第八章聚合物的粘弹性

合集下载

第八章、聚合物的高弹性和黏弹性

第八章、聚合物的高弹性和黏弹性

高弹性有如下特征:


①弹性形变很大,可高达1000%, 而金属材料的普弹形变不超过1% ②弹性模量小,10 达因cm ,而金属材料的弹性模量 达 10 达因 cm 。 ③聚合物发生高弹形变时,弹性模量与温度成正 比,即温度升高,弹性回力增高,从这个意上说, 与等容条件下气体的压力随温度升高而增加是相 似的。而金属的普通固体材料弹性模量随着温度 升高而下降。
平衡态形变(可逆) 高弹形变
非平衡态形变(不可逆)

假设橡胶被拉伸时发生高弹形变,除去 外力后可完全回复原状,即变形是可逆的, 所以可用热力学第一定律和第二定律来进 行分析。
u S f ( )T ,V T ( )T ,V l l
物理意义:外力作用在橡胶上,一方
面使橡胶的内能随伸长而变化,一方 面使橡胶的熵随伸长而变化。 或者说:橡胶的张力是由于变形时内 能发生变化和熵发生变化引起的。

“形变与时间有关”的原因:
橡胶是长链分子,整个分子的运动都要 克服分子间的作用力和内摩擦力。 高弹形变就是靠分子链段运动来实现的。 整个分子链从一种平衡状态过度到与外 力相适应的平衡状态,可能需要几分钟,几 小时甚至几年。 也就是说在一般情况下形变总是落后于 外力,所以橡胶形变需要时间。

2-2 平衡态高弹形变的热力学分析


1.加增塑剂
2. 共聚
3.降低结晶能力
第三节 粘弹性


3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9
力学松弛现象 蠕变 应力松弛 滞后 力学损耗 测定粘弹性的方法 粘弹性模型 粘弹性与时间、温度的关系(时温等效) 波尔兹曼迭加原理
高聚物的粘弹性——

《聚合物的粘弹》课件

《聚合物的粘弹》课件

06
动态力学分析可以提供聚合物粘 弹性的定量信息,对于理解聚合 物的力学性能和设计新材料具有 重要意义
蠕变实验:测量聚合物在恒定应力下的应变随时间的变化 回复实验:测量聚合物在恒定应变下的应力随时间的变化 实验设备:蠕变仪、应力控制仪、应变测量仪等 实验步骤:加载、保持、卸载、测量等 实验结果:蠕变曲线、应力-应变曲线等 实验应用:评估聚合物的粘弹性能、预测聚合物的长期性能等
增强复合材料的力学性能 提高复合材料的耐热性 改善复合材料的耐磨性 增强复合材料的抗冲击性
聚合物的粘弹性在 加工中的影响
聚合物的粘弹性在加工中的影响 流变行为的定义和分类 流变行为对加工过程的影响 流变行为在加工过程中的应用
温度升高,聚合物 粘弹性增强
温度降低,聚合物 粘弹性减弱
加工温度过高,可 能导致聚合物熔化 或分解
聚合物的粘弹
汇报人:
目录
添加目录标题
聚合物的粘弹现象
聚合物的粘弹性理 论
聚合物的粘弹性测 试方法
聚合物的粘弹性在 材料中的应用
聚合物的粘弹性在 加工中的影响
添加章节标题
聚合物的粘弹现象
粘弹性是指聚合物在受到外力作用下,表现出既具有粘性又具有弹性的特性。
粘性是指聚合物在外力作用下,能够产生形变,并且形变可以恢复。 弹性是指聚合物在外力作用下,能够产生形变,并且形变可以恢复。 粘弹性是聚合物特有的一种力学性质,它既具有粘性,又具有弹性。
加工温度过低,可 能导致聚合物结晶 或硬化
加工压力增大,聚合物的粘弹性增强 加工压力减小,聚合物的粘弹性减弱 加工压力对聚合物的粘弹性有显著影响 加工压力的变化会影响聚合物的加工性能和成品质量
剪切速率增加, 粘弹性增强
剪切速率降低, 粘弹性减弱

