2016-2018年高考数学分类汇编:专题12排列组合、二项式定理 教师版

合集下载

专题5 排列组合与二项式定理(教师卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用)

专题5 排列组合与二项式定理(教师卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用)

专题05排列组合与二项式定理考点十年考情(2015-2024)命题趋势考点1排列组合综合(10年8考)2024·全国甲卷、2023·全国甲卷、2023·全国甲卷、2023·全国乙卷、2023·全国新Ⅱ卷、2022·全国新Ⅱ卷、2022·全国新Ⅰ卷、2021·全国乙卷、2021·全国甲卷、2021·全国甲卷、2020·海南卷、2020·山东卷、2019·全国卷、2017·全国卷、2016·全国卷、2016·四川卷、2016·全国卷1.理解、掌握排列与组合的定义,会计算排列数与组合数,熟练掌握排列组合的解题方法排列组合是新高考卷的常考内容,一般会和分类加法原理与分步乘法原理结合在小题中考查,需重点复习2.理解、掌握二项式定理的通项公式,会相关基本量的求解,会三项式、乘积式的相关计算二项式定理是新高考卷的常考内容,一般考查二项式系数和、系数和、求给定项的二项式系数或系数及相关最大(小)项计算,需重点强化复习考点2二项式定理综合(10年8考)2024·北京卷、2022·北京卷、2020·北京卷、2020·全国卷、2019·全国卷、2018·全国卷、2017·全国卷、2017·全国卷、2016·四川卷、2015·全国卷、2015·陕西卷、2015·湖南卷、2015·湖北卷考点01排列组合综合1.(2024·全国甲卷·高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是()A .14B .13C .12D .23【答案】B【分析】解法一:画出树状图,结合古典概型概率公式即可求解.解法二:分类讨论甲乙的位置,结合得到符合条件的情况,然后根据古典概型计算公式进行求解.【详解】解法一:画出树状图,如图,由树状图可得,甲、乙、丙、丁四人排成一列,共有24种排法,其中丙不在排头,且甲或乙在排尾的排法共有8种,故所求概率81=243P =.解法二:当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种;当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=.故选:B2.(2023·全国甲卷·高考真题)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有()A .120B .60C .30D .20【答案】B【分析】利用分类加法原理,分类讨论五名志愿者连续参加两天公益活动的情况,即可得解.【详解】不妨记五名志愿者为,,,,a b c d e ,假设a 连续参加了两天公益活动,再从剩余的4人抽取2人各参加星期六与星期天的公益活动,共有24A 12=种方法,同理:,,,b c d e 连续参加了两天公益活动,也各有12种方法,所以恰有1人连续参加了两天公益活动的选择种数有51260⨯=种.故选:B.3.(2023·全国甲卷·高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A .16B .13C .12D .23【答案】D【分析】利用古典概率的概率公式,结合组合的知识即可得解.【详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有24C 6=件,其中这2名学生来自不同年级的基本事件有1122C C 4=,所以这2名学生来自不同年级的概率为4263=.故选:D.4.(2023·全国乙卷·高考真题)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A .30种B .60种C .120种D .240种【答案】C【分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【详解】首先确定相同得读物,共有16C 种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有25A 种,根据分步乘法公式则共有1265C A 120⋅=种,故选:C.5.(2023·全国新Ⅱ卷·高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有().A .4515400200C C ⋅种B .2040400200C C ⋅种C .3030400200C C ⋅种D .4020400200C C ⋅种【答案】D【分析】利用分层抽样的原理和组合公式即可得到答案.【详解】根据分层抽样的定义知初中部共抽取4006040600⨯=人,高中部共抽取2006020600⨯=,根据组合公式和分步计数原理则不同的抽样结果共有4020400200C C ⋅种.故选:D.6.(2022·全国新Ⅱ卷·高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有()A .12种B .24种C .36种D .48种【答案】B【分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224⨯⨯=种不同的排列方式,故选:B7.(2022·全国新Ⅰ卷·高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.23【答案】D【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有27C21=种不同的取法,若两数不互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种,故所求概率2172213 P-==.故选:D.8.(2021·全国乙卷·高考真题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种【答案】C【分析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有25C种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有2 54!240C⨯=种不同的分配方案,故选:C.【点睛】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.9.(2021·全国甲卷·高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为()A.0.3B.0.5C.0.6D.0.8【答案】C【分析】利用古典概型的概率公式可求概率.【详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.610,故选:C.10.(2021·全国甲卷·高考真题)将4个1和2个0随机排成一行,则2个0不相邻的概率为()A .13B .25C .23D .45【答案】C【详解】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C =种排法,若2个0不相邻,则有2510C =种排法,所以2个0不相邻的概率为1025103=+.故选:C.11.(2020·海南·高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A .2种B .3种C .6种D .8种【答案】C【分析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可.【详解】第一步,将3名学生分成两个组,有12323C C =种分法第二步,将2组学生安排到2个村,有222A =种安排方法所以,不同的安排方法共有326⨯=种故选:C【点睛】解答本类问题时一般采取先组后排的策略.12.(2020·山东·高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A .120种B .90种C .60种D .30种【答案】C【分析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解.【详解】首先从6名同学中选1名去甲场馆,方法数有16C ;然后从其余5名同学中选2名去乙场馆,方法数有25C ;最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C ⋅=⨯=种.故选:C【点睛】本小题主要考查分步计数原理和组合数的计算,属于基础题.13.(2019·全国·高考真题)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116【答案】A【分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【详解】由题知,每一爻有2种情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.14.(2017·全国·高考真题)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种【答案】D【详解】4项工作分成3组,可得:24C =6,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:36363A ⨯=种.故选D.15.(2016·全国·高考真题)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A .24B .18C .12D .9【答案】B【详解】解:从E 到F ,每条东西向的街道被分成2段,每条南北向的街道被分成2段,从E 到F 最短的走法,无论怎样走,一定包括4段,其中2段方向相同,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,故共有C 42C 22=6种走法.同理从F 到G ,最短的走法,有C 31C 22=3种走法.∴小明到老年公寓可以选择的最短路径条数为6×3=18种走法.故选B .【考点】计数原理、组合【名师点睛】分类加法计数原理在使用时易忽视每类中每一种方法都能完成这件事情,类与类之间是相互独立的;分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相互关联的.16.(2016·四川·高考真题)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为A .24B .48C .60D .72【答案】D【详解】试题分析:由题意,要组成没有重复数字的五位奇数,则个位数应该为1或3或5,其他位置共有44A 种排法,所以奇数的个数为44372A =,故选D.【考点】排列、组合【名师点睛】利用排列、组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏,分步时要注意整个事件的完成步骤.在本题中,个位是特殊位置,第一步应先安排这个位置,第二步再安排其他四个位置.17.(2016·全国·高考真题)定义“规范01数列”{an }如下:{an }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有A .18个B .16个C .14个D .12个【答案】C【详解】试题分析:由题意,得必有10a =,81a=,则具体的排法列表如下:,01010011;010101011,共14个【点睛】求解计数问题时,如果遇到情况较为复杂,即分类较多,标准也较多,同时所求计数的结果不太大时,往往利用表格法、树状图将其所有可能一一列举出来,常常会达到出奇制胜的效果.考点02二项式定理综合1.(2024·北京·高考真题)在(4x x 的展开式中,3x 的系数为()A .6B .6-C .12D .12-【答案】A【分析】写出二项展开式,令432r-=,解出r 然后回代入二项展开式系数即可得解.【详解】(4x x 的二项展开式为(()()442144C C1,0,1,2,3,4r rrr rrr T x xxr --+==-=,令432r-=,解得2r =,故所求即为()224C 16-=.故选:A.2.(2022·北京·高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=()A .40B .41C .40-D .41-【答案】B【分析】利用赋值法可求024a a a ++的值.【详解】令1x =,则432101a a a a a ++++=,令=1x -,则()443210381a a a a a -+-+=-=,故420181412a a a +++==,故选:B.3.(2020·北京·高考真题)在52)-的展开式中,2x 的系数为().A .5-B .5C .10-D .10【答案】C【分析】首先写出展开式的通项公式,然后结合通项公式确定2x 的系数即可.【详解】)52展开式的通项公式为:()()55215522r rrrrr r T CC x --+=-=-,令522r -=可得:1r =,则2x 的系数为:()()11522510C -=-⨯=-.故选:C.【点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.4.(2020·全国·高考真题)25()()x x y xy ++的展开式中x 3y 3的系数为()A .5B .10C .15D .20【答案】C【分析】求得5()x y +展开式的通项公式为515r rrr T C xy -+=(r N ∈且5r ≤),即可求得2y x x ⎛⎫+ ⎪⎝⎭与5()x y +展开式的乘积为65r rr C xy -或425r r r C x y -+形式,对r 分别赋值为3,1即可求得33x y 的系数,问题得解.【详解】5()x y +展开式的通项公式为515r rr r T C xy -+=(r N ∈且5r ≤)所以2y x x ⎛⎫+ ⎪⎝⎭的各项与5()x y +展开式的通项的乘积可表示为:56155r rrr rrr xT xC xy C xy --+==和22542155r r rr r r r T C x y xC y y y x x --++==在615rrr r xT C xy -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x x y y -++=中,令1r =,可得:521332T C y x xy =,该项中33x y 的系数为5所以33x y 的系数为10515+=故选:C【点睛】本题主要考查了二项式定理及其展开式的通项公式,还考查了赋值法、转化能力及分析能力,属于中档题.5.(2019·全国·高考真题)(1+2x 2)(1+x )4的展开式中x 3的系数为A .12B .16C .20D .24【答案】A【分析】本题利用二项展开式通项公式求展开式指定项的系数.【详解】由题意得x 3的系数为314424812C C +=+=,故选A .【点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.6.(2018·全国·高考真题)522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .80【答案】C【详解】分析:写出103152r r rr T C x -+=⋅⋅,然后可得结果详解:由题可得()5210315522rrrr r r r T C xC x x --+⎛⎫== ⋅⋅⎪⎝⎭⋅⋅令103r 4-=,则r 2=所以22552240r r C C ⋅⋅==故选C.点睛:本题主要考查二项式定理,属于基础题.7.(2017·全国·高考真题)(x +y )(2x -y )5的展开式中x 3y 3的系数为A .-80B .-40C .40D .80【答案】C【详解】()()()()555222x y x y x x y y x y +-=-+-,由()52x y -展开式的通项公式()()515C 2rrrr T x y -+=-可得:当3r =时,()52x x y -展开式中33x y 的系数为()3325C 2140⨯⨯-=-;当2r =时,()52y x y -展开式中33x y 的系数为()2235C 2180⨯⨯-=,则33x y 的系数为804040-=.故选C.【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.8.(2017·全国·高考真题)621(1)x x++展开式中2x 的系数为A .15B .20C .30D .35【答案】C【分析】化简已知代数式,利用二项式展开式的通项公式可以求出展开式中2x 的系数.【详解】因为6662211(1)(1)(1)(1)x x x x x ++=++⨯+,则6(1)x +展开式中含2x 的项为2226C 15x x =;621(1)x x⨯+展开式中含2x 的项为442621C 15x x x ⨯=,故2x 的系数为151530+=,故选:C .9.(2016·四川·高考真题)设i 为虚数单位,则(x +i)6的展开式中含x 4的项为()A .-15x 4B .15x 4C .-20i x 4D .20i x 4【答案】A【详解】试题分析:二项式6()x i +的展开式的通项为616r r r r T C xi -+=,令64r -=,则2r =,故展开式中含4x 的项为2424615C x i x =-,故选A.【考点】二项展开式,复数的运算【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考的内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二项式6()x i +可以写为6()i x +,则其通项为66r r r C i x -,则含4x 的项为46444615C i x x -=-.10.(2015·全国·高考真题)()52x x y ++的展开式中,52x y 的系数为A .10B .20C .30D .60【答案】C【详解】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选C.考点:本题主要考查利用排列组合知识计算二项式展开式某一项的系数.【名师点睛】本题利用排列组合求多项展开式式某一项的系数,试题形式新颖,是中档题,求多项展开式式某一项的系数问题,先分析该项的构成,结合所给多项式,分析如何得到该项,再利用排列组知识求解.11.(2015·陕西·高考真题)二项式()()1n x n N *+∈的展开式中2x 项的系数为15,则n =A .4B .5C .6D .7【答案】C 【详解】二项式()1n x +的展开式的通项是1C r rr n x +T =,令2r =得2x 的系数是2C n ,因为2x 的系数为15,所以2C 15n =,即,解得:6n =或5n =-,因为n +∈N ,所以6n =,故选C .【考点定位】二项式定理.12.(2015·湖南·高考真题)已知5的展开式中含32x 的项的系数为30,则a 等于().AB .C .6D .6-【答案】D 【详解】5215C 1r r r r r T a x -+=-(),令1r =,可得530a -=解得6a =-.故选:D.【点睛】本题主要考查了二项式定理的运用,属于容易题.13.(2015·湖北·高考真题)已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为().A .122B .112C .102D .92【答案】D【详解】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式10(1)x +中奇数项的二项式系数和为.考点:二项式系数,二项式系数和.。

