(完整word版)温度监控系统设计实验报告
(完整word版)室内温度控制系统

室内温度自动控制系统摘要在现代人类的生活环境中, 温度扮演着极其重要的角色。
在人们的生产生活中, 无论生活在哪里, 从事什么工作,都要时时刻刻与温度打着交道。
尤其是在18世纪工业革命以来,工业发展与农业生产都与能否掌握温度, 有着密不可分的联系。
因此,温度的监测与控制与人类的生产生活有着十分重要的意义。
我们通过STC12C5A60S2单片机和DALLAS公司DS18B20温度传感器对室内温度进行实时监测与控制实现温度的相对稳定具有极其重要的现实意义。
通过该系统的设计制作实践对电子系统设计运动控制理论应用,研究新技术学习知识增强动手能力具有重要的现实意义。
关键字:温度控制DS18B20 单片机控制系统设计目录论文共45 页1引言 (4)1.1项目概述 (4)1.2设计目的 (4)1.3设计任务 (4)1.4研究思路和方法 (4)2项目总体方案设计 (5)2.1系统原理框图与工作原理 (5)2.1.1国内外室温控制技术研究 (5)2.1.2系统原理框图设计 (5)3.系统硬件设计 (5)3.1电源模块 (5)3.2控制系统模块 (6)3.3温度检测 (6)3.3.1常用温度检测传感器 (6)3.3.2 DS18B20温度传感器电路 (9)3.4驱动模块 (9)3.4.1半桥驱动原理 (9)3.5升温模块 (10)3.6人机交互模块 (10)3.6.1 1602液晶显示 (10)3.6.2 红外遥控操作原理 (11)3.6.3红外接收电路 (11)4.系统软件设计 (13)4.1程序流程图 (13)4.2温度采集 (14)4.2.1DS18B20软件定义 (14)4.2.2温度的计算 (14)4.3红外遥控 (14)4.4电机的PWM控制 (20)4.5发热电阻丝的控制 (21)5.调试运行 (22)5.1温度传感器校准 (22)5.2温度调节时间 (23)5.3温度波动范围 (23)5.4系统参数 (23)6.系统优化 (25)6.1优化控制方式 (25)6.2美化外形结构 (25)6.3.扩展系统应用 (25)结论 (27)致谢 (28)参考文献 (29)附件一:原理图 (30)附件二:源程序 (30)1引言1.1项目概述我们的项目开发针对的对象是收入水平不高,买不起空调,有希望能不受热受冷舒适的生活。
(完整word版)基于单片机数字温度计开题报告

此次的多功能数字温度计不同于以往的传统数字温度计,它明显改善了数字温度计的性能,包括温度采集的速度和测量精度大幅度提高,测量温度的范围也得到了明显的提高。如果继续提高测量精度,可以直接作为工业测温仪器使用,由美国DALLAS半导体公司新研制的DS18B20型高分辨力智能温度传感器,能输出12位二进制数据,其分辨力高达0.0625℃,测温精度为±0.1℃。随着单片机、温度传感器和数码管显示驱动等技术的不断发展,要实现更加高的精度、显示速率快的数字温度计将很快能够实现。
4.课题的意义
本课题研究的重要意义在于生产过程中随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数,就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是数字温度传感器技术,在我国各领域已经应用的非常广泛可以说是渗透到社会的每一个领域,与人民的生活和环境的温度息息相关
2.课题背景
单片机自问世以来,性能不断提高和完善,其资源又能满足很多应用场合的需要,加之单片机具有集成度高、功能强、速度快、体积小、功耗低、使用方便、价格低廉等特点,因此,在工业控制、智能仪器仪表、数据采集和处理、通信系统、高级计算器、家用电器等领域的应用日益广泛,并且正在逐步取代现有的多片微机应用系统。单片机的潜力越来越被人们所重视。特别是当前用CMOS工艺制成的各种单片机,由于功耗低,使用的温度范围大,抗干扰能力强,能满足一些特殊要求的应用场合,更加扩大了单片机的应用范围,也进一步促使单片机性能的发展。而现在的单片机在农业上页有了很多的应用。随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。
(完整word版)PT100数字温度计