聚合物的粘弹性

聚合物的粘弹性
聚合物的粘弹性
3.粘弹性:聚合物材料组合了固体的弹性和液体的粘性两者的特 征,这种行为叫做粘弹性。粘弹性的表现: 力学松弛 4.线性粘弹性: 组合了服从虎克定律的理想弹性固体的弹性和 服从牛顿流动定律的理想液体的粘性两者的特征,就是线性粘 弹性。否则为非线性粘弹性. 5.力学松弛:聚合物的力学性质随时间变化的现象,叫力 学松弛。力学性质受到,T, t,的影响,在不同条件下, 可以观察到不同类型的粘弹现象。
动态 粘弹性
滞后现象
力学损耗 (内耗)
在一定温度和和交变应力下,应变滞后于应力 变化.
的变化落后于的变化,发生滞后现象,则每一 个循环都要消耗功
3
聚合物的粘弹性
7.3.1 高聚物的线性粘弹性 静态粘弹性
(1)蠕变 在恒温下施加较小的恒定外力时,材料的形变随时间而
逐渐增大的力学松弛现象。 如挂东西的塑料绳慢慢变长。

t2 )
0 (t→)
E2-高弹模量 特点:高弹形变是逐渐回复的.
8
(t)
聚合物的粘弹性
无化学交联的线性高聚物,发生分 子间的相对滑移,称为粘性流动.
t (t)
t1 t2
t
图3 理想粘性流动蠕变
(t)=
0 (t<t1)
0 3
t (t1

t

t2 )
0 3
t2 (t

t2 )
3-----本体粘度
Creep recovery 蠕变回复
•撤力一瞬间,键长、键角等次级运动立即回复,形变直线下降 •通过构象变化,使熵变造成的形变回复 •分子链间质心位移是永久的,留了下来
11
聚合物的粘弹性
理想交联聚合物(不存在粘流态):形变: 1+2

聚合物的粘弹性

聚合物的粘弹性

t
0e
τ——松弛时间
应力松驰的原因:
当聚合物一开始被拉长时,其中分子处于不平衡的构象, 要逐渐过渡到平衡的构象,也就是链段要顺着外力的方向运 动,因而产生内部应力,与外力相抗衡。通过链段热运动调 整分子构象,使缠结点散开,分子链相互滑移,逐渐恢复蜷 曲的原状,内应力逐渐减少或消除。
聚合物的粘弹性说课

t2
t
1.3 弹性与粘性比较
弹性
粘性
能量储存 形变回复 虎克固体
E
E(,,T)
模量与时间无关
能量耗散
永久形变
牛顿流体
.
d
dt
E (,,T,t)
模量与时间有关
理想弹性体的应力取决于 ,理想粘性体的应力取决于 。
二. 粘弹性
聚合物
牛顿流体
非牛顿流体应变速率与 应力的关系
聚合物 虎克固体
t
与理想弹性体有区别
让学生 亲自经历运用科 学方法进行探索 。
让学生在实验过 程中自己摸索, 从而发现“新” 的问题或探索出 “新”的规律。
六、教学设计
提出问题 导入新课
提供条件 学生思考
引导分析 提出新疑
讨论问题 得出结论
布置作业 能力迁移
七、说课综述
在教学的过程中,我始终努力贯彻以教师为主导, 以学生为主体,以问题为基础,以能力、方法为主线, 有计划培养学生的思维能力、解决问题的能力。并且 从实际出发,充分利用各种教学手段来激发学生的学 习兴趣,体现了对学生创新意识的培养。
聚合物的粘弹性
一. 粘、弹基本概念 弹 – 由于物体的弹性作用使之射出去。
粘 – 象糨糊或胶水等所具有的、能使一个
物质附着在另一个物体上的性质。

第八章粘弹性问题与塑性问题

第八章粘弹性问题与塑性问题

第八章粘弹性问题8.1地质现象:冰后期回弹雪球地球(Snowball Earth假说)大冰期(持续数百万年以上)与小冰期约24亿至21亿年前——休伦冰期约8.5亿至6.35亿年前——成冰期约4.5亿至4.2亿年前——奥陶纪约3.6亿至2.6亿年前——石炭纪约258万年前——第四纪冰期(数据最多,研究最多)冰期的可能原因?太阳?大气圈层?地球内部?北极冰层面积变化:(全球变暖?)地球表面温度存在着周期性的变化,并导致冰雪覆盖面积的变化第四纪冰期峰期的冰层覆盖:冰后期回弹模型(粘性与粘弹性):精确测量高度变化:南极洲的固定GPS站点现今地表高度变化速率(mm/yr) [Milne and Shennan, 2014]什么是粘性流体(流体中不存在剪切应力)流体的本构方程(位移替换为速度):粘性系数(单位?):或容易和剪切模量混淆粘性系数的大小(决定变形的时间尺度):沥青滴落试验:(开始于1927年,持续到今天):测得沥青的粘性系数约为2.3x108Pa s水的约为0.001Pa s引入人:Prof. Thomas Parnell University of Queensland实验仍然在持续进行,2014.4.17 第9滴下落短时间尺度下呈现固态的物质在长时间尺度下可能表现为流体特征(地幔对流的理论基础)阴影部分安装了空调,平均温度降低头脑风暴(Brainstorm):大铁球下沉试验测地幔粘性系数Stokes速度如何建立粘弹性模型?8.2理想粘性和理想弹性介质的引入一. 理想弹性元件(弹簧)二. 理想粘性元件(阻尼器)弹簧和阻尼器的本构关系可以简写为:和可以用字母S(spring)和D(dashpot)分别表示三. 理想元件的基本组合(粘弹性体)串联:麦克斯韦尔(Maxwell)体总应变线形叠加:又:得本构关系:式中:并联:开尔文(Kelvin)体总应力线形叠加:粘弹性问题的本构方程都和时间有关粘弹性问题的两种特性:蠕变特性:应力保持不变,应变随时间的变化情况。

