《人工智能基础》教学大纲(自考)解析

合集下载

《人工智能导论》教学大纲(2024版)

《人工智能导论》教学大纲(2024版)

人工智能导论课程教学大纲一、课程基本信息课程编号:课程中文名称:人工智能导论课程性质:学院基础课程、专业核心课程开课学期:3课内学时:32学时,其中授课32学时课外学时:32学时学分:2学分主要面向专业:自动化、测控、电气、机器人工程二、先修课程高等数学、概率论、线性代数、生命科学导论三、课程目标人工智能导论是面向理工科专业的重要基础课程。

课程以学科基础、技术基础、重点方向与领域、行业应用、伦理与法律五维知识体系为主要内容,经典与现代人工智能知识结构模块化,具有广阔的思想和技术背景。

通过课程学习,使学生系统性掌握人工智能基本概念、方法、技术,把握人工智能重点方向及领域;掌握机器学习、深度神经网络等基本方法;初步具备利用人工智能技术解决问题的基本能力;初步理解人工智能伦理及其对人工智能技术发展的重要意义。

为进一步学习相关的专业基础课程和专业课程打下必要的理论和实践基础。

(1)从大历史观角度使学生理解人工智能发展的历史和思想脉络,使学生认识到人工智能的本质和内涵,思考人之为人的价值和意义,勇于承担社会发展责任。

(2)充分发挥人工智能多学科、多领域理论、知识交叉的特点和优势,培养学生多学科知识交叉思维和创新意识。

(3)激发学生学习人工智能的热情和人机协同创新思维,为后续人工智能+X专业学习、创新创业、竞赛、就业等奠定基础。

(4)系统理解机器智能实现技术和方法,认识到机器智能对人类智能补充与增强作用,学会利用人机协同技术和方法及解决各类问题。

(5)使学生充分理解人工智能对未来人类社会经济、科技和文明发展的重要作用,具备未来能社会发展需要的人工智能人才素质。

四、教学内容与教学方法五、考核方式六、参考教材及学习资源(一)参考教材:[1]莫宏伟,徐立芳.人工智能导论.第2版.[2]莫宏伟,徐立芳.人工智能伦理导论.。

人工智能应用基础教学大纲

人工智能应用基础教学大纲

人工智能应用基础教学大纲一、前言人工智能(Artificial Intelligence,简称AI)是当今世界科技领域的热门话题,涉及领域广泛,应用范围广泛。

在这个信息时代,掌握人工智能的基础知识是非常重要的。

本教学大纲旨在通过系统的学习,为学生在人工智能应用领域奠定坚实基础。

通过课程学习,学生将对人工智能应用有更为深刻的理解,并能够为未来的发展做好准备。

二、教学目标1. 营造积极的学习环境,激发学生对人工智能应用的兴趣。

2. 帮助学生掌握人工智能的基本概念、技术和方法。

3. 培养学生的逻辑思维和问题解决能力。

4. 培养学生的团队合作精神和沟通能力,促进学生的综合素质提升。

三、教学内容1. 人工智能基础概念和原理- 人工智能的定义和发展历程- 人工智能的主要研究内容和技术体系- 人工智能的应用领域和前景展望2. 机器学习的基本原理和方法- 监督学习、非监督学习、强化学习的基本概念和应用- 机器学习算法的基本原理和常用算法介绍- 机器学习在实际问题中的应用案例分析3. 深度学习的概念和网络结构- 感知机、卷积神经网络、循环神经网络等深度学习模型的基本原理- 深度学习在图像识别、自然语言处理、智能推荐等方面的应用案例4. 自然语言处理与文本挖掘- 自然语言处理的基本概念和技术- 文本挖掘的方法和工具- 自然语言处理在智能客服、智能翻译、情感分析等方面的应用实例5. 人工智能在实际应用中的伦理与法律问题- 人工智能发展中的伦理道德问题- 人工智能应用中的隐私保护和数据安全法律法规- 人工智能在社会中的应用风险和治理问题四、教学方法1. 理论讲解:通过课堂教学、讲解、演示等方式,让学生了解人工智能基础知识。

