x -2,其中x =4. 解:原式=⎝ ⎛⎭⎪⎫x 2-4x +3x -3+1x -3⎣⎢⎡⎦⎥⎤(x -1)2(x -1)(x -2)-2x -2 =(x -2)2x -3·⎝ ⎛⎭⎪⎫x -1x -2-2x -2=(x -2)2x -3·x -3x -2 =x -2.当x =4时,原式=x -2=2.类型之三 二次根式的化简与求值【经典母题】已知a =3+2,b =3-2,求a 2-ab +b 2的值. 解:∵a=3+2,b =3-2,∴a +b =23,ab =1,∴a 2-ab +b 2=(a +b)2-3ab =(23)2-3=9.【思想方法】 在进行二次根式化简求值时,常常用整体思想,把a +b ,a -b ,ab 当作整体进行代入.整体思想是很重要的数学思想,利用其解题能够使复杂问题变简单.整体思想在化简、解方程、解不等式中都有广泛的应用,是中考重点考查的数学思想方法之一.【中考变形】1.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( C )A .9B .±3C .3D .5 2.[2019·仁寿二模]先化简,再求值:a 2-2ab +b 2a 2-b 2÷⎝ ⎛⎭⎪⎫1a -1b ,其中a =2+1,b =2-1. 解:原式=(a -b )2(a +b )(a -b )÷b -a ab =a -b a +b ·ab b -a =-ab a +b, 当a =2+1,b =2-1时,原式=-122=-24. 3.[2019·绵阳]先化简,再求值:⎝ ⎛⎭⎪⎫x -yx 2-2xy +y 2-x x 2-2xy ÷y x -2y,其中x =22,y = 2. 解:原式=⎣⎢⎡⎦⎥⎤x -y (x -y )2-x x (x -2y )÷y x -2y=⎝ ⎛⎭⎪⎫1x -y -1x -2y ÷y x -2y=⎣⎢⎡⎦⎥⎤(x -2y )-(x -y )(x -y )(x -2y )÷y x -2y=-y (x -y )(x -2y )·x -2y y =-1x -y . 当x =22,y =2时,原式=-1x -y =-12=-22. 【中考预测】先化简,再求值:1a +b +1b +b a (a +b ),其中a =5+12,b =5-12. 解:原式=ab +a (a +b )+b 2ab (a +b )=(a +b )2ab (a +b )=a +b ab, ∵a +b =5+12+5-12=5,ab =5-12×5+12=1, ∴原式= 5.2019-2020学年数学中考模拟试卷一、选择题1.二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系中的图象可能是()A. B.C.D.2.如图,已知矩形 AOBC 的三个顶点的坐标分别为 O(0,0),A(0,3), B(4,0),按以下步骤作图:①以点 O 为圆心,适当长度为半径作弧,分别交 OC,OB 于点 D,E;②分别以点 D,E 为圆心,大于12DE的长为半径作弧,两弧在∠BOC 内交于点 F;③作射线 OF,交边 BC于点 G,则点 G 的坐标为( )A.(4,43) B.(43,4) C.(53,4) D.(4,53)3.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B.75C.53D.544.如图示,用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则ABBC的值是( )A B C D5.给出下列4个命题:①对顶角相等;②同位角相等;③在同一个圆中,同一条弦所对的圆周角都相等;④圆的内接四边形对角互补.其中,真命题为()A.①②④B.①③④C.①④D.①②③④6.从甲,乙,丙三人中任选一名代表,甲被选中的可能性是A.12B.1C.23D.137.如图,数轴上的点A、B、O、C、D分别表示数2-、1-、0、1、2,则表示数2的点P应落在()A.线段AB上B.线段BO上C.线段OC上D.线段CD上8.已知抛物线y=ax2+bx+c(a<0)经过点(﹣1,0),且满足4a+2b+c>0,有下列结论:①a+b>0;②﹣a+b+c>0;③b2﹣2ac>5a2.其中,正确结论的个数是()A.0 B.1 C.2 D.39.如图1,菱形ABCD中,∠B=60°,动点P以每秒1个单位的速度自点A出发沿线段AB运动到点B,同时动点Q以每秒2个单位的速度自点B出发沿折线B﹣C﹣D运动到点D.图2是点P、Q运动时,△BPQ 的面积S随时间t变化关系图象,则a的值是()A.2 B.2.5 C.3 D.10.不等式组12314xx-<⎧⎨+⎩…的整数解的个数是()A.6 B.5 C.4 D.311.不等式组次33015xx x->⎧⎨-≥-⎩的解集在数轴上表示正确的是()A .B .C .D . 12.如图,已知11(,)3A y ,2(3,)B y 为反比例函数1y x=图象上的两点,动点(,0)P x 在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .1(,0)3B .4(,0)3C .8(,0)3D .10(,0)3二、填空题 13.若方程x 2+2x -11=0的两根分别为m 、n ,则mn (m +n )=______.14.已知2m -3n=-4,则代数式m(n -4)-n(m -6)的值为 .15.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是_____.16.如图,点A 在双曲线2x 上,点B 在双曲线k y x=上,且AB ∥x 轴,点C 、D 在x 轴上,若四边形ABCD 为矩形,且面积为3,则k=__________.17.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于__________.18.用反证法证明命题“三角形中至少有两个锐角”,第一步应假设_____.三、解答题19.(1)计算:|1(12)﹣1﹣2tan60°(2)先化简,再求值:22121()242x x x x x x -++÷-++,其中x ﹣1.20.计算:0cos 60π︒-21.某地下车库出口处安装了“两段式栏杆”,如图1所示,点A 是栏杆转动的支点,点E 是栏杆;两段的联结点.当车辆经过时,栏杆AEF 最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计,EF 长度远大于车辆宽度),其中AB ⊥BC ,EF ∥BC ,∠AEF =143°,AB =AE =1.2米,该地下车库出口的车辆限高标志牌设置如图4是否合理?请通过计算说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22.我市楚水商城销售一种进价为10元/件的饰品,经调查发现,该饰品每天的销售量y (件)与销售单价x (元)满足函数y =﹣2x+100,设销售这种饰品每天的利润为W (元).(1)求W 与x 之间的函数关系式;(2)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,应将销售单价定为多少元?23.如图,ABCD 中,顶点A 的坐标是()0,2,AD x 轴,BC 交y 轴于点E ,顶点C 的纵坐标是-4,ABCD 的面积是24.反比例函数k y x=的图象经过点B 和D ,求:(1)反比例函数的表达式;(2)AB 所在直线的函数表达式.24.为缓解某学校大班额现状,某市决定通过新建学校来解决该问题.经测算,建设6个小学,5个中学,需费用13800万元,建设10个小学,7个中学,需花费20600万元.(1)求建设一个小学,一个中学各需多少费用.(2)该市共计划建设中小学80所,其中小学的建设数量不超过中学建设数量的1.5倍.设建设小学的数量为x 个,建设中小学校的总费用为y 万元.①求y 关于x 的函数关系式;②如何安排中小学的建设数量,才能使建设总费用最低?(3)受国家开放二胎政策及外来务工子女就读的影响,预计在小学就读人数会有明显增加,现决定在(2)中所定的方案上增加投资以扩大小学的就读规模,若建设小学总费用不超过建设中学的总费用,则每所小学最多可增加多少费用?25.先化简,再求值:2311221x x x x x x -⎛⎫-÷- ⎪+++⎝⎭,其中x 满足方程x 2-2x-3=0.【参考答案】***一、选择题二、填空题13.2214.15.416.517.18.同一三角形中最多有一个锐角 .三、解答题19.(1+1;(2)12. 【解析】 【分析】(1)根据绝对值、负整数指数幂、特殊角的三角函数值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】(1)|1|+(12)﹣1﹣2tan60°1+21+2﹣;(2)22121()242x x x x x x -++÷-++ =21(2)(21)222x x x x x x -+-+÷++()() =221222221x x x x x x -+++--()() =211211x x x -+-()()()=12(1)xx-+,当x﹣1=12.【点睛】本题考查分式的化简求值、绝对值、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.20.1 2【解析】【分析】按顺序先分别进行0次幂的运算、立方根的运算、代入特殊角的三角函数值,然后再按运算顺序进行计算即可.【详解】0cos60π+︒=1﹣2+1 2=﹣12.【点睛】本题考查了实数的运算,涉及了0指数幂、特殊角的三角函数值等,熟练掌握各运算的运算法则是解题的关键.21.该地下车库出口的车辆限高标志牌设置如图4合理.【解析】【分析】过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠BAG=90°,∠EHA=90°.先求出∠AEH=53°,则∠EAH=37°,然后在△EAH中,利用正弦函数的定义得出EH=AE•sin∠EAH,则栏杆EF段距离地面的高度为:AB+EH,代入数值计算即可.