单片机课程设计PT100数字温度计学院:物理电气信息学院班级:电气工程与自动化(1班)学号:12012241992姓名:于高乐PT100数字温度计一. 设计目的与任务采用PT100温度传感器,设计一款可以实时显示温度的数字温度计二. 设计中所需软件及设备PC 机电脑、Keil C 软件、Protues 软件。
本次设计所需软件为Keil C51以及Proteus ISIS 仿真软件,应用Proteus ISIS 对实验电路进行仿真,得到实验结果。
三.设计原理说明1.实验方案设计图由于是16路的24V 电源输入,所以不能直接将24V 电源输入到单片机,故需要有隔离或转换电路,将16路24V 电源转换为转换为16路的信号输入到单片机I/O 口,由单片机采集16路电平信号.方案设计结构图如下图2.硬件设计与结构图(1)单片机模块及最小系统(2)液晶显示模块(3)温度模拟模块四。
总体电路原理图及其仿真图五.设计程序主函数首先实现单片机的初始化。
然后将I/O口数据传送至虚拟终端。
最后执行虚拟终端显示打印函数,在加一段演示程序,便于观察。
源程序#include <reg52。
H>#include 〈intrins.H〉#include 〈math。
H〉#define uchar unsigned char#define uint unsigned intsbit RS = P2^6; //数据/命令选择端(H/L) sbit LCDEN = P2^7;//使能端void delayUs() //短延时{_nop_();}void delayMs(uint a)//长延时{uint i, j;for(i = a;i 〉0;i-—)for(j = 100;j > 0;j-—);}//第一行开始地址为0x80, 第二行开始地址为0xc0;(完整word版)PT100数字温度计//写命令:RS=0, RW=0;void writeComm(uchar comm){RS = 0;P1 = comm;LCDEN = 1;delayUs();LCDEN = 0;delayMs(1);}//写数据:RS=1,RW=00void writeData(uchar dat){RS = 1;P1 = dat;LCDEN = 1;delayUs();LCDEN = 0;delayMs(1);}//初始化函数//显示模式, 固定指令为00111000=0x38, 16*2显示,5*7点阵,8位数据接口//显示开/关及光标设置00001100=0x0c//指令1:00001DCB :D:开显示/关显示(H/L);C:显示光标/不显示(H/L),B:光标闪烁/不闪烁(H/L)//指令2:000001NS ://N=1, 当读/写一个字符后地址指针加1,且光标也加1; N=0则相反//S=1,当写一个字符,整屏显示左移(N=1)或右移(N=0), 但光标不移动;S=0,整屏不移动void init(){writeComm(0x38);//显示模式writeComm(0x0c); //开显示,关光标writeComm(0x06); //写字符后地址加1, 光标加1writeComm(0x01);//清屏}void writeString(uchar * str,uchar length){uchar i;for(i = 0; i 〈length; i++){writeData(str[i]);}}/*****************************PT100*******************************/sbit ds = P3^4;void dsInit(){//对于11.0592MHz时钟, unsigned int型的i, 作一个i++操作的时间大于为8us unsigned int i;ds = 0;i = 100; //拉低约800us,符合协议要求的480us以上while(i〉0)i-—;ds = 1; //产生一个上升沿,进入等待应答状态i = 4;while(i>0)i——;}void dsWait(){unsigned int i;while(ds);while(~ds);//检测到应答脉冲i = 4;while(i 〉0) i-—;}bit readBit(){unsigned int i;bit b;ds = 0;i++; //延时约8us, 符合协议要求至少保持1usds = 1;i++; i++;//延时约16us,符合协议要求的至少延时15us以上b = ds;i = 8;while(i〉0) i——;//延时约64us,符合读时隙不低于60us要求return b;}//读取一字节数据, 通过调用readBit()来实现unsigned char readByte(){unsigned int i;unsigned char j, dat;dat = 0;for(i=0; i〈8; i++){j = readBit();//最先读出的是最低位数据dat = (j 〈〈7)| (dat >〉1);}return dat;}void writeByte(unsigned char dat){unsigned int i;unsigned char j;bit b;for(j = 0; j < 8; j++){b = dat & 0x01;dat 〉>= 1;//写”1”, 将DQ拉低15us后, 在15us~60us内将DQ拉高,即完成写1if(b){ds = 0;i++;i++;//拉低约16us,符号要求15~60us内ds = 1;i = 8;while(i〉0) i-—;//延时约64us,符合写时隙不低于60us要求}else //写”0”, 将DQ拉低60us~120us{ds = 0;i = 8;while(i>0) i——; //拉低约64us,符号要求ds = 1;i++; i++; //整个写0时隙过程已经超过60us, 这里就不用像写1那样,再延时64us了}}}void sendChangeCmd(){dsInit(); //初始化DS18B20, 无论什么命令,首先都要发起初始化dsWait();//等待DS18B20应答delayMs(1); //延时1ms,因为DS18B20会拉低DQ 60~240us作为应答信号writeByte(0xcc); //写入跳过序列号命令字Skip RomwriteByte(0x44);//写入温度转换命令字Convert T}void sendReadCmd(){dsInit();dsWait();delayMs(1);writeByte(0xcc); //写入跳过序列号命令字Skip RomwriteByte(0xbe);//写入读取数据令字Read Scratchpad}//获取当前温度值int getTmpValue(){unsigned int tmpvalue;int value; //存放温度数值float t;unsigned char low,high;sendReadCmd();//连续读取两个字节数据low = readByte();high = readByte();//将高低两个字节合成一个整形变量//计算机中对于负数是利用补码来表示的//若是负值, 读取出来的数值是用补码表示的,可直接赋值给int型的valuetmpvalue = high;tmpvalue 〈<= 8;tmpvalue |= low;value = tmpvalue;t = value *0.0625;//将它放大10倍, 使显示时可显示小数点后一位,并对小数点后第二位进行4舍5入//如t=11。
(完整word版)基于89C52单片机和液晶显示的温度测量系统

JIANGSU TEACHERS UNIVERSITY OF TECHNOLOGY测控系统综合训练基于单片机和液晶显示的温度测量系统学院名称:电气信息工程学院专业:测控技术与仪器班级:08测控2班姓名:董亮学号:08314237指导教师:王久龙2011年12月基于单片机及液晶显示的温度测量系统摘要:本文将介绍一种基于单片机控制的数字温度测量系统,本温度计属于多功能温度计,可以软件预设置上下报警温度,当温度不在设置范围内时,可以报警。
本文设计的数字温度计具有读数方便,测温范围广,测温精确,液晶显示,适用范围宽等特点。
它的主要组成部分有:AT89C52单片机、温度传感器、温度显示电路、温度报警电路等。
关键词:温度测量;温度传感器;液晶显示;仿真目录前言 (1)第一章设计目的及设计要求 (2)1.1 设计目的 (2)1.2 设计要求 (2)第二章设计方案论证 (3)2.1 总体设计原理 (3)2.2 单片机AT89C51介绍 (3)2.3 温度传感器的选择 (5)2.4 显示元件的选择 (7)第三章硬件电路设计 (8)3.1 时钟振荡电路 (8)3.2 测温电路 (8)3.3 复位电路 (8)3.4 报警电路 (9)3.5 显示电路 (9)第四章软件设计 (10)4.1 主程序设计 (10)4.2 液晶显示程序设计 (10)4.3 温度采集程序设计 (11)第五章安装调试与分析 (12)结束语 (13)参考文献 (14)附录 (15)附录一系统仿真图 (15)附录二实物组装图 (16)附录三元器件清单 (17)附录四程序清单 (18)前言在这个信息化高速发展的时代,单片机作为一种最经典的微控制器,单片机技术已经普及到我们生活、工作、科研等各个领域,已经成为一种比较成熟的技术。
随着科技的不断进步,在工业生产中温度是常用的参数,而采用单片机来对这些参数进行测量与控制已成为当今的主流,现代社会对各种信息参数的准确度和精确度的要求也在不断增长,而如何准确而又迅速的获得这些参数就取决于现代信息基础的发展水平。
课程设计报告空调温度控制系统设计Word

