高三数学第一轮复习——数列(知识点超全)
高三数学第一轮复习—数列(知识点很全)(K12教育文档)

高三数学第一轮复习—数列(知识点很全)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高三数学第一轮复习—数列(知识点很全)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高三数学第一轮复习—数列(知识点很全)(word版可编辑修改)的全部内容。
高三数学第一轮复习—-数列一、知识梳理数列概念1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项。
2。
通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.3。
递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式.4。
数列的前n 项和与通项的公式①n n a a a S +++= 21; ②⎩⎨⎧≥-==-)2()1(11n S S n S a n n n .5. 数列的表示方法:解析法、图像法、列举法、递推法.6。
数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1。
高考数学一轮复习数列知识点

高考数学一轮复习数列知识点
高考数学一轮复习数列知识点
导语:数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来, 但证明却隐藏的极深.数学是科学之王.下面就由小编为大家带来高考数学一轮复习数列知识点,大家一起去看看怎么做吧!
高考数学一轮复习数列知识点
1、会用等比数列的.通项公式和前n项和公式解决有关等比数列一些简单问题;提高分析、解决实际问题的能力。
2、通过公式的灵活运用,进一步渗透分类讨论的思想、等价转化的思想。
一、课前导入
1、等比数列的前n项和公式:
当时,①或②
当q=1时,
当已知,q,n时用公式①;当已知,q,时,用公式②
2、目前学过哪些数列的求和方法?
二、反馈纠正
例1、在等比数列中,为前n项的和,若=48,=60,求。
例2、在等比数列共有2n项,首项a1=1,其奇数项的和为85,偶数项的和为170,求这个数列的公比和项数2n。
例3、数列满足a1=1,a2=2,且是公比为q的等比数列,设bn=a2n-1+a2n(n=1,2,3,)
(1)求证:数列是等比数列;
(2)求前n项的和。
高三数学第一轮复习:数列的知识点

高三数学第一轮复习:数列的知识点高三数学第一轮复习:数列的知识点导语:数列是以正整数集为定义域的函数,是一列有序的数。
数列中的每一个数都叫做这个数列的项。
排在第一位的数称为这个数列的第1项,排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n项,通常用an表示。
下面是小编为大家整理的,数学知识,更多相关信息请关注CNFLA相关栏目!1.数列概念①数列是一种特殊的函数。
其特殊性主要表现在其定义域和值域上。
数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。
图像法;c.解析法。
其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式。
2.等差数列一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示,前n项和用Sn表示。
an=kn+b(k,b为常数)由三个数a,A,b组成的.等差数列可以堪称最简单的等差数列。
这时,A叫做a与b的等差中项。
3.等比数列一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。
这个常数叫做等比数列的公比,公比通常用字母q表示。
an=Sn-S(n-1) (n≥2)注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G²=ab是a,G,b三数成等比数列的必要不充分条件。
高中数学数列知识点总结(精华版)

..一、数列1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.⑴数列中的数是按一定“次序〞排列的,在这里,只强调有“次序〞,而不强调有“规律〞.因此,如果组成两个数列的数一样而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现.⑶项a n与项数n是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2.通项公式:如果数列a n的第n项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即af(n)n.3.