排列组合与二项式定理(高考试题)

排列组合与二项式定理(高考试题)

排列组合与二项式定理一、排列组合1.(2016年四川高考)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )(A )24 (B )48 (C )60 (D )72【答案】D 【解析】由题意,要组成没有重复的五位奇数,则个位数应该为1、3、5,其他位置共有44A ,所以其中奇数的个数为44372A =,故选D. 2.(2015年四川高考)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )(A )144个 (B )120个 (C )96个 (D )72个【答案】B 【解析】据题意,万位上只能排4、5.若万位上排4,则有342A ⨯个;若万位上排5,则有343A ⨯个.所以共有342A ⨯343524120A +⨯=⨯=个.选B. 3. (2015年广东高考)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答)【答案】1560.【解析】依题两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了24040391560A =⨯=条毕业留言,故应填入1560.4.(2014大纲全国,理5)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ).A .60种B .70种C .75种D .150种答案:C 解析:从6名男医生中选出2名有26C 种选法,从5名女医生中选出1名有15C 种选法,故共有216565C C 57521⨯⋅=⨯=⨯种选法,选C. 5.(2014福建,理10)用a 代表红球,b 代表蓝球,c 代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a )(1+b )的展开式1+a +b +ab 表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球、而“ab ”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( ).A .(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5B .(1+a 5)(1+b +b 2+b 3+b 4+b 5)(1+c )5C .(1+a )5(1+b +b 2+b 3+b 4+b 5)(1+c 5)D .(1+a 5)(1+b )5(1+c +c 2+c 3+c 4+c 5)答案:A 解析:本题可分三步:第一步,可取0,1,2,3,4,5个红球,有1+a +a 2+a 3+a 4+a 5种取法;第二步,取0或5个蓝球,有1+b 5种取法;第三步,取5个有区别的黑球,有(1+c )5种取法.所以共有(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5种取法.故选A.6.(2014辽宁,理6)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( ).A .144B .120C .72D .24答案:D 解析:插空法.在已排好的三把椅子产生的4个空档中选出3个插入3人即可.故排法种数为34A =24.故选D.7.(2014四川,理6)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( ).A .192种B .216种C .240种D .288种答案:B 解析:(1)当最左端排甲的时候,排法的种数为55A ;(2)当最左端排乙的时候,排法种数为1444C A . 因此不同的排法的种数为514544A +C A =120+96=216.8.(2014重庆,理9)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( ).A .72B .120C .144D .168答案:B 解析:解决该问题分为两类:第一类分两步,先排歌舞类33A ,然后利用插空法将剩余3个节目排入左边或右边3个空,故不同排法有3333A 2A 72⋅=.第二类也分两步,先排歌舞类33A ,然后将剩余3个节目放入中间两空排法有122222C A A ,故不同的排法有32213222A A A C 48=,故共有120种不同排法,故选B. 9.(2014浙江,理14)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).答案:60解析:不同的获奖情况分为两种,一是一人获两张奖券一人获一张奖券,共有2234C A =36种;二是有三人各获得一张奖券,共有34A =24种.因此不同的获奖情况有36+24=60种.10.(2014北京,理13)把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有__________种.答案:36解析:产品A ,B 相邻时,不同的摆法有2424A A =48种.而A ,B 相邻,A ,C 也相邻时的摆法为A 在中间,C ,B 在A 的两侧,不同的摆法共有2323A A =12(种).故产品A 与产品B 相邻,且产品A 与产品C 不相邻的不同摆法有48-12=36(种).11.(2013山东,理10)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A .243B .252C .261D .279B [解析] (排除法)十个数排成不重复数字的三位数求解方法是:第一步,排百位数字,有9种方法(0不能作首位),第二步,排十位数字,有9种方法,第三步,排个位数字,有8种方法,根据乘法原理,共有9×9×8 = 648(个)没有重复数字的三位数.可以组成所有三位数的个数:9×10×10=900,所以可以组成有重复数字的三位数的个数是:900-648=252.12.(2013福建,理5) 满足a ,b ∈{-1,0,1,2},且关于x 的方程ax 2+2x +b =0有实数解的有序数对(a ,b )的个数为( )A .14B .13C .12D .10B [解析] 当a =0时,2x +b =0,∴ x =-b 2,有序数对(0,b )有4个;当a ≠0时,Δ=4-4ab ≥0,∴ ab ≤1,有序数对(-1,b )有4个,(1,b )有3个,(2,b )有2个,综上共有4+4+3+2=13个,故选B.13.(2013大纲全国,理14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有________种.(用数字作答)480 [解析] 先排另外四人,方法数是A 44,再在隔出的五个位置安插甲乙,方法数是A 25,根据乘法原理得不同排法共有A 44A 25=24×20=480种.14.(2013北京,理13) 将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________.96 [解析] 5张参观券分为4堆,有2个连号有4种分法,然后每一种全排列有A 44种方法,所以不同的分法种数是4A 44=96.解析:按照要求要把序号分别为1,2,3,4,5的5张参观券分成4组,然后再分配给4人,连号的情况是1和2,2和3,3和4,4和5,故其方法数是4A 44=96.15.(2013浙江,理14) 将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法共有________种(用数字作答).480 [解析一] 先在6个位置找3个位置,有C 36种情况,A ,B 均在C 的同侧,有CAB ,CBA ,ABC ,BAC ,而剩下D ,E ,F 有A 33种情况,故共有4C 36A 33=480种.解析二:本题考查对排列、组合概念的理解,排列数、组合数公式的运用,考查运算求解能力以及利用所学知识解决问题的能力.“小集团”处理,特殊元素优先,C 36C 12A 22A 33=480. 16.(2012·安徽卷)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为( )A .1或3B .1或4C .2或3D .2或4D [解析] 任意两个同学之间交换纪念品共要交换C 26=15次,如果都完全交换,每个人都要交换5次,也就是得到5份纪念品,现在6个同学总共交换了13次,少交换了2次,这2次如果不涉及同一个人,则收到4份纪念品的同学人数有4人;如果涉及同一个人,则收到4份纪念品的同学人数有2人,答案为D.17.(2012·辽宁卷)一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数为( )A .3×3!B .3×(3!)3C .(3!)4D .9!C [解析] 本小题主要考查排列组合知识.解题的突破口为分清是分类还是分步,是排列还是组合问题.由已知,该问题是排列中捆绑法的应用,即先把三个家庭看作三个不同元素进行全排列,而后每个家庭内部进行全排列,即不同坐法种数为A 33·A 33·A 33·A 33=(3!)4.18.(2011北京,理12)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有__________个.(用数字作答)【答案】14【解析】个数为42214-=.19.(2010山东,理8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有( )(A )36种 (B )42种 (C)48种 (D )54种【答案】B 【解析】分两类:一类为甲排在第一位共有4424A =种,另一类甲排在第二位共有133318C A =种,故编排方案共有241842+=种,故选B.20.(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A. 360B. 288C. 216D. 96解析:6位同学站成一排,3位女生中有且只有两位女生相邻的排法有32223342A C A A 432=种,其中男生甲站两端的有1442223232212=A A C A A ,符合条件的排法故共有288解析2:由题意有2221122222322323242A (C A )C C +A (C A )A 288⋅⋅⋅⋅⋅⋅⋅=,选B.21.(2009天津卷理)用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有 个(用数字作答)解析:个位、十位和百位上的数字为3个偶数的有:901333143323=+C A C A C 种;个位、十位和百位上的数字为1个偶数2个奇数的有:23413332313143323=+C A C C C A C 种,所以共有32423490=+个.22.(2009浙江卷理)甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是 (用数字作答).答案:336 【解析】对于7个台阶上每一个只站一人,则有37A 种;若有一个台阶有2人,另一个是1人,则共有2237C A 种,因此共有不同的站法种数是336种.23.(2009·宁夏、海南,12)7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有________种(用数字作答).解析:法一:先从7人中任取6人,共有C 67种不同的取法.再把6人分成两部分,每部分3人,共有C 36C 33A 22种分法.最后排在周六和周日两天,有A 22种排法,∴C 67×C 36C 33A 22×A 22=140种.法二:先从7人中选取3人排在周六,共有C 37种排法.再从剩余4人中选取3人排在周日,共有C 34种排法,∴共有C 37×C 34=140种.答案:14024.(2010浙江,10)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复.若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人.则不同的安排方式共有________种(用数字作答). 解析:上午测试安排有A 44种方法,下午测试分为:(1)若上午测试“台阶”的同学下午测试“握力”,其余三位同学有2种方法测试;(2)若上午测试“台阶”的同学下午不测试“握力”,则有C 13种方法选择,其余三位同学选1人测试“握力”有C 13种方法,其余两位只有一种方法,则共有C 13·C 13=9种, 因此测试方法共有A 44·(2+9)=264种.答案:264 25.(2009·辽宁,5)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有( )A .70种B .80种C .100种D .140种解析:分恰有2名男医生和恰有1名男医生两类,从而组队方案共有:C 25×C 14+C 15×C 24=70种.答案:A26.(2013重庆,5)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是________(用数字作答).解析:本题考查排列组合问题,意在考查考生的思维能力.直接法分类,3名骨科,内科、脑外科各1名;3名脑外科,骨科、内科各1名;3名内科,骨科、脑外科各1名;内科、脑外科各2名,骨科1名;骨科、内科各2名,脑外科1名;骨科、脑外科各2名,内科1名.所以选派种数为C 33·C 14·C 15+C 34·C 13·C 15+C 35·C 13·C 14+C 24·C 25·C 13+C 23·C 25·C 14+C 23·C 24·C 15=590.答案:59027.(2012新课标全国,5)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A .12种B .10种C .9种D .8种解析:先安排1名教师和2名学生到甲地,再将剩下的1名教师和2名学生安排到乙地,共有C 12C 24=12种安排方案.答案:A二、二项式定理1、(2016年北京高考)在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答)【答案】60.2、(2016年山东高考)若(a x 2)5的展开式中x 5的系数是—80,则实数a =_______. 【答案】-2 3、(2016年上海高考)在n x x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________ 【答案】1124、(2016年四川高考)设i 为虚数单位,则6(i)x +的展开式中含x 4的项为( )(A )-15x 4 (B )15x 4 (C )-20i x 4 (D )20i x 4【答案】A5、(2016年天津高考)281()x x -的展开式中x 2的系数为__________.(用数字作答)【答案】56-6、(2016年全国I 高考)5(2x +的展开式中,x 3的系数是 .(用数字填写答案)【答案】10。

高考数学分项版解析 专题12 排列组合、二项式定理、算

高考数学分项版解析 专题12 排列组合、二项式定理、算

专题12 排列组合、二项式定理、算法 文一.基础题组 1. 【2010上海,文11】 2010年上海世博会园区每天9:00开园,20:00停止入园.在下边的框图中,S 表示上海世博会官方网站在每个整点报道的入园总人数,a 表示整点报道前1个小时内入园人数,则空白的执行框内应填入________.【答案】S ←S +a2. (2009上海,文4)某算法的程序框图如图所示 ,则输出量y 与输入量x 满足的关系式是 ___________.【答案】⎩⎨⎧≤>-=1,2,1,2x x x y x 【解析】由程序框图可知,当输入实数满足x >1时,输出y=x-2;否则,即输入实数满足x≤1时,输出y=2x .综上可知⎩⎨⎧≤>-=.1,2,1,2x x x y x3.【2016高考上海文数】在n x x ⎪⎭⎫ ⎝⎛-23的二项展开式中,所有项的二项式系数之和为256,则常数项等于_________.【答案】112【考点】二项式定理【名师点睛】根据二项展开式的通项,确定二项式系数或确定二项展开式中的指定项,是二项式定理问题中的基本问题,往往要综合运用二项展开式的系数的性质、二项展开式的通项求解.本题能较好地考查考生的思维能力、基本计算能力等.4. 【2015高考上海文数】 在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示).【答案】120【解析】①男教师选1人,女教师教师选4人,有454613=C C 中不同的选法;②男教师选2人,女教师教师选3人,有603623=C C 中不同的选法;③男教师选3人,女教师教师选2人,有152633=C C 中不同的选法;由分累计数原理得不同的选取方式的种数为120156045==+种.【考点定位】组合,分类计数原理.【名师点睛】 对于有条件的组合问题,可能遇到含某个(些)元素与不含某个(些)元素问题;也可能遇到“至多”或“至少”等组合问题的计算,此类问题要注意分类处理或间接计算,切记不要因为“先取再后取”产生顺序造成计算错误.5.【2015高考上海文数】.在62)12(xx +的二项式中,常数项等于 (结果用数值表示).【答案】240【考点定位】二项式定理.【名师点睛】求二项展开式中的指定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等).。