【详解】解:如图,过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠EHG=∠HEF=90°,∵∠AEF=143°,∴∠AEH=∠AEF﹣∠HEF=53°,∠EAH=37°,在△EAH中,∠EHA=90°,∠EAH=37°,AE=1.2米,∴EH=AE•sin∠EAH≈1.2×0.60=0.72(米),∵AB =1.2米,∴AB+EH≈1.2+0.72=1.92>1.9米.∴该地下车库出口的车辆限高标志牌设置如图4合理.【点睛】本题考查了解直角三角形在实际中的应用,难度适中.关键是通过作辅助线,构造直角三角形,把实际问题转化为数学问题加以计算.22.(1) W =﹣2x 2+120x ﹣1000;(2)应将销售单价定为25元.【解析】【分析】本题是通过构建函数模型解答销售利润的问题.(1)根据销售利润=销售量×(售价﹣进价),依据题意易得出W 与 x 之间的函数关系式,(2)令W =750,求解即可,因为要确保顾客得到优惠,故最后x 应取最小值【详解】(1)根据题意,得:W =(﹣2x+100)(x ﹣10)整理得W =﹣2x 2+120x ﹣1000∴W 与 x 之间的函数关系式为:W =﹣2x 2+120x ﹣1000(2)∵每天销售利润W 为750元,∴W =﹣2x 2+120x ﹣1000=750解得x 1=35,x 2=25又∵要确保顾客得到优惠,∴x =25答:应将销售单价定为25元【点睛】本题考查了二次函数的性质在实际生活中的应用.我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.再根据销售利润=销售量×(售价﹣进价),建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.23.(1)8y x =;(2)32y x =+ 【解析】【分析】(1)根据题意得出6AE =,结合平行四边形的面积得出4AD BC ==,继而知点D 坐标,从而得出反比例函数解析式;(2)先根据反比例函数解析式求出点B 的坐标,再利用待定系数法求解可得.【详解】(1)∵顶点A 的坐标是()0,2,顶点C 的纵坐标是-4,∴6AE =,又ABCD 的面积是24,∴4AD BC ==,则()4,2D , ∴428k =⨯=, ∴反比例函数解析式为8y x=; (2)由题意知B 的纵坐标为-4, ∴其横坐标为-2, 则()2,4B --,设AB 所在直线解析式为y kx b =+,将()0,2A 、()2,4B --代入,得:224b k b =⎧⎨-+=-⎩,解得:32k b =⎧⎨=⎩,所以AB 所在直线解析式为32y x =+. 【点睛】本题考查了待定系数法求反比例函数解析式,解题的关键是掌握平行四边形的面积公式及待定系数法求反比例函数和一次函数解析式的方法.24.(1)建设一个小学需800万元,一个中学需1800万元;(2)①y==﹣1000x+144000(0<x≤48且x 是整数);②中小学建设数量为:48个小学,32个中学;(3)每所小学最多可增加400万元的费用. 【解析】 【分析】(1)先设建设一个小学需x 万元,一个中学各需y 万元,根据建设6个小学,5个中学,需费用13800万元,建设10个小学,7个中学,需花费20600万元列出方程组,求出x ,y 的值即可;(2)①根据建设小学的总费用+建设中学的总费用=y ,列式化简可得,根据小学的建设数量不超过中学建设数量的1.5倍列不等式可得x 的取值;②根据x 的取值可计算建设总费用最低时,中小学建设的数量; (3)根据建设小学总费用不超过建设中学的总费用,列不等式可得结论. 【详解】(1)设建设一个小学需x 万元,一个中学各需y 万元,根据题意得:651380*********x y x y +=⎧⎨+=⎩,解得:8001800x y =⎧⎨=⎩,答:建设一个小学需800万元,一个中学各需1800万元, (2)①∵建设小学的数量为x 个, ∴建设中学的数量是(80﹣x)个, x≤1.5(80﹣x), x≤48,由题意得:y =800x+1800(80﹣x)=﹣1000x+144000(0<x≤48且x 是整数);②∵﹣1000<0, ∴y 随x 的增大而减小, ∴当x =48时,y 有最小值,此时中小学建设数量为:48个小学,32个中学; (3)设每所小学可增加a 万元的费用, 由题意得:48(800+a)≤1800×32, a≤400,则每所小学最多可增加400万元的费用. 【点睛】本题考查了一次函数、二元一次方程组和一元一次不等式组的应用,解题的关键是读懂题意,找出之间的数量关系,列出二元一次方程组和一元一次不等式组,注意x 只能取整数. 25.94【解析】 【分析】先根据分式的运算法则化简分数,然后解一元二次方程求出x ,将能使分式有意义的值代入化简后的式子即可求出答案. 【详解】 解:原式=1(2)211x x x xx x x -+⋅-+-+ =1x x x -+ =21x x +; 当x 2-2x-3=0时,解得:x=3或x=-1(不合题意,舍去) 当x=3时,原式=94; 【点睛】本题考查分式的运算和一元二次方程解法,解题的关键是熟练运用分式的运算法则化简分式,注意代入x 值要使分式有意义.2019-2020学年数学中考模拟试卷一、选择题1.如图,矩形ABCD,AD=1,CD=2,点P为边CD上的动点(P不与C重合),作点P关于BC的对称点Q,连结AP,BP和BQ,现有两个结论:①若DP≥1,当△APB为等腰三角形时,△APB和△PBQ一定相似;②记经过P,Q,A三点的圆面积为S,则4π≤S<254.下列说法正确的是()A.①对②对B.①对②错C.①错②对D.①错②错2.如图,八个完全相同的小长方形拼成一个正方形网格,连结小长方形的顶点所得的四个三角形中是相似三角形的是()A.①和②B.②和③C.①和③D.①和④3.小明用尺规作了如下四幅图形:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,从保留的作图痕迹看出作图正确的是()A.①②④B.②③C.①③④D.①②③④4.下列四个图案中,不是中心对称图案的是()A. B. C. D.5.如图,已知一次函数的图像与轴分别交于点,与反比例函数的图像交于点,且,则的值为()A. B. C. D.6.如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是()A.主视图是中心对称图形B.左视图是中心对称图形C.俯视图既是中心对称图形又是轴对称图形D.主视图既是中心对称图形又是轴对称图形7.有两个一元二次方程M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.b=0时,方程M和方程N有一个相同的根,那么这个根必是x=1C.如果5是方程M的一个根,那么15是方程N的一个根D.ac≠08.如图,Rt△ABC中,∠ACB=90°,AC=BC,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的点A′处,若AO=OB=2,则阴影部分面积为()A.πB.23π﹣1 C.43π+1 D.43π9.下列命题中哪一个是假命题()A.8的立方根是2B.在函数y=3x的图象中,y随x增大而增大C.菱形的对角线相等且平分D.在同圆中,相等的圆心角所对的弧相等10.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么PMPN的值等于()A .12B .2C D .11.如图, 甲乙两城市相距600千米,一辆货车和一辆客车均从甲城市出发匀速行驶至乙城市,已知货车出发1小时后客车再出发,先到终点的车辆原地休息,在汽车行驶过程中,设两车之间的距离为s (千米),客车出发的时间为t (小时),它们之间的关系如图所示,则下列结论:①货车的速度是60千米/小时;②离开出发地后,两车第一次相遇时,距离出发地150千米;③货车从出发地到终点共用时7小时;④客车到达终点时,两车相距180千米.正确的有( ) A .1B .2C .3D .412.如图,矩形ABCD 中,AB =5,BC =12,点E 在边AD 上,点G 在边BC 上,点F 、H 在对角线BD 上,若四边形EFGH 是正方形,则AE 的长是( )A .5B .11924C .13024D .16924二、填空题13.如图,在ABC △中,,点D 在BC 上,且BD BA =,ABC ∠的平分线BE 交AD 于点E ,点F 是AC 的中点,连结EF .若四边形DCFE 和△BDE 的面积都为3,则△ABC 的面积为____.14.如图,将矩形OABC 置于一平面直角坐标系中,顶点A ,C 分别位于x 轴,y 轴的正半轴上,点B 的坐标为(5,6),双曲线y =kx(k≠0)在第一象限中的图象经过BC 的中点D ,与AB 交于点E ,P 为y 轴正半轴上一动点,把△OAP 沿直线AP 翻折,使点O 落在点F 处,连接FE ,若FE ∥x 轴,则点P 的坐标为___.15.如图,O是正方形ABCD边上一点,以O为圆心,OB为半径画圆与AD交于点E,过点E作⊙O的切线交CD于F,将△DEF沿EF对折,点D的对称点D'恰好落在⊙O上.若AB=6,则OB的长为_____.16.计算:1-+=________.12-17.某校抽查50名九年级学生对艾滋病三种主要传授途径的知晓情况,结果如表估计该校九年级600名学生中,三种传播途径都知道的有_____人.18_____.三、解答题19.如图1,在⊙O中,AB为⊙O的直径,AC是弦,OC=4,∠OAC=60度.(1)求∠AOC的度数;(2)在图1中,P为直径BA延长线上的一点,当CP与⊙O相切时,求PO的长;(3)如图2,一动点M从A点出发,在⊙O上按逆时针方向运动,当S△MAO=S△CAO时,求动点M所经过的弧长.20.如图,正方形ABCD中,AB=O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF(1)如图1,求证:AE=CF;(2)如图2,若A,E,O三点共线,求点F到直线BC的距离.21.计算:0)﹣122.如图,在平面直角坐标系中,二次函数y=﹣14x2+bx+c的图象与y轴交于点A(0,8),与x轴交于B、C两点,其中点C的坐标为(4,0).点P(m,n)为该二次函数在第二象限内图象上的动点,点D的坐标为(0,4),连接BD.