2. 实践操作:结合案例分析、编程实践,让学生亲自动手实践,加深理解。

3. 课外拓展:鼓励学生参与相关科研项目、学术讨论,拓宽知识视野。

4. 团队合作:组织学生开展小组项目,培养团队协作精神。

五、教学评价方式1. 学生考试:定期进行笔试、机试,考察学生对基本概念和原理的掌握情况。

2024年《人工智能》详细教学大纲

2024年《人工智能》详细教学大纲
语音情感分析
结合语音识别和自然语言处理技术,对语音中的情感进行 分析和识别,是实现智能语音交互的重要研究方向。
18
05 计算机视觉技术与应用
2024/2/29
19
图像处理和计算机视觉基础概念
1 2
图像处理基础
像素、分辨率、色彩空间、图像变换等基本概念 。
计算机视觉概述
视觉感知、视觉计算模型、视觉任务分类等。
能力目标
能够运用所学知识分析和 解决人工智能领域的实际 问题,具备一定的实践能 力和创新能力。
素质目标
培养学生的创新思维、团 队协作和终身学习能力, 提高学生的综合素质和职 业素养。
5
课程安排与时间表
课程安排
本课程共分为理论授课、实验操作和课程设计三个环节,其中理论授课主要讲解 人工智能的基本原理和方法,实验操作帮助学生掌握相关技术和工具的使用,课 程设计则要求学生综合运用所学知识完成一个实际项目。
分割(如FCN、U-Net)等。
2024/2/29
03
实例分割与语义分割
Mask R-CNN、PANet等实例分割方法;DeepLab、PSPNet等语义分
割方法。
21
三维重建、视频理解等前沿技术介绍
三维重建技术
基于多视图的三维重建、基于深度学习的三维重建(如体素网格 、点云处理)等。
视频理解技术
马尔科夫决策过程在强化学习中的应用
03
将强化学习问题建模为马尔科夫决策过程,利用求解方法求解
最优策略。
25
智能推荐系统、游戏AI等应用场景分析
智能推荐系统
利用强化学习技术,根据用户历史行为和环境反馈,学习推荐策略,实现个性化推荐。例 如,电商平台的商品推荐、音乐平台的歌曲推荐等。

《人工智能基础》课程教学大纲(本科)

《人工智能基础》课程教学大纲(本科)

《人工智能基础》课程教学大纲课程编号:04291课程名称:人工智能基础英文名称:Artificial Intelligence Foundation课程性质:学科基础课程要求:必修学时/学分:48/3 (讲课学时:36实验学时:12 )适用专业:智能科学与技术一、课程性质与任务《人工智能基础》是一门探索、揭示人类思维本质,研究将人类智能转化为机器智能的学科。

通过本课程的学习,培养学生拥有能够解决复杂问题的基本能力,为今后在专家系统、智能机器人、智能计算机等方面知识掌握奠定比较扎实的理论基础。

本课程的主要任务是介绍知识表示、基本的搜索算法、模拟人类思维的不确定性推理,使学生对专家系统、智能计算机等方面具有一定的理论基础与实践能力。

(支撑毕业要求1.3, 2.2, 4.2, 5.2, 10.1, 11.2)二、课程与其他课程的联系《人工智能基础》的先修课程包括《概率论与数理统计》、《智能优化方法》、《C语言程序设计》等课程。

《概率论与数理统计》在复杂问题求解中的主观Bayes决策与不确定性理论方面支撑《人工智能基础》课程。

《智能优化方法》在搜索技术问题的理解方面支撑《人工智能基础》课程。

《C语言程序设计》在搜索算法、贝叶斯决策与专家系统的实现方面支撑《人工智能基础》课程。

《人工智能基础》的后续课程包括《智能机器人》,为《智能机器人》提供理论基础方法方面的支撑。

三、课程教学目标1.学习人工智能的基础理论知识,掌握解决复杂问题的基本能力,为今后在专家系统、智能机器人、智能计算机等方面知识掌握奠定比较扎实的理论基础,对智能机器人的应用方面提供理论与实践支撑。

(支撑毕业能力要求13, 10.1, 11.2)2认识到知识表示在本学科发展中所处的地位与扮演的角色,能够掌握本领域经典的知识表示方法,如谓词逻辑、状态空间、语义网络等,并能运用这些知识解决一些实际工程问题。

