高考数学压轴专题(易错题)备战高考《坐标系与参数方程》难题汇编及答案
高考数学压轴专题人教版备战高考《坐标系与参数方程》易错题汇编含答案解析
【最新】数学《坐标系与参数方程》试卷含答案一、131.已知直线:2x l y t⎧=⎪⎨=-⎪⎩(t 为参数),抛物线C 的方程22,y x l =与C 交于12,P P ,则点()0,2A 到12,P P 两点距离之和是( )A.4 B.2(2+C.4(2D.8+【答案】C 【解析】 【分析】先写出直线的标准参数方程,再代入y 2=2x ,利用直线参数方程t 的几何求解. 【详解】将直线l参数方程化为2122x y t ''⎧=-⎪⎪⎨⎪=+⎪⎩(t′为参数),代入y 2=2x ,得t′2+4(2+16=0,设其两根为t 1′,t 2′,则t 1′+t 2′=-4(2, t 1′t 2′=16>0.由此知在l 上两点P 1,P 2都在A(0,2)的下方, 则|AP 1|+|AP 2|=|t 1′|+|t 2′|=|t 1′+t 2′|=4(2. 故答案为C 【点睛】(1)本题主要考查直线的参数方程和t 的几何意义,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2) 过定点()00,P x y 、倾斜角为α的直线的参数方程00x x tcos y y tsin αα=+⎧⎨=+⎩(t 为参数).当动点A 在定点()00,P x y 上方时,0,||t t PA >=且. 当动点B 在定点()00,P x y 下方时,0,|t t PB =-且.(3)解答本题不能直接把参数方程代入圆的方程,一定要化成标准形式,才能利用参数方程t 的几何意义解答.2.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( )AB.CD.【答案】D 【解析】【分析】先求出直线和圆的普通方程,再利用圆的弦长公式求弦长. 【详解】由题意得,直线l 的普通方程为y =x -4, 圆C 的直角坐标方程为(x -2)2+y 2=4,圆心到直线l 的距离d =,直线l 被圆C 截得的弦长为= 【点睛】(1)本题主要考查参数方程极坐标方程与普通方程的互化,意在考察学生对这些知识的掌握水平和分析推理计算能力.(2) 求直线和圆相交的弦长,一般解直角三角形,利用公式||AB =.3.在极坐标系中,已知圆C 经过点6P π⎛⎫⎪⎝⎭,,圆心为直线sin 4πρθ⎛⎫+= ⎪⎝⎭轴的交点,则圆C 的极坐标方程为 A .4cos ρθ= B .4sin ρθ=C .2cos ρθ=D .2sin ρθ=【答案】A 【解析】 【分析】求出圆C 的圆心坐标为(2,0),由圆C 经过点6P π⎛⎫⎪⎝⎭,得到圆C 过极点,由此能求出圆C 的极坐标方程. 【详解】在sin 4πρθ⎛⎫+= ⎪⎝⎭中,令0θ=,得2ρ=, 所以圆C 的圆心坐标为(2,0). 因为圆C 经过点6P π⎛⎫⎪⎝⎭,,所以圆C 的半径2r ==,于是圆C 过极点,所以圆C 的极坐标方程为4cos ρθ=. 故选A 【点睛】本题考查圆的极坐标方程的求法,考查直角坐标方程、参数方程、极坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,属于中档题.4.已知曲线C 的极坐标方程为:2cos 4sin ρθθ=-,P 为曲线C 上的动点,O 为极点,则PO 的最大值为( )A .2B .4C D .【答案】D 【解析】 【分析】把极坐标方程变成直角坐标方程,通过最大距离d r =+求得答案。
高考数学压轴专题(易错题)备战高考《坐标系与参数方程》易错题汇编附解析
【高中数学】单元《坐标系与参数方程》知识点归纳一、131.已知P 为曲线3cos 4sin x y θθ=⎧⎨=⎩(θ为参数,0θπ剟)上一点,O 为原点,直线PO 的倾斜角为4π,则P 点的坐标是( )A .(3,4)B .2⎛ ⎝C .(-3,-4)D .1212,55⎛⎫⎪⎝⎭【答案】D 【解析】 【分析】根据两点斜率公式求出点P 的参数θ即可求解. 【详解】设点P 的坐标为(3cos ,4sin )θθ. 由题意知3cos 4sin θθ=,∴3tan 4θ=,又0θπ剟, ∴3sin 5θ=,4cos 5θ=, ∴4123cos 355x θ==⨯=,3124sin 455y θ==⨯=, ∴点P 的坐标为1212,55⎛⎫⎪⎝⎭.故选D. 【点睛】本题考查椭圆的参数方程,直线的倾斜角.2.椭圆3cos (4sin x y θθθ=⎧⎨=⎩为参数)的离心率是( )A B C D 【答案】A 【解析】 【分析】先求出椭圆的普通方程,再求其离心率得解.【详解】椭圆3cos 4sin x y θθ=⎧⎨=⎩的标准方程为221916x y +=,所以c=7.所以e =7. 故答案为A 【点睛】(1) 本题主要考查参数方程和普通方程的互化,考查椭圆的简单几何性质,意在考查学生对这些知识的掌握水平和分析推理计算能力. (2)在椭圆中,222,.c c a b e a=-=3.参数方程(为参数)所表示的图象是A .B .C .D .【答案】D 【解析】 【分析】 由,得,代入,经过化简变形后得到曲线方程,但需注意曲线方程中变量、的符号,从而确定曲线的形状。
【详解】 由题意知将代入,得,解得,因为,所以.故选:D 。
【点睛】本题考查参数方程与普通方程之间的转化,参数方程化普通方程一般有以下几种消参方法:①加减消元法;②代入消元法;③平方消元法。
消参时要注意参数本身的范围,从而得出相关变量的取值范围。
高考数学压轴专题(易错题)备战高考《坐标系与参数方程》易错题汇编含答案解析
数学《坐标系与参数方程》复习知识点(1)一、131.在正方形ABCD 中,动点P 在以点C 为圆心且与BD 相切的圆上,若AP x AB y AD =+u u u v u u u v u u u v,则x y +的最大值为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】设正方形ABCD 的边长为2,以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立平面直角坐标系xAy ,可得出圆C 的方程为()()22222x y -+-=,可设点P 的坐标为()22cos,22sin θθ++,根据向量的坐标运算可将x y +用θ的三角函数表示,利用辅助角公式和正弦函数的有界性可求出x y +的最大值. 【详解】设正方形ABCD 的边长为2,以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系xAy ,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,直线BD 的方程为221x y+=,即20x y +-=,点C 到直线BD 的距离为22211d ==+,则以点C 为圆心且与直线BD 相切的圆C 的方程为()()22222x y -+-=,设点P 的坐标为()22,22θθ+,由AP x AB y AD =+u u u r u u u r u u u r,得()()()()22,222,00,22,2x y x y θθ+=+=,21221x y θθ⎧=+⎪⎪∴⎨⎪=+⎪⎩,所以,cos 2sin 2224x y πθθθ⎛⎫+=++=++ ⎪⎝⎭, 因此,x y +的最大值为3. 故选:C. 【点睛】本题考查利用平面向量的基本定理求参数和的最小值,利用圆的有界性结合圆的参数方程来求解是解题的关键,考查计算能力,属于中等题.2.将直线1x y -=变换为直线326x y -=的一个伸缩变换为( ) A .23x x y y''=⎧⎨=⎩ B .32x xy y''=⎧⎨=⎩ C .1312x x y y ⎧=⎪⎪⎨=''⎪⎪⎩D .1213x x y y ⎧=⎪⎪⎨=''⎪⎪⎩【答案】A 【解析】 【分析】设伸缩变换的公式为(0,0)x ax a b y by =⎧>>⎨⎩'=',则11x x ay y b ⎧=⎪⎪⎨=''⎪⎪⎩,代入直线1x y -=的方程,变换后的方程与直线326x y -=的一致性,即可求解. 【详解】由题意,设伸缩变换的公式为(0,0)x ax a b y by =⎧>>⎨⎩'=',则11x x ay y b ⎧=⎪⎪⎨=''⎪⎪⎩代入直线1x y -=的方程,可得111x y a b''-=, 要使得直线111x y a b''-=和直线326x y -=的方程一致, 则112a =且113b =,解得2,3a b ==, 所以伸缩变换的公式为23x xy y''=⎧⎨=⎩,故选A . 【点睛】本题主要考查了图形的伸缩变换公式的求解及应用,其中解答中熟记伸缩变换公式的形式,代入准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.3.设曲线C 的参数方程为35cos ()15sin x y θθθ⎧=+⎪⎨=-+⎪⎩为参数,直线l 的方程310x y -+=,则曲线C 上到直线l 的距离为52的点的个数为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】将圆C 化为普通方程,计算圆心到直线l 的距离,通过比较所求距离与52的关系即可得到满足条件的点的个数. 【详解】化曲线C 的参数方程为普通方程:()()223125x y -++=,圆心()3,1-到直线310x y -+=的距离3115522d ++==<, 所以直线和圆相交,过圆心和l 平行的直线和圆的2个交点符合要求, 与l 平行且与圆相切的直线和圆的一个交点符合要求,故有3个点符合题意, 故选C 【点睛】解决这类问题首先把曲线C 的参数方程为普通方程,然后利用圆心到直线的距离判断直线与圆的位置关系得出结论.4.参数方程(为参数)所表示的图象是A .B .C .D .【答案】D 【解析】 【分析】由,得,代入,经过化简变形后得到曲线方程,但需注意曲线方程中变量、的符号,从而确定曲线的形状。
高考数学压轴专题最新备战高考《坐标系与参数方程》易错题汇编附答案
新《坐标系与参数方程》专题一、131.方程sin cos k ρθθ=++ 的曲线不经过极点,则k 的取值范围是( )A .0k ≠B .k R ∈C .2k >D .2k …【答案】C 【解析】 【分析】由题意可知,极点不在方程表示的sin cos k ρθθ=++曲线上,可知sin cos k θθ+=-无解,利用辅助角公式得出24sin cos sin πθθθ⎛⎫+=+ ⎪⎝⎭,结合正弦函数的性质,即可得出k 的取值范围. 【详解】当0ρ=时,sin cos k θθ+=-,则此方程无解 由224sin cos sin πθθθ⎛⎫+=+≤ ⎪⎝⎭,所以当2k >时,方程无解.故选:C 【点睛】本题主要考查了点与直线的位置关系,涉及了正弦函数的性质,属于中档题.2.在同一直角坐标系中,曲线经过伸缩变换后所得到的曲线A .B .C .D .【答案】C 【解析】 【分析】 由,得代入函数,化简可得出伸缩变换后所得曲线的解析式。
【详解】 由伸缩变换得,代入,有,即.所以变换后的曲线方程为.故选:C 。
【点睛】本题考查伸缩变换后曲线方程的求解,理解伸缩变换公式,准确代入是解题的关键,考查计算能力,属于基础题。
3.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( )A B .CD .【答案】D 【解析】 【分析】先求出直线和圆的普通方程,再利用圆的弦长公式求弦长. 【详解】由题意得,直线l 的普通方程为y =x -4, 圆C 的直角坐标方程为(x -2)2+y 2=4,圆心到直线l 的距离d =,直线l 被圆C 截得的弦长为= 【点睛】(1)本题主要考查参数方程极坐标方程与普通方程的互化,意在考察学生对这些知识的掌握水平和分析推理计算能力.(2) 求直线和圆相交的弦长,一般解直角三角形,利用公式||AB =.4.在直角坐标系xOy 中,曲线C 的方程为22162x y +=,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos()6πρθ+=M 的极坐标方程为(0)θαρ=≥.设射线m 与曲线C 、直线l 分别交于A 、B 两点,则2211OAOB+的最大值为( ) A .34B .25C .23D .13【答案】C 【解析】分析:先由曲线C 的直角坐标方程得到其极坐标方程为()221+2sin 6ρθ=,设A 、B 两点坐标为()1,ρθ,()2,ρθ,将射线M 的极坐标方程为θα=分别代入曲线C 和直线l 的极坐标方程,得到关于α的三角函数,利用三角函数性质可得结果.详解:∵曲线C 的方程为22162x y +=,即2236x y +=,∴曲线C 的极坐标方程为()221+2sin 6ρθ=设A 、B 两点坐标为()1,ρθ,()2,ρθ,联立()221+2sin 6ρθθα⎧=⎪⎨=⎪⎩,得221112sin 6θρ+=,同理得222cos 163πθρ⎛⎫+ ⎪⎝⎭=, 根据极坐标的几何意义可得22222212cos 111112sin 663OA OBπθθρρ⎛⎫+ ⎪+⎝⎭+=+=+1+1cos 21cos 23sin 23666ππθθθ⎛⎫⎛⎫-+++-+ ⎪ ⎪⎝⎭⎝⎭=,即可得其最大值为23,故选C. 点睛:本题考查两线段的倒数的平方和的求法,考查直角坐标方程、极坐标方程的互化等基础知识,考查运算求解能力,充分理解极坐标中ρ的几何意义以及联立两曲线的极坐标方程得到交点的极坐标是解题的关键,是中档题.5.记椭圆221441x ny n +=+围成的区域(含边界)为n Ω(12n =L ,,),当点()x y ,分别在1Ω,2Ω,…上时,x y +的最大值分别是1M ,2M ,…,则lim n n M →+∞=( ) A .0 B .14C .2 D.【答案】D 【解析】分析:先由椭圆221441x nyn +=+得到这个椭圆的参数方程为:2x cos y θθ=⎧⎪⎨=⎪⎩(θ为参数),再由三角函数知识求x+y 的最大值,从而求出极限的值.详解:把椭圆221441x ny n +=+得,椭圆的参数方程为:2x cos y θθ=⎧⎪⎨=⎪⎩(θ为参数),∴x+y=2cos θ, ∴(x+y )max∴nlim →∞M n=n故选D .点睛:本题考查数列的极限,椭圆的参数方程和最大值的求法,解题时要认真审题,注意三角函数知识的灵活运用.6.已知点()1,2A -,()2,0B ,P为曲线y =上任意一点,则AP AB ⋅u u u v u u u v 的取值范围为( ) A .[]1,7 B .[]1,7-C.1,3⎡+⎣D.1,3⎡-+⎣【答案】A 【解析】 【分析】结合已知曲线方程,引入参数方程,然后结合和角正弦公式及正弦函数的性质即可求解. 【详解】解:设(),P x y则由y =()221043x y y +=≥,令2cos ,x y θθ==,[](0,θπ∈,()1,2AP x y ∴=-+u u u v ,()1,2AB =u u u v,124232cos 34sin 36AP AB x y x y πθθθ⎛⎫∴⋅=-++=++=++=++ ⎪⎝⎭u u u v u u u v ,0θπ≤≤Q ,7666πππθ∴≤+≤, 1sin 126πθ⎛⎫-≤+≤ ⎪⎝⎭, 14sin 376πθ⎛⎫∴≤++≤ ⎪⎝⎭,【点睛】本题主要考查了平面向量数量积的运算及三角函数性质的简单应用,参数方程的应用是求解本题的关键.7.