高分子物理--聚合物的粘弹性ppt课件

高分子物理--聚合物的粘弹性ppt课件
ε(t)﹦ε0 sin(ωt﹣δ)
粘弹体的应力与应变的相位关系
一、 粘弹性现象 (二) 动态粘弹性
力学损耗:由于滞后,周期性应力应变变化过程将伴随能量消耗, 称之为力学损耗。 损耗的大小同滞后角有关,常以tanδ 表示
橡胶拉伸与回缩的应力-应变关系示意图
一、 粘弹性现象 (二) 动态粘弹性
聚合物的内耗与频率的关系
表示在复平面上的复模量 E* D* ﹦1
一、 粘弹性现象 (三) 粘弹性参数
G*﹦G1+iG2
J* ﹦ J1 - iJ2
tan δ ﹦ E2 / E 1
﹦ D2 / D 1 ﹦ G2 / G 1 ﹦ J2 / J 1
链段运动的松弛时间同 作用频率(速率)相匹 配时(ω ~ 1/τ ),粘 弹性现象最显著。
二、 粘弹性的数学描述
(一) Boltzmann叠加原
在Δ σ31 、、
u2 、 ……
u3 、 Δ σn
……
un时刻,对试样加应力Δ σ1 、 Δ σ2 、
ε(t)﹦ ∑Δσi D(t-ui)
i: 1→ n
连续对试样加应力,变化率为? σ (u)/? u
t﹥ un
ε(t)﹦ ∫ D(t-u)(? σ (u)/? u) du u:- ∞ → t
ηs*﹦ηs1-ηs2 ηs1 ﹦(σ0/γ0 ω)sinδ ηs2 ﹦(σ0/γ0 ω)cosδ
ηs1 ﹦G2/ω
ηs2 ﹦G 1/ω
二、 粘弹性的数学描述
(一) Boltzmann叠加原
1. 数理学表达式
在零时刻,对试样加应力σ0 ε0 (t)﹦σ0 D(t)
在u1时刻,对试样加应力σ1 ε1 (t)﹦σ1 D(t-u1)
粘性响应 理想液体

粘弹性

粘弹性

外力的方向运动以减小或者消除内部应力,如果T很高(>>Tg),链运动摩擦
阻力很小,应力很快松弛掉了,所以观察不到,反之,内摩擦阻力很大,链段 运动能力差,应力松弛慢,也观察不到.只有在Tg温度附近的几十度的范围
内应力松弛现象比较明显.(链由蜷曲变为伸展,以消耗外力)
21
第8章 聚合物的粘弹性
0
玻璃态 高弹态 粘流态 t
2 0
0 0
sin tcost - dt
W 0 0sin
又称为力学损耗角,常用tan表示内耗的大小
33
第8章 聚合物的粘弹性
③内耗的表达
当 t 0sin t时, 应力 ( t ) 0sin t
展开 : ( t ) 0 cos sin t 弹性形变的动力 0sin cost 消耗于克服摩擦阻力
27
第8章 聚合物的粘弹性
③滞后现象与哪些因素有关?
a.化学结构:刚性链滞后现象小,柔性链滞后现象大.
b.温度:当不变的情况下,T很高滞后几乎不出现,温度很低, 也无滞后.在Tg附近的温度下,链段既可运动又不太容易,此 刻滞后现象严重。 c. : 外力作用频率低时,链段的运动跟的上外力 的 变化,滞 后现象很小. 外力作用频率不太高时,链段可以运动,但是跟不上外力的变 化,表现出明显的滞后现象.
外力作用频率很高时,链段根本来不及运动,聚合物好像 一块刚性的材料,滞后很小
28
第8章 聚合物的粘弹性
2.内耗:
①内耗产生的原因: 当应力与形变的变化相一致时,没有滞后现象,每次形变所 作的功等于恢复形变时所作的功,没有功的消耗
如果形变的变化跟不上应力的变化,发生滞后现象,则每 一次循环变化就会有功的消耗(热能),称为力学损耗,也叫内 耗. 外力对体系所做的功:一方面用来改变链段的构象(产生 形变),另一方面提供链段运动时克服内摩擦阻力所需要的能量 .