(1)求该二次函数的表达式及点B的坐标;(2)连接OP,过点P作PQ⊥x轴于点Q,当以O、P、Q为顶点的三角形与△OBD相似时,求m的值;(3)连接BP,以BD、BP为邻边作▱BDEP,直线PE交x轴于点T.当点E落在该二次函数图象上时,求点E的坐标.23.如图,在平面直角坐标系中,已知△AOB,A(0,﹣3),B(﹣2,0).将△OAB先绕点B 逆时针旋转90°得到△BO1A1,再把所得三角形向上平移2个单位得到△B1A2O2;(1)在图中画出上述变换的图形,并涂黑;(2)求△OAB在上述变换过程所扫过的面积.24.如图,△ABC内接于⊙O,AB是⊙O的直径,弦CD与AB交于点E,连接AD,过点A作直线MN,使∠MAC=∠ADC.(1)求证:直线MN是⊙O的切线.(2)若sin∠ADC=12,AB=8,AE=3,求DE的长.25.在一次数学考试中,小明有一道选择题(只能在四个选项A、B、C、D中选一个)不会做,便随机选了一个答案;小亮有两道选择题都不会做,他也随机选了两个答案.(1)小明随机选的这个答案,答对的概率是;(2)通过画树状图或列表法求小亮两题都答对概率是多少?(3)这个班数学老师参加集体阅卷,在阅卷的过程中,发现学生的错误率较高.他想:若这10道选择题都是靠随机选择答案,则这10道选择题全对的概率是.【参考答案】***一、选择题二、填空题13.1014.(0,53)或(0,15).15.10 316.1 2 -17.300 18.1 三、解答题19.(1)∠AOC=60°;(2)PO=8;(3)点M经过的弧长为43π或83π或163π或203π.【解析】【分析】(1)根据等腰三角形中有一角为60度时是等边三角形得到△ACO是等边三角形,∴∠AOC=60°(2)由CP与⊙O相切,OC是半径.得CP⊥OC,∴∠P=90°−∠AOC=30°,∴PO=2 CO=8 (3)如图,当S△MAO=S△CAO时,动点M的位置有四种.①作点C关于直径AB的对称点M1,连接AM1,OM1.②过点M1作M1M2∥AB交⊙O于点M2,连接AM2,OM2,③过点C作CM3∥AB交⊙O于点M3,连接AM3,OM3,④当点M运动到C时,M与C重合,求得每种情况的OM转过的度数,再根据弧长公式求得弧AM的长.【详解】(1)∵在△ACO中,∠OAC=60°,OC=OA∴△ACO是等边三角形∴∠AOC=60°.(2)∵CP与⊙O相切,OC是半径.∴CP⊥OC,又∵∠OAC=∠AOC=60°,∴∠P=90°﹣∠AOC=30°,∴在Rt△POC中,CO=12PO=4,则PO=2CO=8;(3)如图,①作点C关于直径AB的对称点M1.易得S△M1AO=S△CAO,∠AOM1=60°∴144603 180AMππ︒︒=⨯=∴当点M运动到M1时,S△MAO=S△CAO,此时点M经过的弧长为43π.②过点M1作M1M2∥AB交⊙O于点M2,易得S△M2AO=S△CAO.∴∠AOM1=∠M1OM2=∠BOM2=60°∴2481203 180AMππ︒︒=⨯=∴当点M运动到M2时,S△MAO=S△CAO,此时点M经过的弧长为83π.③过点C作CM3∥AB交⊙O于点M3,易得S△M3AO=S△CAO ∴∠BOM3=60°,234162403 180AM Mππ︒︒=⨯=,∴当点M运动到M3时,S△MAO=S△CAO,此时点M经过的弧长为163π.④当点M运动到C时,M与C重合,S△MAO=S△CAO,此时点M经过的弧长为4203003180ππ︒︒⨯=.【点睛】本题利用了等边三角形的判定和性质,切线的性质,弧长公式,同底等高的三角形的面积相等的性质求解.20.(1)详见解析;(2)点F到直线BC的距离为5.【解析】【分析】(1)由旋转的性质可得∠EDF=90°,DE=DF,由正方形的性质可得∠ADC=90°,DE=DF,可得∠ADE=∠CDF,由“SAS”可证△ADE≌△CDF,可得AE=CF;(2)由勾股定理可求AO的长,可得AE=CF=3,通过证明△ABO∽△CPF,可得CF PFAO BO=,即可求PF的长,即可求点F到直线BC的距离.【详解】证明:(1)∵将线段DE绕点D逆时针旋转90°得DF,∴∠EDF=90°,DE=DF.∵四边形ABCD是正方形,∴∠ADC=90°,DE=DF,∴∠ADC=∠EDF,∴∠ADE=∠CDF,且DE=DF,AD=CD,∴△ADE≌△CDF(SAS),∴AE=CF,(2)解:如图2,过点F作FP⊥BC交BC延长线于点P,则线段FP的长度就是点F到直线BC的距离.∵点O是BC中点,且AB=BC=∴BO∴AO5,∵OE =2,∴AE =AO ﹣OE =3.∵△ADE ≌△CDF ,∴AE =CF =3,∠DAO =∠DCF ,∴∠BAO =∠FCP ,且∠ABO =∠FPC =90°,∴△ABO ∽△CPF , ∴CF PF AO BO=, ∴35=∴PF ,∴点F 到直线BC . 【点睛】本题考查了旋转的性质,全等三角形的判定和性质,正方形的性质,相似三角形的判定和性质,证明△ABO ∽△CPF 是本题的关键.21【解析】【分析】将原式中每一项分别化为11+再进行化简.【详解】解:原式=11+=【点睛】本题考查实数的运算;熟练掌握运算性质,绝对值的意义,负整数指数幂,零指数幂是解题的关键.22.(1)2184y x x =--+ ,(﹣8,0);(2)﹣4或﹣1;(3)(1,274). 【解析】【分析】(1)直接将A ,C 两点代入即可求(2)可设P (m ,-14m 2-m+8),由∠OQP=∠BOD=90°,则分两种情况:△POQ ∽△OBD 和△POQ ∽△OBD 分别求出PQ 与OQ 的关系即可(3)作平行四边形,实质是将B 、P 向右平移8个单位,再向上平移4个单位即可得到点E 和点D ,点E 在二次函数上,代入即可求m 的值,从而求得点E 的坐标.【详解】(1)把A (0,8),C (4,0)代入y =﹣14x 2+bx+c 得8440c b c =⎧⎨-++=⎩,解得18b c =-⎧⎨=⎩ ∴该二次函数的表达为y =﹣14x 2﹣x+8 当y =0时,﹣14x 2﹣x+8=0,解得x 1=﹣8,x 2=4 ∴点B 的坐标为(﹣8,0) (2)设P (m ,﹣14m 2﹣m+8),由∠OQP =∠BOD =90°,分两种情况: 当△POQ ∽△OBD 时,PQ BO 82OQ OD 4=== ∴PQ =2OQ 即﹣14m 2﹣m+8=2×(﹣m ),解得m =﹣4,或m =8(舍去) 当△POQ ∽△OBD 时,OQ B 82PQ D 4O O === ∴OQ =2PQ即﹣m =2×(﹣14m 2﹣m+8),解m =﹣1或m =﹣综上所述,m 的值为﹣4或﹣1(3)∵四边形BDEP 为平行四边形,∴PE ∥BD ,PE =BD∵点B 向右平移8个单位,再向上平移4个单位得到点D∴点P 向右平移8个单位,再向上平衡4个单位得到点E∵点P (m ,﹣14m 2﹣m+8), ∴点E (m+8,﹣14m 2﹣m+12), ∵点E 落在二次函数的图象上 ∴﹣14(m+8)2﹣(m+8)+8=﹣14m 2﹣m+12 解得,m =﹣7 ∴点E 的坐标为(1,274). 【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.23.(1)详见解析;(2)1394π+ 【解析】【分析】(1)根据旋转的性质,结合网格结构找出点A 、O 的对应点A 1、O 1,再与点B 顺次连接即可得到△BO 1A 1;再根据平移的性质,结合网格结构找出点B 、A 1、O 1的对应点B 1、A 2、O 2,然后顺次连接即可得解;(2)结合图形不难看出,变换过程所扫过的面积为扇形BAA 1,与梯形A 1A 2O 2B 的面积的和,然后根据扇形的面积公式与梯形的面积公式列式进行计算即可求解.【详解】(1)如图所示;(2)在Rt △AOB 中,AB ==∴扇形BAA 1的面积=290133604ππ⋅⨯=, 梯形A 1A 2O 2B 的面积=12×(2+4)×3=9, ∴变换过程所扫过的面积=扇形BAA 1的面积+梯形A 1A 2O 2B 的面积=134π+9. 【点睛】本题考查了利用旋转变换与平移变换作图,以及扇形的面积计算,熟悉网格结构找出对应点的位置是解题的关键.24.(1)见解析;(2)13. 【解析】【分析】(1)由圆周角定理得到∠ACB=90°,求得∠BAM=90°,根据垂直的定义得到AB ⊥MN ,即可得到结论;(2)连接OC ,过E 作EH ⊥OC 于H ,根据三角函数的定义得到∠D=30°,求得∠AOC=60°,解直角三角形得到1,22OH EH ==,根据相交弦定理得到结论. 【详解】(1)证明:∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠B+∠BAC =90°,∵∠B =∠D ,∠MAC =∠ADC ,∴∠B =∠MAC ,∴∠MAC+∠CAB =90°,∴∠BAM =90°,∴AB ⊥MN ,∴直线MN 是⊙O 的切线;(2)解:连接OC ,过E 作EH ⊥OC 于H ,∵sin ∠ADC =12, ∴∠D =30°,∴∠B =∠D =30°,∴∠AOC =60°,∵AB =8,∴AO =BO =4,∵AE =3,∴OE =1,BE =5,∵∠EHO =90°,∴1,22OH EH ==, ∴CH =72,CE ∴==∵弦CD 与AB 交于点E ,由相交弦定理得,AE•BE=CE•DE,13AE BE DE CE ⋅∴===. 【点睛】本题考查了切线的判定和性质,解直角三角形,相交弦定理,正确的作出辅助线是解题的关键.25.(1)14;(2)116;(3)1014. 【解析】【分析】(1)错误答有3个,除以答案总数4即可(2)根据题意画出树状图即可知道一共有16种情况,选出两题都错的情况,即可解答(3)由(2)可知两题都对的概率为(14)2,10道选择题全对的概率是10个14的乘积 【详解】(1)∵只有四个选项A 、B 、C 、D ,对的只有一项,∴答对的概率是14 ; 故答案为:14; (2)根据题意画图如下:共有16种等情况数,两题都答对的情况有1种, 则小亮两题都答对概率是116; (3)由(2)得2道题都答对的概率是(14)2,则这10道选择题全对的概率是(14)10=1014. 故答案为:1014. 【点睛】 此题考查概率公式和列表法与树状图法,解题关键在于看懂题中数据。