在同一平面直角坐标系中,经过伸缩变换53x xy y ''=⎧⎨=⎩后,曲线C 变为曲线2241x y ''+=,则曲线C 的方程为( )A .2225361x y +=B .2291001x y +=C .10241x y +=D .22281259x y += 【答案】A 【解析】 【分析】将伸缩变换53x x y y''=⎧⎨=⎩代入曲线2241x y ''+=中即可解.【详解】解:把53x x y y''=⎧⎨=⎩代入曲线2241x y ''+=,可得:()()225431x y +=,即2225361x y +=,即为曲线C 的方程. 故选:A . 【点睛】考查平面直角坐标系的伸缩变换,题目较为简单. 伸缩变换:设点(,)P x y 是平面直角坐标系中的任意一点,在变换,(0):,(0)x x y y λλϕμμ'=⋅>⎧⎨'=⋅>⎩的作用下,点(,)P x y 对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.8.参数方程21,11x ty t t ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数)所表示的曲线是( )A .B .C .D .【答案】D 【解析】 【分析】消参化简整理得221x y +=,即得方程对应的曲线. 【详解】 将1t x =代入211y t t=-,化简整理得221x y +=,同时x 不为零,且x ,y 的符号一致, 故选:D. 【点睛】本题主要考查参数方程与普通方程的互化,考查圆的方程,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.椭圆3cos (4sin x y θθθ=⎧⎨=⎩为参数)的离心率是( )A .4B .3C .2D .5【答案】A 【解析】 【分析】先求出椭圆的普通方程,再求其离心率得解. 【详解】椭圆3cos 4sin x y θθ=⎧⎨=⎩的标准方程为221916x y +=,所以.所以e =4. 故答案为A 【点睛】(1) 本题主要考查参数方程和普通方程的互化,考查椭圆的简单几何性质,意在考查学生对这些知识的掌握水平和分析推理计算能力. (2)在椭圆中,222,.c c a b e a=-=10.在极坐标系中,曲线C 的方程为22312sin ρθ=+,以极点O 为直角坐标系的原点,极轴为x 轴的正半轴,建立直角坐标系xOy ,设(),P x y 为曲线C 上一动点,则1x y +-的取值范围为( )A .1⎡⎤⎣⎦B .[]3,1-C .[]22-,D .[]2,1--【答案】B 【解析】 【分析】将曲线C 的方程22312sin ρθ=+化为直角坐标形式,可得2213x y +=,设x α=,sin y α=,由三角函数性质可得1x y +-的取值范围.【详解】解:将cos =x ρθ ,sin y ρθ=代入曲线C 的方程22312sin ρθ=+,可得:2222sin 3ρρθ+=,即2233x y +=,2213x y +=设x α=,sin y α=,可得1sin12(cos sin)12sin()12213 x yπααααα+-=-=+ ++--=,可得1x y+-的最大值为:1,最小值为:3-,故选:B.【点睛】本题主要考查极坐标和直角坐标的互换及椭圆的参数方程,属于中档题,注意运算准确.11.化极坐标方程ρ2cos θ-ρ=0为直角坐标方程为()A.x2+y2=0或y=1 B.x=1C.x2+y2=0或x=1 D.y=1【答案】C【解析】【分析】先化简极坐标方程,再代入极坐标化直角坐标的公式得解.【详解】由题得22(cos1)0,0cos1,0 1.x y xρρθρρθ-=∴==∴+==或或故答案为C.【点睛】(1)本题主要考查极坐标和直角坐标互化,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 求点的极坐标一般用公式222=tanx yyxρθ⎧+⎪⎨=⎪⎩,求极角时要先定位后定量.把极坐标化成直角坐标,一般利用公式cossinxyρθρθ=⎧⎨=⎩求解.(3)本题容易漏掉220x y+=.12.把曲线12cos2sinxCyθθ=⎧⎨=⎩:(θ为参数)上各点的横坐标压缩为原来的14,纵坐标压缩为2C为A.221241x y+=B.224413yx+=C.2213yx+=D.22344x y+=【答案】B【解析】根据题意,曲线C 2:12θ x cos y θθ⎧=⎪⎪⎨⎪=⎪⎩(为参数), 消去参数,化为直角坐标方程是224413y x +=故选B .点睛:化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,经常用到公式:22221cos sin 1,1tan cos θθθθ+=+=.不要忘了参数的范围.13.在极坐标系中,圆cos()3πρ=θ+的圆心的极坐标为( )A .1(,)23π-B .1(,)23πC .(1,)3π-D .(1,)3π【答案】A 【解析】由圆cos()3πρ=θ+,化为21(cos )2ρρθθ=,∴2212x y x y +=,化为2211()(44x y -+=,∴圆心为1(,4,半径r=12.∵tan α=3π-, ∴圆cos()3πρ=θ+的圆心的极坐标为1(,)23π-. 故选A .14.椭圆2242x y +=上的点到直线280x y --=的距离的最小值为( ) ABC .3D .6【答案】A 【解析】 【分析】 设P (2cosθsinθ),0≤θ<2π,求出P 到直线2x ﹣y ﹣8=0 的距离d ,由此能求出点P到直线的距离的最小值.【详解】∵椭圆4x2+y2=2,P为椭圆上一点,∴设P(2cosθsinθ),0≤θ<2π,∴P到直线2x﹣y﹣8=0 的距离:d5==≥,当且仅当cos(4πθ+)=1时取得最小值.∴点P到直线2x﹣y﹣8=0的距离的最小值为dmin=.故选:A.【点睛】本题考查点到直线的距离公式的最小值的求法,解题时要认真审题,注意椭圆的参数方程的合理运用.15.在直角坐标系xOy中,曲线1cos:sinx tCy tαα=⎧⎨=⎩(t为参数,0t≠),其中0απ≤<,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线2:Cρθ=,3:cosCρθ=,若1C与2C相交于点A,1C与3C相交于点B,则线段||AB的最大值为()AB.2 C.1 D.【答案】B【解析】【分析】首先将曲线1cos:sinx tCy tαα=⎧⎨=⎩(t为参数,0t≠),其中0απ≤<转化为极坐标方程为(),0Rθαρρ=∈≠,其中0απ≤<,再通过联立1C与2C得)Aαα,,联立1C与3C得到()cos,Bαα,进而利用弦长公式和辅助角公式,结合三角函数的有界性即得结论.【详解】曲线1cos:sinx tCy tαα=⎧⎨=⎩的极坐标方程为(),0Rθαρρ=∈≠,其中0απ≤<,因此得到A 的极坐标为)αα,,B 的极坐标为()cos ,αα. 所以sin 2sin 3=AB πααα⎛⎫-- ⎪⎝⎭ , 当56πα=时,AB 取得最大值,最大值为2.故选:B .【点睛】本题考查极坐标与参数方程,考查运算求解能力,涉及辅助角公式,注意解题方法的积累,属于中档题.16.极坐标方程2cos 3cos 30ρθρθρ-+-=表示的曲线是( )A .一个圆B .两个圆C .两条直线D .一个圆和一条直线【答案】D【解析】分析:2cos 3cos 30ρθρθρ-+-=化为()()cos 130ρθρ+-=,然后化为直角坐标方程即可得结论.详解:2cos 3cos 30ρθρθρ-+-=化为()()cos 130ρθρ+-=, 因为cos 10ρθ+=表示一条直线1x =-30ρ-=表示圆229x y +=,所以,极坐标方程2cos 3cos 30ρθρθρ-+-=表示的曲线是一个圆和一条直线,故选D.点睛:本题主要考查极坐标方程的应用,属于中档题. 极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.17.在极坐标系中,点2,6π⎛⎫ ⎪⎝⎭到直线sin 16πρθ⎛⎫-= ⎪⎝⎭的距离是( )A B .3 C .1 D .2 【答案】C【解析】【分析】先将点的极坐标化成直角坐标,直线的极坐标方程化为直角坐标方程,然后用点到直线的距离求解.【详解】在极坐标系中,点2,6π⎛⎫ ⎪⎝⎭,1),直线ρsin (θ﹣6π)=1化为直角坐标方程为x +2=0,1)到x+2=0的距离1=,即点(2,6π)到直线ρsin (θ﹣6π)=1的距离为1, 故选C .【点睛】 本题考查直角坐标和极坐标的互化,考查点到直线的距离公式的应用,属于基础题.18.过椭圆C:2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数)的右焦点F 作直线l :交C 于M ,N 两点,MF m =,NF n =,则11m n +的值为() A .23 B .43 C .83 D .不能确定【答案】B【解析】【分析】消去参数得到椭圆的普通方程,求得焦点坐标,写出直线l 的参数方程,代入椭圆的普通方程,写出韦达定理,由此求得11m n+的值. 【详解】 消去参数得到椭圆的普通方程为22143x y +=,故焦点()1,0F ,设直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩(α为参数),代入椭圆方程并化简得()223sin 6cos 90t t αα++⋅-=.故1212226cos 9,03sin 3sin t t t t ααα+=-⋅=-<++(12,t t 异号).故11m n m n mn ++=1212t t t t -===⋅43.故选B. 【点睛】本小题主要考查椭圆的参数方程化为普通方程,考查直线和椭圆的位置关系,考查利用直线参数的几何意义解题,考查化归与转化的数学思想方法,属于中档题.19.在平面直角坐标系xOy 中,曲线3cos :sin x C y θθ=⎧⎨=⎩(θ为参数)上的点到直线84:1x t l y t =+⎧⎨=-⎩的距离的最大值为( )A B C D 【答案】B【解析】【分析】 将直线84:1x t l y t =+⎧⎨=-⎩,化为直角方程,根据点到直线距离公式列等量关系,再根据三角函数有界性求最值.【详解】Q 84:1x t l y t =+⎧⎨=-⎩可得:4120x y +-=根据点到直线距离公式,可得C 上的点到直线l 的距离为=≤=【点睛】本题考查点到直线距离公式以及三角函数有界性,考查基本分析求解能力,属中档题.20.已知点()30A -,,()0,3B ,若点P 在曲线1cos sin x y θθ=+⎧⎨=⎩(参数[]0,2θπ∈)上运动,则PAB △面积的最小值为( )A.92 B .C .62+ D .62-【答案】D【解析】【分析】化简曲线1cos sin x y θθ=+⎧⎨=⎩成直角坐标,再将面积最小值转换到圆上的点到直线AB 的距离最小值求解即可.【详解】由曲线1cos sin x y θθ=+⎧⎨=⎩(参数[]0,2θπ∈)知曲线是以()1,0为圆心,1为半径的圆. 故直角坐标方程为:()2211x y -+=. 又点()30A -,,()0,3B 故直线AB 的方程为30x y -+=. 故当P 到直线AB 的距离最小时有PAB △面积取最小值.又圆心()1,0到直线AB 的距离为d ==故P 到直线AB 的距离最小值为1h =.故PAB △面积的最小值为()1116222S AB d =⋅=⨯=-. 故选:D【点睛】 本题主要考查了参数方程化直角坐标的方法与根据直线与圆的位置关系求最值的问题.属于中等题型.。
高考数学压轴专题(易错题)备战高考《坐标系与参数方程》图文答案
新数学《坐标系与参数方程》复习资料(1)一、131.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42a πρθ⎛⎫+= ⎪⎝⎭,曲线2C 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数,0θπ剟).若1C 与2C 有且只有一个公共点,则实数a 的取值范围是( )A .2±B .(2,2)-C .[1,1)-D .[1,1)-或2【答案】D 【解析】 【分析】先把曲线1C ,2C 的极坐标方程和参数方程转化为直角坐标方程和一般方程,若1C 与2C 有且只有一个公共点可转化为直线和半圆有一个公共点,数形结合讨论a 的范围即得解. 【详解】因为曲线1C 的极坐标方程为2sin ,42a πρθ⎛⎫+= ⎪⎝⎭即222(sin cos )222a ρθθ+= 故曲线1C 的直角坐标方程为:0x y a +-=.消去参数θ可得曲线2C 的一般方程为:221x y +=,由于0θπ剟,故0y ≥如图所示,若1C 与2C 有且只有一个公共点,直线与半圆相切,或者截距11a -≤< 当直线与半圆相切时122O l d a -==∴=± 由于为上半圆,故02a a >∴= 综上:实数a 的取值范围是[1,1)-或2 故选:D 【点睛】本题考查了极坐标、参数方程与直角坐标方程、一般方程的互化,以及直线和圆的位置关系,考查了学生数形结合,数学运算的能力,属于中档题.2.在极坐标中,为极点,曲线:上两点对应的极角分别为,则的面积为A.B.C.D.【答案】A【解析】【分析】将、两点的极角代入曲线的极坐标方程,求出、,将、的极角作差取绝对值得出,最后利用三角形的面积公式可求出的面积。
【详解】依题意得:、,,所以,故选:A。
【点睛】本题考查利用极坐标求三角形的面积,理解极坐标中极径、极角的含义,体会数与形之间的关系,并充分利用正弦、余弦定理以及三角形面积公式求解弦长、角度问题以及面积问题,能起到简化计算的作用。
高考数学压轴专题专题备战高考《坐标系与参数方程》难题汇编及答案解析
新数学复习题《坐标系与参数方程》专题解析一、131.已知点()1,2A -,()2,0B ,P为曲线y =上任意一点,则AP AB ⋅u u u v u u u v 的取值范围为( ) A .[]1,7 B .[]1,7-C.1,3⎡+⎣D.1,3⎡-+⎣【答案】A 【解析】 【分析】结合已知曲线方程,引入参数方程,然后结合和角正弦公式及正弦函数的性质即可求解. 【详解】解:设(),P x y则由y =()221043x y y +=≥,令2cos ,x y θθ==,[](0,θπ∈,()1,2AP x y ∴=-+u u u v ,()1,2AB =u u u v,124232cos 34sin 36AP AB x y x y πθθθ⎛⎫∴⋅=-++=++=++=++ ⎪⎝⎭u u u v u u u v ,0θπ≤≤Q ,7666πππθ∴≤+≤, 1sin 126πθ⎛⎫-≤+≤ ⎪⎝⎭, 14sin 376πθ⎛⎫∴≤++≤ ⎪⎝⎭,【点睛】本题主要考查了平面向量数量积的运算及三角函数性质的简单应用,参数方程的应用是求解本题的关键.2.设曲线C的参数方程为5cos ()15sin x y θθθ⎧=⎪⎨=-+⎪⎩为参数,直线l10y -+=,则曲线C 上到直线l 的距离为52的点的个数为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】将圆C 化为普通方程,计算圆心到直线l 的距离,通过比较所求距离与52的关系即可得到满足条件的点的个数. 【详解】化曲线C 的参数方程为普通方程:(()22125x y ++=,圆心)1-10y -+=的距离3115522d ++==<, 所以直线和圆相交,过圆心和l 平行的直线和圆的2个交点符合要求, 与l 平行且与圆相切的直线和圆的一个交点符合要求,故有3个点符合题意, 故选C 【点睛】解决这类问题首先把曲线C 的参数方程为普通方程,然后利用圆心到直线的距离判断直线与圆的位置关系得出结论.3.点(,)ρθ满足223cos 2sin 6cos ρθρθθ+=,则2ρ的最大值为( ) A .72B .4C .92D .5【答案】B 【解析】 【分析】将223cos 2sin 6cos ρθρθθ+=化成直角坐标方程,则2ρ的最大值为22xy + 的最大值。