(支撑毕业能力要求1.3, 2.2, 5.2)1掌握搜索的基本思想,比如宽度优先、深度优先等传统搜索方法。

人工智能基础教学大纲(自考)

人工智能基础教学大纲(自考)

人工智能基础(8017)考试大纲一、课程性质与设置目的(一)课程性质和特点“人工智能”是21世纪计算机科学发展的主流,为了培养国家建设跨世纪的有用人才,在计算机专业本科开设《人工智能基础》课程是十分必要的。

《人工智能基础》是计算机专业本科的一门必修课程,本课程中涉及的理论、原理、方法和技术有助于学生进一步学习其他专业课程。

开设本课程的目的是培养学生软件开发的“智能”观念;掌握人工智能的基本理论、基本方法和基本技术;提高解决“智能”问题的能力,为今后的继续深造和智能系统研制,以及进行相关的工作打下人工智能方面的基础。

(二)本课程的基本要求(课程总目标)《人工智能基础》是理论性较强,涉及知识面较广,方法和技术较复杂的一门学科。

通过对本课程的学习,学生应掌握人工智能的一个问题和三大技术,即通用问题求解和知识表示技术、搜索技术、推理技术。

具体要求是:学生在较坚实打好的人工智能数学基础(数理逻辑、概率论、模糊理论、数值分析)上,能够利用这些数学手段对确定性和不确定性的知识完成推理;在理解Herbrand域概念和Horn子句的基础上,应用Robinson 归结原理进行定理证明;应掌握问题求解(GPS)的状态空间法,能应用几种主要的盲目搜索和启发式搜索算法(宽度优先、深度优先、有代价的搜索、A算法、A*算法、博弈数的极大—极小法、α―β剪枝技术)完成问题求解;并能熟悉几种重要的不确定推理方法,如确定因子法、主观Bayes方法、D—S证据理论等,利用数值分析中常用方法进行正确计算。

另外,学生还应该了解专家系统的基本概念、研究历史、系统结构、系统评价和领域应用。

学生还应认识机器学习对于智能软件研制的重要性,掌握机器学习的相关概念,机器学习的方法及其相应的学习机制,几个典型的机器学习系统的学习方法、功能和领域应用。

(三)本课程与相关课程的联系、分工或区别与本课程相关的课程有:离散数学、算法设计、数值分析、程序设计语言等。

2024版《人工智能》课程教学大纲

2024版《人工智能》课程教学大纲

计算机体系结构
理解计算机硬件组成、操 作系统及基本工作原理。
数据结构与算法
掌握基本数据结构(如数 组、链表、栈、队列等) 和常用算法(如排序、查 找等)。
计算机网络
了解网络协议、网络架构 及网络安全等基础知识。
数学基础
线性代数
掌握向量、矩阵、线性方程组等基本概念和运算。
概率论与数理统计
理解概率分布、随机变量、数理统计等基本概念 和方法。
介绍神经网络优化的一些常用方 法,如梯度下降、动量法、
Adam等优化算法的原理和应用。
卷积神经网络(CNN)
卷积层
池化层
讲解卷积层的工作原理和实 现方法,包括卷积核、步长、 填充等概念。
介绍池化层的作用和实现方 法,包括最大池化、平均池 化等。
CNN模型
介绍一些经典的CNN模型, 如LeNet-5、AlexNet、 VGGNet、GoogLeNet、 ResNet等,并分析其网络结 构和特点。
无监督学习
K-均值聚类
层次聚类
将数据划分为K个簇,使得同一簇内的数据尽 可能相似,不同簇间的数据尽可能不同。
通过不断将数据点或已有簇合并成新的簇, 直到满足某种停止条件。
主成分分析(PCA)
自编码器
通过线性变换将原始数据变换为一组各维度 线性无关的表示,可用于高维数据的降维。
一种神经网络结构,通过编码器和解码器对 输入数据进行压缩和重构,实现特征提取和 降维。
句ห้องสมุดไป่ตู้分析技术
短语结构分析
识别句子中的短语结构,如名词短语、动词短语等。
依存关系分析
分析句子中单词之间的依存关系,如主谓关系、动宾关系等。
句法树构建
根据短语结构和依存关系构建句子的句法树,表示句子的结构信 息。