代数式的值-2023年新七年级数学核心知识点与常见题型(沪教版)(解析版)

代数式的值-2023年新七年级数学核心知识点与常见题型(沪教版)(解析版)

代数式的值【知识梳理】(1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值. 题型简单总结以下三种:①已知条件不化简,所给代数式化简; ②已知条件化简,所给代数式不化简; ③已知条件和所给代数式都要化简.【考点剖析】 一、用代数式数、图形的规律 一、单选题1.(2021秋·上海·七年级期中)某影院第一排有20个座位,每退一排就多1个座位,则第n 排有座位( ) A .()20n +个 B .()21n +个C .()19n +个D .()18n +个【答案】C【分析】根据后面每一排都比前一排多1个座位表示出前几排的座位数,即可得出规律,然后求解即可. 【详解】第一排有20个座位,第二排有21个座位,第三排有22个座位,…,第n 排有(n+19)个座位. 故选C .【点睛】本题考查了列代数式,是规律探寻题,比较简单.二、填空题2.(2022秋·上海·七年级专题练习)七(1)班共有n 名同学,每两人握一次手,他们一共握了____次手.【答案】()21n n −【分析】自己不能跟自己握手,所以需要握手的人数应该是除自己外的(n−1)个人.【详解】每个人都要和另外的n−1个人握一次手,n 个人共握手n×(n−1)次,由于每两人握手,应算作一次,需去掉重复的情况,实际只握了n×(n−1)÷2=()21n n −次.故答案为()21n n −【点睛】本题目考查的是握手问题,如果人数比较少,可以用枚举法解答;如果人数比较多,可以用公式:()21n n −解答.【答案】4x +16/164x +【分析】日历中任意框出4个数,设其中最小的数为x ,并用x 分别表示出其他三个数,然后4个数相加即可.【详解】解:最小的数为x ,则其它3个分别是1x +,7x +,8x +, 这4个数之和为178416x x x x x ++++++=+, 故答案为:416x +【点睛】本题考查了代数式的应用,理解日历中任意框出4个数的关系是解题关键.【答案】 32 76 (1)1(1)n n n n +++12=3212-13=761134−=13121145−=2120()()11111+11n n n n n n ++−=++【答案】(4n+1).【分析】根据题目中的图形变化规律可知,每一次变化增加四个三角形,从而可以解答本题. 【详解】解:由图可得, 图(1)所得三角形总个数为:1+4=5; 图(2)所得三角形总个数为:1+4×2=9; 图(3)所得三角形总个数为:1+4×3=13; 所以第n 个图中共有(4n+1)个三角形; 故答案为:(4n+1).【点睛】本题主要考查图形的变化类,解答本题的关键是发现题目中图形的变化规律,求出相应的三角形的个数.6.(2022秋·上海·七年级专题练习)如图为手的示意图,在各个手指间标记字母A ,B ,C ,D .请你按图中箭头所指方向(即A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,…,当字母C 第()21n −次出现时(n 为正整数),恰好数到的数是______(用含n 的代数式表示).【答案】63n −【分析】根据题意可以发现六个为一个循环,每个循环中字母C 出现两次,从而可以解答本题.【详解】解:按照A →B →C →D →C →B →A →B →C →…的方式进行,每6个字母ABCDCB 一循环,每一循环里字母C 出现2次,当循环n 次时,字母C 第2n 次出现时(n 为正整数),此时数到最后一个数为6n , 当字母C 第()21n −次出现时(n 为正整数),再数3个数为63n −.故答案为:63n −.【点睛】本题考查代数式、数的规律,是基础考点,难度较易,掌握相关知识是解题关键.三、解答题(2)a n = (用含n 的代数式表示)(3)按照上述方法,能否得到2019个正方形?如果能,请求出n ;如果不能,请简述理由. 【答案】(1)10,13;(2)3n-2;(3)不能,【分析】根据已知图形可以发现:每次剪开,都会增加3个正方形,所以可以得到此题的规律为:第n 个图形中的正方形个数为:3n-2.【详解】(1)根据已知图形可以发现:每次剪开,都会增加3个正方形, ∴第4个图中为7+3=10个,第5个图中为10+3=13个;(2)根据(1)中的数据规律可知:第n 个图形中的正方形个数为:32n −; (3)不能.∵若能得到2019个正方形,则有322019n −=,则32021n =,但是2021不能被3整除,∴不能得到2019个正方形.【点睛】本题考查了图形的变化类问题,关键是要通过观察图形,分析、归纳发现其中的规律. (2019++2022+++2019+2020+2021=++【答案】(1)12n (n+1)(2)12(n+1)2【分析】(1)根据题目中的方法进行求解即可; (2)仿照题目中的方法进行求解即可. (1)解:由题意得:1+2+3+…+(n-2)+(n-1)+n=12n(n+1);(2)1+3+5+…+(2n+1)=12×12(1+2n+1)(n+1)=12(n+1)2.【点睛】本题主要考查规律型:数字的变化类,列代数式,解答的关键是总结出存在的规律.【答案】(1)-3(2)5;-20;42k−【分析】尝试:(1)将前4个数字相加可得;(2)根据“相邻四个台阶上数的和都相等”列出方程求解可得;应用:根据“台阶上的数字是每4个一循环”求解可得;发现:由循环规律即可知数“2”所在的台阶数为4k﹣2.(1) 解:尝试: (1)()()52193++−+−=−答:前4个台阶上数的和是3−.(2)∵任意相邻四个台阶上数的和都相等, ∴()()2193x +−+−+=−,解得5x =第5个台阶上的数x 是5.应用:由题意知台阶上的数字4个一循环, ∵3849÷=……2 ∴()935220⨯−++=−即从下到上前38个台阶上数的和20− 发现:数“2”所在的台阶数42k − (2)解:(2)∵任意相邻四个台阶上数的和都相等, ∴()()2193x +−+−+=−,解得5x =第5个台阶上的数x 是5.应用:由题意知台阶上的数字4个一循环, ∵3849÷=……2 ∴()935220⨯−++=−即从下到上前38个台阶上数的和20− 发现:数“2”所在的台阶数42k −.【点睛】本题主要考查了列代数式,解一元一次方程,解题的关键是根据相邻四个台阶上数的和都相等得出台阶上的数字是每4个一循环. 二、已知字母的值,求代数值的值 一、单选题1.(2022秋·上海青浦·七年级校考期中)已知()42251A x =+,则当1x =时,3A 的值为( ) A .8000 B .1000C .1000±D .8000±【答案】D【分析】利用乘方的逆运算以及已知条件求出A 的值,然后利用乘法运算法则求出3A 的值即可. 【详解】解:∵()4222[5(51]21)x A x ++=±=,1x =,∴225(1)5(11)20A x =±+=±⨯+=±,∴33(20)8000A =±=±.故选:D .【点睛】本题主要考查了乘法运算、乘方的逆运算以及代数式求值,解题关键是熟练掌握相关运算法则.二、填空题【答案】119/9【分析】直接代入求值即可.【详解】解:当13x =-时,原式2111913⎛⎫=⎪+ =−⎝⎭, 故答案为:119.【答案】8−/0.125−【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而代入得出答案. 【详解】解:∵230.2504a b ⎛⎫−++= ⎪⎝⎭, ∴30.250,04a b −=+=,∴30.25,4a b ==−,∴222233139120.2520.2544168168a ab b ⎛⎫⎛⎫−−=−⨯⨯−−−=+−=−⎪ ⎪⎝⎭⎝⎭.故答案为:18−.【点睛】此题主要考查了非负数的性质,代数式求值,正确得出a ,b 的值是解题关键.【答案】8【分析】直接把12x =代入计算即可. 【详解】解:当12x =时,()113131922228x x ⎛⎫⨯⨯+ ⎪+⎝⎭==故答案为:98【点睛】本题主要考查了代数式求值,有理数的混合运算法则,在解题时要根据题意代入计算即可. 5.(2022秋·上海嘉定·七年级校考期中)当2x =−,3y =时,代数式22x xy y ++的值是___________. 【答案】7【分析】将x 、y 的值代入计算即可. 【详解】解:当2x =−,3y =时, 22x xy y ++()()222233=−+−⨯+469=−+ 7=.故答案为7.【点睛】考查了代数式求值,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值,正确进行计算是解题的关键.6.(2022秋·上海静安·七年级校考阶段练习)当2a =−时,代数式3(1)a a +的值等于__________. 【答案】6【分析】根据题意,直接将2a =−代入代数式进行计算即可求解. 【详解】解:当2a =−时,代数式3(1)a a +()()32216=⨯−⨯−+=,故答案为:6.【点睛】本题考查了代数式求值,正确的计算是解题的关键.7.(2023秋·上海静安·七年级新中初级中学校考期末)当a =5,b =-3时,a -b 的值为__________. 【答案】8【分析】根据已知字母的值,直接代入求值即可. 【详解】解:∵a=5,b=-3, ∴a-b=5-(-3)=8; 故答案为:8.【点睛】此题主要考查了代数式求值,掌握代数式求值方法是解题的关键.【答案】2或18/18或2【分析】根据a 与b 都为正整数即可求得. 【详解】解:根据题意得,只有当2b =和18时, 17a =和1,故答案为:2或18.【点睛】本题考查了正整数的定义(大于0的整数),准确的计算是解决本题的关键.【答案】41【分析】把a 、b 、c 的值代入代数式进行计算即可. 【详解】解:把2a =,3b =−,4c =−代入得:()()224342441b ac −=−−⨯⨯−=,故答案为:41.【点睛】本题考查了代数式求值,准确计算是解题的关键.10.(2022秋·上海·七年级校考阶段练习)当1x =,代数式31px qx ++的值为2022,则当=1x −,代数式31px qx ++的值是_______.【答案】2020−【分析】根据“当1x =,代数式31px qx ++的值为2022”可得2021p q +=,再将=1x −代入31px qx ++可得()p q −++1,再整体代入计算即可.【详解】解:∵当1x =,代数式31px qx ++的值是2022.∴把1x =代入31px qx ++得,12022p q ++=∴2021p q +=∴把=1x −代入31px qx ++得,1()1202112020p q p q −−+=−++=−+=−故答案为:2020−.【点睛】本题考查代数式求值,根据题意得出2021p q +=是解决问题的关键.三、解答题【答案】(1)2212x x −+;(2)218m . 【分析】(1)根据题意“目”字形的窗框,长有4段,总长为4AD =4x 米,则AB =2442x−米,再根据长方形面积计算公式即可得出答案;(2)把x =3代入(1)中关于面积的代数式中即可得出答案.【详解】(1)根据题意得AB=2441222x x −=−,∴S 长方形ABCD ()2122212x x x x =−⋅=−+.(2)当3x =时,221229123x x −+=−⨯+⨯1836=−+218m =.答:长方形ABCD 面积为218m .【点睛】本题主要考查了列代数及代数式的求值,根据题意列出合理的代数式是解决本题的关键.【答案】(1)22ab b −(2)222a ab b −+ (3)7800【分析】(1)根据题意表示出十字路的面积即可;(2)根据题意表示出铺设的草坪的面积即可;(3)根据(1)表示出的式子,把a 与b 的值代入计算即可得出答案.【详解】(1)根据题意可得,()222ab b a b ab ab b ab b +−=+−=− ∴修建的道路是22ab b −平方米;铺设的草坪的面积为()2222a b a ab b −=−+;(3)当20a =,1b =时, 2222201139ab b −=⨯⨯−=(平方米),392007800⨯=(元).∴需要投资7800元修建道路.【点睛】本题考查代数式求值,以及列代数式,整式的混合运算,熟练掌握运算法则是解题的关键. (1)试用含a 的代数式表示(2)当12a =时,比较S 阴影【答案】(1)213182a a −+(2)BGF S S ∆=阴【分析】(1)根据图形,把阴影的面积表示出来ABCD ECGF ABD BGF S S S S S ∆∆=+−−阴,化简即可解得. (2)把当12a =代入求值,即可解得.