高考数学压轴专题新备战高考《坐标系与参数方程》难题汇编附答案
高考数学《坐标系与参数方程》练习题一、131.已知点(),x y 在圆22()(23)1x y -=++上,则x y +的最大值是( )A .1B .1-C 1D .1-【答案】C 【解析】 【分析】设圆上一点()2,3P cos sin αα+-,则1x y sin cos αα+=+-,利用正弦型函数求最值,即可得出结论 【详解】设22(2)(3)1x y -++=上一点()2,3P cos sin αα+-,则231114x y cos sin sin cos πααααα⎛⎫+=++-=+-=+-≤ ⎪⎝⎭,故选:C 【点睛】本题考查圆的参数方程的应用,考查正弦型函数的最值2.点(,)ρθ满足223cos 2sin 6cos ρθρθθ+=,则2ρ的最大值为( ) A .72B .4C .92D .5【答案】B 【解析】 【分析】将223cos 2sin 6cos ρθρθθ+=化成直角坐标方程,则2ρ的最大值为22xy + 的最大值。
【详解】223cos 2sin 6cos ρθρθθ+=两边同时乘ρ,化为22326x y x +=,得22332y x x =-,则()2222211919369(3)22222x y x x x x x +=-+=--++=--+.由223302y x x =-…,可得02x 剟,所以当2x =时,222x y ρ=+取得最大值4. 故选B 【点睛】本题考查极坐标方程与直角坐标方程的互化以及利用二次函数求最值,属于一般题。
3.已知圆的参数方程2cos 2sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为3490cos sin ραρα--=,则直线与圆的位置关系是( ) A .相切 B .相离C .直线过圆心D .相交但直线不过圆心 【答案】D 【解析】 【分析】分别计算圆和直线的普通方程,根据圆心到直线的距离判断位置关系. 【详解】 圆的参数方程2cos 2sin x y θθ=⎧⎨=⎩(θ为参数)224x y ⇒+=直线的极坐标方程为34903490cos sin x y ραρα--=⇐--= 圆心到直线的距离为:925d r =<=相交 圆心坐标代入直线不满足,所以直线不过圆心. 故答案选D 【点睛】本题考查了参数方程,极坐标方程,直线和圆心的位置关系,综合性较强,意在考查学生的综合应用能力.4.在同一直角坐标系中,曲线经过伸缩变换后所得到的曲线A .B .C .D .【答案】C 【解析】 【分析】 由,得代入函数,化简可得出伸缩变换后所得曲线的解析式。
高考数学压轴专题最新备战高考《坐标系与参数方程》易错题汇编及答案
【最新】高考数学《坐标系与参数方程》专题解析一、131.能化为普通方程210x y +-=的参数方程为( )A .2sin ,cos x t y t=⎧⎨=⎩(t 为参数)B .2tan ,1tan x y ϕϕ=⎧⎨=-⎩(ϕ为参数)C .x y t ⎧=⎪⎨=⎪⎩(t 为参数)D .2cos ,sin x y θθ=⎧⎨=⎩(θ为参数) 【答案】B 【解析】A:21,[1,1]y x x =-∈- ;B 21,y x x =-∈R ;C:21,[0,)y x x =-∈+∞ ;D:21,[1,1]y x x =-∈-,所以选B.点睛:化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,经常用到公式:22221cos sin 1,1tan cos θθθθ+=+=.不要忘了参数的范围.2.设曲线C 的参数方程为5cos ()15sin x y θθθ⎧=⎪⎨=-+⎪⎩为参数,直线l 10y -+=,则曲线C 上到直线l 的距离为52的点的个数为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】将圆C 化为普通方程,计算圆心到直线l 的距离,通过比较所求距离与52的关系即可得到满足条件的点的个数. 【详解】化曲线C 的参数方程为普通方程:(()22125x y ++=,圆心)1-10y -+=的距离3115522d ++==<, 所以直线和圆相交,过圆心和l 平行的直线和圆的2个交点符合要求, 与l 平行且与圆相切的直线和圆的一个交点符合要求,故有3个点符合题意, 故选C 【点睛】解决这类问题首先把曲线C 的参数方程为普通方程,然后利用圆心到直线的距离判断直线与圆的位置关系得出结论.3.曲线2cos sin x y θθ=⎧⎨=⎩(θ为参数)上的点到原点的距离的最大值为( )A .1B .3C .2D .4 【答案】C 【解析】 【分析】根据点到直线的距离求最值. 【详解】曲线2cos sin x y θθ=⎧⎨=⎩(θ为参数)上的点到原点的距离为:2=,当且仅当cos 1θ=±时取得等号 故选C. 【点睛】本题考查椭圆参数方程的应用.4.椭圆3cos (4sin x y θθθ=⎧⎨=⎩为参数)的离心率是( )A .4 B .3C .2D .5【答案】A 【解析】 【分析】先求出椭圆的普通方程,再求其离心率得解. 【详解】椭圆3cos 4sin x y θθ=⎧⎨=⎩的标准方程为221916x y +=,所以.所以e . 故答案为A 【点睛】(1) 本题主要考查参数方程和普通方程的互化,考查椭圆的简单几何性质,意在考查学生对这些知识的掌握水平和分析推理计算能力. (2)在椭圆中,222,.c c a b e a=-=5.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( )A B .CD .【答案】D 【解析】 【分析】先求出直线和圆的普通方程,再利用圆的弦长公式求弦长. 【详解】由题意得,直线l 的普通方程为y =x -4, 圆C 的直角坐标方程为(x -2)2+y 2=4,圆心到直线l 的距离d =,直线l 被圆C 截得的弦长为= 【点睛】(1)本题主要考查参数方程极坐标方程与普通方程的互化,意在考察学生对这些知识的掌握水平和分析推理计算能力.(2) 求直线和圆相交的弦长,一般解直角三角形,利用公式||AB =.6.在直角坐标系xOy 中,曲线C 的方程为22162x y +=,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos()6πρθ+=M 的极坐标方程为(0)θαρ=≥.设射线m 与曲线C 、直线l 分别交于A 、B 两点,则2211OAOB+的最大值为( ) A .34B .25C .23D .13【答案】C 【解析】分析:先由曲线C 的直角坐标方程得到其极坐标方程为()221+2sin 6ρθ=,设A 、B 两点坐标为()1,ρθ,()2,ρθ,将射线M 的极坐标方程为θα=分别代入曲线C 和直线l 的极坐标方程,得到关于α的三角函数,利用三角函数性质可得结果.详解:∵曲线C 的方程为22162x y +=,即2236x y +=,∴曲线C 的极坐标方程为()221+2sin 6ρθ=设A 、B 两点坐标为()1,ρθ,()2,ρθ,联立()221+2sin 6ρθθα⎧=⎪⎨=⎪⎩,得221112sin 6θρ+=,同理得222cos 163πθρ⎛⎫+ ⎪⎝⎭=, 根据极坐标的几何意义可得22222212cos 111112sin 663OA OBπθθρρ⎛⎫+ ⎪+⎝⎭+=+=+1+1cos 21cos 23sin 23666ππθθθ⎛⎫⎛⎫-+++-+ ⎪ ⎪⎝⎭⎝⎭=,即可得其最大值为23,故选C. 点睛:本题考查两线段的倒数的平方和的求法,考查直角坐标方程、极坐标方程的互化等基础知识,考查运算求解能力,充分理解极坐标中ρ的几何意义以及联立两曲线的极坐标方程得到交点的极坐标是解题的关键,是中档题.7.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴,建立极坐标系,直线l 的参数方程为1cos sin x t y t αα=-+⎧⎨=⎩,(t 为参数),曲线C 的方程为4cos 02πρθθ⎛⎫= ⎪⎝⎭剟,(2,0)C 直线l 与曲线C 相交于A B ,两点,当ABC ∆的面积最大时,tan α=( )A.3B.2CD.7【答案】D 【解析】 【分析】先将直线直线l 与曲线C 转化为普通方程,结合图形分析可得,要使ABC ∆的面积最大,即要ACB ∠为直角,从而求解出tan α。
高考数学压轴专题(易错题)备战高考《坐标系与参数方程》知识点总复习附答案
新单元《坐标系与参数方程》专题解析一、131.方程sin cos k ρθθ=++ 的曲线不经过极点,则k 的取值范围是( )A .0k ≠B .k R ∈C.k >D.k …【答案】C 【解析】 【分析】由题意可知,极点不在方程表示的sin cos k ρθθ=++曲线上,可知sin cos k θθ+=-无解,利用辅助角公式得出4sin cos πθθθ⎛⎫+=+ ⎪⎝⎭,结合正弦函数的性质,即可得出k 的取值范围. 【详解】当0ρ=时,sin cos k θθ+=-,则此方程无解由4sin cos πθθθ⎛⎫+=+≤ ⎪⎝⎭k >时,方程无解.故选:C 【点睛】本题主要考查了点与直线的位置关系,涉及了正弦函数的性质,属于中档题.2.在满足极坐标和直角坐标互的化条件下,极坐标方程222123cos 4sin ρθθ=+经过直角坐标系下的伸缩变换123x x y y⎧=⎪⎪⎨=''⎪⎪⎩后,得到的曲线是( ).A .直线B .椭圆C .双曲线D .圆【答案】D 【解析】 【分析】先把极坐标方程化为直角坐标方程,再经过直角坐标系下的伸缩变换,把直角坐标方程中的x ,y 分别换成得2x '',由此能求出结果. 【详解】 ∵极坐标方程222123+4cos sin ρθθ=∴22223cos 4sin 12ρθρθ+=∴直角坐标方程为223412x y +=,即22143x y +=∴经过直角坐标系下的伸缩变换123x x y y⎧=⎪⎪⎨=''⎪⎪⎩后得到的曲线方程为22(2)(3)143x y ''+=,即22()()1x y ''+=. ∴得到的曲线是圆 故选D. 【点睛】本题考查曲线形状的判断,是基础题,解题时要认真审题,注意极坐标方程、直角坐标方程和直角坐标系下的伸缩变换公式的合理运用.3.椭圆3cos (4sin x y θθθ=⎧⎨=⎩为参数)的离心率是( ) A .7 B .7 C .7 D .7 【答案】A 【解析】 【分析】先求出椭圆的普通方程,再求其离心率得解. 【详解】椭圆3cos 4sin x y θθ=⎧⎨=⎩的标准方程为221916x y +=,所以c=7.所以e =74. 故答案为A 【点睛】(1) 本题主要考查参数方程和普通方程的互化,考查椭圆的简单几何性质,意在考查学生对这些知识的掌握水平和分析推理计算能力. (2)在椭圆中,222,.c c a b e a=-=4.已知点是曲线:(为参数,)上一点,点,则的取值范围是 A . B .C .D .【答案】D 【解析】 【分析】将曲线的参数方程化为普通方程,可知曲线是圆的上半圆,再利用数形结合思想求出的最大值和最小值。
高考数学压轴专题专题备战高考《坐标系与参数方程》易错题汇编含答案
新数学高考《坐标系与参数方程》专题解析一、131.已知22451x y +=,则2x +的最大值是( )AB .1C .3D .9【答案】A 【解析】 【分析】设1cos 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,则2cos sin 4x πααα⎛⎫=+=+ ⎪⎝⎭,利用三角函数有界性得到最值. 【详解】22451x y +=,则设1cos 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,则2cos sin 4x πααα⎛⎫=+=+ ⎪⎝⎭ 当4πα=,即4x y ⎧=⎪⎪⎨⎪=⎪⎩故选:A 【点睛】本题考查了求最大值,利用参数方程1cos 2x y αα⎧=⎪⎪⎨⎪=⎪⎩是解题的关键.2.在满足极坐标和直角坐标互的化条件下,极坐标方程222123cos 4sin ρθθ=+经过直角坐标系下的伸缩变换123x x y y ⎧=⎪⎪⎨=''⎪⎪⎩后,得到的曲线是( ).A .直线B .椭圆C .双曲线D .圆【答案】D 【解析】 【分析】先把极坐标方程化为直角坐标方程,再经过直角坐标系下的伸缩变换,把直角坐标方程中的x ,y 分别换成得2x '',由此能求出结果. 【详解】 ∵极坐标方程222123+4cos sin ρθθ=∴22223cos 4sin 12ρθρθ+=∴直角坐标方程为223412x y +=,即22143x y +=∴经过直角坐标系下的伸缩变换123x x y y⎧=⎪⎪⎨=''⎪⎪⎩后得到的曲线方程为2(2)14x '=,即22()()1x y ''+=. ∴得到的曲线是圆 故选D. 【点睛】本题考查曲线形状的判断,是基础题,解题时要认真审题,注意极坐标方程、直角坐标方程和直角坐标系下的伸缩变换公式的合理运用.3.化极坐标方程2cos 20ρθρ-=为直角坐标方程为( ) A .2202x y y +==或 B .2x =C .2202x y x +==或D .2y =【答案】C 【解析】由题意得,式子可变形为(cos 2)0ρρθ-=,即0ρ=或cos 20ρθ-=,所以x 2+y 2=0或x=2,选C.【点睛】由直角坐标与极坐标互换公式222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩,利用这个公式可以实现直角坐标与极坐标的相互转化.4.已知直线2sin 301sin 30x t y t ︒︒⎧=-⎨=-+⎩(t 为参数)与圆228x y +=相交于B 、C 两点,则||BC 的值为( )A.BC.D.2【答案】B【解析】 【分析】根据参数方程与普通方程的互化方法,然后联立方程组,通过弦长公式,即可得出结论. 【详解】曲线2sin 301sin 30x t y t ︒︒⎧=-⎨=-+⎩(t 为参数),化为普通方程1y x =-, 将1y x =-代入228x y +=,可得22270x x --=, ∴()271114302BC =+-⋅+⨯=,故选B . 【点睛】本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,考查直线与圆的位置关系,属于中档题.5.在同一直角坐标系中,曲线经过伸缩变换后所得到的曲线A .B .C .D .【答案】C 【解析】 【分析】 由,得代入函数,化简可得出伸缩变换后所得曲线的解析式。