课程设计课程设计名称:空调温度控制系统设计专业班级:学生姓名:学号:指导教师:课程设计地点:课程设计时间: 2008.12.29-01.04计算机控制技术课程设计任务书摘要近几年,随着人民生活水平的逐步提高,居住条件也越来越宽敞;另一方面,环境保护运动的蓬勃发展,也要求进一步提高制冷和空调系统的利用率。
此外,人们对舒适的生活品质与环境愈来愈重视,要求也愈来愈高,不仅对室内温、湿度提出了较高的要求,也希望室内环境趋于自然环境。
综观空调器的发展过程,有三个主要的发展阶段:(1)从异步电机的定频控制发展到变频控制。
(2)从异步电机变频控制发展到无刷直流电机的变频控制。
(3)控制方法从简单的开关控制向智能控制转变。
随着对变频空调器研究的日渐深入,控制目标逐渐从单一的室温控制向温湿度控制、舒适度控制转移;控制方法从简单的开关控制向PID控制、神经网络控制、专家系统控制等智能控制方向发展。
由于神经网络控制和专家系统控制实现难度较大而且效果不一定很理想,因此本设计采用PID控制算法。
本设计从硬件和软件两方面完成了空调的温度控制系统,主要是以PIC系列单片机为核心的控制系统设计,采用PID控制算法,即通过A/D转换器将温度传感器采集来的温度数据送入单片机,单片机将采集的数据与设定温度相比较决定压缩机的工作状态,单片机通过对制冷压缩机的控制,调节压缩机的转速,实现了空调的制冷。
空调的硬件电路只是起到支持作用,因为作为自动化控制的大部分功能,只能采取软件程序来实现,而且软件程序的优点是显而易见的。
它既经济又灵活方便,而且易于模块化和标准化。
同时,软件程序所占用的空间和时间相对来说比硬件电路的开销要小得多。
同时,与硬件不同,软件有不致磨损、复制容易、易于更新或改造等特点,但由于它所要处理的问题往往远较硬件复杂,因而软件的设计、开发、调试及维护往往要花费巨大的经历及时间。
对比软件和硬件的优缺点,本设计采用软硬件结合的办法设计。
(完整word版)传感器课程设计(基于labview的pt100温度测量系统)

目录第一章方案设计与论证 (2)第一节传感器的选择 (2)第二节方案论证 (3)第三节系统的工作原理 (3)第四节系统框图 (4)第二章硬件设计 (4)第一节 PT100传感器特性和测温原理 (5)第二节信号调理电路 (6)第三节恒流源电路的设计 (6)第四节 TL431简介 (8)第三章软件设计 (9)第一节软件的流程图 (9)第二节部分设计模块 (10)总结 (11)参考文献 (11)第一章方案设计与论证第一节传感器的选择温度传感器从使用的角度大致可分为接触式和非接触式两大类,前者是让温度传感器直接与待测物体接触,而后者是使温度传感器与待测物体离开一定的距离,检测从待测物体放射出的红外线,达到测温的目的.在接触式和非接触式两大类温度传感器中,相比运用多的是接触式传感器,非接触式传感器一般在比较特殊的场合才使用,目前得到广泛使用的接触式温度传感器主要有热电式传感器,其中将温度变化转换为电阻变化的称为热电阻传感器,将温度变化转换为热电势变化的称为热电偶传感器。
热电阻传感器可分为金属热电阻式和半导体热电阻式两大类,前者简称热电阻,后者简称热敏电阻。
常用的热电阻材料有铂、铜、镍、铁等,它具有高温度系数、高电阻率、化学、物理性能稳定、良好的线性输出特性等,常用的热电阻如PT100、PT1000等.近年来各半导体厂商陆续开发了数字式的温度传感器,如DALLAS公司DS18B20,MAXIM公司的MAX6576、MAX6577,ADI公司的AD7416等,这些芯片的显著优点是与单片机的接口简单,如DS18B20该温度传感器为单总线技术,MAXIM公司的2种温度传感器一个为频率输出,一个为周期输出,其本质均为数字输出,而ADI公司的AD7416的数字接口则为近年也比较流行的I2C总线,这些本身都带数字接口的温度传感器芯片给用户带来了极大的方便,但这类器件的最大缺点是测温的范围太窄,一般只有-55~+125℃,而且温度的测量精度都不高,好的才±0.5℃,一般有±2℃左右,因此在高精度的场合不太满足用户的需要.热电偶是目前接触式测温中应用也十分广泛的热电式传感器,它具有结构简单、制造方便、测温范围宽、热惯性小、准确度高、输出信号便于远传等优点。
(完整word版)DSP温度测量

课程设计任务书摘要DSP芯片是一种高性能的微处理器,其技术发展大大推动了温度测量的精确度,PTloo铂电阻的阻值随温度变化而变化,利用它的这个特性来测量温度是近年来温度测量技术的研究热点。
实际应用中,由于刀D不能直接对电阻信号进行采样,所以一般将电阻信号转换成电压信号再进行处理.基于DSP查表方式的PT100铂电阻测温方案设计提出一种用恒流源给PT100供电的方法,将PT100在不同温度下的电阻信号转换成电压信号,经过信号处理电路将输出电压信号控制在0~3.3V,DSP2407内部AD对其进行采样,对采样值进行软件低通滤波,提高测温精度。
通过查采样值与温度的关系表格得温度值。
关键词:DSP芯片;温度;PT100目录绪论....................................................................................... 错误!未定义书签。
1 基本原理 ............................................................................ 错误!未定义书签。
1。
1 PT100原理 (2)1。
2 C55X的CPU简介 (3)1。
2.1 指令缓冲单元(I) (10)1。
.2 程序流单元(P) (5)1.2.3 地址程序单元(A) (6)1。
2.4 数据计算单元(D) (6)3 设计方案 ............................................................................ 错误!未定义书签。
3。
1 系统框图. (7)3.2 温度信号采集电路 (7)3.3 放大电路 (9)3。
4 电源电路 (9)3。
5 时钟电路 (9)3.6 复位电路 (10)结论......................................................................................... 错误!未定义书签。
(完整word版)温度模糊控制