【详解】(1)解:∵22ABCD ECGF S S a b +=+,212ABD S a ∆=,()()1632BGF S a b a b ∆=⨯+⨯=+, ∴ABCD ECGF ABD BGF S S S S S ∆∆=+−−阴()221332a b a a b =+−−+213182a a =−+;()2131832BGF S S a a a b ∆−=−+−+阴 ()21122a a =−将12a =代入,0BGF S S ∆−=阴, ∴BGF S S ∆=阴.【点睛】此题考查了列代数式求阴影的面积,解题的关键是把阴影部分的面积表示出来. 14.(2022秋·上海徐汇·七年级上海市徐汇中学校联考期末)已知52345670123456721)x a a x a x a x a x a x a x a x −=+++++++((1)求01234567a a a a a a a a −+−+−+−的值.(2)求0246a a a a +++的值.【答案】(1)243−(2)121−【分析】(1)根据已知条件,=1x −代入即可解得.(2)把1x =代入进行计算,最后再与(1)中所得等式进行相加即可求解.【详解】(1)52345670123456721)x a a x a x a x a x a x a x a x −=+++++++(把=1x −代入,01234567a a a a a a a a −+−+−+−()521=--243=− (2)把1x =代入,52345670123456721)x a a x a x a x a x a x a x a x −=+++++++(,解得:012345671a a a a a a a a +++++++=①,根据第一问可得∶01234567243a a a a a a a a -+-+-+-=-②, ①+②得:()02462242a a a a +++=-∴0246121a a a a +++=- 【点睛】本题主要考查的是求代数式的值,特殊值法的应用是解题的关键. (1)求这个无盖长方体纸盒的表面积(用含(2)求这个无盖长方体纸盒的容积(用含【答案】(1)2604a −(2)3243260a a a −+,31.5 【分析】(1)根据题意易知,无盖长方体纸盒的表面积即长方形纸片的面积减去四个小正方形的面积;(2)长方形纸盒的长为102a −,宽为62a −,高为a ,容积=长⨯宽⨯高,再将32a =代入即可.【详解】(1)解:由题意可知,无盖长方体纸盒的表面积即长方形纸片的面积减去四个小正方形的面积, 221064604S a a =⨯−=−,∴这个无盖长方体纸盒的表面积为2604a −.(2)长方形纸盒的长为102a −,宽为62a −,高为a ,容积=长⨯宽⨯高()()321026243260a a a a a a=−⨯−⨯=−+, 将32a =代入,得:323334326031.5222⎛⎫⎛⎫⎛⎫⨯−⨯+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭答:容积为31.5.【点睛】本题考查了列代数式,解题的关键是正确表示纸盒的长,宽,高.三、已知式子的值,求代数式的值一、单选题1.(2023秋·上海静安·七年级新中初级中学校考期末)已知x − 2y = 2,则2x — 4y 的值是( )A .5B .2C .4D .7【答案】C 【分析】先根据x−2y =2,再变形,最后代入求出即可.【详解】解:∵x−2y =2,∴2x−4y =2(x−2y )=2×2=4,故选:C .【点睛】本题考查了求代数式的值,能够整体代入是解此题的关键.二、填空题2.(2023秋·上海嘉定·七年级上海市育才中学校考期末)如果34a b −=,那么261a b −−的值是________.【答案】7【分析】用整体代入法求解即可.【详解】解:∵34a b −=,∴()261231817a b a b −−=−−=−=.故答案为:7.【点睛】此题考查了代数式求值,代数式中字母的值没有明确告知,而是隐含在已知条件中,首先应从条件“整体代入法”求代数式的值. 3.(2023秋·上海浦东新·七年级校考期中)已知3x =时,代数式38ax bx ++的值是12;那么当3x =−时,代数式35ax bx +−的值为__________.【答案】9−【分析】将3x =代入38ax bx ++,求出273a b +值,将3x =−,以及273a b +值,代入35ax bx +−进行求值即可.【详解】解:∵3x =时,代数式38ax bx ++的值是12,即:273812a b ++=,∴2734a b +=;当3x =−时:()3527352735459ax bx a b a b +−=−−−=−+−=−−=−.故答案为:9−.【点睛】本题考查代数式求值.解题的关键是利用整体思想,代入求值. 4.(2022秋·上海·七年级校考期末)已知231x y +=,那么代数式()()72345x y x y +−−−的值是___________.【答案】7【分析】去括号,合并同类项,再代入求值即可.【详解】解:()()72345x y x y +−−−72345x y x y =+−++465x y =++()2235x y =++231x y += 原式215=⨯+7= 故答案为:7.【点睛】本题考查了整式的化简和整体代入法求值;解题的关键是去括号,根据已知构造相同整式.【答案】5/0.8【分析】由题意易得2x y =,然后代入求解即可.【详解】解:由2x y =可知2x y =,∴2224365x y y y x y y y ++==−−; 故答案为45.【点睛】本题主要考查代数式的值,解题的关键是得到2x y =.6.(2022秋·上海·七年级校考期中)已知210a a −−=,则代数式326a a −+=_____.【答案】7【分析】根据已知条件得到2a a −=1,再把原式变形,代入即可求解.【详解】解:∵210a a −−=,∴2a a −=1,326a a −+32226a a a a −+−+=()2226a a a a a −+−+=226a a a +−+=26a a −+= 16+=7=.故答案为:7.【点睛】此题主要考查代数式求值以及利用提取公因式求式子的值,将式子转化为32226a a a a −+−+,以及利用()322a a a a a −−=是解题的关键.【答案】36−【分析】由相伴数的定义分别计算[]a ,[]b 的值,再计算3b a −=−,最后利用整体思想解题.【详解】根据题意得,111a b −=++,则3b a −=−,()()()3333327936b a a b b a b a −−+=−+−=−−=−.故答案为:36−.【点睛】本题考查新定义计算、已知式子的值,求代数式的值,理解题意是解题关键.【答案】5或11−/11−或5【分析】根据a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,可以得到0a b +=,1cd =,2m =±,然后代入所求式子计算即可.【详解】解:依题意0a b +=,1cd =,||2m =,2m ∴=±,当2m =时,22043423152121a bm cd m m ++−=+⨯−⨯=++;当2m =−时,()20434231112121a bm cd m m ++−=+⨯−−⨯=−++;故答案为:5或11−.【点睛】本题考查代数式求值,绝对值,相反数和倒数的性质,解答本题的关键是求出0a b +=,1cd =,2m =±.三、解答题【答案】(1)b −(2)-2,2(3)-9【分析】(1)根据每行、每列的3个代数式的和相等,可得a 与b 的关系;(2)根据第一行与第三列、对角线上与第二行的和相等,可得a 与b 的值;(3)根据“等和格”的定义可得方程,分别进行整理代入可求出b 的值.【详解】(1)解:如图2,根据题意得232−+=+a a b a ,33a b ∴−=,解得a b =−,故答案为:b −;(2)解:如图3,可得2322283a a b a a a b b −+=+⎧⎨−+=−+⎩,解得22a b =−⎧⎨=⎩,故答案为:2,2−;(3)解:如图4,可得2222223a a a a a a a ++−=++−,∴23a a +=,又22223322a a a b a a a a ++−=++++,2223b a a ∴=−−−,∴22()32339b a a =−+−=−⨯−=−,故答案为:9−.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是充分利用“每行,每列及对角线上的3个数(或代数式)的和都相等”,得出等式求解.10.(2022秋·上海·七年级专题练习)在某班小组学习的过程中,同学们碰到了这样的问题:“已知【答案】(1)7 (2)34【分析】(1)由已知115a b ab a b +=+=,113b c bc b c +=+=,116c a ca c a +=+=,可得111111536a b b c c a +++++=++,即可得出答案;(2)由已知216m m +=,可得16m m +=,m 4+1m 2=m 2+1m 2=(m +1m)2−2,即可得出答案.【解答】解:(1)115a b ab a b +=+=,113b c bc b c +=+=,116c a ca c a +=+=,∴111111536a b b c c a +++++=++, ∴22214a b c ++=,∴1a+1b+1c=ab+bc+ca abc=7;(2)216m m +=,∴16m m +=,422211m m m m +=+,∴m 2+1m 2=(m +1m)2−2=62−2=34.∴42134m m +=.【点评】本题主要考查了代数式求值,合理应运题目所给条件是解决本题的关键.11.(2022秋·上海·七年级专题练习)已知a 、b 互为相反数,x 、y 互为倒数,m 到原点距离2个单位. (1)根据题意,m =________.【答案】(1)2或-2;(2)5.【分析】(1)根据绝对值的定义可得答案;(2)先根据相反数的性质、倒数的定义得出a+b=0,xy=1,再结合m 的值分别代入计算即可. 【详解】解:(1)∵m 到原点距离2个单位, ∴m=2或-2, 故答案为:2或-2;(2)根据题意知a+b=0,xy=1,m=2或-2, 当m=2时,()202022a b m xy +++−=22+0+(-1)2020=4+1=5; 当m=-2时,()202022a b m xy +++−=(-2)2+0+(-1)2020=4+1=5;综上,()202022a b m xy +++−的值为5.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则. 四、程序流程图与代数式的值 一、单选题【答案】C【分析】输入4,计算234x x −=,判断40>,输出4,输入2,计算232x x −=−,判断20−<,输出12,最后计算142+的和即可.【详解】解:输入4,计算22343416124x x −=−⨯=−=,40>∴输出4;输入2,计算223232462x x −=−⨯=−=−,20−<计算112x = ∴输出12;19422∴+=故选:C .【点睛】本题考查已知字母的值,求整式的值,是基础考点,掌握相关知识是解题关键.2.(2020秋·上海·七年级上海市进才中学北校校考阶段练习)如图,是一个运算程序的示意图,如果开始输入的x 的值为81,那么第2020次输出的结果为( )A .3B .27C .81D .1【答案】Dx ,输出27;输入27,输出9;输入9,输出3;输入3,输出1;输入1,输出3L 直至出现循环规律,分奇数次与偶数次输入,据此解题.【详解】根据题意,第1次输入x 的值为81,1x ≠,计算11=81=2733x ⨯,输出27,第2次输入x 的值为27,1x ≠,计算11=27=933x ⨯,输出9, 第3次输入x 的值为9,1x ≠,计算11=9=333x ⨯,输出3, 第4次输入x 的值为3,1x ≠,计算11=3=133x ⨯,输出1,第5次输入x 的值为1,=1x ,计算+2=1+2=3x ,输出3,第6次输入x 的值为3,1x ≠,计算11=3=133x ⨯,输出1,第7次输入x 的值为1,=1x ,计算+2=1+2=3x ,输出3,L从第3次开始,第奇数次输出的结果为3,第偶数次输出的结果为1,2020>3且为偶数,第2020次输出的结果为1,故选:D.