《人工智能基础教程》课程教学大纲

《人工智能基础教程》课程教学大纲

《人工智能基础教程》课程教学大纲课程名称:人工智能导论课程类别:公共基础课适应专业:全校各专业学时学分:2学时/周,共32学时,2学分1.课程性质和任务本课程为以培养学生具备基本的人工智能思维能力为目标,重点培养高职学生的人工智能素养、计算思维能力和人工智能应用能力。

课程使学生初步了解人工智能的概念,发展历程、经典算法、应用领域及对社会的深远影响,主要内容包括:人工智能的历史和发展、大数据与人工智能、专家系统、机器学习、深度学习、计算机视觉、自然语言理解、智能机器人技术。

课程设计理念以提高人工智能素养为切入点,通过生动形象的案例,把目前人工智能领域的热点问题,以科普性、技术性的形式进行展现,让学习者在学习人工智能理论的同时,激发学生学习人工智能知识的兴趣。

2.教学目标(1)知识目标1)了解人工智能的基本概念及发展历史。

2)了解人工智能的研究领域及发展现状。

3)了解大数据与人工智能的关系。

4)熟悉专家系统的结构及应用。

5)熟悉知识表示及常用的搜索算法。

6)熟悉机器学习、深度学习的概念及主流算法。

7)熟悉计算机视觉、自然语言处理的主流技术及应用。

8)熟悉智能机器人技术及应用。

(2)思政与素质目标1)通过人工智能起源与发展的学习,培养学生的科学精神、奋斗精神和开拓创新精神。

2)学习人工智能学科先驱模范事迹,培养学生探索未知、追求真理、勇攀科学高峰的责任感和使命感。

3)通过人工智能发展现状认识,激发学生科技报国的家国情怀和使命担当。

4)通过人工智能安全教育,培养学生遵纪守法,诚实守信,树立正确的世界观、人生观、价值观。

5)通过人工智能中的算法学习,帮助学生建立科学思维、推理机制,培养解决实际问题的能力。

6)通过人工智能应用案例,培养学生精益求精的大国工匠精神及勇攀科学高峰的责任感。

4.教学评价(1)评价形式平时作业(含考勤)+阶段测试(含期中测试)+期末测试。

(2)评分等级评分等级以百分制为标准。

《人工智能基础》教学大纲

《人工智能基础》教学大纲

引言概述(ArtificialIntelligence,简称)是一门涉及计算机科学、机器学习和认知科学的学科,致力于使机器能够模拟人类智能的一系列技术和方法。

随着科技的不断发展和应用的推广,已经成为当今世界最热门的前沿领域之一。

为了满足对人才的需求和引导学生深入了解技术,特编制了本《基础》教学大纲。

正文内容一、概述1.1的定义和发展历程1.2的基本原理1.3的应用领域和前景二、智能代理与搜索算法2.1智能代理的概念和基本特点2.2搜索算法的分类和应用2.3与搜索算法的结合应用三、机器学习的基础理论3.1机器学习的定义和基本模型3.2监督学习和无监督学习的区别和应用3.3与机器学习的结合应用四、神经网络与深度学习4.1神经网络的基本原理和结构4.2深度学习的核心思想和常用模型4.3与深度学习的结合应用五、自然语言处理与语音识别5.1自然语言处理的基本概念和技术5.2语音识别的基本原理和方法5.3与自然语言处理、语音识别的结合应用总结通过本《基础》教学大纲,学生将能够全面了解的基本概念、发展历程、基本原理和应用领域。

同时,学生还将深入了解智能代理、搜索算法、机器学习、神经网络、深度学习、自然语言处理和语音识别等领域的相关知识和技术。

这些知识和技术不仅有助于学生理解的核心思想和方法,还能为学生未来的学习和研究提供有力的支持。

1.掌握的基础概念和基本原理;2.熟悉智能代理和搜索算法的基本思想和方法;3.理解机器学习的基本理论和应用;4.了解神经网络和深度学习的基本原理和模型;5.掌握自然语言处理和语音识别的基本技术和应用。