递推公式:如果数列a n的第一项〔或前几项〕,且任何一项a n与它的前一项a〔或前几项〕间的关系可以用一个式子来表示,即a n f(a n1)或a n f(a n1,a n2),n1那么这个式子叫做数列a的递推公式.如数列an中,a11,a n2a n1,其中na n2a n1是数列a n的递推公式.4.数列的前n项和与通项的公式①Sn a1a2a;②nS(n1)1a n.SS(n2)nn15.数列的表示方法:解析法、图像法、列举法、递推法.6.数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何nN,均有a n1a n.②递减数列:对于任何nN,均有a n1a n.③摆动数列:例如:1,1,1,1,1,.④常数数列:例如:6,6,6,6,⋯⋯.⑤有界数列:存在正数M使a n M,n N.⑥无界数列:对于任何正数M,总有项a使得a n M.n1、n*a2(nN)nn156,那么在数列{}a的最大项为__〔答:n125〕;2、数列{}a的通项为nana n,其中a,b均为正数,那么a n与a n1的大小关系为___〔答:bn1aa n1〕;n23、数列{a}中,a是递增数列,XX数的取值X围〔答:3〕;ann,且{}nnn4、一给定函数yf(x)的图象在以下图中,并且对任意a(0,1),由关系式a n1f(a n)1*得到的数列{}a满足a n1a n(nN),那么该函数的图象是〔〕〔答:A〕neord完美格式..二、等差数列1、等差数列的定义:如果数列a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。
高三数列知识点大全

高三数列知识点大全数列是数学中非常重要的概念之一,它在高中数学的学习中占据着重要的地位。
在高三阶段,数列的相关知识将更加复杂和深入。
本文将为大家总结高三数列的知识点,帮助同学们更好地掌握和应用数列。
一、数列的定义与常见类型1. 数列的定义数列是一组按照一定规则排列的数的有序集合。
数列中的每一个数称为该数列的项。
用字母a、b、c……表示数列的各个项。
2. 常见数列的类型(1)等差数列等差数列是指数列中的每一项与前一项之差保持恒定。
公式表示为:an = a1 + (n - 1)d,其中an表示第n项,a1表示首项,d表示公差。
(2)等比数列等比数列是指数列中的每一项与前一项之比保持恒定。
公式表示为:an = a1 * q^(n-1),其中an表示第n项,a1表示首项,q表示公比。
(3)递推数列递推数列是一种根据数列的一部分项来确定其余项的数列,常见的递推数列有斐波那契数列、杨辉三角等。
(4)等差-等比混合数列等差-等比混合数列是一种既包含等差又包含等比的数列,其规律较为复杂,需要通过具体的题目进行分析。
二、数列的性质和求解方法1. 数列的通项公式通项公式是指数列中第n项与n的关系式,通过通项公式可以直接计算数列中任意一项的值。
等差数列和等比数列的通项公式已在前面介绍,递推数列和混合数列的通项公式则需要结合具体的数列来确定。
2. 数列的前n项和前n项和是指数列中前n项的和。
计算数列的前n项和可利用数列的通项公式,通过求和公式或递推进行计算。
3. 等差数列的性质(1)公差的性质:等差数列的任意两项之差等于公差。
(2)首项和末项的关系:等差数列的首项加上末项等于两倍的公差。
(3)求和公式:等差数列的前n项和公式为Sn = (n / 2) * (a1 + an),其中Sn表示前n项和。
4. 等比数列的性质(1)公比的性质:等比数列的任意两项之比等于公比。
(2)首项和末项的关系:等比数列的末项等于首项乘以公比的n次方。
第一讲+数列的概念与简单表示法课件-2025届高三数学一轮复习

a6=( )
A.3×44
B.3×44+1
C.44
D.44+1
解析:由an+1=3Sn,得到an=3Sn-1(n≥2),
两式相减,得an+1-an=3(Sn-Sn-1)=3an, 则an+1=4an(n≥2),因为a1=1,a2=3S1=3a1=3,所以此数 列除去第一项后,为首项是3,公比为4的等比数列,所以an= a2qn-2=3×4n-2(n≥2).则a6=3×44.故选A.
1
=
(2n
+
1)
7 8
n+1
,
an+1 an
=
(2n+1)78n+1 (2n-1)78n
=
14n+7 16n-8
.
当
aan+n1>1 时,n<125;当aan+n1<1 时,n>125.∵an>0,∴数列{an}的最大项 是 a8.
答案:8
考向 2 数列的周期性
[例3]已知数列{an}满足:an+1=an-an-1(n≥2,n∈N*),a1=
2.数列的表示方法
列表法
列表格表示n与an的对应关系
图象法
把点(n,an)画在平面直角坐标系中
公 通项公式 把数列的通项用公式表示
式 法
递推公式
使用初始值a1和an+1=f(an)或a1,a2和an+1=f(an, an-1)等表示数列的方法
3.an 与 Sn 的关系 若数列{an}的前 n 项和为 Sn, 则 an=SS1n, -nSn=-11,,n≥2.