【点睛】本题考查代数式求值,是重要考点,难度较易,掌握相关知识是解题关键.3.(2019秋·上海杨浦·七年级校考阶段练习)在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1B.2,1,4C.1,4,2D.2,4,1【答案】D【详解】A.把x=4代入得:42=2,把x=2代入得:22=1,本选项不合题意;B.把x=2代入得:22=1,把x=1代入得:3+1=4,本选项不合题意;C.把x=1代入得:3+1=4,把x=4代入得:42=2,本选项不合题意;D.把x=2代入得:22=1,把x=1代入得:3+1=4,本选项符合题意,故选:D.【过关检测】一.选择题(共6小题)1.(2020秋•虹口区校级期末)当x=3,y=2时,代数式的值是()A.B.2C.0D.3【分析】当x=3,y=2时,直接代入代数式即可得到结果.【解答】解:==.故选:A.【点评】此题较简单,代入时细心即可.2.(2020秋•浦东新区校级月考)如图,是一个运算程序的示意图,若开始输入x的值为81,则第2020次输出的结果是()A.3B.27C.9D.1【分析】分别求出第一次输出27,第二次输出9,第三次输出3,第四次输出1,第五次输出3,第六次输出1,……由此可得,从第三次开始,每两次一个循环.【解答】解:由题可知,第一次输出27,第二次输出9,第三次输出3,第四次输出1,第五次输出3,第六次输出1,……由此可得,从第三次开始,每两次一个循环,∵(2020﹣2)÷2=1009,∴第2020次输出结果与第4次输出结果一样,∴第2020次输出的结果为1,故选:D.【点评】本题考查数字的变化规律;能够通过所给例子,找到循环规律是解题的关键.3.(2022秋•闵行区期中)当x=2时,整式ax3+bx﹣1的值等于﹣19,那么当x=﹣2时,整式ax3+bx﹣1的值为()A.19B.﹣19C.17D.﹣17【分析】将x=2代入整式,使其值为﹣19,列出关系式,把x=﹣2代入整式,变形后将得出的关系式代入计算即可求出值.【解答】解:∵当x=2时,整式ax3+bx﹣1的值为﹣19,∴8a+2b﹣1=﹣19,即8a+2b=﹣18,则当x=﹣2时,原式=﹣8a﹣2b﹣1=18﹣1=17.故选:C.【点评】本题考查了代数式的求值,正确变形并整体代入,是解题的关键.4.(2019秋•浦东新区期末)已知:(2x+1)3=ax3+bx2+cx+d,那么代数式﹣a+b﹣c+d的值是()A.﹣1B.1C.27D.﹣27【分析】在(2x+1)3=ax3+bx2+cx+d中,令x=﹣1,求出代数式﹣a+b﹣c+d的值是多少即可.【解答】解:当x=﹣1时,﹣a+b﹣c+d=(﹣2+1)3=﹣1故选:A.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.5.(2019秋•乐亭县期末)当x=﹣1时,3x2+9x﹣1的值为()A.0B.﹣7C.﹣9D.3【分析】把x=﹣1代入3x2+9x﹣1,转化为有理数的混合运算,计算求值即可.【解答】解:把x=﹣1代入3x2+9x﹣1得:原式=3×(﹣1)2+9×(﹣1)﹣1=3﹣9﹣1=﹣7,故选:B.【点评】本题考查了代数式求值,正确掌握代入法和有理数的混合运算是解题的关键.6.(2019秋•浦东新区期中)如果﹣x=1,那么3x2﹣3x﹣2的值是()A.1B.﹣1C.2D.﹣2【分析】把x2﹣x=1整体代入原式=3(x2﹣x)﹣2,计算可得.【解答】解:∵x2﹣x=1,∴3x2﹣3x﹣2=3(x2﹣x)﹣2=3×1﹣2=1.故选:A.【点评】本题主要考查代数式求值,解题的关键是熟练掌握整体代入思想的运用.二.填空题(共12小题)7.(2022秋•静安区月考)当a=﹣2时,代数式3a(a+1)的值等于.【分析】直接把a=﹣2代入代数式中进行计算即可.【解答】解:原式=3×(﹣2)×(﹣2+1)=﹣6×(﹣1)=6.故答案为:6.【点评】本题考查了代数式求值:把字母的值代入代数式进行计算得到对应的代数式的值.8.(2022秋•闵行区校级期中)当x=﹣时,代数式x2+1的值是.【分析】把x=﹣代入原式计算即可.【解答】解:当x=﹣时,原式=+1=1,故答案为:1.【点评】本题考查了代数式的求值,掌握用数值代替代数式里的字母进行计算,正确计算结果是解题关键.9.(2022•闵行区校级开学)已知x﹣5=y+4=z+1,代数式(y﹣x)2+(z﹣x)2+(y﹣z)2的值为.【分析】先加减法求出z﹣x=﹣6,y﹣x=﹣9,y﹣z=﹣3,进而代入解答即可.【解答】解:∵x﹣5=y+4=z+1,∴z﹣x=﹣6,y﹣x=﹣9,y﹣z=﹣3,把z﹣x=﹣6,y﹣x=﹣9,y﹣z=﹣3代入(y﹣x)2+(z﹣x)2+(y﹣z)2=81+36+9=126,故答案为:126.【点评】此题主要考查了代数式求值,正确将原式变形是解题关键.10.(2022秋•嘉定区校级期末)如果a﹣3b=4,那么2a﹣6b﹣1的值是.【分析】首先把2a﹣6b﹣1化成2(a﹣3b)﹣1,然后把a﹣3b=4代入化简后的算式计算即可.【解答】解:∵a﹣3b=4,∴2a﹣6b﹣1=2(a﹣3b)﹣1=2×4﹣1=8﹣1=7.故答案为:7.【点评】此题主要考查了代数式求值问题,求代数式的值可以直接代入计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.11.(2022秋•宝山区期末)当a=3时,代数式﹣2a2+a的值是.【分析】未知数的值已给出,直接代入求解.【解答】解:根据题意,直接将a=3代入,得(﹣2)×32+3=﹣18+3=﹣15.故答案为:﹣15.【点评】本题考查了用代入法求解,掌握代入法求解的方法是关键.12.(2022秋•浦东新区期中)定义a﹣b=0,则称a、b互容,若2x2﹣2与x+4互容,则6x2﹣3x﹣9=.【分析】先根据新定义求出2x2﹣x=6,再把6x2﹣3x﹣9化为3(2x2﹣x)﹣9的形式,整体代入计算即可.【解答】解:∵2x2﹣2与x+4互容,∴2x2﹣2﹣(x+4)=0,∴2x2﹣x=6,∴6x2﹣3x﹣9=3(2x2﹣x)﹣9=3×6﹣9=9,故答案为:9.【点评】本题考查了代数式的求值,掌握乘法分配律的逆运算,把(2x2﹣x)看做一个整体进行计算是解题关键.13.(2022•闵行区校级开学)当x时代数式ax2+bx﹣3的值为5,当x=1时代数式(2ax2+bx﹣5)4的值为.【分析】直接把x=2代入进而得出4a+2b=8,再把x=1代入求出答案.【解答】解:∵当x=2时,代数式ax2+bx﹣3的值为5,∴4a+2b=8,∴2a+b=4,∴当x=1时,代数式(2ax2+bx﹣5)4=(4﹣5)4=1.故答案为:1.【点评】此题主要考查了代数式求值,正确将原式变形是解题关键.14.(2022秋•宝山区校级月考)当a=﹣2时,﹣a2﹣2a+1=.【分析】把a的值代入代数式进行计算即可得解.【解答】解:当a=﹣2时,﹣a2﹣2a+1=﹣(﹣2)2﹣2×(﹣2)+1=﹣4+4+1=1.故答案为:1.【点评】本题考查了代数式求值,比较简单,把a的值代入代数式进行计算即可.15.(2022秋•黄浦区期中)定义:对于一个数x,我们把[x]称作x的相伴数;若x≥0,则[x]=x﹣1;若x<0,则[x]=x+1.例=,[﹣2]=﹣1;已知当a>0,b<0时有[a]=[b]+1,则代数式(b﹣a)3﹣3a+3b的值为.【分析】根据定义的新运算可得a﹣1=b+1+1,从而可得a﹣b=3,然后利用整体的思想进行计算即可解答.【解答】解:当a>0,b<0时,[a]=[b]+1,∴a﹣1=b+1+1,∴a﹣b=3,∴(b﹣a)3﹣3a+3b=﹣(a﹣b)3﹣3(a﹣b)=﹣33﹣3×3=﹣27﹣9=﹣36,故答案为:﹣36.【点评】本题考查了代数式求值,熟练掌握求代数式值中的整体思想是解题的关键.16.(2022秋•长宁区校级期中)当x=3时,代数式2x3+3x2﹣x+3的值是.【分析】将x=3代入运算即可.【解答】解:当x=3时,原式=2×33+3×32﹣3+3=2×27+3×9﹣3+3=54+27=81,故答案为:81.【点评】本题主要考查了求代数式的值,正确利用有理数的混合运算的法则运算是解题的关键.17.(2022秋•青浦区校级期中)当x=﹣2时,代数式的值为.【分析】将x=﹣2代入代数式,按照代数式要求的运算顺序和运算法则计算可得.【解答】解:当x=﹣2时,==3,故答案为:3.【点评】本题考查了代数式的求值,属于基础题,只要将已知条件代入求值即可.18.(2022秋•闵行区期中)如果代数式﹣2a2+3b+8的值为1,那么代数式4a2﹣6b+2的值等于.【分析】根据﹣2a2+3b+8的值为1,可得:﹣2a2+3b+8=1,所以﹣2a2+3b=﹣7,据此求出代数式4a2﹣6b+2的值等于多少即可.【解答】解:∵﹣2a2+3b+8的值为1,∴﹣2a2+3b+8=1,∴﹣2a2+3b=﹣7,∴4a2﹣6b+2=﹣2(﹣2a2+3b)+2=﹣2×(﹣7)+2=14+2=16故答案为:16.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.三.解答题(共8小题)19.(2021秋•松江区期中)如图所示,已知正方形的边长为2a.(1)用含有a的代数式表示阴影部分的面积;(2)当a=2时,求阴影部分的面积.(保留π)【分析】(1)先表示出半圆的面积,再表示出大三角形的面积,最后用正方形的面积减去半圆和大三角形的面积即可得出阴影部分的面积;(2)把a=2代入(1)中的结论,即可得出答案.【解答】解:(1)由题意得,半圆的面积为=,大三角形的面积为=a2,∵正方形的面积为2a×2a=4a2,∴阴影部分的面积为==(3﹣)a2;(2)当a=2时,(3﹣)a2=(3﹣)×22=12﹣2π,∴阴影部分的面积为12﹣2π.【点评】本题主要考查的是列代数式求值的问题,关键是要牢记圆,三角形和正方形的面积公式.20.(2021秋•浦东新区期中)某中学有一块长30m,宽20m的长方形空地,计划在这块空地上划分出部分区域种花,小明同学设计方案如图,设花带的宽度为x米.(1)请用含x的式子表示空白部分长方形的面积;(要化简)(2)当花带宽2米时,空白部分长方形面积能超过400m2吗?请说明理由.【分析】(1)空白部分长方形的两条边长分别是(30﹣2x)m,(20﹣x)m.得空白部分长方形的面积;(2)通过有理数的混合运算得结果与400进行比较.【解答】解:(1)空白部分长方形的两条边长分别是(30﹣2x)m,(20﹣x)m.白部分长方形的面积:(30﹣2x)(20﹣x)=2x2﹣70x+600.(2)答:超过.∵2×22﹣70×2+600=468(m2),∵468>400,∴空白部分长方形面积能超过400 m2.【点评】本题考查有代数式表示实际问题,掌握用代数式表示长方形的边长,读懂题意列出代数式是解决此题关键.21.(2020秋•嘉定区期末)在某班小组学习的过程中,同学们碰到了这样的问题:“已知=5,=3,=6,求的值”.根据已知条件中式子的特点,同学们会想起+=,于是问题可转化为:“已知=+=5,=+=3,=+=6,求=++的值”,这样解答就方便了.(1)通过阅读,试求的值;(2)利用上述解题思路请你解决以下问题:已知=6,求的值.【分析】(1)由已知=+=5,=+=3,=+=6,可得+++++=5+3+6,即可得出答案;(2)由已知=6,可得m+=6,=(m+)2﹣2,即可得出答案.【解答】解:(1)∵=+=5,=+=3,=+=6,∴+++++=5+3+6,∴,∴++==7;(2)∵=6,∴,,∴m2+=(m)2﹣2=62﹣2=34.∴.【点评】本题主要考查了代数式求值,合理应运题目所给条件是解决本题的关键.22.(2021秋•金山区期中)如图,正方形ABCD的边长等于a,正方形BEFG的边长等于b(a>b),其中,点G、E分别在AB、BC上.(1)用a、b的代数式表示图中的阴影部分面积;(2)当a=5,b=2时,求图中的阴影部分面积.【分析】(1)用正方形ABCD的面积减去正方形BEFG的面积再减去直角三角形AGD与在直角三角形DCE的和即可得出结论;(2)将a=5,b=2代入(1)中的代数式计算即可.【解答】解:S阴影=S正方形ABCD﹣S正方形BEFG﹣(S△ADG+S△DEC)==ab﹣b2.(2)当a=5,b=2时,ab﹣b2=5×2﹣4=6.【点评】本题主要考查了列代数式,求代数式的值,正确使用图形的面积公式是解题的关键.23.(2021秋•黄浦区期中)老王想靠着一面足够长的旧墙EF,开垦一块长方形的菜地ABCD,如图所示,菜地的一边靠墙,另外三边用竹篱笆围起来,并在平行于墙的一边BC上留1米宽装门,已知现有竹篱。