同时,本门课程将通过讲授理论知识和实践案例,鼓励学生进行实际操作和项目实践,以提高他们的问题解决能力和创新能力。

通过与教师和同学的互动交流,学生将有机会扩展他们的思维边界,并形成对的综合理解和深入认识。

本《基础》教学大纲将帮助学生建立起的基础知识和技能,为他们未来在领域的学习和研究奠定坚实的基础。

《人工智能》教学大纲

《人工智能》教学大纲

附件1广东财经大学华商学院课程教学大纲模板人工智能》课程教学大纲一、课程简介人工智能是计算机与自动化学科的一门分支学科。

它研究如何用机器来模仿人脑所从事的推理、证明、识别、理解、学习、规划、诊断等智能活动。

人工智能是当前科学技术中正在迅速发展,新思想、新观点、新技术不断涌现的一个学科,也是一门涉及数学、计算机科学、控制论、信息论、心理学、哲学等学科的交叉和边缘学科。

人工智能原理是计算机科学技术类专业的应用学科。

前修课程包括:离散数学、数据结构、算法分析与设计等,后续课程:专家系统,知识工程。

二、教学目标(1)熟练掌握图搜索策略,熟练掌握回溯策略、图搜索策略的过程以及算法(BACKTRACK 以及AI算法),掌握一些典型问题的启发式函数;(2)掌握用命题逻辑、一阶逻辑表示知识的方法,并在此基础上进行推理,熟练掌握归结方法以及归结反驳过程,熟练掌握利用归结反驳方法进行推理。

(3)掌握基于贝叶斯规则的不确定性推理,掌握条件概率、独立、条件独立及贝叶斯公式;掌握利用贝叶斯定理检测垃圾邮件的基本方法。

三、主要教学模式和教学手段1.本课程的教学包括课堂讲授、课外作业、辅导答疑、上机实验和期末考试等教学环节。

2.课堂教学采用启发式教学方法,理例结合,多媒体并用,引导学生加深对课程内容的理解,提高学生的学习兴趣和效果。

3.理论联系实际,通过本课程的教学,力争使学生在理解和掌握大纲所要求的知识内容的基础上,能正确地运用这些知识解决有关实际问题。

四、教学内容(要求编写所有章节的主要内容)第一章人工智能概述基本内容和要求:1.人工智能的概念与目标;2.人工智能的研究内容与方法;3.人工智能的分支领域;4.人工智能的发展概况。

第二章逻辑程序设计语言Prolog基本内容和要求:1.掌握Prolog语言的语句特点、程序结构和运行机理;2.能编写简单的Prolog程序,能读懂一般的Prolog程序。

教学重点:Prolog程序设计。

8017《人工智能基础》教学大纲(自考)

8017《人工智能基础》教学大纲(自考)

人工智能基础(8017)考试大纲一、课程性质与设置目的(一)课程性质和特点“人工智能”是21世纪计算机科学发展的主流,为了培养国家建设跨世纪的有用人才,在计算机专业本科开设《人工智能基础》课程是十分必要的。

《人工智能基础》是计算机专业本科的一门必修课程,本课程中涉及的理论、原理、方法和技术有助于学生进一步学习其他专业课程。

开设本课程的目的是培养学生软件开发的“智能”观念;掌握人工智能的基本理论、基本方法和基本技术;提高解决“智能”问题的能力,为今后的继续深造和智能系统研制,以及进行相关的工作打下人工智能方面的基础。

(二)本课程的基本要求(课程总目标)《人工智能基础》是理论性较强,涉及知识面较广,方法和技术较复杂的一门学科。

通过对本课程的学习,学生应掌握人工智能的一个问题和三大技术,即通用问题求解和知识表示技术、搜索技术、推理技术。

具体要求是:学生在较坚实打好的人工智能数学基础(数理逻辑、概率论、模糊理论、数值分析)上,能够利用这些数学手段对确定性和不确定性的知识完成推理;在理解Herbrand域概念和Hom 子句的基础上,应用Robinson 归结原理进行定理证明;应掌握问题求解 (GPS) 的状态空间法,能应用几种主要的盲目搜索和启发式搜索算法(宽度优先、深度优先、有代价的搜索、 A 算法、 A* 算法、博弈数的极大一极小法、α—β剪枝技术)完成问题求解;并能熟悉几种重要的不确定推理方法,如确定因子法、主观Bayes 方法、D—S 证据理论等,利用数值分析中常用方法进行正确计算。