4.数列的分类
分类标准
类型
项数
有穷数列 无穷数列
项与项间的 大小关系
递增数列 递减数列
常数列
数列知识点总结高考

数列知识点总结高考一、数列的概念数列是指有限或无限个数的有序排列,以逗号分隔,记作{an}。
其中an称为数列的通项。
常见的数列有等差数列、等比数列等。
二、等差数列1. 等差数列的定义若一个数列中任意两项之间的差都相等,则这个数列称为等差数列。
其中,差值称为公差,记作d。
2. 等差数列的通项公式设等差数列的首项为a1,公差为d,则等差数列的通项公式为:an = a1 + (n-1)d3. 等差数列的前n项和公式等差数列的前n项和公式为:Sn = (a1 + an) * n / 24. 等差数列中的常见问题等差数列中的常见问题包括求首项、公差、通项、前n项和以及数列的性质等。
三、等比数列1. 等比数列的定义若一个数列中任意两项之间的比值都相等,则这个数列称为等比数列。
其中,比值称为公比,记作q。
2. 等比数列的通项公式设等比数列的首项为a1,公比为q,则等比数列的通项公式为:an = a1 * q^(n-1)3. 等比数列的前n项和公式等比数列的前n项和公式为:Sn = a1 * (1 - q^n) / (1 - q)4. 等比数列中的常见问题等比数列中的常见问题包括求首项、公比、通项、前n项和以及数列的性质等。
四、数列的性质1. 有限数列的性质有限数列的性质包括首项、末项、公差或公比、前n项和等。
2. 无限数列的性质无限数列的性质包括首项、公差或公比、极限等。
3. 数列的通项公式数列的通项公式是数列的重要性质,通过通项公式可以求得数列的任意项。
五、利用数列解决实际问题数列在实际问题中的应用十分广泛,例如等差数列可以用来描述等距离的运动过程,等比数列可以用来描述成倍增加的现象等。
总结:通过学习数列的知识,我们可以得到多种数学问题的解决方法,通过分析数列的性质和通项公式,可以更好地理解数学问题的本质。
因此,数列是数学学习中一个重要的基础知识。
以上就是数列的相关知识点总结,希望对你的学习有所帮助。
高考一轮复习 数列概念 知识点+例题+练习

自主梳理1.数列的定义按____________着的一列数叫数列,数列中的________都叫这个数列的项;在函数意义下,数列是______________________的函数,数列的一般形式为:________________________,简记为{a n },其中a n 是数列的第____项.2.通项公式:如果数列{a n }的________与____之间的关系可以______________来表示,那么这个式子叫做数列的通项公式.但并非每个数列都有通项公式,也并非都是唯一的.3.数列常用表示法有:____________________、________、________.4.数列的分类:数列按项数来分,分为____________、____________;按项的增减规律分为____________、____________、____________和________.递增数列⇔a n +1____a n ;递减数列⇔a n +1____a n ;常数列⇔a n +1____a n .5.a n 与S n 的关系:已知S n ,则a n =⎩⎪⎨⎪⎧,n =1, ,n ≥2,.自我检测1.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项a n =______.2.已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10=________.3.已知数列-1,85,-157,249,…按此规律,则这个数列的通项公式是______________________________.学生姓名教师姓名 班主任 日期时间段 年级 课时 教学内容数列的概念与简单表示法 教学目标1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数. 重点数学归纳方法、递推法 难点 同上4.下列对数列的理解:①数列可以看成一个定义在N *(或它的有限子集{1,2,3,…,n })上的函数; ②数列的项数是有限的;③数列若用图象表示,从图象上看都是一群孤立的点;④数列的通项公式是唯一的.其中说法正确的序号是________.5.设a n =-n 2+10n +11,则数列{a n }从首项到第________项的和最大.探究点一 由数列前几项求数列通项例1 写出下列数列的一个通项公式,使它的前几项分别是下列各数:(1)23,415,635,863,1099,… (2)12,-2,92,-8,252,…变式迁移1 写出下列数列的一个通项公式:(1)3,5,9,17,33,… (2)2,5,22,11,…(3)1,0,1,0,…探究点二 由递推公式求数列的通项例2 根据下列条件,写出该数列的通项公式.(1)a 1=2,a n +1=a n +n ;(2)a 1=1,2n -1a n =a n -1 (n ≥2).变式迁移2 根据下列条件,确定数列{a n }的通项公式.(1)a 1=1,a n +1=3a n +2;(2)a 1=1,a n +1=(n +1)a n ;(3)a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n .探究点三 由a n 与S n 的关系求a n例3 已知数列{a n }的前n 项和S n =2n 2-3n +1,求{a n }的通项公式.