高考数学试题分类汇编---- 排列组合二项式定理

高考数学试题分类汇编---- 排列组合二项式定理

高考数学试题分类汇编---- 排列组合二项式定理一. 选择题:1.(全国一3)512x ⎛⎫+ ⎪⎝⎭的展开式中2x 的系数为( C ) A .10 B .5 C .52 D .12.(全国一12)将1,2,3填入33⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( B ) A .6种 B .12种 C .24种 D .48种3.(全国二9)44)1()1(x x +-的展开式中x 的系数是( A )A .4-B .3-C .3D .44.(安徽卷7)设88018(1),x a a x a x +=+++则0,18,,a a a 中奇数的个数为( A ) A .2 B .3 C .4 D .55.(安徽卷12)12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是 ( C )A . 2686C AB . 2283C A C .2286C AD .2285C A6.(福建卷9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为AA.14B.24C.28D.487.(湖北卷9)从5名男生和5名女生中选3人组队参加某集体项目的比赛,其中至少有一名女生入选的组队方案数为BA.100B.110C.120D.1808.(湖南卷8)某市拟从4个重点项目和6个一般项目中各选2个项目作为本年度启动的项目,则重点项目A 和一般项目B 至少有一个被选中的不同选法种数是( C )A .15B .45C .60D .759.(江西卷8)10101(1)(1)x x++展开式中的常数项为 D A .1 B .1210()C C .120C D .1020C10.(辽宁卷7)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( C )A .13B .12C .23D .3411.(辽宁卷10)一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( B )A .24种B .36种C .48种D .72种12.(浙江卷6)在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是(A )-15 (B )85 (C )-120 (D )27413.(重庆卷10)若(x +12x)n 的展开式中前三项的系数成等差数,则展开式中x 4项的系数为B(A)6 (B)7 (C)8 (D)9 二. 填空题:1.(全国二14)从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答)4202.(北京卷12)5231x x ⎛⎫+ ⎪⎝⎭的展开式中常数项为 ;各项系数之和为 .(用数字作答)10, 323.(福建卷13)(x +1x)9展开式中x 2的系数是 .(用数字作答)84 4.(湖南卷13)记n x x )12(+的展开式中第m 项的系数为m b ,若432b b =,则n =__________.55.(辽宁卷15)6321(1)x x x ⎛⎫++ ⎪⎝⎭展开式中的常数项为 .356.(陕西卷14)72(1)x -的展开式中21x的系数为 84 .(用数字作答) 7.(陕西卷16)某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有 96 种.(用数字作答).8.(四川卷13)()()34121x x +-展开式中x 的系数为______2_________。

2018年高三数学(理)11.排列组合、二项式定理Word版含解析

2018年高三数学(理)11.排列组合、二项式定理Word版含解析

【答案】 B
【解析】
考点:排列、组合及简单计数问题. 2. 【河北省衡水中学 2016 届高三上学期七调考试数学(理)试题】在二项式
n
1 x
2 4x
的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理数都互不相
邻的概率为( )
1
A.
6
1
1
B.
C.
4
3
【答案】 D
5
D.
12
【解析】
试题分析:展开式通项为
(结果用数值表示) .
【答案】 45 【解析】
考点:二项式定理 .
7. 【河北省邯郸市第一中学 2016 届高三下学期研六考试数学(理)试题】已知
7
xm
a0
a1 x a2 x2
a7 x7 的展开式中 x4 的系数是 -35 ,则 a1 a2 a7
.
【答案】 1
【解析】
试题分析:∵
7
xm
a0 a1 x a2 x2
为: 1. 考点:二项式系数的性质. 8. 【河北省武邑中学 2016 届高三上学期期末考试数学(理)试题】若
项系数绝对值之和为 1024 ,则展开式中 x 项的系数为 _______.
( x 3 ) n 展开式的各 x
【答案】 15
【解析】
试题分析: 在 ( x 3 )n 的展开式中, 令 x 1 ,可得 ( x 3 ) n 展开式的各项系数绝对值之和
数时用插入法,即把 6 个无理数排列,形成 7 个空档(含两头的) ,在这 7 个空档中选取 3 个
排列这 3 个有理数可得方法数.
3. 【湖南师范大学附属中学 2016 届高三上学期月考(三)理科数学试题】现有

2018高考数学理二轮复习课件:1-6-2 排列、组合与二项式定理 精品

2018高考数学理二轮复习课件:1-6-2 排列、组合与二项式定理 精品

(2)[2015·郑州统考一]某人根据自己的爱好,希望从{W,X,Y,Z}中选 2 个不同的字母,从{0,2,6,8}中 选 3 个不同的数字编拟车牌号,要求前 3 位是数字,后 2 位是字母,且数字 2 不能排在首位,字母 Z 和数 字 2 不能相邻,则满足要求的车牌号的个数为( )
A.198 B.180 C.216 D.234
(2)[2015·湖北四校联考]有 5 名优秀毕业生到母校的 3 个班去做学习经验交流,则每个班至少去一名的
不同分派方法种数为( )
A.150
B.180
C.200
D.280
[解析] 分两类,一类 3 个班分派的毕业生人数分别为 2,2,1,则有CA52C22 23·A33=90 种分派方法;另一 类 3 个班分派的毕业生人数分别为 1,1,3,则有 C35·A33=60 种分派方法,所以不同分派方法种数为 90+ 60=150,故选 A.
(n,m∈N*,且 m≤n);
(2)Cmn+1= Cmn +Cmn -1
(n,m∈N*,且 m≤n);
(3)C0n=1.
2.二项式定理
(a+b)n= C0nan+C1nan-1b1+C2nan-2b2+…+Cknan-k·bk+…+Cnnbn ,其中通项 Tr+1= Crnan-rbr .
3.二项式系数的性质
建模规范答题
课题 21 分类讨论思想解答排列组合应用题
[2015·四川高考]用数字 0,1,2,3,4,5 组成没有重复数字的五位数,其中比 40000 大的偶数共有
()
A.144 个
B.120 个
C.96 个
D.72 个
[规范解答] 当五位数的万位为 4 时,个位可以是 0,2,此时满足条件的偶数共有 C12A34=48(个);当 五位数的万位为 5 时,个位可以是 0,2,4,此时满足条件的偶数共有 C13A34=72(个),所以比 40000 大的 偶数共有 48+72=120(个),选 B.

三年高考(2016-2018)数学(理)真题分项专题26 排列组合、二项式定理(含解析)

三年高考(2016-2018)数学(理)真题分项专题26 排列组合、二项式定理(含解析)

专题26 排列组合、二项式定理考纲解读明方向两个原理的区别在于一个与分类有关,一个与分步有关,这两个原理是最基本也是最重要的原理,是解答排列与组合问题,尤其是解答较复杂的排列与组合问题的基础.2.理解排列、组合及排列数与组合数公式,排列与组合的综合是高频考点.本节在高考中单独考查时,以选择题、填空题的形式出现,分值约为5分,属中档题;本节内容还经常与概率、分布列问题相结合,出现在解答题的第一问中,难度中等或中等偏上.分析解读 1.掌握二项式定理和二项展开式的性质.2.会用二项式定理的知识解决系数和、常数项、整除、近似值、最大值等相关问题.3.二项展开式的通项公式是高考热点.本节在高考中一般以选择题或填空题形式出现,分值约为5分,属容易题.2018年高考全景展示1.【2018年全国卷Ⅲ理】的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C故选C。

点睛:本题主要考查二项式定理,属于基础题。

2.【2018年浙江卷】从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)【答案】1260【解析】分析:按是否取零分类讨论,若取零,则先排首位,最后根据分类与分步计数原理计数.详解:若不取零,则排列数为若取零,则排列数为因此一共有个没有重复数字的四位数.点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.3.【2018年浙江卷】二项式的展开式的常数项是___________.【答案】7【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果.详解:二项式的展开式的通项公式为,令得,故所求的常数项为点睛:求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数的值,再由通项写出第项,由特定项得出值,最后求出特定项的系数.4.【2018年理数天津卷】在的展开式中,的系数为____________.【答案】点睛:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.5.【2018年理新课标I卷】从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)【答案】16【解析】分析:首先想到所选的人中没有女生,有多少种选法,再者需要确定从6人中任选3人总共有多少种选法,之后应用减法运算,求得结果.详解:根据题意,没有女生入选有种选法,从6名学生中任意选3人有种选法,故至少有1位女生入选,则不同的选法共有种,故答案是16.点睛:该题是一道关于组合计数的题目,并且在涉及到至多至少问题时多采用间接法,总体方法是得出选3人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有1名女生和有两名女生分别有多少种选法,之后用加法运算求解.2017年高考全景展示1.【2017课标1,理6】621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,第一个二项式中的每项乘以第二个二项式的每项,分析好2x 的项共有几项,进行加和.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项式展开式中的r 不同.2.【2017课标3,理4】()()52x y x y +-的展开式中x 3y 3的系数为 A .80-B .40-C .40D .80【答案】C 【解析】试题分析:()()()()555222x y x y x x y y x y +-=-+-, 由()52x y - 展开式的通项公式:()()5152rrrr T C x y -+=- 可得:当3r = 时,()52x x y - 展开式中33x y 的系数为()33252140C ⨯⨯-=- , 当2r = 时,()52y x y - 展开式中33x y 的系数为()22352180C ⨯⨯-= ,则33x y 的系数为804040-= . 故选C .【考点】 二项式展开式的通项公式【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项. (2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.3.【2017课标II ,理6】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种 【答案】D【考点】 排列与组合;分步乘法计数原理【名师点睛】(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步。

2011-2020年高考数学真题分类汇编 专题30 排列组合、二项式定理(理)(学生版)

2011-2020年高考数学真题分类汇编 专题30  排列组合、二项式定理(理)(学生版)