高考数学压轴专题(易错题)备战高考《坐标系与参数方程》技巧及练习题含答案
【最新】数学高考《坐标系与参数方程》复习资料一、131.已知圆的极坐标方程为4sin 4P πθ⎛⎫=- ⎪⎝⎭,则其圆心坐标为( ) A .2,4π⎛⎫⎪⎝⎭B .32,4π⎛⎫ ⎪⎝⎭ C .2,4π⎛⎫-⎪⎝⎭D .()2,0【答案】B 【解析】 【分析】把圆的极坐标方程化为直角坐标方程,求得圆心坐标(2,2)-,再根据极坐标与直角坐标的互化公式,即可求解. 【详解】由题意知,圆的极坐标方程为4sin 4πρθ⎛⎫=-⎪⎝⎭,即22sin 22cos ρθθ=-, 即222sin 22cos ρρθρθ=-,所以2222220x y x y ++-=, 所以圆心坐标为(2,2)-, 又由cos sin x y ρθρθ=⎧⎨=⎩,可得圆心的极坐标为3(2,)4π,故选B. 【点睛】本题主要考查了极坐标与直角坐标的互化,及圆的方程应用,其中解答中熟记极坐标与直角坐标的互化公式,把极坐标化为直角坐标方程是解答的关键,着重考查了运算与求解能力,属于基础题.2.如图所示,ABCD 是边长为1的正方形,曲线AEFGH ……叫作“正方形的渐开线”,其中¶AE ,¶EF ,·FG,¶GH ,……的圆心依次按,,,B C D A 循环,则曲线AEFGH 的长是( )A .3πB .4πC .5πD .6π【答案】C 【解析】 【分析】分别计算»AE ,»EF,»FG ,¼GH 的大小,再求和得到答案. 【详解】根据题意可知,»AE 的长度2π,»EF 的长度为π,»FG的长度为32π,¼GH 的长度为2π,所以曲线AEFGH 的长是5π. 【点睛】本题考察了圆弧的计算,意在考察学生的迁移能力和计算能力.3.极坐标cos ρθ=和参数方程12x ty t =--⎧⎨=+⎩(t 为参数)所表示的图形分别是A .直线、直线B .直线、圆C .圆、圆D .圆、直线【答案】D 【解析】由ρ=cos θ得ρ2=ρcos θ,∴x 2+y 2=x ,即12x ⎛⎫- ⎪⎝⎭ 2+y 2=14. 它表示以1,02骣琪琪桫为圆心,以12为半径的圆. 由x =-1-t 得t =-1-x ,代入y =2+t 中,得y =1-x 表示直线.4.参数方程(为参数)所表示的图象是A .B .C .D .【答案】D 【解析】 【分析】 由,得,代入,经过化简变形后得到曲线方程,但需注意曲线方程中变量、的符号,从而确定曲线的形状。
高考数学压轴专题新备战高考《坐标系与参数方程》易错题汇编含解析
【最新】《坐标系与参数方程》专题一、131.设x 、y 满足223412,x y +=则2x y +的最大值为( )A .2B .3C .4D .6【答案】C 【解析】 【分析】由223412x y +=得出22143x y +=,表示椭圆,写出椭圆的参数方程,利用三角函数求2x y +的最大值.【详解】由题可得:22143x y +=则2cos (x y θθθ=⎧⎪⎨=⎪⎩为参数),有22cos x y θθ+=+14sin 22con θθ⎛⎫=+ ⎪ ⎪⎝⎭4sin 6πθ⎛⎫=+⎪⎝⎭. 因为1sin 16πθ⎛⎫-≤+≤ ⎪⎝⎭, 则: 44sin 46πθ⎛⎫-≤+≤ ⎪⎝⎭,所以2x y +的最大值为4. 故选:C. 【点睛】本题主要考查与椭圆上动点有关的最值问题,利用椭圆的参数方程,转化为三角函数求最值.2.221x y +=经过伸缩变换23x xy y ''=⎧⎨=⎩后所得图形的焦距( )A.B.C .4 D .6【答案】A 【解析】 【分析】用x ′,y '表示出x ,y ,代入原方程得出变换后的方程,从而得出焦距. 【详解】由23x x y y ''=⎧⎨=⎩得2 3x x y y '⎧=⎪⎪⎨'⎪=⎪⎩,代入221x y +=得22 149x y ''+=,∴椭圆的焦距为=A .【点睛】本题主要考查了伸缩变换,椭圆的基本性质,属于基础题.3.已知直线2sin 301sin 30x t y t ︒︒⎧=-⎨=-+⎩(t 为参数)与圆228x y +=相交于B 、C 两点,则||BC 的值为( )A.BC.D.2【答案】B 【解析】 【分析】根据参数方程与普通方程的互化方法,然后联立方程组,通过弦长公式,即可得出结论. 【详解】曲线2sin 301sin 30x t y t ︒︒⎧=-⎨=-+⎩(t 为参数),化为普通方程1y x =-, 将1y x =-代入228x y +=,可得22270x x --=, ∴BC ==,故选B . 【点睛】本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,考查直线与圆的位置关系,属于中档题.4.已知圆的参数方程2cos 2sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为3490cos sin ραρα--=,则直线与圆的位置关系是( ) A .相切 B .相离C .直线过圆心D .相交但直线不过圆心 【答案】D 【解析】 【分析】分别计算圆和直线的普通方程,根据圆心到直线的距离判断位置关系.【详解】 圆的参数方程2cos 2sin x y θθ=⎧⎨=⎩(θ为参数)224x y ⇒+=直线的极坐标方程为34903490cos sin x y ραρα--=⇐--= 圆心到直线的距离为:925d r =<=相交 圆心坐标代入直线不满足,所以直线不过圆心. 故答案选D 【点睛】本题考查了参数方程,极坐标方程,直线和圆心的位置关系,综合性较强,意在考查学生的综合应用能力.5.极坐标cos ρθ=和参数方程12x ty t =--⎧⎨=+⎩(t 为参数)所表示的图形分别是A .直线、直线B .直线、圆C .圆、圆D .圆、直线【答案】D 【解析】由ρ=cos θ得ρ2=ρcos θ,∴x 2+y 2=x ,即12x ⎛⎫- ⎪⎝⎭ 2+y 2=14. 它表示以1,02骣琪琪桫为圆心,以12为半径的圆. 由x =-1-t 得t =-1-x ,代入y =2+t 中,得y =1-x 表示直线.6.若直线l :y kx =与曲线C :2cos sin x y θθ=+⎧⎨=⎩(θ为参数)有唯一的公共点,则实数k等于()A B .C D .±【答案】D 【解析】 【分析】根据题意,将曲线C 的参数方程消去θ,得到曲线C 的普通方程22(2)1x y -+=,可知曲线C 为圆,又知圆C 与直线相切,利用圆心到直线的距离等于半径,求得k 。
高考数学压轴专题专题备战高考《坐标系与参数方程》难题汇编含答案
【高中数学】数学《坐标系与参数方程》高考复习知识点一、131.在参数方程cos sin x a t y b t θθ=+⎧⎨=+⎩,(0θπ<…,t 为参数)所表示的曲线上有,B C 两点,它们对应的参数值分别为1t ,2t ,则线段BC 的中点M 对应的参数值是( ) A .122t t - B .122t t + C .122t t - D .122t t + 【答案】D 【解析】 【分析】根据参数的几何意义求解即可。
【详解】 如图:由直线参数方程的参数t 的几何意义可知,1PB t =,2PC t =,因为M 是BC 的中点,所以122t t PM +=. 选D. 【点睛】本题考查直线参数方程的参数t 的几何意义。
2.曲线2cos sin x y θθ=⎧⎨=⎩(θ为参数)上的点到原点的距离的最大值为( )A .1B .3C .2D .4【答案】C 【解析】 【分析】根据点到直线的距离求最值.曲线2cos sin x y θθ=⎧⎨=⎩(θ为参数)上的点到原点的距离为:2=,当且仅当cos 1θ=±时取得等号 故选C. 【点睛】本题考查椭圆参数方程的应用.3.化极坐标方程2cos 20ρθρ-=为直角坐标方程为( ) A .2202x y y +==或 B .2x =C .2202x y x +==或D .2y =【答案】C 【解析】由题意得,式子可变形为(cos 2)0ρρθ-=,即0ρ=或cos 20ρθ-=,所以x 2+y 2=0或x=2,选C.【点睛】由直角坐标与极坐标互换公式222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩,利用这个公式可以实现直角坐标与极坐标的相互转化.4.已知直线2sin 301sin 30x t y t ︒︒⎧=-⎨=-+⎩(t 为参数)与圆228x y +=相交于B 、C 两点,则||BC 的值为( )A.BC.D.2【答案】B 【解析】 【分析】根据参数方程与普通方程的互化方法,然后联立方程组,通过弦长公式,即可得出结论. 【详解】曲线2sin 301sin 30x t y t ︒︒⎧=-⎨=-+⎩(t 为参数),化为普通方程1y x =-, 将1y x =-代入228x y +=,可得22270x x --=, ∴BC ==,故选B .本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,考查直线与圆的位置关系,属于中档题.5.已知圆的参数方程2cos 2sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为3490cos sin ραρα--=,则直线与圆的位置关系是( ) A .相切 B .相离C .直线过圆心D .相交但直线不过圆心 【答案】D 【解析】 【分析】分别计算圆和直线的普通方程,根据圆心到直线的距离判断位置关系. 【详解】 圆的参数方程2cos 2sin x y θθ=⎧⎨=⎩(θ为参数)224x y ⇒+=直线的极坐标方程为34903490cos sin x y ραρα--=⇐--= 圆心到直线的距离为:925d r =<=相交 圆心坐标代入直线不满足,所以直线不过圆心. 故答案选D 【点睛】本题考查了参数方程,极坐标方程,直线和圆心的位置关系,综合性较强,意在考查学生的综合应用能力.6.如图,点A 、B 是函数1y x=在第I 象限的图像上两点且满足OAB 90∠=o 且AO AB =,则OAB ∆的面积等于( )A .12B .22C .32D 5【解析】 【分析】设点B 的极坐标为(),ρθ,则04πθ<<,由OAB ∆为等腰直角三角形可得出点A 的极坐标,4πρθ⎫+⎪⎪⎝⎭,将函数1y x =的解析式表示为极坐标方程,将A 、B 两点的极坐标代入曲线的极坐标方程,可计算出2ρ的值,再利用三角形的面积公式可计算出OAB ∆的面积. 【详解】设点B 的极坐标为(),ρθ,则04πθ<<,由题意知,OAB ∆为等腰直角三角形,且OAB 90∠=o ,则点A 的极坐标,24πρθ⎛⎫+ ⎪ ⎪⎝⎭,将函数1y x =的解析式化为极坐标方程得1sin cos ρθρθ=,即2sin cos 1ρθθ=,化简得2sin 22ρθ=,将点B 的极坐标代入曲线的极坐标方程得2sin 22ρθ=,将点A 的极坐标代入曲线的极坐标方程得2sin 2224πρθ⎛⎫⎡⎤⎛⎫+= ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭, 化简得2cos 24ρθ=,于是有22sin 22cos 24ρθρθ⎧=⎨=⎩,()()242222sin 2cos 22420ρρθρθ∴=+=+=,得2ρ=,因此,OAB ∆的面积为111sin 2422242OAB S OA OB πρρ∆=⋅=⨯⨯⨯=⨯=, 故选D.【点睛】本题考查三角形面积的计算,解题的关键就是将问题转化为极坐标方程求解,将代数问题转化为几何问题求解,考查转化与化归数学思想,属于中等题.7.在平面直角坐标系xOy 中,曲线C 的参数方程为sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),直线l的方程为4x y +=,则曲线C 上的点到直线l 的距离的最小值是( )A B C .1 D .2【解析】【分析】设曲线C上任意一点的坐标为),sinθθ,利用点到直线的距离公式结合辅助角公式可得出曲线C上的点到直线l的距离的最小值.【详解】设曲线C上任意一点的坐标为),sinθθ,所以,曲线C上的一点到直线l的距离为d==42sinπθ⎛⎫-+⎪=当()232k k Zππθπ+=+∈时,d取最小值,且mind== B.【点睛】本题考查椭圆参数方程的应用,考查椭圆上的点到直线距离的最值问题,解题时可将椭圆上的点用参数方程表示,利用三角恒等变换思想求解,考查运算求解能力,属于中等题.8.已知曲线C的极坐标方程为:22cos2sin0ρρθρθ--=,直线l的极坐标方程为:4πθ=(ρ∈R),曲线C与直线l相交于A B、两点,则AB为()AB.CD.【答案】B【解析】【分析】把圆和直线的极坐标方程都转化成直角坐标方程,可得弦AB过圆心,则2AB r=。
高考数学压轴专题(易错题)备战高考《坐标系与参数方程》难题汇编及解析
数学《坐标系与参数方程》复习知识点(1)一、131.设x 、y 满足223412,x y +=则2x y +的最大值为( )A .2B .3C .4D .6【答案】C 【解析】 【分析】由223412x y +=得出22143x y +=,表示椭圆,写出椭圆的参数方程,利用三角函数求2x y +的最大值.【详解】由题可得:22143x y +=则2cos (3sin x y θθθ=⎧⎪⎨=⎪⎩为参数), 有22cos 23sin x y θθ+=+134sin 22con θθ⎛⎫=+ ⎪ ⎪⎝⎭4sin 6πθ⎛⎫=+⎪⎝⎭. 因为1sin 16πθ⎛⎫-≤+≤ ⎪⎝⎭, 则: 44sin 46πθ⎛⎫-≤+≤ ⎪⎝⎭,所以2x y +的最大值为4. 故选:C. 【点睛】本题主要考查与椭圆上动点有关的最值问题,利用椭圆的参数方程,转化为三角函数求最值.2.已知点是曲线:(为参数,)上一点,点,则的取值范围是 A . B .C .D .【答案】D 【解析】 【分析】将曲线的参数方程化为普通方程,可知曲线是圆的上半圆,再利用数形结合思想求出的最大值和最小值。
【详解】曲线表示半圆:,所以.取,结合图象可得.故选:D。
【点睛】本题考查参数方程与普通方程之间的转化,同时也考查了点与圆的位置关系,在处理点与圆的位置关系的问题时,充分利用数形结合的思想,能简化计算,考查计算能力与分析问题的能力,属于中等题。
3.在同一直角坐标系中,曲线经过伸缩变换后所得到的曲线A.B.C.D.【答案】C【解析】【分析】由,得代入函数,化简可得出伸缩变换后所得曲线的解析式。
【详解】由伸缩变换得,代入,有,即.所以变换后的曲线方程为.故选:C。
【点睛】本题考查伸缩变换后曲线方程的求解,理解伸缩变换公式,准确代入是解题的关键,考查计算能力,属于基础题。