《聚合物的粘弹性》课件

《聚合物的粘弹性》课件

《聚合物的粘弹性》PPT 课件
聚合物是一类重要的材料,本课件将深入探讨聚合物的粘弹性及其应用。让 我们一起来揭开这个精彩的科学领域吧!
I. 聚合物概述
定义和分类
聚合物是由许多重复单元组成的大分子化合物,可分为线性、交联和支化等不同类型。
聚合过程及特点
聚合过程是单体分子结合形成高分子链的化学反应,聚合物具有高分子量、可塑性和可再生 等特点。
3
色散力谱技术
色散力谱技术结合了动态力学和谱学的原理,可精确测量聚合物的粘弹性参数。
V. 聚合物的粘弹性对应用的影响
1 聚合物加工
了解聚合物的粘弹性特性有助于优化聚合物加工过程,提高产品质量和生产效率。
2 材料性能预测
粘弹性参数可以用于预测聚合物在不同应力和环境条件下的性能,指导材料设计和选择。
3 涂层和粘合剂
应用领域和意义Biblioteka 聚合物在塑料、纤维、涂料等众多领域有着广泛的应用,对现代社会的发展起着重要作用。
II. 粘弹性基础知识
1 弹性和黏性
弹性是物体恢复原状的能力,而黏性则描述了物体抵抗形变的能力,聚合物同时具备这 两种特性。
2 变形与应力的关系
聚合物的变形与施加的应力成正比,其应力-应变曲线可用来描述聚合物的力学性质。
聚合物的粘弹性特性对于涂层和粘合剂的粘附性和耐久性具有重要影响。
VI. 新颖的聚合物复合材料
粘弹性调控
通过调控聚合物复合材料的粘 弹性,可以实现材料性能的改 良和特定应用的实现。
复合材料制备及性能
聚合物复合材料结合了不同材 料的优点,具有良好的力学性 能和多样化的用途。
未来发展方向
聚合物复合材料在领域中的应 用潜力巨大,未来将继续研究 新的材料和创新的应用。

高分子物理第8章第四课.

高分子物理第8章第四课.

• 3.借助于转换因子可以将在某一温度 下测定的力学数据,变成另一温度下 的力学数据,这就是时温等效原理。
• 4.实用意义
通过不同 温度下可以试验测得的力 学性质进行比较或换算,得到有些高 聚物实际上无法实测的结果(PE)
• 由实验曲线 迭合曲线
log E
T1
T2 T3
T4
T5 T6 T7
123
反映材料形变时内耗的程度(粘性)
E" tg
E'
滞后角 力学损耗因子
log E' log E"
tg
tg 损耗因子
E' 储能模量
log 0
E" 损耗模量 log
动态力学分析(DMA)
• 动态力学行为是指材料在振动条件下,即在交 变应力(交变应变)作用下做出的力学响应, 即力学性能(模量、内耗)与温度、频率的关系。
E d 可以变成 d dt
E dt
0 E
当t 0时, 0上式积分.
t 0 1 et / 1 et / E
式中 , 是t 时的平衡形变.
E 蠕变过程的松弛时间, 有时称为推迟时间.
21
模型用途:模拟交联高聚物的蠕变过程.
当F作用到模型上时,由于粘壶的存在,弹簧不能立即被拉开, 只能随着粘壶慢慢被拉开,形变是逐渐发展的.外力除去,由于 弹簧的回复力,整个模型的形ห้องสมุดไป่ตู้也慢慢被回复.所以该过程反 映了蠕变过程中的一种形变—高弹形变
38
.WLF方程的应用意义 • 由于时温等效性,可以对不同温度下测定的结果进行换
算,从而得到一些实验上无法测定的结果。 • 例如在材料的实际使用中,常常提出其室温下使用寿命