另外,学生还应该了解专家系统的基本概念、研究历史、系统结构、系统评价和领域应用。

学生还应认识机器学习对于智能软件研制的重要性,掌握机器学习的相关概念,机器学习的方法及其相应的学习机制,几个典型的机器学习系统的学习方法、功能和领域应用。

(三)本课程与相关课程的联系、分工或区别—1—与本课程相关的课程有:离散数学、算法设计、数值分析、程序设计语言等。

人工智能 教学大纲

人工智能 教学大纲

人工智能教学大纲人工智能教学大纲随着科技的不断发展,人工智能(Artificial Intelligence,简称AI)正逐渐渗透到我们的生活中的方方面面。

从智能手机的语音助手到自动驾驶汽车,从智能家居到医疗诊断,人工智能已经成为了当今社会的重要组成部分。

为了培养更多的人工智能专业人才,制定一份全面而具有深度的人工智能教学大纲显得尤为重要。

一、引言人工智能教学大纲的编制需要从引言开始,以介绍人工智能的基本概念和发展历程。

在这一部分,可以引用一些具体的案例,如AlphaGo战胜围棋世界冠军、语音识别技术的进步等,以激发学生对人工智能的兴趣。

二、基础知识在人工智能教学大纲中,基础知识是学生理解和掌握人工智能的基石。

这一部分可以涵盖以下内容:1. 机器学习:介绍机器学习的基本原理和常见算法,如监督学习、无监督学习和强化学习等。

可以通过实例来解释机器学习在人工智能中的应用,如图像分类、自然语言处理等。

2. 深度学习:深度学习是人工智能领域的热门技术,其基于神经网络的模型可以有效地解决复杂问题。

在教学大纲中,可以介绍深度学习的基本原理和常见的网络结构,如卷积神经网络(CNN)和循环神经网络(RNN)等。

3. 自然语言处理:自然语言处理是人工智能的一个重要应用领域,它涉及到语言的理解、生成和翻译等任务。

在教学大纲中,可以介绍自然语言处理的基本概念、技术和应用,如情感分析、机器翻译等。

三、人工智能应用人工智能的应用涵盖了各个领域,如医疗、金融、交通等。

在人工智能教学大纲中,可以选择一些典型的应用领域进行介绍,以展示人工智能的广泛应用和潜力。

1. 医疗诊断:人工智能在医疗领域的应用已经取得了显著的成果,如基于深度学习的医学影像诊断、疾病预测等。

在教学大纲中,可以介绍这些应用的原理和技术,并讨论其在提高医疗效率和准确性方面的优势和挑战。

2. 金融风控:人工智能在金融领域的应用主要包括风险评估、投资决策等。

在教学大纲中,可以介绍机器学习在金融风控中的应用,如信用评估、欺诈检测等,并讨论其在提高金融安全性和效率方面的作用。

《人工智能基础》-课程教学大纲

《人工智能基础》-课程教学大纲

《人工智能基础》课程教学大纲一、课程基本信息课程代码:16069703课程名称:人工智能基础英文名称:Introduction to Artificial Intelligence课程类别:专业课学时:3学分:3适用对象: 计算机科学技术班考核方式:考试先修课程:《离散数学》、《数据结构》、《程序设计》二、课程简介本课程是为计算机科学与技术专业及相关专业本科生而设的专业课。

本课程是关于人工智能领域的引导性课程,目的是使学生了解和掌握人工智能的基本概念和方法,为今后的更高级课程的学习、为将来在人工智能领域的进一步研究工作和软件实践奠定良好的基础。