热水器淋浴系统模糊控制系统的设计工设11502班陈学林学号:201502839 序号:31。
选择合适的模糊控制器类型选用两输入两输出模糊控制器2.确定输入输出变量定义输入量为为水流量(flow rate)和水温(temp);输出量为热水阀(hot water valve)和冷水阀(cold water valve)。
3。
确定模糊集个数及实际论域4。
隶属度函数(flow) (flow)(hot)(cold)5。
设计模糊控制规则1. If (temp is cold) and(flow is soft)then (cold is openSlow)(hot is openFast)(1)2。
temp is cold,flow is good,cold is closeSlow,hot is openSlow3temp is cold,flow is hard,cold is closeFast,hot is closeSlow4. temp is good,flow is soft,cold is openSlow,hot is openSlow5.temp is good,flow is good,cold is steady,hot is steady6。
temp is good,flow is hard,cold is closeSlow,hot is closeSlow7.temp is hot,flow is soft,cold is openFast,hot is openSlow8。
temp is hot,flow is good,cold is openSlow,hot is closeSlow 9。
temp is hot,flow is hard,cold is closeSlow,hot is closeFast6。
仿真实验(1)任意输入(0。
5 1),输出(—0.25 -.0。
温湿度监测实验报告

科信学院单片机系统设计项目(三级项目)设计说明书(2018/2019学年第一学期)题目: ____ _ 温湿度监测 _____专业班级:通信工程16级1班2组学生姓名:张XX 刘XX 武X张XX 王XX学号:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX指导教师:王付永、贾少锐、付佳设计周数:2周2019年1月10日1.设计目的(1)熟悉了解温湿度传感器的工作原理。
(2)熟悉温湿度传感器的通信原理。
(3)通过软硬件设计实现利用STM32单片机对周围环境温度信号的采集及显示。
2.设计要求(1)查阅相关资料,熟悉所选的STM32单片机及温湿度传感器。
(2)能监测环境温度和湿度,温度测量范围为0~50℃的输入温度,湿度测量范围20-90%RH。
并能用 LED 或LCD 进行实时显示。
(3)当温度超过或低于设定值时并能进行报警,并能对其进行模拟控制。
3.设计方案3.1系统总体方案根据设计要求,本系统须由温湿度传感器、报警器、STM32F103RB 单片机、温度范围按键调控模块和 LED 显示模块组成。
系统大致框图如下:图3.1温控系统原理框图3.2模块、器件选型(及其相关工作原理)STM32单片机:单片机是整个电路的核心模块,它控制整个系统的运行,利用其各个口分别控制其他模块,使其他模块能够成为一个整体,要实现这些基本功能,STM32较其他的单片机更有优势。
其高性能,低成本,低功耗,处理速度更快。
图3.2.1 STM32单片机温度传感器: DS18B20 其测量范围为 -55 ℃ ~+ 125 ℃ ; 在-10~+ 85°C范围内,精度为± 0.5°C 。
DS18B20内部结构:主要由4部分组成:64 位ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。
ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码,每个DS18B20的64位序列号均不相同。
(完整word版)DS18B20水温控制系统+电路图程序

水温控制系统摘要:该水温控制系统采用单片机进行温度实时采集与控制。
温度信号由“一线总线”数字化温度传感器DS18B20提供,DS18B20在-10~+85°C范围内,固有测温分辨率为0.5 ℃。
水温实时控制采用继电器控制电热丝和风扇进行升温、降温控制.系统具备较高的测量精度和控制精度,能完成升温和降温控制。
关键字:AT89C51 DS18B20 水温控制Abstract: This water temperature control system uses the Single Chip Microcomputer to carry on temperature real-time gathering and controling。
DS18B20,digitized temperature sensor, provides the temperature signal by "a main line”. In -10~+85℃the scope,DS18B20’s inherent measuring accuracy is 0.5 ℃. The water temperature real-time control system uses the electricity nichrome wire carring on temperature increiseament and operates the electric fan to realize the temperature decrease control。
The system has the higher measuring accuracy and the control precision,it also can complete the elevation of temperature and the temperature decrease control. Key Words:AT89C51 DS18B20 Water temperature control目录1.系统方案选择和论证 (2)1。
(完整word版)基于51单片机的温度控制系统设计

基于51单片机的水温自动控制系统0 引言在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。
而智能化的控制系统成为一种发展的趋势。
本文所阐述的就是一种基于89C51单片机的温度控制系统。
本温控系统可应用于温度范围30℃到96℃。
1 设计任务、要求和技术指标1.1任务设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。
1.2要求(1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。
(2)当液位低于某一值时,停止加热。
(3)用AD转换器把采集到的模拟温度值送入单片机。
(4)无竞争-冒险,无抖动。
1.3技术指标(1)温度显示误差不超过1℃。
(2)温度显示范围为0℃—99℃。
(3)程序部分用PID算法实现温度自动控制。
(4)检测信号为电压信号。
2 方案分析与论证2.1主控系统分析与论证根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。
AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。
其引脚图如图1所示。
2.2显示系统分析与论证显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。
在显示驱动电路中拟订了两种设计方案:方案一:采用静态显示的方案采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。
方案二:采用动态显示的方案由单片机的I/O口直接带数码管实现动态显示,占用资源少,动态控制节省了驱动芯片的成本,节省了电 ,但编程比较复杂,亮度不如静态的好。
由于对电路的功耗要求不大,因此就在尽量节省I/O口线的前提下选用方案一的静态显示。
图1 AT89C51引脚图2.3 检测系统分析与论证1 温度检测:有选用AD590和LM35D两种温度传感器的方案,但考虑到两者价格差距较大,而本系统中对温度要求的精度不很高,因而选用比较廉价LM35D。
(word完整版)大学物理实验-温度传感器实验报告