第八章聚合物的粘弹性

第八章聚合物的粘弹性

20
第八章 聚合物的粘弹性
ε(%)
2.0 1.5
聚砜 聚苯醚 聚碳酸酯
ABS(耐热级)
聚甲醛 尼龙
1.0
0.5
改性聚苯醚 ABS 1000 2000
图6
3000
t
(4)结构 主链钢性:分子运动性差,外力作用下,蠕变小
21
第八章 聚合物的粘弹性
5、 提高材料抗蠕变性能的途径: a.玻璃化温度高于室温,且分子链含有苯环等刚性链
第八章 聚合物的粘弹性
第八章 聚合物的粘弹性
The Viscoelasticity of Polymers
1
第八章 聚合物的粘弹性
一、粘弹性的基本概念
1.理想弹性固体:受到外力作用形变很小,符合胡克定 律 =E1=D1,E1普弹模量, D1普弹柔量.
特点:受外力作用平衡瞬时达到,除去外力应变立即恢复. 2.理想的粘性液体:符合牛顿流体的流动定律的流体,= 特点:应力与切变速率呈线性关系,受外力时应变随时间线 性发展,除去外力应变不能恢复.
2 0
0 0
sin tcost - dt
W 0 0sin
又称为力学损耗角,常用tan表示内耗的大小
40
第八章 聚合物的粘弹性
③内耗的表达
当 t 0sin t时, 应力 ( t ) 0sin t
展开 : ( t ) 0 cos sin t 弹性形变的动力 0sin cost 消耗于克服摩擦阻力
塑料的玻璃化温度在动态条件下,比静态来的高,就是 说在动态条件下工作的塑料零件要比静态时更耐热,因此 不能依据静态下的实验数据来估计聚合物制品在动态条件 下的性能.
28

第八章 聚合物的高弹性和粘弹性(1)

第八章 聚合物的高弹性和粘弹性(1)

In 1839, 硫化作用
Charles Goodyear
虽然1800年美国开始出现第一个橡胶厂, 但其产品有一个致命的弱点:天冷时还 算正常,但天热时却会融化变软。橡胶 真正的大规模生产和应用应该归功于美 国人Charles Goodyear。他是五金销 售商,但醉心于各种发明。失败了很多 次,有一天正在火炉边沉思,突然闻到 一股奇怪的臭味,发现是火炉上的橡胶 混进了硫磺后发出的,令人惊讶的是这 样烤出来的橡胶不发粘了!! 偶然发现天然橡胶与硫磺共热后明显地 改变了性能,使橡胶从硬度较低、遇热 发粘软化、遇冷发脆断裂的不实用的性 质,变为富有弹性、可塑性的材料。这 一发现的推广应用促进了天然橡胶工业 的建立。天然橡胶这一处理方法,在化 学上叫作高分子的化学改性,在工业上 叫作天然橡胶的硫化处理。
•聚丁二烯 Polybutadiene
(胶粘剂和密封剂)
•聚异丁烯Polyisobutylene--不透气性
合成橡胶
(化妆品和药品的油相成份:滋润不油 腻,保湿润滑,渗透力强)
•氯丁橡胶Polychloroprene
(粘胶鞋底、涂料和火箭燃料)
橡胶的概念及交联网的提出
真正的橡胶这个概念的提出是20世纪三十年代。
内能变化 熵变化
G=H-TS 8
H、T、S分别为系统的焓、热力学温
度和熵
Josiah Willard Gibbs
(1839~1903)
焓是一种热力学体系,对任何系统来说,焓的定义为:
H=U+PV 9
U为系统的内能;P为系统的压力,V为系统的体积
G=U+PV-TS 10
求导数
dG=dU+PdV+VdP-TdS-SdT 11

聚合物的黏弹性

聚合物的黏弹性

σ1=Eε1
2

d2
dt
σ Voigt(Kelvin)模型
形变量相同 1 2 (t) E d
dt
Voigt运动方程
蠕变过程:应力保持不变
根据定义σ(t)=σ0应力恒定,
0

E

d
dt
从t=0时 =0积分:
分离变量:
d 1 dt
E
1


E
t
高弹形变 :分子链通过链段运动逐渐伸展的过程,形变与 时间成指数关系。
ε
2


E2
(1 et /
)
τ=η/E
t1
t2
粘性形变:线型聚合物,还会产生分子间的相对滑移,外 力除去后粘性流动是不能回复的。
ε
3

3
t
t1 t2
适当外力下,Tg以上不远,链段在外力下可以运动,摩擦力大,蠕变较明显
NBR: 侧基-CN,极性大,分子间力大,内摩擦
大,运动 阻力大,δ大,NBR的tgδ与
-CN含量有关
IIR: 侧基-CH3,数目多,动态下内摩擦阻力
大, tgδ大(异丁烯与少量异戊二烯共聚而成 的一种合成橡胶,简称IIR)
-CH2-C(CH3)2-
tgδ由小到大的顺序:
BR< NR< SBR< NBR <IIR
周期性变化的应力、应变可以用复数形式表示:
(t) 0 sin t 0eit

(t
)


0
sin(t


)


ei(t
0

)
E*
(t) (t)