§32代数式的值

§32代数式的值

综合上述分析,如果我们要搭 条小鱼需要火柴棒 综合上述分析 如果我们要搭n条小鱼需要火柴棒 ) 如果我们要搭 条小鱼需要火柴棒( 根? 仔细分析后可知搭n条小鱼所需的火柴棒数目可用代 仔细分析后可知搭 条小鱼所需的火柴棒数目可用代 数式表示为: 数式表示为 8+6•(n-1) 所以,要搭 条小鱼、 条小鱼、 所以 要搭100条小鱼、200条小鱼、1000条小鱼甚 要搭 条小鱼 条小鱼 条小鱼甚 至更多的小鱼数就可以由上面的式子来计算出来。 至更多的小鱼数就可以由上面的式子来计算出来。 上面的解题,我们用了具体的数字来代替代数式里 上面的解题, 的字母 这就是代数式的值。 这就是代数式的值。
用火柴棒按以下方式搭小鱼。 用火柴棒按以下方式搭小鱼。
搭一条小鱼要8根火柴棒, 搭一条小鱼要8根火柴棒,搭2条小鱼要 14根火柴棒 根火柴棒, 条小鱼要20根火柴棒, 20根火柴棒 用14根火柴棒,搭3条小鱼要20根火柴棒, 条小鱼要26根火柴棒…… 26根火柴棒 搭4条小鱼要26根火柴棒 问:搭10条小鱼要多少火柴棒?100条、 10条小鱼要多少火柴棒?100条 条小鱼要多少火柴棒?100 200条 1000条呢 200条……1000条呢? 1000条呢?
课后作业: 课后作业:
P126-127 习题 习题4.3 T1、T3、T5 、 、
=-3时 当a=-2,b=- 时, = , =- 求代数式2a^2-3ab+b^2的值: 的值: 求代数式 的值 解:当a=-2,b=-3时 时 2a^2-3ab+b^2 =2•(-2)•(-2)-3•(-2)•(-3)+(-3)•(-3) =2•4-3•(-2)•(-3)+9 =8-18+9 =-1
通过观察容易发现, 通过观察容易发现 第二条小鱼比第一条小鱼多了( )根火柴棒 第二条小鱼比第一条小鱼多了 根火柴棒; 根火柴棒 第三条小鱼比第二条小鱼多了( 根火柴棒 根火柴棒; 第三条小鱼比第二条小鱼多了 )根火柴棒