关于温度传感器特性的实验研究摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。
本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现NTC电阻随温度升高而减小;PTC电阻随温度升高而增大;但两者的线性性都不好.热电偶的温差电动势关于温度有很好的线性性质.PN节作为常用的测温元件,线性性质也较好。
本实验还利用PN节测出了波尔兹曼常量和禁带宽度,与标准值符合的较好。
关键词:定标转化拟合数学软件EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR1.引言温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。
温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。
作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系.2.热电阻的特性2.1实验原理2.1.1Pt100铂电阻的测温原理和其他金属一样,铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性.利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即Pt100)。
铂电阻温度传感器精度高,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。
按IEC751国际标准,铂电阻温度系数TCR定义如下:TCR=(R100—R0)/(R0×100) (1。
1)其中R100和R0分别是100℃和0℃时标准电阻值(R100=138.51Ω,R0=100。
00Ω),代入上式可得到Pt100的TCR为0。
003851。
Pt100铂电阻的阻值随温度变化的计算公式如下:Rt=R0[1+At+B+C(t-100)] (-200℃<t<0℃) (1。
(完整word版)大棚温湿度系统的设计

摘要随着大棚技术的普及,温室大棚数量不断增多,温室大棚的温度控制成为一个难题。
目前应用于温室大棚的温度检测系统大多采用由模拟温度传感器、多路模拟开关、A/D转换器及单片机等组成的传输系统。
这种温度采集系统需要在温室大棚内布置大量的测温电缆,才能把现场传感器的信号送到采集卡上,安装和拆卸繁杂,成本也高。
同时线路上传送的是模拟信号,易受干扰和损耗,测量误差也比较大,不利于控制者根据温度变化及时做出决定。
在这样的形式下.开发一种实时性高、精度高,能够综合处理多点温度信息的测控系统就很有必要。
本课题提出一种基于单片机并采用数字化单总线技术的温度测控系统应用于温室大棚的的设计方案,该方案是利用温度传感器将温室大棚内温度的变化,变换成电流的变化,再转换为电压变化输入模数转换器,其值由单片机处理,最后由单片机去控制数字显示器,显示温室大棚内的实际温度.一旦该温度值超过我们预先设定的上、下限,单片机便启动报警系统进行报警,进而对大棚内温度进行控制。
这种设计方案能对多点的温度进行实时巡检,各检测单元能独立完成各自功能,同时能够根据主控机的指令对温度进行定时采集,测量结果不仅能在本地显示,而且可以利用单片机串行口,通过RS.485总线及通信协议将采集的数据传送到计算机,进行进一步的存档、处理。
主控机负责控制指令的发送,控制各个从机进行温度采集,收集测量数据,并对测量结果(包括历史数据)进行整理、显示和存储。
该测控系统不需要任何固定网络的支持,安装简单方便,系统稳定可靠、可维护性好。
关键词;单片机;单总线技术;温度传感器;串行接口;温室大棚ABSTRACTWith the popularization of greenhouse technology,the amount of greenhouse islarger and larger.However,the temperature control of greenhouse is becoming adifficult problem.Currently,the temperature control system of greenhouse is mostlyusing a transfers system which consists of analog temperature sensors,multiplexinganalog switches,A/D conversion units and SCM.This kind of temperature collectionsystem needs a lot of cables which is laid to make the signal of the sensor be sent tothe collection card in the greenhouse.Thus the work of fixing and take-down ismiscellaneous,and the COSt is hi曲.What’S more,what is transferred in the system isanalog signals which are easily interfered and have more ullage。
(完整word版)基于单片机的DS18B20设计实验报告

第1章引言在日常生活及工农业生产中经常要涉及到温度的检测及控制,传统的测温元件有热点偶,热敏电阻还有一些输出模拟信号得温度传感器,而这些测温元件一般都需要比较多的外部硬件支持。
其硬件电路复杂,软件调试繁琐,制作成本高,阻碍了其使用性。
因此美国DALLAS半导体公司又推出了一款改进型智能温度传感器——DS18B20。
本设计就是用DS18B20数字温度传感器作为测温元件来设计数字温度计。
本设计所介绍的数字温度计与传统温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于测温比较准确得场所,或科研实验室使用。
该设计控制器使用单片机STC89C51,测温传感器使用DS18B20,显示器使用LED.第2章任务与要求2.1测量范围-50~110°C,精确到0.5°C;2.2利用数字温度传感器DS18B20测量温度信号;2.3所测得温度采用数字显示,计算后在液晶显示器上显示相应得温度值;第3章方案设计及论证3.1温度检测模块的设计及论证由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,其中还涉及到电阻与温度的对应值的计算,感温电路比较麻烦。
而且在对采集的信号进行放大时容易受温度的影响出现较大的偏差。
进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,电路简单,精度高,软硬件都以实现,而且使用单片机的接口便于系统的再扩展,满足设计要求。
3.2显示模块的设计及论证LED是发光二极管Light Emitting Diode 的英文缩写。
LED显示屏是由发光二极管排列组成的一显示器件。
工业监控系统实验报告