专题30排列组合、二项式定理【理】年份题号考点考查内容2011理8二项式定理二项式定理的应用,常数项的计算2012理2排列与组合简单组合问题2013卷1理9二项式定理二项式定理的应用以及组合数的计算卷2理5二项式定理二项式定理的应用2014卷1理13二项式定理二项式展开式系数的计算卷2理13二项式定理二项式展开式系数的计算2015卷1理10二项式定理三项式展开式系数的计算卷2理15二项式定理二项式定理的应用2016卷1理14二项式定理二项式展开式指定项系数的计算卷2理5排列与组合计数原理、组合数的计算卷3理12排列与组合计数原理的应用2017卷1理6二项式定理二项式展开式系数的计算卷2理6排列与组合排列组合问题的解法卷3理4二项式定理二项式展开式系数的计算2018卷1理15排列与组合排列组合问题的解法卷3理5二项式定理二项式展开式指定项系数的计算2019卷3理4二项式定理利用展开式通项公式求展开式指定项的系数2020卷1理8二项式定理利用展开式通项公式求展开式指定项的系数卷3理14二项式定理利用展开式通项公式求展开式常数项考点出现频率2021年预测考点102两个计数原理的应用23次考2次命题角度:(1)分类加法计数原理;(2)分步乘法计数原理;(3)两个计数原理的综合应用.核心素养:数学建模、数学运算考点103排列问题的求解23次考0次考点104组合问题的求解23次考4次考点105排列与组合的综合应用23次考2次考点106二项式定理23次考11次十年试题分类考点102两个计数原理的应用1.(2016全国II 理)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A .24B .18C .12D .92.(2014新课标理1理)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A .18B .38C .58D .783.(2012湖北理)回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则(Ⅰ)4位回文数有个;(Ⅱ)21()n n N 位回文数有个.4.(2011湖北理)给n 个自上而下相连的正方形着黑色或白色.当4n 时,在所有不同的着色方案中,黑色正方形互不相邻....的着色方案如下图所示:由此推断,当6n 时,黑色正方形互不相邻....的着色方案共有种,至少有两个黑色正方形相邻..的着色方案共有种,(结果用数值表示)考点103排列问题的求解5.(2016四川理)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为A .24B .48C .60D .726.(2015四川理)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有A .144个B .120个C .96个D .72个7.(2015广东理)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)8.(2014北京理)把5件不同产品摆成一排,若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有_______种.9.(2013北京理)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少一张,如果分给同一人的两张参观券连号,那么不同的分法种数是.10.(2013浙江理)将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答).考点104组合问题的求解11.【2020山东卷3】6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A .120种B .90种C .60种D .30种12.(2018全国Ⅱ理)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723 .在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112B .114C .115D .11813.(2017山东理)从分别标有1,2, ,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是A .518B .49C .59D .7914.(2014广东理)设集合 12345=,,,,{1,0,1},1,2,3,4,5i A x x x x x x i ,那么集合A 中满足条件“1234513x x x x x ”的元素个数为()A .60B .90C .120D .13015.(2014安徽理)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60 的共有A .24对B .30对C .48对D .60对16.(2013山东理)用0,1,…,9十个数学,可以组成有重复数字的三位数的个数为A .243B .252C .261D .27917.(2012新课标理)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有A .12种B .10种C .9种D .8种18.(2012浙江理)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A .60种B .63种C .65种D .66种19.(2012山东理)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,并且红色卡片至多1张,不同取法的种数是A .232B .252C .472D .48420.【2020上海卷9】从6个人选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有种安排情况.21.(2018全国Ⅰ理)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)22.(2014广东理)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为.23.(2014江西理)10件产品中有7件正品、3件次品,从中任取4件,则恰好取到1件次品的概率是________.24.(2013新课标2理)从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n =________.25.(2011湖北理)给n 个自上而下相连的正方形着黑色或白色.当4n 时,在所有不同的着色方案中,黑色正方形互不相邻....的着色方案如下图所示:由此推断,当6n 时,黑色正方形互不相邻....的着色方案共有种,至少有两个黑色正方形相邻..的着色方案共有种,(结果用数值表示)考点105排列与组合的综合应用26.【2020全国Ⅱ理14】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有______种..27.(2017新课标理Ⅱ理)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A .12种B .18种C .24种D .36种28.(2018浙江理)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.(用数字作答)29.(2017浙江理)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)30.(2017天津理)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)31.(2014浙江理)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).考点106二项式定理32.【2020全国Ⅲ理14】622x x的展开式中常数项是(用数字作答).33.【2020浙江卷12】设 2345123455612x a a x a x a x a x a x ,则5a;123a a a.34.【2020天津卷11】在522x x的展开式中,2x 的系数是_________.35.(2020全国Ⅰ理8) 25y x x x y的展开式中33x y 的系数为()A .5B .10C .15D .2036.【2020北京卷3】在52 的展开式中,2x 的系数为()A .5B .5C .10D .1037.(2019全国I 理II 理4)(1+2x 2)(1+x)4的展开式中x 3的系数为A .12B .16C .20D .2438.(2019浙江理13)在二项式9)x 的展开式中,常数项是________,系数为有理数的项的个数是_______.39.(2018全国Ⅲ理)252()x x的展开式中4x 的系数为A .10B .20C .40D .8040.(2017新课标Ⅰ理)621(1)(1)x x展开式中2x 的系数为A .15B .20C .30D .3541.(2017新课标Ⅲ理)5()(2)x y x y 的展开式中33x y 的系数为A . 80B . 40C .40D .8042.(2016四川理)设i 为虚数单位,则6()x i 的展开式中含4x 的项为A .-154x B .154x C .-204ix D .204ix 43.(2015湖北理)已知(1)nx 的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为A .122B .112C .102D .9244.(2015陕西理)二项式(1)()nx n N 的展开式中2x 的系数为15,则n A .4B .5C .6D .745.(2015湖南理)已知5的展开式中含32x 的项的系数为30,则aA B .C .6D .-646.(2014浙江理)在46)1()1(y x 的展开式中,记nm y x 项的系数为),(n m f ,则(3,0)f (2,1)f (1,2)f (0,3)f =A .45B .60C .120D .21047.(2014湖南理)51(2)2x y 的展开式中23x y 的系数是A .-20B .-5C .5D .2048.(2014福建理)用a 代表红球,b 代表蓝球,c 代表黑球,由加法原理及乘法原理,从1个红球和1个篮球中取出若干个球的所有取法可由 b a 11的展开式ab b a 1表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球,面“ab ”用表示把红球和篮球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、从5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的篮球都取出或都不取出的所有取法的是A .555432111c b a a a a a B .554325111c b b b b b a C .554325111c b b b b b a D .543255111c c c c c b a 49.(2013辽宁理)使得 3nx n N的展开式中含常数项的最小的n 为A .4B .5C .6D .750.(2013江西理)5232x x展开式中的常数项为A .80B .-80C .40D .-4051.(2012安徽理)2521(2)(1)x x的展开式的常数项是()A .3B .2C .D .52.(2012天津理)在251(2)x x的二项展开式中,x 的系数为A .10B .-10C .40D .-4053.(2011福建理)5(12)x 的展开式中,2x 的系数等于A .80B .40C .20D .1054.(2011陕西理)6(42)xx (x R)展开式中的常数项是A .20B .15C .15D .2055.(2019天津理理10)83128x x是展开式中的常数项为.56.(2018天津理)在5(x的展开式中,2x 的系数为.57.(2018浙江理)二项式81)2x的展开式的常数项是___________.58.(2017浙江理)已知多项式32(1)(2)x x =543212345x a x a x a x a x a ,则4a =___,5a =___.59.(2017山东理)已知(13)nx 的展开式中含有2x 项的系数是54,则n .60.(2016山东理)若25(ax的展开式中5x 的系数是-80,则实数a=_______.61.(2016全国I 理)5(2x的展开式中,x 3的系数是.(用数字填写答案)62.(2015北京理)在 52x 的展开式中,3x 的系数为.(用数字作答)63.(2015新课标2理)4()(1)a x x 的展开式中x 的奇数次幂项的系数之和为32,则a =______.64.(2014新课标1理)8()()x y x y 的展开式中27x y 的系数为.(用数字填写答案)65.(2014新课标2理) 10x a 的展开式中,7x 的系数为15,则a =___.(用数字填写答案)66.(2014山东理)若62b ax x 的展开式中3x 项的系数为20,则22a b 的最小值为.67.(2013安徽理)若8x的展开式中4x 的系数为7,则实数a ______.68.(2012广东理)261()x x的展开式中3x 的系数为______.(用数字作答)69.(2012浙江理)若将函数5()f x x 表示为2012()(1)(1)f x a a x a x 55(1)a x ,其中0a ,1a ,2a ,…,5a 为实数,则3a.70.(2011浙江理)设二项式)0()(6 a xa x 的展开式中3x 的系数为A ,常数项为B ,若B=4A ,则a 的值是.。

专题19 排列、组合、二项式定理(教学案)-2018年高考理数二轮复习精品资料(教师版)

专题19 排列、组合、二项式定理(教学案)-2018年高考理数二轮复习精品资料(教师版)

1.排列、组合与二项式定理每年交替考查,主要以选择、填空的形式出现,试题难度中等或偏易.2.排列、组合试题具有一定的灵活性和综合性,常与实际相结合,转化为基本的排列组合模型解决问题,需用到分类讨论思想,转化思想.3.与二项式定理有关的问题比较简单,但非二项问题也是今后高考的一个热点,解决此类问题的策略是转化思想.1.两个重要公式(1)排列数公式A m n=n!n-m!=n(n-1)(n-2)…(n-m+1)(n,m∈N*,且m≤n).(2)组合数公式C m n=n!m!n-m!=n n-1n-2…n-m+1m!(n,m∈N*,且m≤n).2.三个重要性质和定理(1)组合数性质①C m n=C n-mn(n,m∈N*,且m≤n);②C m n+1=C m n+C m-1n(n,m∈N*,且m≤n);③C0n=1.(2)二项式定理(a+b)n=C0n a n+C1n a n-1b1+C2n a n-2b2+…+C k n a n-k·b k+…+C n n b n,其中通项T r+1=C r n a n-r b r.(3)二项式系数的性质①C0n=C n n,C1n=C n-1n,…,C r n=C n-r n;②C 0n +C 1n +C 2n +…+C n n =2n;③C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n +…=2n -1.考点一 排列与组合例1.【2017课标II ,理6】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种 【答案】D【变式探究】【2016年高考四川理数】用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为(A )24 (B )48 (C )60 (D )72 【答案】D【解析】由题意,要组成没有重复数字的五位奇数,则个位数应该为1或3或5,其他位置共有44A 种排法,所以奇数的个数为443A 72 ,故选D.【变式探究】(2015·四川,6)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A .144个B .120个C .96个D .72个解析 由题意,首位数字只能是4,5,若万位是5,则有3×A 34=72个;若万位是4,则有2×A 34个=48个,故40 000大的偶数共有72+48=120个.选B.答案 B考点二 排列组合中的创新问题例2.用a代表红球,b代表蓝球,c代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球、而“ab”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( )A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)解析分三步:第一步,5个无区别的红球可能取出0个,1个,…,5个,则有(1+a+a2+a3+a4+a5)种不同的取法;第二步,5个无区别的蓝球都取出或都不取出,则有(1+b5)种不同取法;第三步,5个有区别的黑球看作5个不同色,从5个不同色的黑球中任取0个,1个,…,5个,有(1+c)5种不同的取法,所以所求的取法种数为(1+a+a2+a3+a4+a5)(1+b5)(1+c)5,故选A.答案 A【变式探究】设集合A={(x1,x2,x3,x4,x5)|x i∈{-1,0,1},i=1,2,3,4,5},那么集合A 中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为( )A.60 B.90 C.120 D.130答案 D考点三 二项展开式中项的系数例3.【2016年高考北京理数】在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答)【答案】60.【解析】根据二项展开的通项公式16(2)r r r r T C x +=-可知,2x 的系数为226(2)60C -=。

2012-2021高考真题数学汇编:排列、组合与二项式定理(1)(教师版)

2012-2021高考真题数学汇编:排列、组合与二项式定理(1)(教师版)