4.曲线C 的参数方程为2x cos y sin θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为3212x t y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),若直线l 与曲线C 交于A ,B两点,则AB 等于( ) A .87B .477C .81313D .41313【答案】C 【解析】分析:首先将取消C 的方程化为直角坐标方程,然后结合直线参数方程的几何意义整理计算即可求得最终结果.详解:曲线C 的参数方程2x cos y sin θθ=⎧⎨=⎩(θ为参数)化为直角坐标方程即:2214y x +=,与直线l 的参数方程3212x t y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)联立可得:21613t =,则12413413,t t ==-, 结合弦长公式可知:12813AB t t =-=. 本题选择C 选项.点睛:本题主要考查参数方程的应用,弦长公式等知识,意在考查学生的转化能力和计算求解能力.5.如图,点A 、B 是函数1y x=在第I 象限的图像上两点且满足OAB 90∠=o 且AO AB =,则OAB ∆的面积等于( )A .12B .22C .2D 【答案】D 【解析】 【分析】设点B 的极坐标为(),ρθ,则04πθ<<,由OAB ∆为等腰直角三角形可得出点A 的极坐标,24πρθ⎛⎫+ ⎪ ⎪⎝⎭,将函数1y x =的解析式表示为极坐标方程,将A 、B 两点的极坐标代入曲线的极坐标方程,可计算出2ρ的值,再利用三角形的面积公式可计算出OAB ∆的面积. 【详解】设点B 的极坐标为(),ρθ,则04πθ<<,由题意知,OAB ∆为等腰直角三角形,且OAB 90∠=o ,则点A 的极坐标,4πρθ⎫+⎪⎪⎝⎭,将函数1y x =的解析式化为极坐标方程得1sin cos ρθρθ=,即2sin cos 1ρθθ=,化简得2sin 22ρθ=,将点B 的极坐标代入曲线的极坐标方程得2sin 22ρθ=,将点A 的极坐标代入曲线的极坐标方程得2sin 2224πρθ⎛⎫⎡⎤⎛⎫+= ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭, 化简得2cos 24ρθ=,于是有22sin 22cos 24ρθρθ⎧=⎨=⎩,()()242222sin 2cos 22420ρρθρθ∴=+=+=,得2ρ=,因此,OAB ∆的面积为111sin 2422242OAB S OA OB πρρ∆=⋅=⨯⨯⨯=⨯=, 故选D.【点睛】本题考查三角形面积的计算,解题的关键就是将问题转化为极坐标方程求解,将代数问题转化为几何问题求解,考查转化与化归数学思想,属于中等题.6.在极坐标系中,已知圆C 经过点6P π⎛⎫⎪⎝⎭,,圆心为直线sin 4πρθ⎛⎫+= ⎪⎝⎭轴的交点,则圆C 的极坐标方程为A .4cos ρθ=B .4sin ρθ=C .2cos ρθ=D .2sin ρθ=【答案】A 【解析】 【分析】求出圆C 的圆心坐标为(2,0),由圆C 经过点6P π⎛⎫ ⎪⎝⎭,得到圆C 过极点,由此能求出圆C 的极坐标方程. 【详解】在sin 4πρθ⎛⎫+= ⎪⎝⎭中,令0θ=,得2ρ=, 所以圆C 的圆心坐标为(2,0).因为圆C 经过点6P π⎛⎫ ⎪⎝⎭,,所以圆C 的半径2r ==,于是圆C 过极点,所以圆C 的极坐标方程为4cos ρθ=. 故选A 【点睛】本题考查圆的极坐标方程的求法,考查直角坐标方程、参数方程、极坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,属于中档题.7.将正弦曲线sin y x =先保持纵坐标y 不变,将横坐标缩为原来的12;再将纵坐标y 变为原来的3倍,就可以得到曲线3sin 2y x =,上述伸缩变换的变换公式是( )A .1'2'3x x y y⎧=⎪⎨⎪=⎩B .'2'3x xy y=⎧⎨=⎩C .'21'3x x y y =⎧⎪⎨=⎪⎩D .1'21'3x x y y ⎧=⎪⎪⎨⎪=⎪⎩【答案】A 【解析】 【分析】首先设出伸缩变换关系式,把伸缩变换关系式代入变换后的方程,利用系数对应相等,可得答案。
高考数学压轴专题专题备战高考《坐标系与参数方程》难题汇编附答案解析
【高中数学】《坐标系与参数方程》知识点一、131.在平面直角坐标系中,O 为原点,()1,0A -,()03B ,,()30C ,,动点D 满足1CD =u u u r, 则OA OB OD ++u u u r u u u r u u u r的取值范围是( )A .[]46,B .19-119+1⎡⎤⎣⎦,C .2327⎡⎤⎣⎦,D .7-17+1⎡⎤⎣⎦,【答案】D 【解析】试题分析:因为C 坐标为()3,0且1CD =,所以动点D 的轨迹为以C 为圆心的单位圆,则D 满足参数方程3cos {sin D D x y θθ=+=(θ为参数且[)0,2θπ∈),所以设D 的坐标为为()[)()3cos ,sin 0,2θθθπ+∈,则()()223cos 1sin 3OA OB OD θθ++=+-++u u u r u u u r u u u r()822cos 3sin θθ=++,因为2cos 3sin θθ+的取值范围为()()222223,237,7⎡⎤⎡⎤-++=-⎢⎥⎣⎦⎣⎦且()28271717+=+=+,()28271771-=-=-,所以OA OB OD ++u u u r u u u r u u u r的取值范围为827,82771,71⎡⎤⎡⎤-+=-+⎣⎦⎢⎥⎣⎦,故选D.考点:参数方程 圆 三角函数2.如图所示,ABCD 是边长为1的正方形,曲线AEFGH ……叫作“正方形的渐开线”,其中¶AE ,¶EF ,·FG,¶GH ,……的圆心依次按,,,B C D A 循环,则曲线AEFGH 的长是( )A .3πB .4πC .5πD .6π【答案】C 【解析】 【分析】分别计算»AE ,»EF,»FG ,¼GH 的大小,再求和得到答案. 【详解】根据题意可知,»AE 的长度2π,»EF 的长度为π,»FG的长度为32π,¼GH 的长度为2π,所以曲线AEFGH 的长是5π. 【点睛】本题考察了圆弧的计算,意在考察学生的迁移能力和计算能力.3.221x y +=经过伸缩变换23x x y y ''=⎧⎨=⎩后所得图形的焦距( )A.B.C .4D .6【答案】A 【解析】 【分析】用x ′,y '表示出x ,y ,代入原方程得出变换后的方程,从而得出焦距. 【详解】由23x x y y ''=⎧⎨=⎩得2 3x x y y '⎧=⎪⎪⎨'⎪=⎪⎩,代入221x y +=得22 149x y ''+=,∴椭圆的焦距为=A .【点睛】本题主要考查了伸缩变换,椭圆的基本性质,属于基础题.4.已知圆的参数方程2cos 2sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为3490cos sin ραρα--=,则直线与圆的位置关系是( ) A .相切 B .相离C .直线过圆心D .相交但直线不过圆心 【答案】D 【解析】 【分析】分别计算圆和直线的普通方程,根据圆心到直线的距离判断位置关系. 【详解】圆的参数方程2cos 2sin x y θθ=⎧⎨=⎩(θ为参数)224x y ⇒+= 直线的极坐标方程为34903490cos sin x y ραρα--=⇐--=圆心到直线的距离为:925d r =<=相交 圆心坐标代入直线不满足,所以直线不过圆心. 故答案选D 【点睛】本题考查了参数方程,极坐标方程,直线和圆心的位置关系,综合性较强,意在考查学生的综合应用能力.5.极坐标cos ρθ=和参数方程12x ty t =--⎧⎨=+⎩(t 为参数)所表示的图形分别是A .直线、直线B .直线、圆C .圆、圆D .圆、直线【答案】D 【解析】由ρ=cos θ得ρ2=ρcos θ,∴x 2+y 2=x ,即12x ⎛⎫- ⎪⎝⎭ 2+y 2=14. 它表示以1,02骣琪琪桫为圆心,以12为半径的圆. 由x =-1-t 得t =-1-x ,代入y =2+t 中,得y =1-x 表示直线.6.在符合互化条件的直角坐标系和极坐标系中,直线l :20y kx ++=与曲线C :2cos ρθ=相交,则k 的取值范围是( )A .34k <-B .34k ≥-C .k R ∈D .k R ∈但0k ≠【答案】A 【解析】分析:一般先将原极坐标方程2cos ρθ=两边同乘以ρ后,把极坐标系中的方程化成直角坐标方程,再利用直角坐标方程进行求解即可.详解:将原极坐标方程2cos ρθ=,化为:22cos ρρθ=,化成直角坐标方程为:2220x y x +-=, 即22(1)1x y -+=.则圆心到直线的距离d =由题意得:1d <,即1d =<,解之得:34k <-. 故选A .点睛:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用cos x ρθ=,sin y ρθ=,222x y ρ=+,进行代换即得.7.在极坐标系中,曲线1C 的极坐标方程为2sin ρθ=,曲线2C的极坐标方程为ρθ=,若曲线1C 与2C 交于A 、B 两点,则AB 等于( )A .1 BC .2D.【答案】B 【解析】 【分析】由题意可知曲线1C 与2C 交于原点和另外一点,设点A 为原点,点B 的极坐标为()(),0,02ρθρθπ>≤<,联立两曲线的极坐标方程,解出ρ的值,可得出AB ρ=,即可得出AB 的值. 【详解】易知,曲线1C 与2C 均过原点,设点A 为原点,点B 的极坐标为()(),0,02ρθρθπ>≤<,联立曲线1C 与2C的坐标方程2sin ρθρθ=⎧⎪⎨=⎪⎩,解得3πθρ⎧=⎪⎨⎪=⎩,因此,AB ρ== 故选:B. 【点睛】本题考查两圆的相交弦长的计算,常规方法就是计算出两圆的相交弦方程,计算出弦心距,利用勾股定理进行计算,也可以联立极坐标方程,计算出两极径的值,利用两极径的差来计算,考查方程思想的应用,属于中等题.8.能化为普通方程210x y +-=的参数方程为( ) A .2sin ,cos x t y t =⎧⎨=⎩(t 为参数)B .2tan ,1tan x y ϕϕ=⎧⎨=-⎩(ϕ为参数) C.x y t⎧=⎪⎨=⎪⎩(t 为参数)D .2cos ,sin x y θθ=⎧⎨=⎩(θ为参数) 【答案】B 【解析】A:21,[1,1]y x x =-∈- ;B 21,y x x =-∈R ;C:21,[0,)y x x =-∈+∞ ;D:21,[1,1]y x x =-∈-,所以选B.点睛:化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,经常用到公式:22221cos sin 1,1tan cos θθθθ+=+=.不要忘了参数的范围.9.点(,)ρθ满足223cos 2sin 6cos ρθρθθ+=,则2ρ的最大值为( ) A .72B .4C .92D .5【答案】B 【解析】 【分析】将223cos 2sin 6cos ρθρθθ+=化成直角坐标方程,则2ρ的最大值为22xy + 的最大值。
高考数学压轴专题(易错题)备战高考《坐标系与参数方程》难题汇编及答案解析
新数学复习题《坐标系与参数方程》专题解析一、131.曲线1C :1cos sin x y θθ=+⎧⎨=⎩(θ为参数)上的点到曲线2C:12112x t y t⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数)上的点的最短距离为( ) A .1 B .2 C .3 D .4【答案】A 【解析】 【分析】分别将圆1C 和直线2C 转化为直角坐标方程,然后利用圆上的点到直线的距离与圆心到直线距离的关系从而求出最短距离. 【详解】将1C 转化为直角坐标方程为()2211x y -+=, 所以曲线1C 是以()1,0为圆心,1为半径的圆. 将2C转化为直角坐标方程为10x y ++=,由点到直线的距离公式得圆心到直线的距离为2d ==,所以圆上的点到直线的最小距离为211d r -=-=, 故选A . 【点睛】本题考查圆上的点到直线的距离,若圆心距为d ,圆的半径为r 且圆与直线相离,则圆上的点到直线距离的最大值为d r +,最小值为d r -.2.曲线2cos sin x y θθ=⎧⎨=⎩(θ为参数)上的点到原点的距离的最大值为( )A .1B .3C .2D .4 【答案】C 【解析】 【分析】根据点到直线的距离求最值. 【详解】曲线2cos sin x y θθ=⎧⎨=⎩(θ为参数)上的点到原点的距离为:2224cos sin 13cos 2θθθ+=+…,当且仅当cos 1θ=±时取得等号 故选C. 【点睛】本题考查椭圆参数方程的应用.3.化极坐标方程2cos 20ρθρ-=为直角坐标方程为( ) A .2202x y y +==或 B .2x =C .2202x y x +==或D .2y =【答案】C 【解析】由题意得,式子可变形为(cos 2)0ρρθ-=,即0ρ=或cos 20ρθ-=,所以x 2+y 2=0或x=2,选C.【点睛】由直角坐标与极坐标互换公式222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩,利用这个公式可以实现直角坐标与极坐标的相互转化.4.在极坐标中,为极点,曲线:上两点对应的极角分别为,则的面积为 A .B .C .D .【答案】A 【解析】 【分析】将、两点的极角代入曲线的极坐标方程,求出、,将、的极角作差取绝对值得出,最后利用三角形的面积公式可求出的面积。
高考数学压轴专题人教版备战高考《坐标系与参数方程》难题汇编及答案解析
【高中数学】《坐标系与参数方程》知识点一、131.在同一平面直角坐标系中,经过伸缩变换53x xy y ''=⎧⎨=⎩后,曲线C 变为曲线2241x y ''+=,则曲线C 的方程为( )A .2225361x y +=B .2291001x y +=C .10241x y +=D .22281259x y += 【答案】A 【解析】 【分析】将伸缩变换53x x y y''=⎧⎨=⎩代入曲线2241x y ''+=中即可解.【详解】解:把53x x y y''=⎧⎨=⎩代入曲线2241x y ''+=,可得:()()225431x y +=,即2225361x y +=,即为曲线C 的方程. 故选:A . 【点睛】考查平面直角坐标系的伸缩变换,题目较为简单. 伸缩变换:设点(,)P x y 是平面直角坐标系中的任意一点,在变换,(0):,(0)x x y y λλϕμμ'=⋅>⎧⎨'=⋅>⎩的作用下,点(,)P x y 对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.在极坐标中,为极点,曲线:上两点对应的极角分别为,则的面积为 A .B .C .D .【答案】A 【解析】 【分析】将、两点的极角代入曲线的极坐标方程,求出、,将、的极角作差取绝对值得出,最后利用三角形的面积公式可求出的面积。
【详解】 依题意得:、,,所以,故选:A 。
【点睛】本题考查利用极坐标求三角形的面积,理解极坐标中极径、极角的含义,体会数与形之间的关系,并充分利用正弦、余弦定理以及三角形面积公式求解弦长、角度问题以及面积问题,能起到简化计算的作用。