七年级数学寒假专题代数式 (2)

七年级数学寒假专题代数式 (2)

七年级数学寒假专题——代数式【本讲教育信息】一. 教学内容:寒假专题——代数式1.理解字母表示数的重要意义以及代数式的意义,会根据实际问题列代数式,会求代数式的值,能解释代数式的值所表示的实际意义。

2.理解同类项、合并同类项的意义,掌握合并同类项的法则,并能正确合并同类项、根据合并同类项化简求值。

3.掌握去括号的法则,并能根据去括号的法则进行代数式的化简与求值。

4.进一步熟悉计算器的使用,能借助计算器探索数量关系,解决某些实际问题。

5.会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探索的规律。

二. 学习重难点:1.重点:列代数式,根据代数式化简求值,根据图形进行规律探索。

2.难点:根据代数式说出它所表示的实际意义,利用去括号法则去括号以及探索图形中的规律问题。

3.主要考点:(1)根据实际问题列代数式;(2)代数式的化简求值;(3)探索规律三. 知识要点讲解:(一)明确代数式的特征代数式是一个非常重要的概念,它贯穿于初中代数的始终,我们可以看出代数式的三个特征:1.代数式是用运算符号把数和表示数的字母连结而成的。

如:3a、a+b等。

2.单独一个数或一个字母也是代数式。

如:7、x等。

3.代数式中是不含等号的。

运算律、公式,它们都是以等号形式出现的,应该说,这些等式的左、右两边,各是一个代数式。

如:S=ab,它是用等号把代数式S与ab连结起来而成为公式,所以S=ab不是代数式,而是公式。

(二)注意代数式的书写格式1.代数式中出现的乘号,通常简记作“·”或省略不写。

数字和数字相乘,乘号不能省略;数字和字母相乘,可以省略乘号,但数字必须写在字母前面,如:a×2可记作2a,不能写成a2;字母和字母相乘时,除可省略乘号外,一般习惯按英文字母表示的自然顺序来书写,如:y×x×2,可简记为2xy。

2.带分数和字母相乘时,若要省略乘号,须把带分数化成假分数,如:x×142,记作92x,不能写成142x,另外,当一个因数是1时,通常省略不写,如1×a,不能写成1a,而应记作a。

华师大版七年级数学上册教学设计:32代数式的值

华师大版七年级数学上册教学设计:32代数式的值
教学过程:
(1)介绍代入法的概念,让学生理解代入法的基本原理。
(2)通过具体例题,讲解代入法的步骤和应用方法。
(3)强调代入法在解决实际问题中的重要性,并举例说明。
(三)学生小组讨论
1.教学内容:Байду номын сангаас对本章难点,组织学生进行小组讨论。
教学过程:
(1)将学生分成小组,每个小组针对一个难点问题进行讨论。
(2)小组内部分工合作,共同探究解决问题的方法。
5.及时反馈,提高效果:
在教学过程中,及时了解学生的学习情况,对存在的问题进行针对性的辅导,提高教学效果。
6.实践活动,增强应用意识:
设计丰富多样的实践活动,让学生在实际操作中运用代数式,提高解决实际问题的能力。
7.总结反思,提升能力:
在教学过程中,引导学生进行总结反思,发现自身的不足,不断提高数学思维能力。
4.小组讨论题:针对本章难点,布置一道小组讨论题,要求学生在小组内部分工合作,共同探究解决问题的方法。此类题目有助于培养学生的合作精神和团队意识。
5.课后反思:要求学生撰写一篇关于本章学习的课后反思,内容包括学习收获、遇到的问题和困难、解决办法等。通过反思,帮助学生总结经验,提高自我学习能力。
6.预习作业:布置下一章节的预习任务,让学生提前了解下一章的学习内容,为课堂学习做好准备。
2.分层次教学,关注个体差异:
针对学生的不同基础和接受能力,设计不同难度的教学活动和练习题,使每个学生都能在课堂上得到有效的提升。
3.精讲精练,巩固重点:
对重点知识进行详细讲解,结合典型例题进行分析,帮助学生巩固重点内容。
4.小组合作,交流探究:
将学生分成小组,针对难点问题进行讨论和交流,共同探究解决问题的方法,培养学生的合作精神和解决问题的能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2a 2
b
a?b
?
c
b
x? y a
a+b
a
5
2
例1:用代数式表示
(1)x的3倍与3的差; (2)x的2倍与y的 1 的和
2
(3)a与b的和的平方
解:(1)3x-3
(2)2x+ 1
2
y (3) (a+b)2
例2:用代数式表示
(1).小明100m赛跑时用了 t s,那么小 明跑完100m的平均速度是多少 ?
(1)
(2)
……
(3) (4)
我想说
这节课的收获是……
像 b 、 2n+500、 abc、
a
2(ab+bc+ac)

1
?
r
2
、 2? r

式子都是代数式 .2
用运算符号把数或表示数的字母连结而成 的式子叫做代数式。
单独一个数或一个字母也是代数式.
(2)下列式子中哪些是代数式?
0.9a, 0.8b,
x+5=9, 2a,
x>y,
a+b<4,
15×1.5℅m,
练一练: ①苹果元a/kg,橘子b元/kg.买5kg苹果、 8kg橘子应付___(_5_a_+__8_b_) _元.
②小明每步走am,小亮每步走bm,小明、小 亮从桥上的两端相向而行,小明走5步、小 亮走8步两人相遇.小桥长(__5_a_+_8_b_)_m.
议一议:
(1)你能举例说明代数式 2( x ? y )
解:小明跑完100 m的平均速度是
100 m/s. (2)t .长方形的周长为 16㎝,一边长为a
㎝,这个长方形的面积是多少 ?
解:这个长方形的面积是 a(8-a) cm 2
例3:你能帮代数式10x+5y找一些现实生活 中的实际情景吗?并解释它表示什么。 如 解释一:苹果每千克x元,香蕉每千克y
元,买10千克火龙果与5千克番石榴共花 (10x+5y)元;
观察下列图形,并填表
梯形 1 2 3 4 5 6 … n
个数
周长 5 8 11 14 17 20 … 3n+2
摆一摆:用火柴棒,按以下方式搭小鱼
(1)
(2)
下一张
(3)
……
上一张
某公园依地势摆若干个由大小相同的正方形 构成的花坛,并在各正方形花坛的顶点与各边 的中点布放盆花以营造节日气氛。(如图)
§3.2 代数式
填空: 1.某城市市区人口 a万人,市区绿地面积 b
万 m,2则平均每个人拥有绿地 __ba____m_ 2
2.某城市5年前人均年收入为 n元,预计 今年人均收入是 5年前的2倍多500元, 那么今年人均收入将达 _(_2_n_+_5_0_0_)_元.
3.如图,这个长方体的体积是 __a_b_c__,表
练一练:
1.下面各小题的代数式,书写是否符合规范,
符合的在( )里打√,错的打×.
(1) a·3 ( × )
(2)x+5( √ )
(3)ab2÷c ( × ) (4) (t-4) ℃ (√ )
(5 ) ( a ? b ) h ?√ ? (6) 2·3·x·y (× )
2
2. 课本 P. 70 1、2 、3
如 解释二:苹果每千克10元,香蕉每千克 5元,买x千克火龙果与y千克番石榴共花 (10x+5y)元。
列代数式时几个注意点: (1) 乘法运算:
① a×b= ab ; ② 2×a= 2a ; ③11? a ? 6 a ;
55
(2) 除法运算: a ? b ? a ; b
(3) 加减运算:(a±b)元
(2)a、b两数的和的平方减去它们的 差的平方
(3)a、b两数的和与它们的差的乘积;
3. 填空: (1)连续三个整数,中间一个是 n, 则第一个和第三个整数分别是 ___n_-_1_____ 、___n_+_1_____; (2)连续三个偶数,中间一个是 2n, 则第一个和第三个偶数分别是 ___2_n_-_2____ 、__2_n_+_2_____.
可以表示不同的实际意义吗?
相信自己: 1. 设某数为x,用代数
式表示: (1)比某数的相反数大 1的数;解:-x+1
(2)比某数大 10% 的数;解:(1+10%)x
2
(3)某数与
5
的和的3倍;解:3(x+
2 5
)
(4)某数的倒数与 5的差.解 : 1 ? 5
x
2 . 用代数式表示:
(1)a、b两数的平方和减去它们乘积 的2倍;
面积是_2_(_a_b_+_a_c_+_b_c_)_.
b ac
1? r2 4.图中阴影部分的面积是 ____2_____,
周长是___2_?__r___.
r 2r
b
、2n+500、 abc 、 2(ab+bc+ac) 、
a
1 ? r2
2
、 2? r
Hale Waihona Puke 观察上面的六个算式,你能讲出它们是
由哪几种运算符号连结而成的吗?
相关文档
最新文档