2012-2021高考真题数学汇编:排列、组合与二项式定理(1)一.选择题(共24小题)1.(2021•乙卷)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者()A.60种B.120种C.240种D.480种2.(2020•海南)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者()A.2种B.3种C.6种D.8种3.(2020•北京)在(﹣2)5的展开式中,x2的系数为()A.﹣5 B.5 C.﹣10 D.104.(2020•山东)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种5.(2020•新课标Ⅰ)(x+)(x+y)5的展开式中x3y3的系数为()A.5 B.10 C.15 D.206.(2019•全国)(2+1)6的展开式中x的系数是()A.120 B.60 C.30 D.157.(2019•新课标Ⅲ)(1+2x2)(1+x)4的展开式中x3的系数为()A.12 B.16 C.20 D.248.(2018•新课标Ⅲ)(x2+)5的展开式中x4的系数为()A.10 B.20 C.40 D.809.(2018•上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.1610.(2017•新课标Ⅲ)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.8011.(2017•全国)4个数字1和4个数字2可以组成不同的8位数共有()A.16个B.70个C.140个D.256个12.(2017•新课标Ⅰ)(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.3513.(2017•新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成()A.12种B.18种C.24种D.36种14.(2016•全国)从1,2,3,4,5,6中任取三个不同的数相加,则不同的结果共有()A.6种B.9种C.10种D.15种15.(2016•四川)设i为虚数单位,则(x+i)6的展开式中含x4的项为()A.﹣15x4B.15x4C.﹣20ix4D.20ix416.(2016•四川)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24 B.48 C.60 D.7217.(2016•新课标Ⅱ)如图,小明从街道的E处出发,先到F处与小红会合,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.918.(2016•上海)在(1+x)6的二项展开式中,x2项的系数为()A.2 B.6 C.15 D.2019.(2015•上海)组合数(n≥m≥2,m,n∈N*)恒等于()A.B.C.D.20.(2015•湖北)已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()A.212B.211C.210D.2921.(2015•新课标Ⅰ)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.6022.(2015•陕西)二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n=()A.7 B.6 C.5 D.423.(2015•广东)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,q,r,s∈N},F={(t,u,v,w),0≤v<w≤4且t,u,v,w∈N}(X)表示集合X中的元素个数,则card(E)(F)=()A.200 B.150 C.100 D.5024.(2015•四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个B.120个C.96个D.72个二.填空题(共34小题)25.(2021•浙江)已知多项式(x﹣1)3+(x+1)4=x4+a1x3+a2x2+a3x+a4,则a1=;a2+a3+a4=.26.(2021•上海)已知(1+x)n的展开式中,唯有x3的系数最大,则(1+x)n的系数和为.27.(2020•上海)从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第三天安排2个人,则共有种安排情况.28.(2020•浙江)二项展开式(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a4=,a1+a2+a3=.29.(2020•新课标Ⅱ)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学种.30.(2020•上海)已知二项式(2x+)5,则展开式中x3的系数为.31.(2020•新课标Ⅲ)(x2+)6的展开式中常数项是(用数字作答).32.(2020•天津)在(x+)5的展开式中,x2的系数是.33.(2019•上海)已知二项式(2x+1)5,则展开式中含x2项的系数为.34.(2019•天津)(2x﹣)8的展开式中的常数项为.35.(2019•浙江)在二项式(+x)9展开式中,常数项是,系数为有理数的项的个数是.36.(2019•上海)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,则不同的安排方法有种(结果用数值表示)37.(2019•上海)在的展开式中,常数项等于.38.(2018•新课标Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选种.(用数字填写答案)39.(2018•浙江)从1,3,5,7,9中任取2个数字,从0,2,4,一共可以组成个没有重复数字的四位数.(用数字作答).40.(2018•全国)多项式(1+x)3+(1+x)4中x2的系数为.(用数字填写答案)41.(2018•天津)在(x﹣)5的展开式中,x2的系数为.42.(2018•浙江)二项式(+)8的展开式的常数项是.43.(2018•上海)某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、四辩,若其中学生甲必须参赛且不担任四辩(结果用数值表示)44.(2018•上海)设a∈R,若的二项展开式中的常数项相等,则a=45.(2018•上海)在(1+x)7的二项展开式中,x2项的系数为(结果用数值表示).46.(2017•全国)(x﹣2)6的展开式中x5的系数是.(用数字填写答案)47.(2017•上海)若排列数=6×5×4,则m=.48.(2017•浙江)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=,a5=.49.(2017•山东)已知(1+3x)n的展开式中含有x2的系数是54,则n=.50.(2017•天津)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数个.(用数字作答)51.(2017•浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,共有种不同的选法.(用数字作答)52.(2017•上海)若的二项展开式的各项系数之和为729,则该展开式中常数项的值为.53.(2017•上海)设a1、a2、…、a6为1、2、3、4、5、6的一个排列,则满足|a1﹣a2|+|a3﹣a4|+|a5﹣a6|=3的不同排列的个数为.54.(2016•北京)在(1﹣2x)6的展开式中,x2的系数为.(用数字作答)55.(2016•天津)(x2﹣)8的展开式中x7的系数为.(用数字作答)56.(2016•新课标Ⅰ)(2x+)5的展开式中,x3的系数是.(用数字填写答案)57.(2016•山东)若(ax2+)5的展开式中x5的系数是﹣80,则实数a=.58.(2016•上海)在(﹣)n的二项式中,所有的二项式系数之和为256,则常数项等于.三.解答题(共2小题)59.(2019•江苏)设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知a32=2a2a4.(1)求n的值;(2)设(1+)n=a+b,其中a,b∈N*2﹣3b2的值.60.(2016•江苏)(1)求﹣的值;(2)设m,n∈N*,n≥m,求证:(m+1)+(m+2)+(m+3)+…++(n+1)=(m+1).2012-2021高考真题数学汇编:排列、组合与二项式定理(1)参考答案一.选择题(共24小题)1.(2021•乙卷)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者()A.60种B.120种C.240种D.480种【分析】5分先选2人一组,然后4组全排列即可.【解答】解:5名志愿者选2个5组,有种方法,有种,共有=240种,故选:C.【点评】本题主要考查排列组合的应用,利用先分组后排列的方法是解决本题的关键,是基础题.2.(2020•海南)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者()A.2种B.3种C.6种D.8种【分析】先把三名学生分成2组,再把2组学生分到两个村,利用排列组合知识直接求解.【解答】解:要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有:=6.故选:C.【点评】本题考查不同的安排方法种数的求法,考查排列组合等基础知识,考查运算求解能力,是基础题.3.(2020•北京)在(﹣2)5的展开式中,x2的系数为()A.﹣5 B.5 C.﹣10 D.10【分析】在二项展开式的通项公式中,令x的幂指数等于2,求出r的值,即可求得x2的系数.【解答】解:(﹣2)5的展开式中,通项公式为T r+8=•(﹣2)r•,令=2,可得x2的系数为•(﹣2)=﹣10,故选:C.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.4.(2020•山东)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种【分析】让场馆去挑人,甲场馆从6人中挑一人有:=6种结果;乙场馆从余下的5人中挑2人有:=10种结果;余下的3人去丙场馆;相乘即可求解结论.【解答】解:因为每名同学只去1个场馆,甲场馆安排1名,丙场馆安排6名,甲场馆从6人中挑一人有:=6种结果;乙场馆从余下的5人中挑6人有:=10种结果;余下的4人去丙场馆;故共有:6×10=60种安排方法;故选:C.【点评】本题考查排列组合知识的应用,考查运算求解能力,是基础题.5.(2020•新课标Ⅰ)(x+)(x+y)5的展开式中x3y3的系数为()A.5 B.10 C.15 D.20【分析】先把条件整理转化为求(x2+y2)(x+y)5展开式中x4y3的系数,再结合二项式的展开式的特点即可求解.【解答】解:因为(x+)(x+y)5=;要求展开式中x2y3的系数即为求(x2+y3)(x+y)5展开式中x4y4的系数;(x2+y2)(x+y)7展开式含x4y3的项为:x5•x6•y3+y2•x4•y=15x6y3;故(x+)(x+y)4的展开式中x3y3的系数为15;故选:C.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,二项式系数的性质,属基础题.6.(2019•全国)(2+1)6的展开式中x的系数是()A.120 B.60 C.30 D.15【分析】由二项式定理及展开式的通项得:T r+1=(2)6﹣r=26﹣r x,令=1,解得r=4,则(2+1)6的展开式中x的系数是22=60,得解.【解答】解:由二项式(2+1)6的展开式的通项为T r+1=(7)6﹣r=28﹣r x,令=6,解得r=4,则(2+4)6的展开式中x的系数是28=60,故选:B.【点评】本题考查了二项式定理及展开式的通项,属中档题.7.(2019•新课标Ⅲ)(1+2x2)(1+x)4的展开式中x3的系数为()A.12 B.16 C.20 D.24【分析】利用二项式定理、排列组合的性质直接求解.【解答】解:(1+2x5)(1+x)4的展开式中x2的系数为:1×+3×.故选:A.【点评】本题考查展开式中x3的系数的求法,考查二项式定理、排列组合的性质等基础知识,考查推理能力与计算能力,属于基础题.8.(2018•新课标Ⅲ)(x2+)5的展开式中x4的系数为()A.10 B.20 C.40 D.80【分析】由二项式定理得(x2+)5的展开式的通项为:T r+1=(x2)5﹣r()r=,由10﹣3r =4,解得r=2,由此能求出(x2+)5的展开式中x4的系数.【解答】解:由二项式定理得(x2+)7的展开式的通项为:T r+1=(x6)5﹣r()r=,由10﹣2r=4,解得r=2,∴(x7+)5的展开式中x2的系数为=40.故选:C.【点评】本题考查二项展开式中x4的系数的求法,考查二项式定理、通项公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.9.(2018•上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB4,D1﹣A1AFF3满足题意,而C1,E1,C,D,E,和D8一样,有2×4=8,当A1ACC1为底面矩形,有6个满足题意,当A1AEE1为底面矩形,有8个满足题意,故有8+4+5=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.10.(2017•新课标Ⅲ)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.80【分析】(2x﹣y)5的展开式的通项公式:T r+1=(2x)5﹣r(﹣y)r=25﹣r(﹣1)r x5﹣r y r.令5﹣r=2,r =3,解得r=3.令5﹣r=3,r=2,解得r=2.即可得出.【解答】解:(2x﹣y)5的展开式的通项公式:T r+8=(2x)3﹣r(﹣y)r=25﹣r(﹣8)r x5﹣r y r.令2﹣r=2,r=3.令8﹣r=3,r=2.∴(x+y)(8x﹣y)5的展开式中的x3y8系数=22×(﹣3)3+23×5×=40.故选:C.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.11.(2017•全国)4个数字1和4个数字2可以组成不同的8位数共有()A.16个B.70个C.140个D.256个【分析】利用排列数的性质、计算公式直接求解.【解答】解:4个数字1和5个数字2可以组成不同的8位数共有:=70.故选:B.【点评】本题考查排列数的求法,考查排列数的性质、计算公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.12.(2017•新课标Ⅰ)(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.35【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(7+)=(7+x﹣2)提供常数项1,则(6+x)6提供含有x2的项,可得展开式中x8的系数:若(1+)提供x﹣2项,则(1+x)2提供含有x4的项,可得展开式中x2的系数:由(7+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)5展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.13.(2017•新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成()A.12种B.18种C.24种D.36种【分析】把工作分成3组,然后安排工作方式即可.【解答】解:4项工作分成3组,可得:,安排3名志愿者完成4项工作,每人至少完成1项,可得:6×=36种.故选:D.【点评】本题考查排列组合的实际应用,注意分组方法以及排列方法的区别,考查计算能力.14.(2016•全国)从1,2,3,4,5,6中任取三个不同的数相加,则不同的结果共有()A.6种B.9种C.10种D.15种【分析】利用组合数和列举法能求出结果.【解答】解:从1,2,6,4,5,7中任取三个不同的数相加,所得的最小值为1+2+2=6,最大值为4+5+6=15,1+8+3=6,3+2+4=5,1+2+5=1+3+4=2+3+7=9,1+8+6=2+6+6=2+7+5=11,1+3+6=2+2+6=3+2+5=12,3+8+6=14共有:10种不同结果.故选:C.【点评】本题考查三个数相加的不同的和的求法,考查排列组合、列举法等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(2016•四川)设i为虚数单位,则(x+i)6的展开式中含x4的项为()A.﹣15x4B.15x4C.﹣20ix4D.20ix4【分析】利用二项展开式的通项公式即可得到答案.【解答】解:(x+i)6的展开式中含x4的项为x4•i8=﹣15x4,故选:A.【点评】本题考查二项式定理,深刻理解二项展开式的通项公式是迅速作答的关键,属于中档题.16.(2016•四川)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24 B.48 C.60 D.72【分析】用1、2、3、4、5组成无重复数字的五位奇数,可以看作是填5个空,要求个位是奇数,其它位置无条件限制,因此先从3个奇数中任选1个填入,其它4个数在4个位置上全排列即可.【解答】解:要组成无重复数字的五位奇数,则个位只能排1,3,共有2种排法,然后还剩4个数,剩余的4个数可以在十位到万位3个位置上全排列=24种排法.由分步乘法计数原理得,由8、2、3、4.故选:D.【点评】本题考查了排列、组合及简单的计数问题,此题是有条件限制排列,解答的关键是做到合理的分布,是基础题.17.(2016•新课标Ⅱ)如图,小明从街道的E处出发,先到F处与小红会合,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.9【分析】从E到F最短的走法,无论怎样走,一定包括4段,其中2段方向相同,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,由组合数可得最短的走法,同理从F到G,最短的走法,有C31=3种走法,利用乘法原理可得结论.【解答】解:从E到F,每条东西向的街道被分成2段,从E到F最短的走法,无论怎样走,其中2段方向相同,每种最短走法,即是从2段中选出2段走东向的,故共有C43C22=4种走法.同理从F到G,最短的走法31C32=3种走法.∴小明到老年公寓可以选择的最短路径条数为7×3=18种走法.故选:B.【点评】本题考查排列组合的简单应用,得出组成矩形的条件和最短走法是解决问题的关键,属基础题18.(2016•上海)在(1+x)6的二项展开式中,x2项的系数为()A.2 B.6 C.15 D.20【分析】根据二项展开式的通项公式求出展开式的特定项即可.【解答】解:(1+x)6的二项展开式中,通项公式为:T r+5=•17﹣r•x r,令r=2,得展开式中x2的系数为:=15.故选:C.【点评】本题考查了二项展开式通项公式的应用问题,是基础题目.19.(2015•上海)组合数(n≥m≥2,m,n∈N*)恒等于()A.B.C.D.【分析】直接利用组合数的简单性质求解即可.【解答】解:组合数===.故选:A.【点评】本题考查组合数的性质,基本知识的考查.20.(2015•湖北)已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()A.212B.211C.210D.29【分析】直接利用二项式定理求出n,然后利用二项式定理系数的性质求出结果即可.【解答】解:已知(1+x)n的展开式中第4项与第5项的二项式系数相等,可得,可得n=6+7=10.(1+x)10的展开式中奇数项的二项式系数和为:=79.故选:D.【点评】本题考查二项式定理的应用,组合数的形状的应用,考查基本知识的灵活运用以及计算能力.21.(2015•新课标Ⅰ)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.60【分析】利用展开式的通项,即可得出结论.【解答】解:(x2+x+y)5的展开式的通项为T r+4=,令r=2,则(x2+x)8的通项为=,令3﹣k=5,则k=1,∴(x3+x+y)5的展开式中,x5y5的系数为=30.故选:C.【点评】本题考查二项式定理的运用,考查学生的计算能力,确定通项是关键.22.(2015•陕西)二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n=()A.7 B.6 C.5 D.4【分析】由题意可得==15,解关于n的方程可得.【解答】解:∵二项式(x+1)n(n∈N+)的展开式中x2的系数为15,∴=15,即,解得n=3,故选:B.【点评】本题考查二项式定理,属基础题.23.(2015•广东)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,q,r,s∈N},F={(t,u,v,w),0≤v<w≤4且t,u,v,w∈N}(X)表示集合X中的元素个数,则card(E)(F)=()A.200 B.150 C.100 D.50【分析】对于集合E,s=4时,p,q,r从0,1,2,3任取一数都有4种取法,从而构成的元素(p,q,r,s)有4×4×4=64个,再讨论s=3,2,1的情况,求法一样,把每种情况下元素个数相加即可得到集合E的元素个数,而对于集合F,需讨论两个数:u,w,方法类似,最后把求得的集合E,F元素个数相加即可.【解答】解:(1)s=4时,p,q,r的取值的排列情况有4×2×4=64种;s=3时,p,q,r的取值的排列情况有3×3×3=27种;s=2时,有2×2×3=8种;s=1时,有8×1×1=6种;∴card(E)=64+27+8+1=100;(2)u=8时:若w=4,t,v的取值的排列情况有4×7=16种;若w=3,t,v的取值的排列情况有4×3=12种;若w=2,有4×8=8种;若w=1,有8×1=4种;u=8时:若w=4,t,v的取值的排列情况有3×2=12种;若w=3,t,v的取值的排列情况有3×7=9种;若w=2,有2×2=6种;若w=7,有3×1=4种;u=2时:若w=4,t,v的取值的排列情况有2×4=8种;若w=6,有2×3=8种;若w=2,有2×3=4种;若w=1,有4×1=2种;u=5时:若w=4,t,v的取值的排列情况有1×8=4种;若w=3,有3×3=3种;若w=6,有1×2=2种;若w=1,有1×3=1种;∴card(F)=100;∴card(E)+card(F)=200.故选:A.【点评】考查描述法表示集合,分布计数原理的应用,注意要弄清讨论谁,做到不重不漏.24.(2015•四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个B.120个C.96个D.72个【分析】根据题意,符合条件的五位数首位数字必须是4、5其中1个,末位数字为0、2、4中其中1个;进而对首位数字分2种情况讨论,①首位数字为5时,②首位数字为4时,每种情况下分析首位、末位数字的情况,再安排剩余的三个位置,由分步计数原理可得其情况数目,进而由分类加法原理,计算可得答案.【解答】解:根据题意,符合条件的五位数首位数字必须是4,末位数字为0、4;分两种情况讨论:①首位数字为5时,末位数字有3种情况,放在剩余的5个位置上43=24种情况,此时有2×24=72个,②首位数字为4时,末位数字有2种情况,放在剩余的2个位置上43=24种情况,此时有2×24=48个,共有72+48=120个.故选:B.【点评】本题考查计数原理的运用,关键是根据题意,分析出满足题意的五位数的首位、末位数字的特征,进而可得其可选的情况.二.填空题(共34小题)25.(2021•浙江)已知多项式(x﹣1)3+(x+1)4=x4+a1x3+a2x2+a3x+a4,则a1=5;a2+a3+a4=10.【分析】利用通项公式求解x3的系数,即可求出a1的值;利用赋值法,令x=1,即可求出a2+a3+a4的值.【解答】解:a1即为展开式中x3的系数,所以a5=;令x=1,则有7+a1+a2+a5+a4=(1﹣3)3+(1+2)4=16,所以a2+a8+a4=16﹣5﹣7=10.故答案为:5;10.【点评】本题考查了二项展开式的通项公式的运用以及赋值法求解系数问题,考查了运算能力,属于基础题.26.(2021•上海)已知(1+x)n的展开式中,唯有x3的系数最大,则(1+x)n的系数和为64.【分析】由已知可得n=6,令x=1,即可求得系数和.【解答】解:由题意,>,且>,所以n=6,所以令x=3,(1+x)6的系数和为76=64.故答案为:64.【点评】本题主要考查二项式定理.考查二项式系数的性质,属于基础题.27.(2020•上海)从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第三天安排2个人,则共有180种安排情况.【分析】根据题意,由组合公式得共有排法,计算即可得出答案.【解答】解:根据题意,可得排法共有.故答案为:180.【点评】本题考查组合数公式,解题关键是正确理解题意并熟悉组合数公式,属于基础题.28.(2020•浙江)二项展开式(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a4=80,a1+a2+a3=130.【分析】直接利用二项式定理的通项公式,求解即可.【解答】解:(1+2x)8=a0+a1x+a5x2+a3x7+a4x4+a5x5,则a4==80.a1+a2+a8=×6+7+83=130.故答案为:80;130.【点评】本题考查二项式定理的应用,只有二项式定理系数以及项的系数的区别,是基本知识的考查.29.(2020•新课标Ⅱ)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学36种.【分析】先从4人中选出2人作为一组有C42种方法,再与另外2人一起进行排列有A33种方法,相乘即可.【解答】解:因为有一小区有两人,则不同的安排方式共有C42A33=36种.故答案为:36.【点评】本题考查排列组合及分步计数原理的运用,属于基础题.30.(2020•上海)已知二项式(2x+)5,则展开式中x3的系数为10.【分析】由,可得到答案.【解答】解:,所以展开式中x3的系数为10.故答案为:10.【点评】本题考查利用二项式定理求特定项的系数,属于基础题.31.(2020•新课标Ⅲ)(x2+)6的展开式中常数项是240(用数字作答).【分析】先求出二项式展开式的通项公式,再令x的幂指数等于0,求得r的值,即可求得展开式中的常数项的值.【解答】解:由于(x2+)3的展开式的通项公式为T r+1=•2r•x12﹣3r,令12﹣3r=3,求得r=4•24=240,故答案为:240.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.32.(2020•天津)在(x+)5的展开式中,x2的系数是10.【分析】在的展开式的通项公式中,令x的幂指数等于2,求出r的值,即可得到展开式中x2的系数.【解答】解:∵的展开式的通项公式为T r+1= x3﹣r 2r x﹣2r=8r x5﹣8r,令 5﹣3r=8,得r=1,∴x2的系数是 8×=10,故答案为10.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.33.(2019•上海)已知二项式(2x+1)5,则展开式中含x2项的系数为40.【分析】先求得二项式展开式的通项公式,再令x的幂指数等于2,求得r的值,即可求得含x2项的系数值.【解答】解:二项式(2x+1)7的展开式的通项公式为T r+1=C5r•75﹣r•x5﹣r,令3﹣r=2,求得r=32项的系数值为C53•32=40,故答案为:40.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.34.(2019•天津)(2x﹣)8的展开式中的常数项为28.【分析】本题可根据二项式的展开式的通项进行计算,然后令x的指数为0即可得到r的值,代入r的值即可算出常数项.【解答】解:由题意,可知:此二项式的展开式的通项为:T r+1=(7x)8﹣r=•78﹣r•(﹣)r•x8﹣r•()r=•(﹣1)r38﹣4r•x5﹣4r.∴当8﹣8r=0,即r=2时,T r+8为常数项.此时T2+1=•(﹣1)628﹣8×2=28.故答案为:28.【点评】本题主要考查二项式的展开式的通项,通过通项中未知数的指数为0可算出常数项.本题属基础题.35.(2019•浙江)在二项式(+x)9展开式中,常数项是16,系数为有理数的项的个数是5.【分析】写出二项展开式的通项,由x的指数为0求得常数项;再由2的指数为整数求得系数为有理数的项的个数.【解答】解:二项式的展开式的通项为=.由r=0,得常数项是;当r=1,3,5,7,4时,∴系数为有理数的项的个数是5个.故答案为:,8.【点评】本题考查二项式定理及其应用,关键是熟记二项展开式的通项,是基础题.36.(2019•上海)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,则不同的安排方法有24种(结果用数值表示)【分析】根据分步计数原理即可求出.【解答】解:在五天里,连续的2天,剩下的3人排列53=24种,故答案为:24.【点评】本题考查了简单的分步计数原理,属于基础题.37.(2019•上海)在的展开式中,常数项等于15.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为0得常数项.【解答】解:展开式的通项为T r+2==,,得r=2,故展开式的常数项为第5项:C63=15.故答案为:15.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.38.(2018•新课标Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选16种.(用数字填写答案)【分析】方法一:直接法,分类即可求出,方法二:间接法,先求出没有限制的种数,再排除全是男生的种数.【解答】解:方法一:直接法,1女2男31C48=12,2女1男82C47=4根据分类计数原理可得,共有12+4=16种,方法二,间接法:C83﹣C46=20﹣4=16种,故答案为:16【点评】本题考查了分类计数原理,属于基础题39.(2018•浙江)从1,3,5,7,9中任取2个数字,从0,2,4,一共可以组成1260个没有重复数字的四位数.(用数字作答).【分析】解:根据题意,分2种情况讨论:①,从0,2,4,6中取出的2个数字中没有0,②,从0,2,4,6中取出的2个数字中含有0,由分步计数原理计算每一种情况下四位数的数目,由加法原理计算可得答案.【解答】解:根据题意,分2种情况讨论:①,从0,7,4,有C38=3种取法,从1,6,5,7,4中任取2个数字55=10种取法,再将选出的4个全排列,安排在4个数位24=24种情况,一共可以组成3×10×24=720个没有重复数字的四位数;②,从3,2,4,有C51=3种取法,从4,3,5,8,9中任取2个数字72=10种取法,0不能在千位位置,其它2个数字任意排列33=18种情况一共可以组成7×10×18=540个没有重复数字的四位数;故一共可得组成720+540=1260个没有重复数字的四位数;故答案为:1260.【点评】本题考查排列组合及简单的计数问题,先选后排是解决问题的关键,属于综合题.40.(2018•全国)多项式(1+x)3+(1+x)4中x2的系数为9.(用数字填写答案)【分析】把(1+x)3和(1+x)4中x2的系数相加,既得所求.【解答】解:多项式(1+x)3+(5+x)4中x2的系数,即为(2+x)3和(1+x)3中x2的系数之和,为+=7,故答案为:9.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题41.(2018•天津)在(x﹣)5的展开式中,x2的系数为.【分析】写出二项展开式的通项,由x的指数为2求得r值,则答案可求.【解答】解:(x﹣)3的二项展开式的通项为=.由,得r=2.∴x7的系数为.故答案为:.【点评】本题考查二项式定理的应用,考查二项式系数的性质,关键是熟记二项展开式的通项,是基础题.42.(2018•浙江)二项式(+)8的展开式的常数项是7.【分析】写出二项展开式的通项并整理,由x的指数为0求得r值,则答案可求.【解答】解:由=.令=0.∴二项式(+)8的展开式的常数项是.故答案为:2.【点评】本题考查了二项式系数的性质,关键是熟记二项展开式的通项,是基础题.43.(2018•上海)某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、四辩,若其中学生甲必须参赛且不担任四辩180(结果用数值表示)【分析】根据题意,分2步分析:①,学生甲可以担任一、二、三辩,有3种情况,②,在剩下的5名学生中任选3人,安排到其他三个辩手的位置,由分步计数原理计算可得答案.。