聚合物的粘弹性—时温等效原理和叠加(高分子物理课件)

聚合物的粘弹性—时温等效原理和叠加(高分子物理课件)

式中C1 ,C2 为常数。
WLF 方程主要适用于非晶态高聚物。
由于时温等效性,可以对不同温度下测定的结果进行换 算,从而得到一些实验上无法测定的结果。
在室温下几年、几百年的应力松驰是不能实现的,可在高温条 件下短期内完成;或在室温下几十万分之一秒完成的应力松驰, 可在低温条件下几小时完成。
例:NR要得到某低温下NR的应力松弛行为,由于温度太低, 应力松弛很慢,要得到完整的曲线和数据需要很长时间,此时 可利用于时温等效原理,在常温下或较高温度下,测得的应力 松弛数据,换算、叠加成低温下的曲线。
N1k T (
1
2
)
G(
1
2
)
E
d d
d d ( 1)
NKT
d
(
1
2
)
d
1
NKT (1 3 ) 3G
因为G=0.333×107N/m2 WLF方程
E 3G 1107 N / m2
log aT
log (T ) (Tg )
17.44(T Tg ) 51.6 (T Tg )
(30) 17.44(30 5)
(t) 1 (t 1 ) 2 (t 2 )
推广到一般情况,若在 1 , 2 , 3 ··· n 分别施加应力 1 ,
2 , 3 ··· n 总形变
(t) 1 (t 1 ) 2 (t 2 ) n (t n )
n
i (t i ) i 1
采用蠕变柔量表示
log
5.692
4.9 1016 51.6 (30 5)
(30) 9.96 1010 N • s / m2
(T ) 9.96 1010 104 s
E
1107

聚合物的粘弹性

聚合物的粘弹性

第7章聚合物的粘弹性7.1基本概念 弹:外力T 形变T 应力T 储存能量T 外力撤除T 能量释放T 形变恢复 粘:外力T 形变T 应力T 应力松驰T 能量耗散T 外力撤除T 形变不可恢复理想弹性: 服从虎克定律CT= E •£应力与应变成正比,即应力只取决于应变tot理想粘性:服从牛顿流体定律ds r 一 dt应力与应变速率成正比,即应力只取决于应变速率但是高分子固体的力学行为不服从虎克定律。

当受力时,形变会随时间逐渐发展,因此弹性模量有时总结:理想弹性体 虎克固体 能量储存 形状记忆E = E(「£ .T) E聚合物是典型的粘弹体,E = E( a . £ .T.t)理想粘性体牛顿流体 能量耗散 形状耗散=E( a . £ .T.t)同时具有粘性和弹性。

5间依赖性,而除去外力后,形变是逐渐回复,而且往往残留永久变形 发生。

高分子材料(包括高分子固体,熔体及浓溶液)的力学行为在通常情况下总是或多或少表现为弹性与粘 性相结合的特性,而且弹性与粘性的贡献随外力作用的时间而异,这种特性称之为粘弹性。

粘弹性的本质 是由于聚合物分子运动具有松弛特性。

7.2 聚合物的静态力学松弛现象聚合物的力学性质随时间的变化统称为力学松弛。

高分子材料在固定应力或应变作用下观察到的力学松 弛现象称为静态力学松弛,最基本的有蠕变和应力松弛。

(一)蠕变在一定温度、一定应力的作用下,聚合物的形变随时间的变化称为蠕变。

理想弹性体:a= E- S 应力恒定,故应变恒定,如图7-1理想粘性体,如图7-2,dr cr-ii —dt应力恒定,故应变速率为常数,应变以恒定速率增加(丫^),说明在弹性变形中有粘流形变n -'E图7-3聚合物 随时间变化图聚合物:粘弹体,形变分为三个部分 ; ① 理想弹性,即瞬时响应:则键长、键角提供;② 推迟弹性形变,即滞弹部分:链段运动护%一严)3E 2③ 粘性流动:整链滑移= —/注:①、②是可逆的,③不可逆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


外 力 增 大
温 度 升 高
图5 蠕变与,T的关系
t
(3)受力时间:
受力时间延长,蠕变增大。
20
第八章 聚合物的粘弹性
如何观察到完整的蠕变曲线. 温度过低,远小于Tg蠕变量很小,很慢,短时间内观察不 出,T过高(>>Tg),外力大,形变太快,也观察不出, 只有在适当的和Tg以上才可以观察到完整的蠕变曲线。 因为链段可运动,但又有较大阻力——内摩擦力,因而 只能较缓慢的运动。
滞后环面积越大,损耗越大.通常用Tan表示内耗的大小.
36
第八章 聚合物的粘弹性
37
第八章 聚合物的粘弹性
38
第八章 聚合物的粘弹性
39
第八章 聚合物的粘弹性
0
应力-应变曲线
1