本课程内容主要包括:知识表示方法和搜索推理技术,神经计算,模糊计算,进化计算,人工生命,专家系统,机器学习,Agent,自然语言理解等。

This course introduces mainly the basic techniques and methods and application of artificial intelligence, including the methods of knowledge representation, the techniques of searching and reasoning, neural computation, fuzzy computation, evolutionary computation, Artificial Life, expert systems, machine learning, Agent, natural language understanding. et.三、课程性质与教学目的本课程是为计算机科学与技术专业及相关专业本科生开设的专业基础课,旨在向学生传授人工智能基本技术、方法及其应用的知识,使学生对人工智能的发展概况、基本原理和应用领域有初步了解,掌握人工智能的主要技术及应用,启发学生对人工智能的兴趣,培养知识创新和技术创新能力,培养学生在计算机领域中应用人工智能技术提高分析和解决较复杂问题的能力。

《人工智能》教学大纲

《人工智能》教学大纲

《人工智能》教学大纲第一篇:《人工智能》教学大纲人工智能原理及其应用一、说明(一)课程性质随着信息社会和知识经济时代的来临,信息和知识已成为人们的一个热门话题。

然而,在这个话题的背后还蕴含着另外一个更深层的问题——智能。

一般来说,信息是由数据来表达的客观事物,知识是信息经过智能性加工后的产物,智能是用来对信息和知识进行加工的加工器。

在信息社会,人类面对的信息将非常庞大,仅靠人脑表现出来的自然智能是远远不够的,必须开发那种由机器实现的人工智能。

《人工智能导论》是计算机科学与技术专业本科生的一门限选课程。

(二)教学目的使学生掌握人工智能的基本原理、方法及研究应用领域。

了解人工智能中常用的知识表示技术,启发式搜索策略,了解原理以及非确定性推理技术。

通过对典型专家系统的分析、解剖、进一步深入掌握人工智能的主要技术,去解决人工智能的一些实际问题。

增强学生的逻辑思维与实验能力,为人今后处理各门学科的智能奠定基础。

(三)教学内容人工智能的基本原理和方法,人工智能的三个重要研究领域(机器学习、神经网络学习和自然语言理解),人工智能的两个重要应用领域(专家系统和智能决策支持系统)。

(四)教学时数36学时(五)教学方式课堂讲授和上机实验相结合。

二、本文第1章人工智能概述教学要点讨论人工智能的定义、形成过程、研究内容、研究方法、技术特点、应用领域、学派之争及发展趋势。

教学时数3学时教学内容1.1 人工智能及其研究目标(0.5学时)了解人工智能的定义及其研究目标。

1.2 人工智能的产生与发展(0.5学时)了解人工智能产生与发展的四个阶段。

1.3 人工智能研究的基本内容及其特点(0.5学时)了解人工智能研究的基本内容及特点。

1.4 人工智能的研究和应用领域(0.5学时)了解人工智能研究和应用领域。

1.5 人工智能研究的不同学派及其争论(0.5学时)了解三大学派及其理论的争论和研究方法的争论。

1.6 人工智能的近期发展分析(0.5学时)了解更新的理论框架研究,更好的技术集成研究,更成熟的应用方法研究。

《人工智能基础》课程教学大纲

《人工智能基础》课程教学大纲

《人工智能基础》课程教学大纲课程名称:人工技能基础课程类别:专业选修课适用专业:教育技术学考核方式:考查总学时、学分: 16学时 1学分其中实践学时: 0 学时一、课程教学目的《人工智能基础》是教育技术学专业的专业选修课,旨在使学生能够胜任中小学信息技术课程中的“人工智能初步”模块的教学。

该课程主要使学生理解人工智能的基本概念,了解并初步掌握人工智能在问题求解与语言设计、知识与表征、专家系统与机器学习等方面的成熟技术与研究方法,认识人工智能领域的经典案例、模型与产品,并能设计一份人工智能的教学设计方案二、课程教学要求通过该课程的教学,使学生达到以下要求:(一)对人工智能理论的发展过程、目前的研究状况和发展趋势有基本的了解,并熟悉人工智能的应用领域,对教育技术领域的人工智能研究与应用案例形成一定的认知。