2018届高中数学高考二轮复习 排列组合、二项式定理教案含答案(全国通用)

2018届高中数学高考二轮复习 排列组合、二项式定理教案含答案(全国通用)

教学过程一、考纲解读该部分在高考试卷中一般是1到2个小题,分值在5-10分。

主要考查两个基本原理、排列组合的基础知识和方法,考查二项式定理的基础知识及其简单应用.在复习中要在解一些常规题型上下功夫,需要掌握基本的解题方法.在平时的复习中要能够体会计数原理在概率分布中的应用,特别是用排列组合解决的大题.对于二项式定理,重点考查二项式定理的通项.以及二项式系数和项的系数.二、复习预习(1)分类加法计数原理、分步乘法计数原理①理解分类加法计数原理和分类乘法计数原理;②会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.(2)排列与组合①理解排列、组合的概念.②能利用计数原理推导排列数公式、组合数公式.③能解决简单的实际问题.(3)二项式定理①能用计数原理证明二项式定理.②会用二项式定理解决与二项展开式有关的简单问题.三、知识讲解考点1 分类加法计数原理、分步乘法计数原理①理解分类加法计数原理和分类乘法计数原理;②会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.考点2 排列与组合①理解排列、组合的概念.②能利用计数原理推导排列数公式、组合数公式.③能解决简单的实际问题.考点3 二项式定理①能用计数原理证明二项式定理.②会用二项式定理解决与二项展开式有关的简单问题.四、例题精析例1 [2014全国1卷] 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( )A.18B.38C.58D.78【规范解答】解法1.选D(直接法)4位同学各自在周六、周日两天中任选一天参加公益活动共有4216=种,周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有11428C A=种;②每天2人有22 426C C=种,则周六、周日都有同学参加公益活动的概率为867 168 +=;解法2.选D(间接法)4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为1627 168-=;选D.【总结与反思】(1)本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.是一道基础题。

高三数学专题复习课件专题12_排列与组合二项式定理的应用

高三数学专题复习课件专题12_排列与组合二项式定理的应用

[解析] (1) 每个小球都可能放入4个盒子 中的任何一个, 将小球一个一个地放入 盒子,共有4 4 4 4 44 256种放法.
[解析] (1) 每个小球都可能放入4个盒子 中的任何一个, 将小球一个一个地放入 盒子,共有4 4 4 4 44 256种放法.
(2) 为全排列问题,共有A44 24种方法.
[考点搜索]
[考点搜索]
1. 不附加条件的排列组合题,大多用 分类讨论的方法,注意分类不重不漏.
2. 若元素必须相附,一般采用看作一 个整体的方法.
3. 元素不相邻,采用插空法. 4. 排列组合的混合型问题,交替使用 两个原理.
[链接高考]
[链接高考]
[例1] (1) 在由数字1,2,3,4,5组 成的所有没有重复数字的5位数中, 大于 23145且小于43521的数共有 ( )
(2) 按(1)的方法,有A33种重复,所以
所求不同分法有C62C42C22 A3 3
15(种).
(3) 分两步:第一步,把6本不同用
书,分为三摊,分别为1本、2本、3本,共
有C
1 6
C
5
2
C
3
3种



第二步,把它们分给甲、乙、丙三
人有A33种方法依分布计数原理,共有
C
1 6
C52
C33
A33种方法.
第四类,4个点都不在α上,只有1种 取法.
应用分类计数原理,得所求的不 同取法数为68+27+30+9+6+1=141.
[例4] 4个男同学,3个女同学站成 一排:
(1) 3个女同学必须排在一起,有多 少种不同的排法?
(2) 任何两个女同学彼此不相邻,有 多少种不同的排法?