一、实验目的1. 熟悉工业监控系统的基本组成和工作原理。
2. 掌握工业监控系统的搭建、调试和运行方法。
3. 了解工业监控系统的数据采集、处理和显示技术。
4. 提高实际操作能力和问题解决能力。
二、实验内容1. 工业监控系统概述2. 系统硬件搭建3. 系统软件配置4. 系统调试与运行5. 实验结果与分析三、实验原理工业监控系统主要由数据采集模块、数据处理模块、显示模块和控制模块组成。
数据采集模块负责实时采集工业现场的各类数据,如温度、压力、流量等;数据处理模块对采集到的数据进行预处理、分析和存储;显示模块将处理后的数据以图形、曲线等形式展示给用户;控制模块根据用户需求对工业设备进行远程控制。
四、实验步骤1. 系统硬件搭建(1)选择合适的工业控制计算机作为主控制器。
(2)配置数据采集模块,如温度传感器、压力传感器、流量传感器等。
(3)搭建通信网络,如以太网、无线网络等。
(4)连接显示屏、键盘、鼠标等输入输出设备。
2. 系统软件配置(1)安装操作系统,如Windows Server、Linux等。
(2)配置数据库,如MySQL、SQL Server等。
(3)选择合适的工业监控系统软件,如LabVIEW、OPC UA等。
(4)配置数据采集模块与监控软件的通信接口。
3. 系统调试与运行(1)连接数据采集模块,检查通信是否正常。
(2)启动监控软件,查看数据采集是否成功。
(3)调整数据采集参数,如采样频率、采样间隔等。
(4)观察显示屏,检查数据展示是否准确。
(5)测试控制模块,确保远程控制功能正常。
4. 实验结果与分析(1)实验过程中,数据采集模块能够实时采集工业现场数据。
(2)监控软件能够将采集到的数据以图形、曲线等形式展示给用户。
(3)控制系统可以根据用户需求对工业设备进行远程控制。
(4)实验结果表明,工业监控系统在数据采集、处理、显示和控制等方面均能满足实际需求。
五、实验总结1. 工业监控系统在工业生产中具有重要作用,能够提高生产效率、降低成本、保障生产安全。
(完整word版)温度传感器的温度特性测量9

温度传感器的温度特性测量【目的要求】1、学习用恒电流法和直流电桥法测量热电阻;2、测量铂电阻和热敏电阻温度传感器的温度特性;3、测量电压型、电流型和PN结温度传感器的温度特性;【实验原理】“温度”是一个重要的热学物理量,它不仅和我们的生活环境密切相关,在科研及生产过程中,温度的变化对实验及生产的结果至关重要,所以温度传感器应用广泛。
温度传感器是利用一些金属、半导体等材料与温度相关的特性制成的。
常用的温度传感器的类型、测温范围和特点见表1。
本实验将通过测量几种常用的温度传感器的特征物理量随温度的变化,来了解这些温度传感器的工作原理.表1常用的温度传感器的类型和特点一、直流电桥法测量热电阻直流平衡电桥(惠斯通电桥)的电路如图1所示,图1把四个电阻R 1,R 2,R 3,R t 连成一个四边形回路ABCD,每条边称作电桥的一个“桥臂”在四边形的一组对角接点A 、C 之间连入直流电源E ,在另一组对角接点B 、D 之间连入平衡指示仪表,B 、D 两点的对角线形成一条“桥路”,它的作用是将桥路两个端点电位进行比较,当B 、D 两点电位相等时,桥路中无电流通过,指示器示值为零,电桥达到平衡。
指示器指零,有U AB =U AD ,U BC =U DC ,电桥平衡,电流Ig=0,流过电阻R 1、R 3的电流相等,即I 1=I 3,同理I 2=IR t ,因此311322t t R R R R R R R R =⇒= 若12R R =,则有:3t R R =(1)二、恒电流法测量热电阻恒电流法测量热电阻,电路如图2所示,图2电源采用恒流源,R 1为已知数值的固定电阻,R t 为热电阻.U R1为R1上的电压,U Rt 为R t 上的电压,U R1用于监测电路的电流,当电路电流恒定时则只要测出热电阻两端电压U Rt ,即可知道被测热电阻的阻值。
当电路电流为I o ,温度为t 时,热电阻R t 为11R RtO Rt t U U R I U R ==(2) 三、Pt100铂电阻温度传感器Pt100铂电阻是一种利用铂金属导体电阻随温度变化的特性制成的温度传感器。
(完整word版)基于单片机的大棚温湿度控制系统的设计

摘要随着大棚技术的普及,温室大棚数量不断增多,对于蔬菜大棚来说,最重要的一个管理因素是温湿度控制。
温湿度太低,蔬菜就会被冻死或则停止生长,所以要将温湿度始终控制在适合蔬菜生长的范围内。
传统的温度控制是在温室大棚内部悬挂温度计,工人依据读取的温度值来调节大棚内的温度。
如果仅靠人工控制既耗人力,又容易发生差错.现在,随着农业产业规模的提高,对于数量较多的大棚,传统的温度控制措施就显现出很大的局性。
为此,在现代化的蔬菜大棚管理中通常有温湿度自动控制系统,以控制蔬菜大棚温度,适应生产需要。
本论文主要阐述了基于AT89C51单片机的温室大棚温湿度控制系统设计原理,主要电路设计及软件设计等.该系统采用AT89C51单片机作为控制器,SHT11作为温湿度数据采集系统,可对执行机构发出指令实现大棚温湿度参数调节,根据实际需求设计了单片机硬件系统,该系统能够实现数据采集,数据处理,数值显示,键盘扫描等功能功能。
同时介绍了温湿度传感器,单片机接口,及其应用软件的设计,该基于单片机和SHT11温湿度传感器的大棚温湿度控制系统,该系统性能可靠,结构简单,能实现对温室内温湿度的自动调节。
关键词:AT89C51;SHT11;大棚;温湿度;控制系统;传感器;单片机AbstractWith the popularization of trellis technology, greenhouse trellis an ever-growing number,for vegetable shed speaking, one of the most important management factor is the temperature and humidity control. Temperature is too low,the vegetables will freeze to death or stop growing,so will always control temperature and humidity in a suitable vegetable growth range。
(完整word版)基于数字PID的电加热炉温度控制系统设计