3.在符合互化条件的直角坐标系和极坐标系中,直线l :20y kx ++=与曲线C :2cos ρθ=相交,则k 的取值范围是( )A .34k <-B .34k ≥-C .k R ∈D .k R ∈但0k ≠【答案】A 【解析】分析:一般先将原极坐标方程2cos ρθ=两边同乘以ρ后,把极坐标系中的方程化成直角坐标方程,再利用直角坐标方程进行求解即可.详解:将原极坐标方程2cos ρθ=,化为:22cos ρρθ=,化成直角坐标方程为:2220x y x +-=, 即22(1)1x y -+=. 则圆心到直线的距离221k d k +=+由题意得:1d <,即2211k d k +=<+,解之得:34k <-. 故选A .点睛:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用cos x ρθ=,sin y ρθ=,222x y ρ=+,进行代换即得.4.如图,点A 、B 是函数1y x=在第I 象限的图像上两点且满足OAB 90∠=o 且AO AB =,则OAB ∆的面积等于( )A .12B .2C .2D 【答案】D 【解析】 【分析】设点B 的极坐标为(),ρθ,则04πθ<<,由OAB ∆为等腰直角三角形可得出点A 的极坐标,24πρθ⎛⎫+ ⎪ ⎪⎝⎭,将函数1y x =的解析式表示为极坐标方程,将A 、B 两点的极坐标代入曲线的极坐标方程,可计算出2ρ的值,再利用三角形的面积公式可计算出OAB ∆的面积. 【详解】设点B 的极坐标为(),ρθ,则04πθ<<,由题意知,OAB ∆为等腰直角三角形,且OAB 90∠=o ,则点A 的极坐标,24πρθ⎛⎫+ ⎪ ⎪⎝⎭,将函数1y x =的解析式化为极坐标方程得1sin cos ρθρθ=,即2sin cos 1ρθθ=,化简得2sin 22ρθ=,将点B 的极坐标代入曲线的极坐标方程得2sin 22ρθ=,将点A 的极坐标代入曲线的极坐标方程得2sin 2224πρθ⎛⎫⎡⎤⎛⎫+=⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭, 化简得2cos 24ρθ=,于是有22sin 22cos 24ρθρθ⎧=⎨=⎩,()()242222sin 2cos 22420ρρθρθ∴=+=+=,得2ρ=,因此,OAB ∆的面积为111sin 2422242OAB S OA OB πρρ∆=⋅=⨯⨯⨯=⨯=, 故选D.【点睛】本题考查三角形面积的计算,解题的关键就是将问题转化为极坐标方程求解,将代数问题转化为几何问题求解,考查转化与化归数学思想,属于中等题.5.在极坐标系中,曲线1C 的极坐标方程为2sin ρθ=,曲线2C 的极坐标方程为ρθ=,若曲线1C 与2C 交于A 、B 两点,则AB 等于( )A .1 BC .2D.【答案】B 【解析】 【分析】由题意可知曲线1C 与2C 交于原点和另外一点,设点A 为原点,点B 的极坐标为()(),0,02ρθρθπ>≤<,联立两曲线的极坐标方程,解出ρ的值,可得出AB ρ=,即可得出AB 的值. 【详解】易知,曲线1C 与2C 均过原点,设点A 为原点,点B 的极坐标为()(),0,02ρθρθπ>≤<,联立曲线1C 与2C的坐标方程2sin ρθρθ=⎧⎪⎨=⎪⎩,解得3πθρ⎧=⎪⎨⎪=⎩,因此,AB ρ== 故选:B. 【点睛】本题考查两圆的相交弦长的计算,常规方法就是计算出两圆的相交弦方程,计算出弦心距,利用勾股定理进行计算,也可以联立极坐标方程,计算出两极径的值,利用两极径的差来计算,考查方程思想的应用,属于中等题.6.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( )AB.CD.【答案】D 【解析】 【分析】先求出直线和圆的普通方程,再利用圆的弦长公式求弦长. 【详解】由题意得,直线l 的普通方程为y =x -4, 圆C 的直角坐标方程为(x -2)2+y 2=4, 圆心到直线l 的距离d=,直线l 被圆C 截得的弦长为=【点睛】(1)本题主要考查参数方程极坐标方程与普通方程的互化,意在考察学生对这些知识的掌握水平和分析推理计算能力.(2) 求直线和圆相交的弦长,一般解直角三角形,利用公式||AB =.7.在极坐标系中,已知圆C 经过点6P π⎛⎫⎪⎝⎭,,圆心为直线sin 4πρθ⎛⎫+= ⎪⎝⎭轴的交点,则圆C 的极坐标方程为 A .4cos ρθ= B .4sin ρθ=C .2cos ρθ=D .2sin ρθ=【答案】A 【解析】 【分析】求出圆C 的圆心坐标为(2,0),由圆C 经过点6P π⎛⎫⎪⎝⎭,得到圆C 过极点,由此能求出圆C 的极坐标方程. 【详解】在sin 4πρθ⎛⎫+= ⎪⎝⎭中,令0θ=,得2ρ=, 所以圆C 的圆心坐标为(2,0). 因为圆C 经过点6P π⎛⎫⎪⎝⎭,,所以圆C 的半径2r ==,于是圆C 过极点,所以圆C 的极坐标方程为4cos ρθ=. 故选A 【点睛】本题考查圆的极坐标方程的求法,考查直角坐标方程、参数方程、极坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,属于中档题.8.若实数x ,y 满足()()22512196x y ++-=,则22x y +的最大值为( )A .1B .14C .729D .27【答案】C 【解析】 【分析】设14cos 5x t =-,14sin 12y t =+,利用辅助角公式可得22x y +()364sin 365t α=-+,由三角函数的有界性可得结果.【详解】由222(5)(12)19614x y ++-==,2251211414x y +-⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, 令5cos 14x t +=, 12sin 14y t -=, 则14cos 5x t =-,14sin 12y t =+,因此22xy +22(14cos 5)(14sin 12)t t =-++140cos 336sin 365t t =-++1252813sin cos 3651313t t ⎛⎫=⨯⨯⨯-⨯+ ⎪⎝⎭()364sin 365t α=-+(其中5sin 13α=,12cos 13α=) 又1sin()1t α-≤-≤Q221729x y ∴≤+≤因此最大值为729,故选C. 【点睛】本题主要考查圆的参数方程的应用,考查了辅助角公式以及三角函数的有界性,属于综合题.9.在极坐标系中,设圆8:sin C ρθ=与直线 ():4l R πθρ=∈交于A B ,两点,则以线段AB 为直径的圆的极坐标方程为( )A .4πρθ⎛⎫=+ ⎪⎝⎭ B .4πρθ⎛⎫=- ⎪⎝⎭C .4πρθ⎛⎫=+ ⎪⎝⎭D .4πρθ⎛⎫=-⎪⎝⎭【答案】A 【解析】 【分析】首先把极坐标方程化为直角坐标方程,进一步求出圆心坐标和半径,再把直角坐标方程化为极坐标方程,即可得到答案. 【详解】由题意,圆8:sin C ρθ=化为直角坐标方程,可得22(4)16x y +-=,直线():4l R πθρ=∈化为直角坐标方程,可得y x =,由直线与圆交于,A B 两点,把直线y x =代入圆22(4)16x y +-=,解得00x y =⎧⎨=⎩或44x y =⎧⎨=⎩,所以以线段AB 为直径的圆的圆心坐标为(2,2),半径为, 则圆的方程为22(2)(2)8x y -+-=,即22440x y x y +--=,又由cos sin x y ρθρθ=⎧⎨=⎩,代入可得24cos 4sin 0ρρθρθ--=,即4cos 4sin 4θπρθθ⎛⎫=+= ⎝+⎪⎭,故选A . 【点睛】本题主要考查了极坐标方程与直角坐标方程的互化,以及圆的标准方程的求解,其中解答中把极坐标方程互为直角坐标方程,得到以线段AB 为直径的圆的标准方程是解答的关键,着重考查了推理与运算能力,属于基础题.10.能化为普通方程210x y +-=的参数方程为( )A .2sin ,cos x t y t=⎧⎨=⎩(t 为参数)B .2tan ,1tan x y ϕϕ=⎧⎨=-⎩(ϕ为参数)C .x y t⎧=⎪⎨=⎪⎩(t 为参数)D .2cos ,sin x y θθ=⎧⎨=⎩(θ为参数) 【答案】B 【解析】A:21,[1,1]y x x =-∈- ;B 21,y x x =-∈R ;C:21,[0,)y x x =-∈+∞ ;D:21,[1,1]y x x =-∈-,所以选B.点睛:化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,经常用到公式:22221cos sin 1,1tan cos θθθθ+=+=.不要忘了参数的范围.11.化极坐标方程ρ2cos θ-ρ=0为直角坐标方程为( ) A .x 2+y 2=0或y =1 B .x =1 C .x 2+y 2=0或x =1 D .y =1【答案】C 【解析】 【分析】先化简极坐标方程,再代入极坐标化直角坐标的公式得解.由题得22(cos 1)0,0cos 1,0 1.x y x ρρθρρθ-=∴==∴+==或或 故答案为C. 【点睛】(1)本题主要考查极坐标和直角坐标互化,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 求点的极坐标一般用公式222=tan x y y x ρθ⎧+⎪⎨=⎪⎩,求极角时要先定位后定量.把极坐标化成直角坐标,一般利用公式cos sin x y ρθρθ=⎧⎨=⎩求解.(3)本题容易漏掉220x y +=.12.已知点N 在圆224x y +=上,()2,0A -,()2,0B ,M 为NB 中点,则sin BAM ∠的最大值为( ) A .12B .13CD【答案】B 【解析】 【分析】设(2cos ,2sin )N αα,则(1cos ,sin )M αα+先求出AM 的斜率的最大值,再得出sin NAM ∠的最大值. 【详解】解:设(2cos ,2sin )N αα,则(1cos ,sin )M αα+,sin 0sin tan 1cos 2cos 3BAM αααα-∠==+++„, 1sin 3BAM ∴∠„, 故选:C . 【点睛】本题考查了直线与圆的位置关系,属中档题.13.设x 、y 满足223412,x y +=则2x y +的最大值为( ) A .2 B .3C .4D .6【答案】C 【解析】 【分析】由223412x y +=得出22143x y +=,表示椭圆,写出椭圆的参数方程,利用三角函数求2x y +的最大值.由题可得:22143x y +=则2cos (x y θθθ=⎧⎪⎨=⎪⎩为参数),有22cos x y θθ+=+14sin 22con θθ⎛⎫=+ ⎪ ⎪⎝⎭4sin 6πθ⎛⎫=+⎪⎝⎭. 因为1sin 16πθ⎛⎫-≤+≤ ⎪⎝⎭, 则: 44sin 46πθ⎛⎫-≤+≤ ⎪⎝⎭, 所以2x y +的最大值为4. 故选:C. 【点睛】本题主要考查与椭圆上动点有关的最值问题,利用椭圆的参数方程,转化为三角函数求最值.14.已知M 点的极坐标为(2,)6π--,则M 点关于直线2πθ=的对称点坐标为( )A .(2,)6πB .(2,)6π-C .(2,)6π-D .11(2,)6π- 【答案】A 【解析】M 点的极坐标为2,6π⎛⎫-- ⎪⎝⎭,即为5(2,)6π∴ M 点关于直线2πθ=的对称点坐标为(2,)6π,选A.点睛:(,)(,),ρθρθπ=-+(,)ρθ关于2πθ=对称点为(,)ρπθ-,关于0θ=对称点为(,)ρθ-.15.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为sin 42a πρθ⎛⎫+= ⎪⎝⎭,曲线2C 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数,0θπ剟).若1C 与2C 有且只有一个公共点,则实数a 的取值范围是( )A.B.(C .[1,1)-D .[1,1)-【解析】 【分析】先把曲线1C ,2C 的极坐标方程和参数方程转化为直角坐标方程和一般方程,若1C 与2C 有且只有一个公共点可转化为直线和半圆有一个公共点,数形结合讨论a 的范围即得解. 【详解】因为曲线1C 的极坐标方程为2sin ,4a πρθ⎛⎫+= ⎪⎝⎭即222(sin cos )222a ρθθ+= 故曲线1C 的直角坐标方程为:0x y a +-=.消去参数θ可得曲线2C 的一般方程为:221x y +=,由于0θπ剟,故0y ≥如图所示,若1C 与2C 有且只有一个公共点,直线与半圆相切,或者截距11a -≤< 当直线与半圆相切时122O l d a -==∴=由于为上半圆,故02a a >∴= 综上:实数a 的取值范围是[1,1)-2 故选:D 【点睛】本题考查了极坐标、参数方程与直角坐标方程、一般方程的互化,以及直线和圆的位置关系,考查了学生数形结合,数学运算的能力,属于中档题.16.在极坐标系中,曲线C 的方程为22312sin ρθ=+,以极点O 为直角坐标系的原点,极轴为x 轴的正半轴,建立直角坐标系xOy ,设(),P x y 为曲线C 上一动点,则1x y +-的取值范围为( )A .331⎡⎤-⎣⎦B .[]3,1-C .[]22-,D .[]2,1--【答案】B 【解析】 【分析】将曲线C 的方程22312sin ρθ=+化为直角坐标形式,可得2213x y +=,设x α=,sin y α=,由三角函数性质可得1x y +-的取值范围.【详解】解:将cos =x ρθ ,sin y ρθ=代入曲线C 的方程22312sin ρθ=+, 可得:2222sin 3ρρθ+=,即2233x y +=,2213x y +=设x α=,sin y α=,可得1sin 12(cos sin )12sin()12213x y πααααα+-=-=+++--=, 可得1x y +-的最大值为:1,最小值为:3-,故选:B.【点睛】本题主要考查极坐标和直角坐标的互换及椭圆的参数方程,属于中档题,注意运算准确.17.参数方程22sin { 12x y cos θθ=+=-+ (θ为参数)化成普通方程是( ) A .240x y -+= B .240x y +-=C .[]240,2,3x y x -+=∈D .[]240,2,3x y x +-=∈【答案】D【解析】试题分析: 2cos212sin θθ=-Q , 22112sin 2sin y θθ∴=-+-=-,2sin 2y θ∴=-,代入22sin x θ=+可得22y x =-,整理可得240x y +-=.[]2sin 0,1θ∈Q ,[]22sin 2,3θ∴+∈,即[]2,3x ∈.所以此参数方程化为普通方程为[]240,2,3x y x +-=∈.故D 正确.考点:参数方程与普通方程间的互化.【易错点睛】本题主要考查参数方程与普通方程间的互化,属容易题.在参数方程与普通方程间的互化中一定要注意x 的取值范围,否则极易出错.18.在平面直角坐标系xOy 中,曲线3cos :sin x C y θθ=⎧⎨=⎩(θ为参数)上的点到直线84:1x t l y t =+⎧⎨=-⎩的距离的最大值为( )A B C D【答案】B【解析】【分析】将直线84:1x t l y t =+⎧⎨=-⎩,化为直角方程,根据点到直线距离公式列等量关系,再根据三角函数有界性求最值.【详解】Q 84:1x t l y t =+⎧⎨=-⎩可得:4120x y +-=根据点到直线距离公式,可得C 上的点到直线l 的距离为=≤=【点睛】本题考查点到直线距离公式以及三角函数有界性,考查基本分析求解能力,属中档题.19.已知实数x ,y 满足2212x y +≤,则2222267x y x y x +-++-+的最小值等于( )A .5B .7C -D .9- 【答案】D【解析】【分析】设x θ=,sin y θ=,去绝对值,根据余弦函数的性质即可求出.【详解】因为实数x ,y 满足2212x y +„,设x θ=,sin y θ=,222222222|2||67||2cos sin 2||2cos sin 7||sin |x y x y x θθθθθθ∴+-++-+=+-++-+=-+2|cos 8|θθ-+,22cos 8(cos 100θθθ-+=-->Q 恒成立,222222|2||67|sin cos 899x y x y x θθθθ∴+-++-+=+-+=--…故则2222|2||67|x y x y x +-++-+的最小值等于9-故选:D .【点睛】本题考查了椭圆的参数方程、三角函数的图象和性质,考查了运算能力和转化能力,意在考查学生对这些知识的理解掌握水平.20.已知点()1,2A -,()2,0B ,P为曲线y =上任意一点,则AP AB ⋅u u u v u u u v 的取值范围为( )A .[]1,7B .[]1,7- C.1,3⎡+⎣D.1,3⎡-+⎣ 【答案】A【解析】【分析】结合已知曲线方程,引入参数方程,然后结合和角正弦公式及正弦函数的性质即可求解.【详解】解:设(),P x y则由y =()221043x y y +=≥,令2cos ,x y θθ==,[](0,θπ∈, ()1,2AP x y ∴=-+u u u v ,()1,2AB =u u u v ,124232cos 34sin 36AP AB x y x y πθθθ⎛⎫∴⋅=-++=++=++=++ ⎪⎝⎭u u u v u u u v , 0θπ≤≤Q ,7666πππθ∴≤+≤, 1sin 126πθ⎛⎫-≤+≤ ⎪⎝⎭, 14sin 376πθ⎛⎫∴≤++≤ ⎪⎝⎭, 【点睛】本题主要考查了平面向量数量积的运算及三角函数性质的简单应用,参数方程的应用是求解本题的关键.。