2018年高考数学模拟试卷分项 专题12排列组合、二项式定理 Word版 含答案

2018年高考数学模拟试卷分项 专题12排列组合、二项式定理 Word版 含答案

专题 排列组合、二项式定理一、选择题1.【2018四川德阳三校联考】从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为 A. 48 B. 72 C. 90 D. 96 【答案】D点睛:本题以选择学生参加比赛为载体,考查了分类计数原理、排列数与组合数公式等知识,属于基础题. 2.【2018广西桂梧高中联考】()713x -的展开式的第4项的系数为( )A. 3727C -B. 4781C -C. 3727CD. 4781C【答案】A【解析】由题意可得()713x -的展开式的第4项为()33733331771327T C x C x -+=⨯⨯-=-,选A.3.【2018黑龙江齐齐哈尔一模】由1、2、3、4、5、6、7七个数字组成七位数,要求没有重复数字且6、7均不得排在首位与个位,1与6必须相邻,则这样的七位数的个数是( ) A. 300 B. 338 C. 600 D. 768 【答案】D【解析】当1在首位时,6只有一种排法,7有四种排法,余下四数共有44A 中排法,共有441496A ⨯⨯=种;当1在个位时,同样共有96种;当1即不再首位也不在个位时,先把1和6排好,有224A ⨯种排法,再排7有3种排法,余下四数共有44A 中排法,共有24244A 3576A ⨯⨯⨯=种综上:共有192576+=768 故选:D点睛:本题是一道带有限制条件的排列组合题目,这种问题的常用解题策略有:相邻问题捆绳法,不邻问题插空法,特殊元素(特殊位置)优先分析法,定序问题缩倍法,多排问题单排法,相同元素隔板法等等.4.【2018陕西西安长安区联考】若024n x dx ππ⎛⎫=+ ⎪⎝⎭,则2ny y ⎛⎫+ ⎪⎝⎭的展开式中常数项为A. 8B. 16C. 24D. 60 【答案】C 【解析】∵()()2002=2sin cos 2cos sin | 2cos cos0sin sin0424220n x dx x x dx x x ππππππ⎛⎫⎛⎫=++=-+=-++-= ⎪ ⎪⎝⎭⎝⎭⎰∴42y y ⎛⎫+ ⎪⎝⎭的通项公式为42142rr r r T C y -+=⋅⋅令420r -=,即2r =∴二项式42y y ⎛⎫+ ⎪⎝⎭展开式中常数项是224224C ⋅=,故选C5.【2018东北名校联考】若()523450123451x a a x a x a x a x a x -=+++++,则012345a a a a a a -+-+-=( )A. 0B. 1C. 32D. 1- 【答案】A6.【2018陕西两校联考】()()8411x y ++的展开式中22x y 的系数是( )A. 56B. 84C. 112D. 168 【答案】D【解析】根据()81x +和()41y +的展开式的通项公式可得, 22x y 的系数为2284168C C =,故选D.7.【2018广西南宁摸底联考】的展开式中项的系数为( )A. 80B.C.D. 48【答案】B 【解析】由题意可得,令r=1,所以的系数为-80.选B.8.【2018云南昆明一中摸底】二项式51x ⎛⎫ ⎪⎝⎭展开式中的常数项为( )A. 10B. 10-C. 5D. 5- 【答案】B【方法点晴】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1r n r rr n T C a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.9.【2018广西柳州摸底联考】()62x y -的展开式中, 24x y 的系数为( ) A. 60 B. 60- C. 240 D. 240- 【答案】C【解析】()()46416624,2240rr r r T C x y r C -+=-∴=-=,选C.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第1r +项,再由特定项的特点求出r 值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第1r +项,由特定项得出r 值,最后求出其参数.10.【2018江西南昌摸底】某校毕业典礼由6个节目组成,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起,则该校毕业典礼节目演出顺序的编排方案共有 A. 120种 B. 156种 C. 188种 D. 240种 【答案】A【解析】根据题意,由于节目甲必须排在前三位,分3种情况讨论:①、甲排在第一位,节目丙、丁必须排在一起,则乙丙相邻的位置有4个,考虑两者的顺序,有2种情况,将剩下的3个节目全排列,安排在其他三个位置,有336A=种安排方法,则此时有42648⨯⨯=种编排方法;②、甲排在第二位,节目丙、丁必须排在一起,则乙丙相邻的位置有3个,考虑两者的顺序,有2种情况,将剩下的3个节目全排列,安排在其他三个位置,有336A=种安排方法,则此时有32636⨯⨯=种编排方法;③、甲排在第三位,节目丙、丁必须排在一起,则乙丙相邻的位置有3个,考虑两者的顺序,有2种情况,将剩下的3个节目全排列,安排在其他三个位置,有336A=种安排方法,则此时有32636⨯⨯=种编排方法;则符合题意要求的编排方法有363648120++=种;故选A.点睛:本题考查排列、组合的应用,注意题目限制条件比较多,需要优先分析受到限制的元素;根据题意,由于节目甲必须排在前三位,对甲的位置分三种情况讨论,依次分析乙丙的位置以及其他三个节目的安排方法,由分步计数原理可得每种情况的编排方案数目,由加法原理计算可得答案.11.【2018广西南宁八中摸底】在的展开式中,含的项的系数是()A. 60B. 160C. 180D. 240【答案】D12.【2018广东德庆香山一模】从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有( )种.A. 36B. 30C. 12D. 6【答案】A【解析】从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,因为先从其余3人中选出1人担任文艺委员,再从4人中选2人担任学习委员和体育委员,所以不同的选法共有123436C A=种.本题选择A选项.13.【2018广东德庆香山一模】在高校自主招生中,某学校获得5个推荐名额,其中中山大学2名,暨南大学2名,华南师范大学1名,并且暨南大学和中山大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有()A. 36B. 24C. 22D. 20【答案】B【解析】由题意可分成两类:本题选择B 选项.点睛:分类加法计数原理与分步乘法计数原理是解决排列组合问题的基础并贯穿始终.(1)分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类.(2)分步乘法计数原理中,各个步骤相互依存,步与步之间的方法“相互独立,分步完成”.14.【2018陕西名校五校联考】52431x xx ⎛⎛⎫-+- ⎪ ⎝⎭⎝的展开式中常数项为( ) A. 30- B. 30 C. 25- D. 25 【答案】C【解析】51⎛- ⎝ 的通项为()151r r r r T C +=-, 55224311x x x x ⎛⎛⎛⎫-+=- ⎪ ⎝⎭⎝⎝554311xx ⎛⎛-+- ⎝⎝ ,根据式子可知当4r = 或2r = 时有常数项,令4r =()441551T C ⇒=- ; 令()2233521r T C =⇒=-;故所求常数项为13553C C -⨯ 53025=-=- ,故选C.【点睛】求解与二项式相关的复杂式子的一般方法及步骤是: 将复杂式子分解转化成与简单的二项式相关的式子 根据条件找到符合条件的二项式的项, 利用二项式的通项求出符合条件的项, 整合最终得出所求15.【2018江西新余一中二模】在二项式3nx ⎫⎪⎭的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且72A B +=,则展开式中常数项的值为( ) A. 6 B. 9 C. 12 D. 18 【答案】B二、填空题16.【2018四川德阳三校联考】已知()727012712x a a x a x a x -=+++⋅⋅⋅+,则1a =___________.【答案】14-【解析】含x 的项的系数为()17214C -=-,故填14-.17.【2018福建四校联考】在8x⎛- ⎝的二项展开式中, 2x 的项的系数是_______.(用数字作答)【答案】70【解析】根据二项式定理, 8x⎛- ⎝的通项为()3482181rr r r T C x --+=⋅-⋅,当3422r-=时,即r=4时,可得2570T x =. 即2x 项的系数为70.18.【2018黑龙江齐齐哈尔一模】在()421x x x ⎛⎫+- ⎪⎝⎭的展开式中,常数项是__________. 【答案】8- 【解析】第一个括号取2x,第二个括号为()114x C - ∴常数项是()1142x 8C x⨯-=- 故答案为: 8-19.【2018江西宜春六校联考】若()1216tan m x x dx -=+⎰,且(20122mm m x a a x a x a x =+++⋯+,则()()220211m m a a a a a -++⋯+-+⋯+的值为__________. 【答案】1点睛:求解这类问题要注意:①区别二项式系数与展开式中项的系数,灵活利用二项式系数的性质;②根据题目特征,恰当赋值代换,常见的赋值方法是使得字母因式的值或目标式的值为1,-1.20.【2018山西山大附中四调】()()()3801121x x a a x ++-=+- ()()282811a x a x +-++- ,则6a =__________.【答案】28【解析】令1x t -= ,则()()382680126821......t t a a t a t a t a t ++-=++++++,设()81t -的展开式含有6t 项, ()8181rr r r T C t -+=-,令86,2r r -== , 2663828T C t t ==,所以628a =.21.【2018辽宁凌源三校联考】在812x x ⎛⎫- ⎪⎝⎭的展开式中,含2x 项的为p , 32127x x ⎛⎫+- ⎪⎝⎭的展开式中含2x -项的为q ,则p q +的最大值为__________.【答案】-【解析】812xx⎛⎫-⎪⎝⎭展开式的通项公式为:8821881122r rr r r r rrT C x x C x---+⎛⎫⎛⎫=-=-⎪ ⎪⎝⎭⎝⎭,点睛:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.。

高考数学 专题12 排列组合、二项式定理分项试题(含解析)理-人教版高三全册数学试题

高考数学 专题12 排列组合、二项式定理分项试题(含解析)理-人教版高三全册数学试题

专题 排列组合、二项式定理一、选择题1.【2018某某三校九月联考】()62121x x ⎛⎫+- ⎪⎝⎭求的展开式的常数项是()A. 15B. -15C. 17D. -17 【答案】C∴()62121x x ⎛⎫+- ⎪⎝⎭的展开式的常数项是2×66+1×46=17故选:C.点睛:二项展开式求常数项问题主要是利用好通项公式,在进行分类组合很容易解决,注意系数的正负.2.【2018某某省两市九月调研】若()2018201801201813,x a a x a x x R -=+++∈,则22018122018333a a a ⋅+⋅++⋅的值为( )A. 201821- B. 201881- C. 20182 D. 20188【答案】B【解析】令0x =,得01a =. 令3x =,得()20182201820180122018333198a a a a +⋅+⋅++⋅=-=.所以22018201820181220180333881a a a a ⋅+⋅++⋅=-=-.故选B.3.【2018某某省辽南协作校一模】()4x y z ++的展开式共( )项 A. 10 B. 15C. 20 D. 21 【答案】B因为()()()()()()444320122334444444x y z x y z C x y C x y z C x y z C x y z C z ⎡⎤++=++=++++++++⎣⎦所以再运用二项式定理展开共有5432115++++=项,应选答案B 。