计算机控制技术课程设计报告题目基于数字PID的电加热炉温度控制系统设计授课教师盖宁学生姓名学号专业教学单位完成时间目录摘要 (1)第1章课程设计方案 (1)1.1系统组成中体结构 (1)第2章控制系统的建模和数字控制器设计 (1)2.1 数字PID控制算法 (1)第3章硬件设计 (4)3.1 温度检测及功率放大电路 (4)3.2 AD574A模/数转换电路 (4)3.3执行机构 (5)3.4 报警电路设计 (6)3.5 设计输入输出通道 (7)第4章软件设计 (8)4.1 系统程序流程图 (8)4.1.1 系统主程序框图 (8)4.1.2 A/D转换子程序流程图 (9)4.1.3 LED显示流程图 (10)4.1.4 报警程序流程图 (11)4.1.5数字控制算法子程序流程图 (12)第5章总结以及电路图 (12)5.1系统电路图 (12)参考文献 (14)基于数字PID的电加热炉温度控制系统设计摘要:电加热炉控制系统属于一阶纯滞后环节,具有大惯性、纯滞后、非线性等特点,导致传统控制方式超调大、调节时间长、控制精度低。
本设计采用PID算法进行温度控制,使整个闭环系统所期望的传递函数相当于一个延迟环节和一个惯性环节相串联来实现温度的较为精确的控制。
电加热炉加热温度的改变是由上、下两组炉丝的供电功率来调节的,它们分别由两套晶闸管调功器供电。
调功器的输出功率由改变过零触发器的给定电压来调节,本设计以AT89C51单片机为控制核心,输入通道使用AD590传感器检测温度,测量变送传给ADC0809进行A/D转换,输出通道驱动执行结构过零触发器,从而加热电炉丝。
本系统PID算法,将温度控制在50~350℃范围内,并能够实时显示当前温度值。
关键词:电加热炉;PID ;功率;温度控制;一.课程设计方案1.1 系统组成中体结构电加热炉温度控制系统原理图如下,主要由温度检测电路、A/D转换电路、驱动执行电路、显示电路及按键电路等组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温度监控系统设计引言:温度是工业控制中主要的被控参数之一,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用。
对于不同场所、不同工艺、所需温度高低范围不同、精度不同,则采用的测温元件、测方法以及对温度的控制方法也将不同;产品工艺不同、控制温度的精度不同、时效不同,则对数据采集的精度和采用的控制算法也不同,因而,对温度的测控方法多种多样。
随着电子技术和微型计算机的迅速发展,微机测量和控制技术也得到了迅速的发展和广泛的应用。
利用微机对温度进行测控的技术,也便随之而生,并得到日益发展和完善,越来越显示出其优越性。
作为获取信息的手段——传感器技术得到了显著的进步,其应用领域较广泛。
传感器技术已成为衡量一个国家科学技术发展水平的重要标志之一。
因此,了解并掌握各类传感器的基本结构、工作原理及特性是非常重要的。
为了提高对传感器的认识和了解,尤其是对温度传感器的深入研究以及其用法与用途,基于实用、广泛和典型的原则而设计了本系统。
本文利用单片机结合传感器技术而开发设计了这一温度监控系统。
文中传感器理论单片机实际应用有机结合,详细地讲述了利用热敏电阻作为热敏传感器探测环境温度的过程,以及实现热电转换的原理过程。
本设计应用性比较强,设计系统可以作为生物培养液温度监控系统,如果稍微改装可以做热水器温度调节系统、实验室温度监控系统,以及构成智能电饭煲等等。
课题主要任务是完成环境温度检测,利用单片机实现温度调节并通过计算机实施温度监控。
设计后的系统具有操作方便,控制灵活等优点。
本设计系统包括温度采集模块,单片机最小系统,显示模块,按键控制模块,报警模块和指示模块六个部分。
文中对每个部分功能、实现过程作了详细介绍。
整个系统的核心是进行温度监控,完成了课题所有要求。
方案设计:总体设计方案采用AT89C52单片机作控制器,温度传感器选用DS18B20来设计数字温度计,系统由6个模块组成:主控制器、测温电路、显示电路、报警电路、控制电路及指示电路。
主控制器由单片机AT89C52实现,测温电路由温度传感器DS18B20实现,显示电路由4位LED数码管直读显示,,报警系统由蜂鸣器和发光二级管构成,控制电路由按键构成,指示电路由发光二极管组成。
本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,并且加有报警装置,超过温度可发出警示,还可以调整报警温度。
该设计控制器使用单片机AT89C52,测温传感器使用DS18B20,用4位共阳极LED数码管以I/O传送数据,实现温度显示,能准确达到以上要求。
实验目的和要求:1.学习DS18B20温度传感芯片的结构和工作原理。
2.掌握LED数码管显示的原理及编程方法。
3.掌握矩阵式键盘的原理及使用方法。
4.掌握51系列单片机数据采集及处理的方法。
实验原理:用温度传感器芯片。
温度传感器芯片能把温度信号转换成数字信号,直接发送给单片机,转换后通过显示电路既可以显示。
基本芯片及其原理:单片机微型计算机简称单片机,是指在一块芯片体上集成了中央处理器CPU、随机存储器RAM、程序存储器ROM或EPROM、定时器/计数器、中断控制器以及串行和并行I/O接口等部件,构成一个完整的微型计算机。
目前,新型单片机内还有A/D及D/A转换器、高速输入/输出部件、DMA通道、浮点运算等特殊功能部件。
由于它的结构和指令功能都是按工业控制设计要求设计的,特别适用于工业控制及其数据处理场合,因此,确切的称谓是微控制器,单片机只是习惯称呼。
(1)单片机的特点1)有优异的性能价值比。
2)集成度高、体积小、有很高的可靠性。
单片机把各个功能部件集成在一块芯片上,内部采用总线结构,减少了各芯片之间的连线,大大提高了单片机的可靠性与抗干扰能力。
另外,其体积小,对于强磁场环境易于采取措施,适合于恶劣环境下工作;也易于产品化。
3)控制功能强。
为了满足工业控制的要求,一般单片机的指令系统中均有及其丰富的转移指令、I/O口逻辑操作及位处理指令。
一般来说,单片机的逻辑控制功能及运行速度高于同意档次的微机。