高考数学压轴专题(易错题)备战高考《坐标系与参数方程》难题汇编及答案解析
【高中数学】数学《坐标系与参数方程》高考复习知识点一、131.已知点(),x y 在圆22()(23)1x y -=++上,则x y +的最大值是( ) A .1 B .1- C .21- D .21--【答案】C 【解析】 【分析】设圆上一点()2,3P cos sin αα+-,则1x y sin cos αα+=+-,利用正弦型函数求最值,即可得出结论 【详解】设22(2)(3)1x y -++=上一点()2,3P cos sin αα+-,则2312sin 1214x y cos sin sin cos πααααα⎛⎫+=++-=+-=+-≤- ⎪⎝⎭,故选:C 【点睛】本题考查圆的参数方程的应用,考查正弦型函数的最值2.极坐标cos ρθ=和参数方程12x ty t =--⎧⎨=+⎩(t 为参数)所表示的图形分别是A .直线、直线B .直线、圆C .圆、圆D .圆、直线【答案】D 【解析】由ρ=cos θ得ρ2=ρcos θ,∴x 2+y 2=x ,即12x ⎛⎫-⎪⎝⎭ 2+y 2=14. 它表示以1,02骣琪琪桫为圆心,以12为半径的圆. 由x =-1-t 得t =-1-x ,代入y =2+t 中,得y =1-x 表示直线.3.参数方程(为参数)所表示的图象是A .B .C .D .【答案】D 【解析】 【分析】 由,得,代入,经过化简变形后得到曲线方程,但需注意曲线方程中变量、的符号,从而确定曲线的形状。
【详解】 由题意知将代入,得,解得,因为,所以.故选:D 。
【点睛】本题考查参数方程与普通方程之间的转化,参数方程化普通方程一般有以下几种消参方法:①加减消元法;②代入消元法;③平方消元法。
消参时要注意参数本身的范围,从而得出相关变量的取值范围。
4.已知直线1:1x t l y at =+⎧⎨=+⎩(t 为参数)与曲线221613sin ρθ=+的相交弦中点坐标为(1,1),则a 等于( )A .14-B .14C .12-D .12【答案】A 【解析】 【分析】根据参数方程与普通方程的互化,得直线l 的普通方程为1=-+y ax a ,由极坐标与直角坐标的互化,得曲线C 普通方程为221164x y +=,再利用“平方差”法,即可求解.【详解】由直线1:1x tl y at=+⎧⎨=+⎩(t 为参数),可得直线l 的普通方程为1=-+y ax a ,由曲线221613sin ρθ=+,可得曲线C 普通方程为221164x y +=,设直线l 与椭圆C 的交点为()11,A x y ,()22,B x y ,则22111164x y +=,2221164x y +=,两式相减,可得1212121214y y y y x x x x -+⋅=--+. 所以1212114y y x x -⋅=--,即直线l 的斜率为14-,所以a =14-,故选A . 【点睛】本题主要考查了参数方程与普通方程、极坐标方程与直角坐标方程的互化,以及中点弦问题的应用,其中解答中熟记互化公式,合理应用中点弦的“平方差”法是解答的关键,着重考查了推理与运算能力,属于基础题.5.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( )AB.CD.【答案】D 【解析】 【分析】先求出直线和圆的普通方程,再利用圆的弦长公式求弦长. 【详解】由题意得,直线l 的普通方程为y =x -4, 圆C 的直角坐标方程为(x -2)2+y 2=4, 圆心到直线l 的距离d=,直线l 被圆C 截得的弦长为= 【点睛】(1)本题主要考查参数方程极坐标方程与普通方程的互化,意在考察学生对这些知识的掌握水平和分析推理计算能力.(2)求直线和圆相交的弦长,一般解直角三角形,利用公式||AB =.6.已知曲线T的参数方程1x ky ⎧=⎪⎪⎨⎪=⎪⎩(k 为参数),则其普通方程是()A .221x y +=B .()2210x y x +=≠ C.0x y x ⎧>⎪=⎨<⎪⎩D.y =0x ≠)【答案】C 【解析】 【分析】 由已知1x k =得1k x=代入另一个式子即可消去参数k ,要注意分类讨论。
高考数学压轴专题(易错题)备战高考《坐标系与参数方程》难题汇编及答案
数学《坐标系与参数方程》复习知识点一、131.在正方形ABCD 中,动点P 在以点C 为圆心且与BD 相切的圆上,若AP x AB y AD =+u u u v u u u v u u u v,则x y +的最大值为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】设正方形ABCD 的边长为2,以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立平面直角坐标系xAy ,可得出圆C 的方程为()()22222x y -+-=,可设点P 的坐标为()22cos,22sin θθ++,根据向量的坐标运算可将x y +用θ的三角函数表示,利用辅助角公式和正弦函数的有界性可求出x y +的最大值. 【详解】设正方形ABCD 的边长为2,以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系xAy ,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,直线BD 的方程为221x y+=,即20x y +-=,点C 到直线BD 的距离为22211d ==+,则以点C 为圆心且与直线BD 相切的圆C 的方程为()()22222x y -+-=,设点P 的坐标为()22,22θθ+,由AP x AB y AD =+u u u r u u u r u u u r,得()()()()22,222,00,22,2x y x y θθ+=+=,21221x y θθ⎧=+⎪⎪∴⎨⎪=+⎪⎩,所以,22sin cos 2sin 2224x y πθθθ⎛⎫+=++=++ ⎪⎝⎭, 因此,x y +的最大值为3. 故选:C. 【点睛】本题考查利用平面向量的基本定理求参数和的最小值,利用圆的有界性结合圆的参数方程来求解是解题的关键,考查计算能力,属于中等题.2.已知直线2sin 301sin 30x t y t ︒︒⎧=-⎨=-+⎩(t 为参数)与圆228x y +=相交于B 、C 两点,则||BC 的值为( )A .27B .30C .72D .30 【答案】B 【解析】 【分析】根据参数方程与普通方程的互化方法,然后联立方程组,通过弦长公式,即可得出结论. 【详解】曲线2sin 301sin 30x t y t ︒︒⎧=-⎨=-+⎩(t 为参数),化为普通方程1y x =-, 将1y x =-代入228x y +=,可得22270x x --=, ∴()271114302BC =+-⋅+⨯=,故选B . 【点睛】本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,考查直线与圆的位置关系,属于中档题.3.在极坐标中,为极点,曲线:上两点对应的极角分别为,则的面积为 A .B .C .D .【答案】A 【解析】 【分析】将、两点的极角代入曲线的极坐标方程,求出、,将、的极角作差取绝对值得出,最后利用三角形的面积公式可求出的面积。
高考数学压轴专题(易错题)备战高考《坐标系与参数方程》真题汇编含答案解析
《坐标系与参数方程》考试知识点一、131.如图,扇形的半径为1,圆心角150BAC ∠=︒,点P 在弧BC 上运动,AP mAB nAC =+u u u v u u u v u u u v,则3m n -的最大值是()A .1B .3C .2D .23【答案】C 【解析】 【分析】以A 为原点可建立坐标系,设()cos ,sin P θθ,0150θ≤≤o o;根据AP mAB nAC=+u u u v u u u v u u u v 可求得cos 3sin 2sin m n θθθ⎧=+⎪⎨=⎪⎩,从而得到()32sin 60m n θ-=+o,利用三角函数值域求解方法可求得结果. 【详解】以AB 为x 轴,以A 为原点,建立坐标系,如下图所示:设()cos ,sin P θθ,0150θ≤≤o o ,则()0,0A ,()10B ,,31,22C ⎛⎫- ⎪ ⎪⎝⎭()cos ,sin AP θθ∴=u u u v ,()1,0AB =u u u v ,3122AC ⎛⎫=- ⎪ ⎪⎝⎭u u u vAP mAB nAC =+u u u v u u u v u u u v Q 3cos 21sin 2m n nθθ⎧=-⎪⎪∴⎨⎪=⎪⎩,解得:cos 32sin m n θθθ⎧=⎪⎨=⎪⎩ ()33sin 2sin 60m n θθθ∴-=+=+o0150θ≤≤o o Q 6060210θ∴≤+≤o o o ()1sin 6012θ∴-≤+≤o12n ∴-≤-≤n -的最大值为2本题正确选项:C 【点睛】本题考查利用圆的参数方程求解最值的问题,关键是能够建立坐标系,利用圆的参数方程将问题转化为三角函数最值的求解问题.2.曲线C 的参数方程为2x cos y sin θθ=⎧⎨=⎩(θ为参数),直线l的参数方程为12x y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),若直线l 与曲线C 交于A ,B 两点,则AB 等于( ) A.7BCD【答案】C 【解析】分析:首先将取消C 的方程化为直角坐标方程,然后结合直线参数方程的几何意义整理计算即可求得最终结果.详解:曲线C 的参数方程2x cos y sin θθ=⎧⎨=⎩(θ为参数)化为直角坐标方程即:2214y x +=,与直线l的参数方程12x y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)联立可得:21613t =,则121313t t ==-,结合弦长公式可知:12AB t t =-=. 本题选择C 选项.点睛:本题主要考查参数方程的应用,弦长公式等知识,意在考查学生的转化能力和计算求解能力.3.若直线l :y kx =与曲线C :2cos sin x y θθ=+⎧⎨=⎩(θ为参数)有唯一的公共点,则实数k等于()A.3B.3-CD.3±【答案】D 【解析】 【分析】根据题意,将曲线C 的参数方程消去θ,得到曲线C 的普通方程22(2)1x y -+=,可知曲线C 为圆,又知圆C 与直线相切,利用圆心到直线的距离等于半径,求得k 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新数学高考《坐标系与参数方程》复习资料一、131.已知曲线Γ的参数方程为(3cos ln x t t t y t ⎧=-⎪⎨=⎪⎩其中参数t R ∈,,则曲线Γ( ) A .关于x 轴对称 B .关于y 轴对称C .关于原点对称D .没有对称轴【答案】C 【解析】 【分析】设()x f t =,()y g t = t R ∈,首先判断这两个函数都是奇函数,然后再判断函数关于原点对称. 【详解】设()x f t =,()y g t = t R ∈()()()()()333cos cos cos f t t t t t t t t t t x -=----=-+=--=-,()x f t ∴=是奇函数, ()()((ln ln g t g t t t -+=-+++((ln ln ln10t t =-+== ,()y g t ∴=也是奇函数,设点()()(),P f t g t 在函数图象上,那么关于原点的对称点是()()(),Q f t g t --,()f t Q 和()g t 都是奇函数,所以点Q 的坐标是()()(),Q f t g t --,可知点Q 在曲线上,∴ 函数图象关于原点对称.故选:C 【点睛】本题考查函数图象和性质的综合应用,意在考查转化与计算能力,属于中档题型.2.已知直线2sin 301sin 30x t y t ︒︒⎧=-⎨=-+⎩(t 为参数)与圆228x y +=相交于B 、C 两点,则||BC 的值为( )A .BC .D【答案】B【解析】 【分析】根据参数方程与普通方程的互化方法,然后联立方程组,通过弦长公式,即可得出结论. 【详解】曲线2sin 301sin 30x t y t ︒︒⎧=-⎨=-+⎩(t 为参数),化为普通方程1y x =-, 将1y x =-代入228x y +=,可得22270x x --=, ∴()271114302BC =+-⋅+⨯=,故选B . 【点睛】本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,考查直线与圆的位置关系,属于中档题.3.已知点是曲线:(为参数,)上一点,点,则的取值范围是 A . B .C .D .【答案】D 【解析】 【分析】将曲线的参数方程化为普通方程,可知曲线是圆的上半圆,再利用数形结合思想求出的最大值和最小值。
【详解】 曲线表示半圆:,所以.取,结合图象可得.故选:D 。
【点睛】本题考查参数方程与普通方程之间的转化,同时也考查了点与圆的位置关系,在处理点与圆的位置关系的问题时,充分利用数形结合的思想,能简化计算,考查计算能力与分析问题的能力,属于中等题。