4.【2018某某省海珠区一模】()()62x y x y +-的展开式中43x y 的系数为( )A. 80-B. 40-C. 40D. 80 【答案】D5.【2018某某某某市一模】已知2nx x x ⎛⎫- ⎪ ⎪⎝⎭4项的二项式系数为20,则2nx x x ⎛⎫- ⎪ ⎪⎝⎭的展开式中的常数项为( ) A. 60 B. 60- C. 80 D. 80- 【答案】A 【解析】由题意可得3n=20,求得n=6,则2nx x x ⎛⎫- ⎪ ⎪⎝⎭=62x x x ⎛⎫- ⎪ ⎪⎝⎭的展并式的通项公式为T r+1=6r •2r •362xr -,令6﹣32r =0,求得r=4,可得2nx x x ⎛⎫- ⎪ ⎪⎝⎭展并式中的常数项为46•4=60.点睛:利用二项式系数的性质求得n=6,在(x ﹣2x x)6的展并式的通项公式中,令x 的幂指数等于零,求得r 的值,可得展并式中的常数项.6.【2018某某省某某市二模】二项式61x x ⎛⎫- ⎪⎝⎭的展开式中常数项为()A. -15B. 15C. -20D. 20【解析】试题分析:二项式展开式的通项公式:()()3666221666111kk k k k k k k k k k T C x C x x C xx ----+⎛⎫=⋅-=⋅-⋅=- ⎪⎝⎭.要使其为常数,则,即,常数项为.考点:二项式定理.7.【2018某某省某某市三模】在的展开式中,系数为有理数的项为( )A. 第二项B. 第三项C. 第四项D. 第五项 【答案】B8.【2018某某包钢一中一模】把5名师X 大学的毕业生分配到A 、B 、C 三所学校,每所学校至少一人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2018年高考数学分类汇编:专题12排列组合、二项式定理目录全国1 (2)全国2 (3)全国3 (4)北京 (4)天津 (4)上海 (5)浙江 (6)江苏 (7)2016-2018年高考数学分类汇编:专题12排列组合、二项式定理细目题号2018题型分值题号全国Ⅰ文科理科15填56全国Ⅱ文科理科5选56全国Ⅲ文科理科5北京文科理科天津文科理科10填514上海文科理科3填42浙江江苏文科理科文\理14,163,6,23填填解81813,16232017题型分值选5选5选5填5填4填解8102016题号题型分值13填510填510填58填423解10考纲解读命题趋势计数原理1.分类加法计数原理、分步乘法计数原理(1)理解分类加法计数原理和分步乘法计数原理.(2)会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.2.排列与组合(1)理解排列、组合的概念.(2)能利用计数原理推导排列数公式、组合数公式.(3)能解决简单的实际问题.3.二项式定理(1)能用计数原理证明二项式定理.(2)会用二项式定理解决与二项展开式有关的简单问题.以选择,填空形式出现.难度属于中等.重点考查两个计数原理,排列组合,二项式定理的通项,相关系数和问题等知识.考查二项式定理居多.全国1【2018全国1卷理15】从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种(用数字填写答案)【答案】16【解析】方法一:符合题意的选法有两种情况:第一种情况是1女2男有C1C2=12种选法;24第二种情况是2女1男有C2C1=4种选法,共计C1C2+C2C1=12+4=16种选法;242424方法二:从总选法中减去不符合题意(即一个女生都不选)的选法,即:C3-C3=20-4=1664故答案为16.【2018全国1卷理6】(1+1x2)(1+x)6展开式中x2的系数为A.15【答案】:CB.20C.30D.35.= C k (2x )5-k ( x )= C 2x 5- 2.当 5 - k= 3 时, k = 4 ,基本事件空间 Ω=⎨ ( ⎩ (B 2, G 2),( B 2, G 3),G 1,G 2),G 1,G 3),( G 2, G 3)⎭ ⎬ 共 10 个 4 ( (【解析】: x 2 的系数为 C 2 + C 4 = 30 ,故选 C.66【2016 全国 1 卷理 13】 (2 x +【答案】:10x )5的展开式中, x 3 的系数是 .(用数字填写)【解析】:由展开式的通项为 Tk +15 5kk 5-kk 2所以 x 3的系数是 C 5 21 = 10 ,故答案为 10.全国 21、【2018 全国 2 卷理 5】从 2 名男同学和 3 名女同学中任选 2 人参加社区服务,则选中的 2 人都是女同学的概率为A. 0.6B. 0.5C. 0.4D. 0.3【答案】D【解析】设 2 名男同学为 B1,B2,3 名女同学为 G1,G2,G3⎧(B 1, B 2),( B 1,G 1),B 1,G 2),B 1,G 3),( B 2, G 1) ⎫( (都是女同学的有{ G 1, G 2)(G 1, G 3),(G 2,G 3)}共 3 个,所以概率为 3 10=0.3 .2、【2017 全国 2 卷理 6】安排 3 名志愿者完成 4 项工作,每人至少完成 1 项,每项工作由1 人完成,则不同的安排方式共有()A.12 种B.18 种C.24 种D.36 种【答案】D只能是一个人完成 2 份工作,剩下 2 人各完成一份工作.由此把 4 份工作分成 3 份再全排得 C 2 ⋅ A 3 = 3643在 x-⎪的展开式中,x2的系数为__________.r5-r ⎛⎝2x⎭2⎝2⎭全国3一、选择题1.【2017全国3卷理5】(x+y)(2x-y)5的展开式中x3y3的系数为()A.-80B.-40C.40D.80【答案】C【解析】由二项式定理,原式展开中含x3y3项为x⋅C2(2x)2(-y)3+y⋅C3(2x)3(-y)2=40x3y3,55则x3y3的系数为40,故选C.北京【2016北京卷理10】在(1-2x)6的展开式中,x2的系数为__________.(用数字作答)【答案】60【解析】C2(-2x)2=60x26天津1.【2018天津10】⎛1⎫5⎝2x⎭5【答案】2【解析】Tr+11⎫r5⎛1⎫2=C x -⎪,5-r=2,r=2,C r -⎪= 55522.【2017天津14】(x)⋅⎛-1⎫⎪3x-⎪【解析】所有项的二项式系数之和为2=256,所以n=8,二项式的展开式中用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有个。

(用数字作答)【答案】:1080【解析】有一个数字是偶数的四位数C3.C1.A4=960,全部是奇数的四位数A4=120,共5445计1080个3、【2016天津10】1(x2-)8的展开式中x7的系数为__________.(用数字作答)x【答案】-56【解析】C5825⎝x⎭3=-56x7上海⎛2⎫n【2016上海卷理8】在⎝x⎭的二项式中,所有项的二项式系数之和为256,则常数项等于_________【答案】112nT r+11=C r(x3)8-r(-2x-1)r8,如果为常数项r=2,从而计算出常数项为112【2017上海卷2】若排列数P m=6⨯5⨯4,则m=6【答案】:m=3【解析】:P3=6⨯5⨯4=P m66【2018上海卷3】在(1+x)7的二项展开式中,x2项的系数为(结果用数值表示)【答案】212x2x则8-r34【解析】C2=217浙江【2017浙江卷理13】已知多项式(x+1)3(x+2)2=x5+a x4+a x3+a x2+a x+a,则12345a=,a=.45【答案】16;4【解析】可以先求a=4,a x=C2⋅x⋅4+C1⋅x⋅2=16x,所以a=16.54324【2017浙江卷16】从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有______种不同的选法.(用数字作答)【答案】660【解析】可以两类:只有一名女生的选法有:C1⋅C3⋅(A3+C1⋅C2)=2⨯20⨯12=480;26323有两名女生的选法有:C2⋅C2⋅(A2+C1⋅A2+A2)=15⨯12=180,所以总共有660种不262222同的选法.【2018浙江卷14】二项式(3x+【答案】712x)8的展开式的常数项是.【解析】根据(3x+11)8,写出通项公式T=C r⋅(3x)8-r⋅()r,要求常数项,r+181+(-r)=0,解得r=2,所以常数项为C2⨯=7.8【2018浙江卷16】从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.(用数字作答)【答案】1260【解析】分两类情况:(1)包含0的四位数:C2⨯C1⨯(A4-A3)=540;5343(2)不包含0的四位数:C2⨯C2⨯A4=720,总共有1260种.534江苏【2018江苏卷3】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为_________.【答案】90【解析】89+89+90+91+915=908999011(第3题)【2018江苏卷6】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.【答案】3 10【解析】C233=C210 5【2018江苏卷选23】设n∈N*,对1,2,···,n的一个排列i i12i,如果当s<t时,有i>i,n s t则称(i,i)是排列i is t12i的一个逆序,排列i in12i的所有逆序的总个数称为其逆序数.例如:n对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f(k)n为1,2,···,n的所有排列中逆序数为k的全部排列的个数.(1)求f(2),f(2)的值;34(2)求f(2)(n≥5)的表达式(用n表示).n【答案】见解析【解析】(1)记τ(abc)为排列abc的逆序数,对1,2,3的所有排列,有τ τ τ τ τ 因此,n ≥5 时, f (2) =.2τ (123)=0 , (132)=1, (213)=1, (231)=2 , (312)=2 , (321)=3 ,所以 f (0) = 1,f (1) = f (2) = 2 .33 3对 1,2,3,4 的排列,利用已有的 1,2,3 的排列,将数字 4 添加进去,4 在新排列中的位置只能是最后三个位置.因此, f (2) = f (2) + f (1)+ f (0) = 5 .43 3 3(2)对一般的 n (n ≥4)的情形,逆序数为 0 的排列只有一个:12…n ,所以 f (0) = 1 .n逆序数为 1 的排列只能是将排列 12…n 中的任意相邻两个数字调换位置得到的排列,所以 f (1) = n - 1 .n为计算 f n +1(2) ,当 1,2,…,n 的排列及其逆序数确定后,将 n +1 添加进原排列,n +1在新排列中的位置只能是最后三个位置.因此, f n +1(2) = f (2)+ f (1)+ f (0) = f (2) + n . n n n n当 n ≥5 时,f (2) = [ f (2) - f nnn -1(2)] + [ f n -1(2)- f n -2(2)] + … + [ f (2) - f (2)] + f (2) 5 4 4= (n - 1) + (n - 2) +⋯+ 4 + f (2) =4n 2 - n - 22,n 2 - n - 2 n【20117 江苏选 23】23.(本小题满分 10 分)已知一个口袋中有 m 个白球, n 个黑球( m , n ∈ N *, n ≥2 ),这些球除颜色外完全相同, 现将口袋中的球随机地逐个取出,并放入如图所示的编号为1,2,3,..., m + n 的抽屉内,其中第 k 次取出的球放入编号为 k 的抽屉( k = 1,2,3,..., m + n ).证明:E(X)<n则P(A)=n且P X=⎪=n+i-1(i=0,1,2,...,m),(X)=∑m⎛ ⋅n+i-1⎪=⎝n+i C n∑⎛C1∑⎛n+i-1C n-2⎫n+i-2⎪⎪n+i⎭n+i n-1⎭i=0⎝n+m i=0⎝∑C∑⎛ C⎪=(i=0)mn+m i=0⎝n-1⎭n+m-n+m-123…m+n (1)试求编号为2的抽屉内放的是黑球的概率;(2)随机变量X表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望.(m+n)(n-1).【答案】(1)nn+m;(2)同解析;【解析】(1)设编号为2的抽屉内放的是黑球为事件A,n-1m n n⋅+⋅=;n+m n+m-1n+m n+m-1n+m(2)由题意知,随机变量X的可能取值为111 ,,...,,n n+1n+m⎛1⎫C i⎝n+i⎭C nn+m所以E<1m n-2⎫n+i-2C n n-1Cn+i-2mn-2n+m=C n-1C m(n-1)C1m=(n-1)C1m,n+m n+m=n (m+n)(n-1)原命题得证.【2016江苏选23】(1)求7C3-4C4的值;67(2)设m,n∈N*,n≥m,求证:+(C m+1+C m+1+...+C m+1)-(C m+1+C m+1+...+C m+1)(m+1)C m+(m+2)C mm m+1【答案】(1)0;(2)略;+(m+3)C m+...+nC m+(n+1)C m=(m+1)C m+2 m+2n-1n n+2【解析】(1)7C3-4C4=677⨯6⨯5⨯44⨯7⨯6⨯5⨯4-=0;3⨯2⨯14⨯3⨯2⨯1(2)由mC m=nC m-1,且C m+C m+1=C m+1,可得:n n-1n n n+1(m+1)C m+(m+2)C m+(m+3)C m+...+nC m+(n+1)C mm m+1m+2n-1n =(m+1)C m+1+(m+2)C m+(m+3)C m+...+nC m+(n+1)C m m+1m+1m+2n-1n m+1m+2n m+1m+2n=(n+2)C m+1-C m+2n+1n+2=(m+2)C m+2-C m+2n+2n+2=(m+1)C m+2n+2即原命题得证.。

相关文档
最新文档