变式迁移3 (1)已知{a n }的前n 项和S n =3n +b ,求{a n }的通项公式.(2)已知在正项数列{a n }中,S n 表示前n 项和且2S n =a n +1,求a n .1.数列的递推公式是研究的项与项之间的关系,而通项公式则是研究的项a n 与项数n 的关系.2.求数列的通项公式是本节的重点,主要掌握三种方法:(1)由数列的前几项归纳出一个通项公式,关键是善于观察;(2)数列{a n }的前n 项和S n 与数列{a n }的通项公式a n 的关系,要注意验证能否统一到一个式子中;(3)由递推公式求通项公式,常用方法有累加、累乘.3.本节易错点是利用S n 求a n 时,忘记讨论n =1的情况.一、填空题1.设数列{a n }的前n 项和S n =n 2,则a 8的值为________.2.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N *,则a 2 009=________,a 2 014=________.3.已知数列{a n }的前n 项和为S n ,且S n =2(a n -1),则a 2=________.4.数列{a n }中,若a n +1=a n 2a n +1,a 1=1,则a 6=________.5.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21=________.6.数列{a n }满足a n +1=⎩⎨⎧2a n (0≤a n <12),2a n -1 (12≤a n <1),若a 1=67,则a 2 010的值为________.7.已知S n 是数列{a n }的前n 项和,且有S n =n 2+1,则数列{a n }的通项a n =__________________.8.将全体正整数排成一个三角形数阵:12 34 5 67 8 9 1011 12 13 14 15… … … … … …根据以上排列规律,数阵中第n (n ≥3)行从左至右的第3个数是____________.二、解答题9.写出下列各数列的一个通项公式.(1)112,223,334,445,…(2)-1,32,-13,34,-15,36…10.由下列数列{a n }递推公式求数列{a n }的通项公式:(1)a 1=1,a n -a n -1=n (n ≥2);(2)a 1=1,a n a n -1=n -1n (n ≥2); (3)a 1=1,a n =2a n -1+1 (n ≥2).11.已知数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n .(1)求数列{a n }与{b n }的通项公式;(2)设c n =a 2n ·b n ,证明:当且仅当n ≥3时,c n +1<c n .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学第一轮复习——数列一、知识梳理数列概念1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n=.3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n na a a ,其中12+=n n a a 是数列{}n a 的递推公式.4.数列的前n 项和与通项的公式①n n a a a S +++= 21; ②⎩⎨⎧≥-==-)2()1(11n S S n S a n nn .5. 数列的表示方法:解析法、图像法、列举法、递推法.6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何+∈N n ,均有n n a a >+1. ②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,……. ⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >.等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差.2.通项公式与前n 项和公式⑴通项公式d n a a n)1(1-+=,1a 为首项,d 为公差.⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=.3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法 ⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列; ⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.5.等差数列的常用性质⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n)(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p nm ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列;⑹当项数为)(2+∈N n n ,则nn a a S S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n,则nn S S a S S n 1,-==-奇偶偶奇. 