1’
图12
1 ”
橡胶拉伸与压缩循环

40
第八章 聚合物的粘弹性
滞后圈的大小恰好是单位体积的橡胶在每一个拉伸 压缩循环中所 损耗的功, 数学上有 : W t d t t d t dt dt
2 0
0 0
sin tcost - dt
W 0 0sin
又称为力学损耗角,常用tan表示内耗的大小
41
第八章 聚合物的粘弹性
③内耗的表达
当 t 0sin t时, 应力 ( t ) 0sin t
展开 : ( t ) 0 cos sin t 弹性形变的动力 0sin cost 消耗于克服摩擦阻力
32
第八章 聚合物的粘弹性
③滞后现象与哪些因素有关?
a.化学结构:刚性链滞后现象小,柔性链滞后现象大.
b.温度:当不变的情况下,T很高滞后几乎不出现,温度很低, 也无滞后.在Tg附近的温度下,链段既可运动又不太容易,此 刻滞后现象严重。 c. : 外力作用频率低时,链段的运动跟的上外力 的 变化,滞 后现象很小. 外力作用频率不太高时,链段可以运动,但是跟不上外力的变 化,表现出明显的滞后现象.
15
第八章 聚合物的粘弹性
16
第八章 聚合物的粘弹性
蠕变Creep
•加力瞬间,键长、键角立即产生形变,形变直线上升
•通过链段运动,构象变化,使形变增大 •分子链之间发生质心位移
Creep recovery 蠕变回复
•撤力一瞬间,键长、键角等次级运动立即回复,形变直线下降 •通过构象变化,使熵变造成的形变回复 •分子链间质心位移是永久的,留了下来
只是与其他的搞点不同,不然传不上哈哈哈~~~
第八章 聚e Viscoelasticity of Polymers
2
第八章 聚合物的粘弹性
一、粘弹性的基本概念
1.理想弹性固体:受到外力作用形变很小,符合胡克定 律 =E1=D1,E1普弹模量, D1普弹柔量.
14
图3 理想粘性流动蠕变
第八章 聚合物的粘弹性
当聚合物受力时,以上三种形变同时发生聚合物
的总形变方程:

2 +3 1
1 2 3
t
图4 线形非晶态聚合物的蠕变及回复曲线
( t ) 1 2 3 -t
(1 e ) t E1 E2 3
' '
0 如果E 定义为同相的应力和应变的比值, E cos 0 0 '' E 为相差90角的应力和应变的振幅的比值E" sin 0
42
第八章 聚合物的粘弹性
应力的表达式 实数模量是储能模量,虚 ( t ) 0 E 'sin t 0 E ' 'cost 数模量为能量的损耗. 0 E E 'iE ' ' (cos isin ) 0
外力的方向运动以减小或者消除内部应力,如果T很高(>>Tg),链运动摩擦
阻力很小,应力很快松弛掉了,所以观察不到,反之,内摩擦阻力很大,链段 运动能力差,应力松弛慢,也观察不到.只有在Tg温度附近的几十度的范围
内应力松弛现象比较明显.(链由蜷曲变为伸展,以消耗外力)
26
第八章 聚合物的粘弹性
0
玻璃态 高弹态 粘流态 t
17
第八章 聚合物的粘弹性
3.不同聚合物的蠕变曲线:
①线性结晶聚合物 玻璃态 1 蠕变量很小,工程材料,作结构材料的Tg 远远高于室温 高弹态 1+2 粘流态 1+2+3 存在永久形变
18
第八章 聚合物的粘弹性
②理想交联聚合物(不存在粘流态)
形变: 1 +2
③结晶高聚物在室温下的抗蠕变性能比非晶聚合物好? 举例: PE Tg=-68℃ PTFE Tg=-40℃
塑料的玻璃化温度在动态条件下,比静态来的高,就是 说在动态条件下工作的塑料零件要比静态时更耐热,因此 不能依据静态下的实验数据来估计聚合物制品在动态条件 下的性能.
29
第八章 聚合物的粘弹性
60Km/h 0 2
~300Hz t


图10
30
t
第八章 聚合物的粘弹性
t 0sin t t 0sin t - 0 某处所受的最大应力 外力变化的角频率 在受到正弦力的作用时应变落后于应力的相位差
1.定义:
在恒定的温度和形变不变的情况下,聚合物内部应力随 着时间的增长而逐渐衰减的现象.
25
第八章 聚合物的粘弹性