4)单片机的系统扩展和系统配置都比较典型、规范,而且非常容易构成各种规模的应用系统。
(2)单片机并行I/O接口的扩展单片机与外部交换信息是通过I/O接口电路来实现的。
AT89C51单片机本身有4个8位的并行I/O口P0-P3,但实际使用时往往再增加些I/O口,以便与外部设备交换数据。
AT89C51单片机外部RAM和扩展I/O接口是统一编址的。
用户可以把外部64KB RAM空间的一部分作为扩展I/O接口地址空间,每一个I/O 接口相当于一个RAM存储单元,访问外部RAM存储单元就像访问外部I/O接口,即用“MOVX”指令对扩展I/O接口进行输入输出操作。
查询式键盘属于独立式键盘,键盘的各个按键之间彼此是独立的且是最简单的键盘电路。
每个键地接入一根数据输入线。
如图所示。
注意:由于每一个按键均需要一根I/O口线,当键盘按键数量比较多时,需要的I/O口线也较多,因此独立式键盘只适合于按键较少的应用场合。
一般情况下,按键数等于占用I/O 端口数。
查询式键盘的结构图如图所示:S1SW-PB S2SW-PB R11k R21kVCC图 查询式键盘的接口电路查询式键盘可以工作在多种方式下,中断方式、程序查询方式、定时查询发送和中断查询方式。
在中断模式下,按键的数量受到外部中断源的限制。
在有特殊需要的场合,还可以借用内部的定时器中断。
所以在这种模式下,按键的数目小于外部中断源和单片机定时器数量之和。
程序查询和定时查询类似,都是通过读I/O 状态,当有键被按下时相应的I/O 口线变为低电平,而未被按下的键对应的I/O 口线保持为高电平,这样通过读I/O 口状态可判断是否有键按下和哪一个键被按下。
温度传感器及其原理:独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。
测温范围 -55℃~+125℃,固有测温分辨率0.5℃。
工作电源: 3~5V/DC 。
DS18B20内部结构主要由四部分组成:64位光刻ROM 、温度传感器、非挥发的温度报警触发器TH 和TL 、配置寄存器。
该装置信号线高的时候,内部电容器 储存能量通由1线通信线路给片子供电,而且在低电平期间为片子供电直至下一个高电平的到来重新充电。
DS18B20的电源也可以从外部3V-5 .5V 的电压得到。
DS18B20采用一线通信接口。
因为一线通信接口,必须在先完成ROM 设定,否则记忆和控制功能将无法使用。
主要首先提供以下功能命令之一: 1 )读ROM , 2 )ROM 匹配, 3 )搜索ROM , 4 )跳过ROM , 5 )报警检查。
这些指令操作作用在没有一个器件的64位光刻ROM 序列号,可以在挂在一线上多个器件选定某一个器件,同时,总线也可以知道总线上挂有有多少,什么样的设备。
若指令成功地使DS18B20完成温度测量,数据存储在DS18B20的存储器。
一个控制功能指挥指示DS18B20的演出测温。
测量结果将被放置在DS18B20内存中,并可以让阅读发出记忆功能的指挥,阅读内容的片上存储器。
温度报警触发器TH 和TL 都有一字节EEPROM 的数据。
如果DS18B20不使用报警检查指令,这些寄存器可作为一般的用户记忆用途。
在片上还载有配置字节以理想的解决温度数字转换。
写TH,TL 指令以及配置字节利用一个记忆功能的指令完成。
通过缓存器读寄存器。
所有数据的读,写都是从最低位开始。
引脚图:P1.0P1.1温度的读取:DS18B20在出厂时以配置为12位,读取温度时共读取16位,所以把后11位的2进制转化为10进制后在乘以0.0625便为所测的温度,还需要判断正负。
前5个数字为符号位,当前5位为1时,读取的温度为负数;当前5位为0时,读取的温度为正数。
16位数字摆放是从低位到高位,温度的关系图下图所示。
DS18B20的初始化:(1)先将数据线置高电平“1”。
(2)延时(该时间要求的不是很严格,但是尽可能的短一点)(3)数据线拉到低电平“0”。
(4)延时750微秒(该时间的时间范围可以从480到960微秒)。
(5)数据线拉到高电平“1”。
(6)延时等待(如果初始化成功则在15到60毫秒时间之内产生一个由DS18B20所返回的低电平“0”。
据该状态可以来确定它的存在,但是应注意不能无限的进行等待,不然会使程序进入死循环,所以要进行超时控制)。
(7)若CPU读到了数据线上的低电平“0”后,还要做延时,其延时的时间从发出的高电平算起(第(5)步的时间算起)最少要480微秒。
(8)将数据线再次拉高到高电平“1”后结束。
DS18B20的写操作:(1)数据线先置低电平“0”。
(2)延时确定的时间为15微秒。
(3)按从低位到高位的顺序发送字节(一次只发送一位)。
(4)延时时间为45微秒。
(5)将数据线拉到高电平。
(6)重复上(1)到(6)的操作直到所有的字节全部发送完为止。
(7)最后将数据线拉高。
DS18B20的读操作:(1)将数据线拉高“1”。
(2)延时2微秒。
(3)将数据线拉低“0”。
(4)延时15微秒。
(5)将数据线拉高“1”。
(6)延时15微秒。
(7)读数据线的状态得到1个状态位,并进行数据处理。
(8)延时30微秒。
DS18B20内部结构图:DS18B20工作原理:DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s 减为750ms。
DS18B20测温原理如图3所示。
图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。
高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。
计数器1和温度寄存器被预置在-55℃所对应的一个基数值。
计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。
图3中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。
图3DS18B20温度值格式表这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。