等比数列1.等比数列的概念如果一个数列从第二项起,每一项与它前一项的比等于同一个常数)0(≠q q ,这个数列叫做等比数列,常数q 称为等比数列的公比.2.通项公式与前n 项和公式⑴通项公式:11-=n nq a a ,1a 为首项,q 为公比 .⑵前n 项和公式:①当1=q时,1na S n =②当1≠q 时,qqa a q q a S n n n --=--=11)1(11. 3.等比中项如果b G a ,,成等比数列,那么G 叫做a 与b 的等比中项. 即:G 是a 与b 的等差中项⇔a ,A ,b 成等差数列⇒b a G ⋅=2.4.等比数列的判定方法 ⑴定义法:q a a nn =+1(+∈N n ,0≠q 是常数)⇔{}n a 是等比数列; ⑵中项法:221++⋅=n n n a a a (+∈N n )且0≠n a ⇔{}n a 是等比数列.5.等比数列的常用性质⑴数列{}n a 是等比数列,则数列{}n pa 、{}n pa (0≠q 是常数)都是等比数列;⑵在等比数列{}n a 中,等距离取出若干项也构成一个等比数列,即 ,,,,32k n k n k n n a a a a +++为等比数列,公比为kq .⑶),(+-∈⋅=N m n q a a m n m n⑷若),,,(+∈+=+N q p n m q p nm ,则q p n m a a a a ⋅=⋅;⑸若等比数列{}n a 的前n 项和n S ,则k S 、k k S S -2、k k S S 23-、k k S S 34-是等比数列.二、典型例题A 、求值类的计算题(多关于等差等比数列)1)根据基本量求解(方程的思想)1、已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ;2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和.4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数.2)根据数列的性质求解(整体思想)1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ;2、设n S 、n T 分别是等差数列{}n a 、{}n a 的前n 项和,327++=n n T S n n ,则=55b a . 3、设n S 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) 4、等差数列{}n a ,{}nb 的前n 项和分别为n S ,n T ,若231n n S nT n =+,则n na b =( )5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .6、在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_______。
7、已知数列{}n a 是等差数列,若471017a a a ++=,45612131477a a a a a a ++++++=且13k a =,则k =_________。
8、已知n S 为等比数列{}n a 前n 项和,54=n S ,602=n S ,则=n S 3 .9、在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为( ) 10、在等比数列中,已知910(0)a a a a +=≠,1920a a b +=,则99100a a += . 11、已知{}n a 为等差数列,20,86015==a a ,则=75a 12、等差数列{}n a 中,已知848161,.3S S S S =求B 、求数列通项公式1) 给出前几项,求通项公式1,0,1,0,……,,21,15,10,6,3,13,-33,333,-3333,33333……2)给出前n 项和求通项公式1、⑴n n S n 322+=; ⑵13+=nn S . 2、设数列{}n a 满足2*12333()3n na a a a n N +++=∈n-1…+3,求数列{}n a 的通项公式3)给出递推公式求通项公式a 、⑴已知关系式)(1n f a a n n +=+,可利用迭加法或迭代法;11232211)()()()(a a a a a a a a a a n n n n n n n +-++-+-+-=-----例:已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式; b 、已知关系式)(1n f a a n n ⋅=+,可利用迭乘法.1122332211a a aa a a a a a a a a n n n n n n n ⋅⋅⋅⋅⋅⋅=-----例、已知数列{}n a 满足:111(2),21n n a n n a a n --=≥=+,求求数列{}n a 的通项公式; c 、构造新数列1°递推关系形如“q pa a n n +=+1”,利用待定系数法求解例、已知数列{}n a 中,32,111+==+n n a a a ,求数列{}n a 的通项公式.2°递推关系形如“,两边同除1n p+或待定系数法求解例、n n n a a a 32,111+==+,求数列{}n a 的通项公式.3°递推已知数列{}n a 中,关系形如“n n n a q a p a ⋅+⋅=++12”,利用待定系数法求解 例、已知数列{}n a 中,n n n a a a a a 23,2,11221-===++,求数列{}n a 的通项公式.4°递推关系形如"11n n n n a pa qa a ---=≠(p,q 0),两边同除以1n n a a -例1、已知数列{}n a 中,1122n n n n a a a a ---=≥=1(n 2),a ,求数列{}n a 的通项公式.