Cross-linking polymer
Linear polymer
0e
图8 应力松弛曲线
t
t
原因: 被拉长时,处于不平衡构象,要逐渐过渡到平衡的构象,即链段随着
特点:受外力作用平衡瞬时达到,除去外力应变立即恢复. 2.理想的粘性液体:符合牛顿流体的流动定律的流体,= 特点:应力与切变速率呈线性关系,受外力时应变随时间线 性发展,除去外力应变不能恢复.
3
第八章 聚合物的粘弹性
聚合物:力学行为强烈依赖于温度和外力作用时间
在外力作用下,高分子材料的性质就会介于弹性材料和粘性 材料之间,高分子材料产生形变时应力可同时依赖于应变和 应变速率。 3.粘弹性:聚合物材料组合了固体的弹性和液体的粘性两者的特 征,这种行为叫做粘弹性。粘弹性的表现: 力学松弛 4.线性粘弹性: 组合了服从虎克定律的理想弹性固体的弹性和 服从牛顿流动定律的理想液体的粘性两者的特征,就是线性粘 弹性。
4
第八章 聚合物的粘弹性
5.非线性粘弹性: 6.力学松弛 聚合物的力学性质随时间变化的现象,叫力学松弛 所以高聚物常称为粘弹性材料,这是聚合物材料的 又一重要特征。
5
第八章 聚合物的粘弹性
作为粘弹性材料的聚合物,其力学性质受到,T, t, 的影响,在不同条件下,可以观察到不 同类型的粘弹现象。 蠕变
34
第八章 聚合物的粘弹性
②定义:由于力学滞后或者力学阻尼而使机械功 转变成热的现象.
35
第八章 聚合物的粘弹性
内耗的情况可以从橡胶拉伸—回缩的应力应变曲线上看出 ζ
拉伸
拉伸曲线下面积为外力对橡胶所作的拉伸功 回缩曲线下面积为橡胶对外力所作的回缩功
回缩
ζ0
面积之差 损耗的功
ε1 ε0 ε2
ε
图11 硫化橡胶拉伸—回缩应力应变曲线
1.滞后现象 ①定义:聚合物在交变应力的作用下,形变落后于应力变化的 现象. ②产生原因: 形变由链段运动产生,链段运动时受内摩擦阻力作用,外力 变化时,链段的运动还跟不上外力的变化,所以形变落后于应 力,产生一个位相差,越大说明链段运动越困难.形变越跟不 上力的变化. δ越大,说明滞后现象越严重
图9 不同温度下的应力松弛曲线
高分子链的构象重排和分子链滑移是导致材料 蠕变和应力松弛的根本原因。
27
第八章 聚合物的粘弹性
三.动态粘弹性Dynamic viscoelasticity
在正弦或其它周期性变化的外力作用下,聚合物粘弹性的表现. 高聚物作为结构材料在实际应用时,往往受到交变力的 作用.如轮胎.
21
第八章 聚合物的粘弹性
ε(%)
2.0 1.5
聚砜 聚苯醚 聚碳酸酯
ABS(耐热级)
聚甲醛 尼龙
1.0
0.5
改性聚苯醚 ABS 1000 2000
图6
3000
t
(4)结构 主链钢性:分子运动性差,外力作用下,蠕变小
22
第八章 聚合物的粘弹性
5、 提高材料抗蠕变性能的途径: a.玻璃化温度高于室温,且分子链含有苯环等刚性链
8
第八章 聚合物的粘弹性
举例说明
9
第八章 聚合物的粘弹性
2.蠕变曲线和蠕变方程
对聚合物施加恒定外力, 应力具有阶梯函数性质。
0 (0tt1)
(t) 0 ( t1tt2)
10
第八章 聚合物的粘弹性
(t)
从分子运动的角度解释: 材料受到外力的作用,链内的键长和 键角立刻发生变化,产生的形变很小, 我们称它普弹形变.
在室温下处于高弹态 1+2
PS Tg=-80~100℃ 在室温下处于玻璃态: 1 所以不能通过结晶来提高聚合物的抗蠕变性能.
19
第八章 聚合物的粘弹性
4、蠕变的影响因素
(1)温度:温度升高,蠕变速率增大,蠕变程度变大 因为外力作用下,温度高使分子运动速度加快,松弛加快 (2)外力作用大,蠕变大,蠕变速率高(同于温度的作用)
静态的粘弹性
力学松弛
应力松弛
滞后现象 动态粘弹性 力学损耗(内耗)
6
第八章 聚合物的粘弹性
本章的主要内容 内部尺度--弹性和粘性结合 粘 弹 性
相关文档
最新文档