高考数学压轴专题(易错题)备战高考《坐标系与参数方程》难题汇编及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新数学高考《坐标系与参数方程》复习资料
一、13
1.已知曲线Γ
的参数方程为(3cos ln x t t t y t ⎧=-⎪
⎨=⎪⎩
其中参数t R ∈,,则曲线Γ( ) A .关于x 轴对称 B .关于y 轴对称
C .关于原点对称
D .没有对称轴
【答案】C 【解析】 【分析】
设()x f t =,()y g t = t R ∈,首先判断这两个函数都是奇函数,然后再判断函数关于原点对称. 【详解】
设()x f t =,()y g t = t R ∈
()()()()()3
33cos cos cos f t t t t t t t t t t x -=----=-+=--=-,
()x f t ∴=是奇函数, ()()
(
(
ln ln g t g t t t -+=-+
++
((
ln ln ln10t t =-+== ,
()y g t ∴=也是奇函数,
设点()()(
)
,P f t g t 在函数图象上,那么关于原点的对称点是()()()
,Q f t g t --,
()f t Q 和()g t 都是奇函数,
所以点Q 的坐标是()()()
,Q f t g t --,可知点Q 在曲线上,
∴ 函数图象关于原点对称.
故选:C 【点睛】
本题考查函数图象和性质的综合应用,意在考查转化与计算能力,属于中档题型.
2.已知直线2sin 301sin 30
x t y t ︒
︒
⎧=-⎨=-+⎩(t 为参数)与圆22
8x y +=相交于B 、C 两点,则||BC 的值为( )
A .
B
C .D
【答案】B
【解析】 【分析】
根据参数方程与普通方程的互化方法,然后联立方程组,通过弦长公式,即可得出结论. 【详解】
曲线2sin 301sin 30
x t y t ︒
︒
⎧=-⎨=-+⎩(t 为参数),化为普通方程1y x =-, 将1y x =-代入2
2
8x y +=,可得22270x x --=, ∴()27
1114302
BC =+-⋅+⨯=,故选B . 【点睛】
本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,考查直线与圆的位置关系,属于中档题.
3.已知点是曲线:
(为参数,
)上一点,点
,则
的取值范围是 A . B .
C .
D .
【答案】D 【解析】 【分析】
将曲线的参数方程化为普通方程,可知曲线是圆的上半圆,再利
用数形结合思想求出的最大值和最小值。
【详解】 曲线表示半圆:,
所以.
取,
结合图象可得
.故
选:D 。
【点睛】
本题考查参数方程与普通方程之间的转化,同时也考查了点与圆的位置关系,在处理点与圆的位置关系的问题时,充分利用数形结合的思想,能简化计算,考查计算能力与分析问题的能力,属于中等题。
4.在符合互化条件的直角坐标系和极坐标系中,直线l :20y kx ++=与曲线C :
2cos ρθ=相交,则k 的取值范围是( )
A .34
k <-
B .34
k ≥-
C .k R ∈
D .k R ∈但0k ≠
【答案】A 【解析】
分析:一般先将原极坐标方程2cos ρθ=两边同乘以ρ后,把极坐标系中的方程化成直角坐标方程,再利用直角坐标方程进行求解即可.
详解:将原极坐标方程2cos ρθ=,化为:2
2cos ρρθ=,
化成直角坐标方程为:22
20x y x +-=, 即2
2
(1)1x y -+=.
则圆心到直线的距离d =
由题意得:1d <
,即1d =<,
解之得:34
k <-. 故选A .
点睛:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用
cos x ρθ=,sin y ρθ=,222x y ρ=+,进行代换即得.
5.在极坐标系中,已知圆C 经过点6P π⎛⎫
⎪⎝
⎭
,
,圆心为直线sin 4πρθ⎛⎫
+
= ⎪⎝
⎭
轴的交点,则圆C 的极坐标方程为 A .4cos ρθ= B .4sin ρθ=
C .2cos ρθ=
D .2sin ρθ=
【答案】A 【解析】 【分析】
求出圆C 的圆心坐标为(2,0),由圆C 经过点6P π⎛⎫
⎪⎝
⎭
,得到圆C 过极点,由此能求
出圆C 的极坐标方程. 【详解】
在sin 4πρθ⎛⎫
+
= ⎪⎝
⎭
中,令0θ=,得2ρ=, 所以圆C 的圆心坐标为(2,0).
因为圆C 经过点6P π⎛⎫
⎪⎝
⎭
,,
所以圆C 的半径
2r ==,
于是圆C 过极点,
所以圆C 的极坐标方程为4cos ρθ=. 故选A 【点睛】
本题考查圆的极坐标方程的求法,考查直角坐标方程、参数方程、极坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,属于中档题.
6.在直角坐标系xOy 中,曲线C 的方程为22
162
x y +=,以坐标原点
O 为极点,x 轴正半
轴为极轴建立极坐标系,直线l 的极坐标方程为cos()6
π
ρθ+
=M 的极坐标方
程为(0)θαρ=≥.设射线m 与曲线C 、直线l 分别交于A 、B 两点,则2
2
11OA
OB
+
的
最大值为( ) A .
3
4
B .
25
C .
23
D .
13
【答案】C 【解析】
分析:先由曲线C 的直角坐标方程得到其极坐标方程为()2
2
1+2sin 6ρ
θ=,设A 、B 两
点坐标为()1,ρθ,()2,ρθ,将射线M 的极坐标方程为θα=分别代入曲线C 和直线l 的极坐标方程,得到关于α的三角函数,利用三角函数性质可得结果.
详解:∵曲线C 的方程为22
162
x y +=,即2236x y +=,
∴曲线C 的极坐标方程为()2
2
1+2sin 6ρ
θ=
设A 、B 两点坐标为()1,ρθ,()2,ρθ,
联立()22
1+2sin 6
ρθθα⎧=⎪⎨=⎪⎩,得221112sin 6θρ+=,同理得222cos 163πθρ⎛⎫+ ⎪⎝⎭=, 根据极坐标的几何意义可得22
2222
12cos 111112sin 663OA OB
πθθρρ⎛⎫+ ⎪+⎝⎭+=+=+