例2、数列{}n a 中,)(42,211++∈+==N n a a a a nnn ,求数列{}n a 的通项公式.d 、给出关于n S 和m a 的关系例1、设数列{}n a 的前n 项和为n S ,已知)(3,11++∈+==N n S a a a n n n ,设nn n S b 3-=,求数列{}n b 的通项公式.例2、设n S 是数列{}n a 的前n 项和,11=a ,)2(212≥⎪⎭⎫⎝⎛-=n S a S n n n . ⑴求{}n a 的通项; ⑵设12+=n S b nn ,求数列{}n b 的前n 项和n T .C 、证明数列是等差或等比数列1)证明数列等差例1、已知n S 为等差数列{}n a 的前n 项和,)(+∈=N n nS b nn .求证:数列{}n b 是等差数列. 例2、已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=21. 求证:{nS 1}是等差数列;2)证明数列等比例1、设{a n }是等差数列,b n =na ⎪⎭⎫⎝⎛21,求证:数列{b n }是等比数列;例2、数列{a n }的前n 项和为S n ,数列{b n }中,若a n +S n =n .设c n =a n -1,求证:数列{c n }是等比数列;例3、已知n S 为数列{}n a 的前n 项和,11=a ,24+=n n a S .⑴设数列{}n b 中,n n n a a b 21-=+,求证:{}n b 是等比数列; ⑵设数列{}n c 中,nnn a c 2=,求证:{}n c 是等差数列;⑶求数列{}n a 的通项公式及前n 项和.例4、设n S 为数列{}n a 的前n 项和,已知()21nn n ba b S -=- ⑴证明:当2b =时,{}12n n a n --⋅是等比数列; ⑵求{}n a 的通项公式例5、已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈⑴证明:数列{}1n n a a +-是等比数列; ⑵求数列{}n a 的通项公式; ⑶若数列{}n b 满足12111*44...4(1)(),n n b b b b n a n N ---=+∈证明{}n b 是等差数列.D 、求数列的前n 项和基本方法: 1)公式法, 2)拆解求和法.例1、求数列n{223}n +-的前n 项和n S . 例2、求数列 ,,,,,)21(813412211n n +的前n 项和n S . 例3、求和:2×5+3×6+4×7+…+n (n+3)2)裂项相消法,数列的常见拆项有:1111()()n n k k n n k=-++;n n n n -+=++111;例1、求和:S =1+n ++++++++++ 32113211211 例2、求和:nn +++++++++11341231121 .3)倒序相加法,例、设221)(x x x f +=,求: ⑴)4()3()2()()()(213141f f f f f f +++++;⑵).2010()2009()2()()()()(21312009120101f f f f f f f ++++++++4)错位相减法,例、若数列{}n a 的通项nn n a 3)12(⋅-=,求此数列的前n 项和n S .5)对于数列等差和等比混合数列分组求和例、已知数列{a n }的前n 项和S n =12n -n 2,求数列{|a n |}的前n 项和T n .E 、数列单调性最值问题例1、数列{}n a 中,492-=n a n ,当数列{}n a 的前n 项和n S 取得最小值时,=n . 例2、已知n S 为等差数列{}n a 的前n 项和,.16,2541==a a 当n 为何值时,n S 取得最大值;例3、数列{}n a 中,12832+-=n n a n ,求n a 取最小值时n 的值.例4、数列{}n a 中,22+-=n n a n ,求数列{}n a 的最大项和最小项.例5、设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N .(Ⅰ)设3nn n b S =-,求数列{}n b 的通项公式;(Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围.例6、已知n S 为数列{}n a 的前n 项和,31=a ,)2(21≥=-n a S S n n n .⑴求数列{}n a 的通项公式;⑵数列{}n a 中是否存在正整数k ,使得不等式1+>k k a a 对任意不小于k 的正整数都成立?若存在,求最小的正整数k ,若不存在,说明理由. 例7、非等比数列{}n a 中,前n 项和21(1)4n n S a =--, (1)求数列{}n a 的通项公式; (2)设1(3)n n b n a =-(*)n N ∈,12n n T b b b =+++,是否存在最大的整数m ,使得对任意的n 均有32n mT >总成立?若存在,求出m ;若不存在,请说明理由。