4.在符合互化条件的直角坐标系和极坐标系中,直线l :20y kx ++=与曲线C :2cos ρθ=相交,则k 的取值范围是( )A .34k <-B .34k ≥-C .k R ∈D .k R ∈但0k ≠【答案】A 【解析】分析:一般先将原极坐标方程2cos ρθ=两边同乘以ρ后,把极坐标系中的方程化成直角坐标方程,再利用直角坐标方程进行求解即可.详解:将原极坐标方程2cos ρθ=,化为:22cos ρρθ=,化成直角坐标方程为:2220x y x +-=, 即22(1)1x y -+=.则圆心到直线的距离d =由题意得:1d <,即1d =<,解之得:34k <-. 故选A .点睛:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用cos x ρθ=,sin y ρθ=,222x y ρ=+,进行代换即得.5.在极坐标系中,已知圆C 经过点6P π⎛⎫⎪⎝⎭,,圆心为直线sin 4πρθ⎛⎫+= ⎪⎝⎭轴的交点,则圆C 的极坐标方程为 A .4cos ρθ= B .4sin ρθ=C .2cos ρθ=D .2sin ρθ=【答案】A 【解析】 【分析】求出圆C 的圆心坐标为(2,0),由圆C 经过点6P π⎛⎫⎪⎝⎭,得到圆C 过极点,由此能求出圆C 的极坐标方程. 【详解】在sin 4πρθ⎛⎫+= ⎪⎝⎭中,令0θ=,得2ρ=, 所以圆C 的圆心坐标为(2,0).因为圆C 经过点6P π⎛⎫⎪⎝⎭,,所以圆C 的半径2r ==,于是圆C 过极点,所以圆C 的极坐标方程为4cos ρθ=. 故选A 【点睛】本题考查圆的极坐标方程的求法,考查直角坐标方程、参数方程、极坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,属于中档题.6.在直角坐标系xOy 中,曲线C 的方程为22162x y +=,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos()6πρθ+=M 的极坐标方程为(0)θαρ=≥.设射线m 与曲线C 、直线l 分别交于A 、B 两点,则2211OAOB+的最大值为( ) A .34B .25C .23D .13【答案】C 【解析】分析:先由曲线C 的直角坐标方程得到其极坐标方程为()221+2sin 6ρθ=,设A 、B 两点坐标为()1,ρθ,()2,ρθ,将射线M 的极坐标方程为θα=分别代入曲线C 和直线l 的极坐标方程,得到关于α的三角函数,利用三角函数性质可得结果.详解:∵曲线C 的方程为22162x y +=,即2236x y +=,∴曲线C 的极坐标方程为()221+2sin 6ρθ=设A 、B 两点坐标为()1,ρθ,()2,ρθ,联立()221+2sin 6ρθθα⎧=⎪⎨=⎪⎩,得221112sin 6θρ+=,同理得222cos 163πθρ⎛⎫+ ⎪⎝⎭=, 根据极坐标的几何意义可得22222212cos 111112sin 663OA OBπθθρρ⎛⎫+ ⎪+⎝⎭+=+=+1+1cos 21cos 23sin 23666ππθθθ⎛⎫⎛⎫-+++-+ ⎪ ⎪⎝⎭⎝⎭=,即可得其最大值为23,故选C. 点睛:本题考查两线段的倒数的平方和的求法,考查直角坐标方程、极坐标方程的互化等基础知识,考查运算求解能力,充分理解极坐标中ρ的几何意义以及联立两曲线的极坐标方程得到交点的极坐标是解题的关键,是中档题.7.如图,边长为4的正方形ABCD 中,半径为1的动圆Q 的圆心Q 在边CD 和DA 上移动(包含端点A 、C 、D ),P 是圆Q 上及其内部的动点,设BP mBC nBA =+u u u v u u u v u u u v(,m n ∈R ),则m n +的取值范围是( )A .[21,221]-+B .[422,422]-+C .22[1,2]-+D .22[1,2]-+ 【答案】D【解析】 【分析】建立如图所示平面直角坐标系,可得,BA BC u u u r u u u r 的坐标,进而可得BP u u u r的坐标.分类讨论,当动圆Q 的圆心在CD 上运动或在AD 上运动时,利用圆的参数方程相关知识,设出点P 坐标,再利用三角函数求m n +的最值. 【详解】解:建立如图所示平面直角坐标系,可得,(0,4),(4,0)BA BC ==u u u r u u u r ,可得(4,0)(0,4)(4,4)BP m n m n =+=u u u r,当点Q 在CD 上运动时,设(4,),[0,4]Q t t ∈,则点P 在圆Q :22(4)()1x y t -+-=上及内部,故可设(4cos ,sin ),(,01)P r t r R r θθθ++∈≤≤,则(4cos ,sin )BP r t r θθ=++u u u r,44cos 4sin m r n t r θθ=+⎧∴⎨=+⎩,444(sin cos )4sin 4m n t r t πθθθ⎛⎫∴+=+++=+++ ⎪⎝⎭,04,01,t r R θ≤≤≤≤∈Q ,当50,1,4t r πθ===时,m n +1-;当4,1,4t r πθ===时,m n +2+m n ∴+的取值范围是1244⎡-+⎢⎣⎦; 当点Q 在AD 上运动时,设(,4),[0,4]Q s s ∈,则点P 在圆Q :22()(4)1x s y -+-=上及其内部,故可设(cos ,4sin ),(,01)P s r r R r θθθ++∈≤≤,则(cos ,4sin )BP s r r θθ=++u u u r,4cos 44sin m s r n r θθ=+⎧∴⎨=+⎩,444(sin cos )4sin 4m n s r s πθθθ⎛⎫∴+=+++=+++ ⎪⎝⎭,04,01,s r R θ≤≤≤≤∈Q ,当50,1,4s r πθ===时,m n +取最小值为44-,即14-;当4,1,4s r πθ===时,m n +,即2+m n ∴+的取值范围是1244⎡-+⎢⎣⎦; 故选:D . 【点睛】本题考查了向量的坐标运算、点与圆的位置关系,考查了分类讨论思想方法,考查了推理能力与计算能力,属于中档题.8.在同一平面直角坐标系中,经过伸缩变换53x xy y''=⎧⎨=⎩后,曲线C 变为曲线2241x y ''+=,则曲线C 的方程为( )A .2225361x y +=B .2291001x y +=C .10241x y +=D .22281259x y += 【答案】A 【解析】 【分析】将伸缩变换53x x y y''=⎧⎨=⎩代入曲线2241x y ''+=中即可解.【详解】解:把53x x y y''=⎧⎨=⎩代入曲线2241x y ''+=,可得:()()225431x y +=,即2225361x y +=,即为曲线C 的方程. 故选:A . 【点睛】考查平面直角坐标系的伸缩变换,题目较为简单. 伸缩变换:设点(,)P x y 是平面直角坐标系中的任意一点,在变换,(0):,(0)x x y y λλϕμμ'=⋅>⎧⎨'=⋅>⎩的作用下,点(,)P x y 对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.9.221x y +=经过伸缩变换23x xy y ''=⎧⎨=⎩后所得图形的焦距( )A.B.C .4 D .6【答案】A 【解析】 【分析】用x ′,y '表示出x ,y ,代入原方程得出变换后的方程,从而得出焦距. 【详解】由23x x y y ''=⎧⎨=⎩得2 3x x y y '⎧=⎪⎪⎨'⎪=⎪⎩,代入221x y +=得22 149x y ''+=,∴椭圆的焦距为=A .【点睛】本题主要考查了伸缩变换,椭圆的基本性质,属于基础题.10.已知22451x y +=,则2x +的最大值是( ) AB .1C .3D .9【答案】A 【解析】 【分析】设1cos 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,则2cos sin 4x πααα⎛⎫=+=+ ⎪⎝⎭,利用三角函数有界性得到最值. 【详解】22451x y +=,则设1cos 25x y αα⎧=⎪⎪⎨⎪=⎪⎩,则2cos sin 4x πααα⎛⎫=+=+ ⎪⎝⎭ 当4πα=,即410x y ⎧=⎪⎪⎨⎪=⎪⎩故选:A 【点睛】本题考查了求最大值,利用参数方程1cos 2x y αα⎧=⎪⎪⎨⎪=⎪⎩是解题的关键.11.椭圆221164x y +=上的点到直线20x y +-=的最大距离是( )A .3 BC.D【答案】D 【解析】 【分析】设椭圆221164x y +=上的点P (4cosθ,2sinθ),由点到直线20x y +=的距离公式,计算可得答案.【详解】设椭圆221 164x y+=上的点P(4cosθ,2sinθ)则点P到直线220x y+-=的距离d=422442455sincos sinπθθθ⎛⎫+-⎪+-⎝⎭=,422105maxd--==,故选D.【点睛】本题考查直线和椭圆的位置关系,解题时要认真审题,仔细求解.12.在正方形ABCD中,动点P在以点C为圆心且与BD相切的圆上,若AP x AB y AD=+u u u v u u u v u u u v,则x y+的最大值为()A.1B.2C.3D.4【答案】C【解析】【分析】设正方形ABCD的边长为2,以点A为坐标原点,AB、AD所在直线分别为x、y轴建立平面直角坐标系xAy,可得出圆C的方程为()()22222x y-+-=,可设点P的坐标为()22cos,22sinθθ++,根据向量的坐标运算可将x y+用θ的三角函数表示,利用辅助角公式和正弦函数的有界性可求出x y+的最大值.【详解】设正方形ABCD的边长为2,以点A为坐标原点,AB、AD所在直线分别为x、y轴建立如下图所示的平面直角坐标系xAy,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,直线BD 的方程为221x y+=,即20x y +-=,点C 到直线BD的距离为d ==,则以点C 为圆心且与直线BD 相切的圆C 的方程为()()22222x y -+-=,设点P的坐标为()2,2θθ+,由AP x AB y AD =+u u u r u u u r u u u r,得()()()()2,22,00,22,2x y x y θθ+=+=,11x y θθ⎧=+⎪⎪∴⎨⎪=+⎪⎩,所以,cos 2sin 2224x y πθθθ⎛⎫+=++=++ ⎪⎝⎭, 因此,x y +的最大值为3. 故选:C. 【点睛】本题考查利用平面向量的基本定理求参数和的最小值,利用圆的有界性结合圆的参数方程来求解是解题的关键,考查计算能力,属于中等题.13.已知曲线C:2{x y a ==(t 为参数),(1,0)A -,(1,0)B ,若曲线C 上存在点P满足0AP BP ⋅=u u u r u u u r,则实数a 的取值范围为( ) A.,22⎡-⎢⎣⎦B .[]1,1-C.⎡⎣D .[]2,2-【答案】C 【解析】曲线C 化为普通方程为:y x a =+,由0AP BP u u u r u u u r⋅=,可得点P 在以AB 为直径的圆221x y +=上,又P 在曲线C 上,即直线与圆存在公共点,故圆心()0,0到y x a =+的距离小于等于半径1,根据点到直线的距离公式有1≤,解得a ≤≤故选C.14.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 4a πρθ⎛⎫+= ⎪⎝⎭,曲线2C 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数,0θπ剟).若1C 与2C 有且只有一个公共点,则实数a 的取值范围是( )A .2±B .(2,2)-C .[1,1)-D .[1,1)-或2【答案】D 【解析】 【分析】先把曲线1C ,2C 的极坐标方程和参数方程转化为直角坐标方程和一般方程,若1C 与2C 有且只有一个公共点可转化为直线和半圆有一个公共点,数形结合讨论a 的范围即得解. 【详解】因为曲线1C 的极坐标方程为2sin ,42a πρθ⎛⎫+= ⎪⎝⎭即222(sin cos )222a ρθθ+= 故曲线1C 的直角坐标方程为:0x y a +-=.消去参数θ可得曲线2C 的一般方程为:221x y +=,由于0θπ剟,故0y ≥如图所示,若1C 与2C 有且只有一个公共点,直线与半圆相切,或者截距11a -≤< 当直线与半圆相切时122O l d a -==∴=由于为上半圆,故02a a >∴= 综上:实数a 的取值范围是[1,1)-2 故选:D 【点睛】本题考查了极坐标、参数方程与直角坐标方程、一般方程的互化,以及直线和圆的位置关系,考查了学生数形结合,数学运算的能力,属于中档题.15.已知(,)P x y 是椭圆3sin x y αα⎧=⎪⎨=⎪⎩上任意一点,则点P 到340x --=的距离的最大值为( ) A 46+B .23C 46- D .23【答案】A【解析】 【分析】设点,sin )P αα,求得点P到直线的距离为d =数的性质,即可求解. 【详解】由题意,点(),P x y是椭圆x y sin αα⎧=⎪⎨=⎪⎩上任意一点,设点,sin )P αα,则点P到直线40x --=的距离为d ==当cos()14πα+=-时,距离d取得最大值,最大值为42+,故选A. 【点睛】本题主要考查了椭圆的参数方程的应用,以及点到直线的距离公式和三角函数的性质的应用,其中解答中合理利用椭圆的参数方程,设点,sin )P αα,再利用点到直线的距离公式和三角函数的性质求解是解答的关键,着重考查了运算与求解能力,属于基础题.16.在平面直角坐标系中,O 为原点,()1,0A -,(0B ,()30C ,,动点D 满足1CD =u u u r, 则OA OB OD ++u u u r u u u r u u u r的取值范围是( )A .[]46,B.⎤⎦ C.⎡⎣D.⎤⎦【答案】D 【解析】试题分析:因为C 坐标为()3,0且1CD =,所以动点D 的轨迹为以C 为圆心的单位圆,则D 满足参数方程3cos {sin D D x y θθ=+=(θ为参数且[)0,2θπ∈),所以设D 的坐标为为()[)()3cos ,sin 0,2θθθπ+∈,则OA OB OD ++=u u u r u u u r u u u r =因为2cos θθ+的取值范围为⎡⎡=⎢⎣⎣1==1==,所以OA OB OD ++u u u r u u u r u u u r的取值范围为1⎤=⎦,故选D.考点:参数方程 圆 三角函数17.在极坐标系中,曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为ρθ=,若曲线1C 与2C 的关系为( )A .外离B .相交C .相切D .内含【答案】B 【解析】 【分析】将两曲线方程化为普通方程,可得知两曲线均为圆,计算出两圆圆心距d ,并将圆心距d 与两圆半径差的绝对值和两半径之和进行大小比较,可得出两曲线的位置关系. 【详解】在曲线1C 的极坐标方程两边同时乘以ρ,得24sin ρρθ=,化为普通方程得224x y y +=,即()2224x y +-=,则曲线1C 是以点()10,2C 为圆心,以12r =为半径的圆,同理可知,曲线2C 的普通方程为(2212x y -+=,则曲线2C 是以点()2C 为圆心,以2r =两圆圆心距为4d ==,1222r r -=-=,122r r +=+,1212r r d r r ∴-<<+,因此,曲线1C 与2C 相交,故选:B.【点睛】本题考查两圆位置关系的判断,考查曲线极坐标方程与普通方程的互化,对于这类问题,通常将圆的方程化为标准方程,利用两圆圆心距与半径和差的大小关系来得出两圆的位置关系,考查分析问题和解决问题的能力,属于中等题.18.在极坐标系中,曲线1C 的极坐标方程为2sin ρθ=,曲线2C 的极坐标方程为2cos ρθ=。