(二)对人工智能求解问题的基本方法、步骤和原理有初步的了解,并初步具备应用人工智能技术分析和解决问题的能力。

(三)对人工智能课程的框架体系有明确的了解,并打下扎实的学科基础,能够胜任中小学人工智能课程和机器人课堂教学工作。

三、先修课程《C程序设计语言》、《高等数学》四、课程教学重、难点教学重点:(一)人工智能领域的关键技术:知识表征、推理与搜索;(二)人工智能领域的研究热点:机器学习、机器人;(三)人工智能语言。

教学难点:教学难点:(一)知识表征技术;(二)机器学习及其开发技术。

五、课程教学方法与教学手段该课程综合采用理论讲授、案例分析、技能演示、小组协作与研究性学习等多种教学形式和教学方法。

课程采用多媒体教学系统授课,并安装有Proglog、 Matlab 等软件。

六、课程教学内容第一章人工智能概述(1学时)1. 教学内容(1)人工智能的定义;(2)人工智能的起源和发展;(3)人工智能基础知识及其应用领域。

2.重、难点提示(1)人工智能的不同定义及其区别于人类智能的根本特点;(2)人工智能的基础知识。

人工智能课程教学大纲-2024鲜版

人工智能课程教学大纲-2024鲜版
17
卷积神经网络在图像处理中的应用
2024/3/27
卷积层与池化层
解释卷积层如何通过卷积核提取图像特征,池化层如何降低数据 维度,减少计算量。
经典卷积神经网络结构
介绍LeNet-5、AlexNet、VGGNet等经典卷积神经网络的结构和 特点。
图像分类与目标检测
阐述卷积神经网络在图像分类和目标检测任务中的应用,包括数据 集、评估指标等。
目标检测
讲解目标检测的任务和方法,包括基于滑动窗口的目标检测、基于区域提议的目标检测等 ,以及常见的目标检测算法,如R-CNN、Fast R-CNN、Faster R-CNN等。
图像分割
介绍图像分割的概念和方法,包括基于阈值的分割、基于边缘的分割、基于区域的分割等 ,以及常见的图像分割算法,如K-means聚类、水平集方法等。
人工智能课程教学大纲
2024/3/27
1
目录
2024/3/27
• 课程介绍与目标 • 基础知识与技能 • 机器学习原理及方法 • 深度学习原理及应用 • 自然语言处理技术 • 计算机视觉技术 • 人工智能伦理、法律和社会影响
2
01
课程介绍与目标
Chapter
2024/3/27
3
人工智能定义及应用领域
图像描述生成
讲解图像描述生成的基本方法和模型,包括基于卷积神经 网络和循环神经网络的方法,介绍图像描述生成的评估指 标和优化方法。
23
06
计算机视觉技术
Chapter
2024/3/27
24
图像识别、目标检测等基础知识
2024/3/27
图像识别
介绍图像识别的基本原理,包括特征提取、分类器设计等,以及常见的图像识别算法,如 卷积神经网络(CNN)。

《人工智能》课程教学大纲

《人工智能》课程教学大纲

《人工智能》课程教学大纲《人工智能》课程教学大纲一、课程基本信息开课单位课程名称开课对象学时/学分先修课程课程简介:人工智能是计算机科学的重要分支,是研究如何利用计算机来模拟人脑所从事的感知、XXX人工智能课程类别课程编码开课学期个性拓展GT第4或6学期网络工程专业、计算机科学与技术专业36学时/2学分(理论课:28学时/1.5学分;实验课:8学时/0.5学分)离散数学、数据结构、程序设计推理、研究、思考、规划等人类智能活动,来解决需要用人类智能才能解决的问题,以延伸人们智能的科学。

该课程主要讲述人工智能的基本概念及原理、知识与知识表示、机器推理、搜索策略、神经网络、机器研究、遗传算法等方面内容。

二、课程教学目标《人工智能》是计算机科学与技术专业的一门专业拓展课,通过本课程的研究使本科生对人工智能的基本内容、基本原理和基本方法有一个比较初步的认识,掌握人工智能的基本概念、基本原理、知识的表示、推理机制和智能问题求解技术。

启发学生开发软件的思路,培养学生对相关的智能问题的分析能力,提高学生开发应用软件的能力和水平。

三、教学学时分配《人工智能》课程理论教学学时分派表章次第一章第二章第三章第四章第五章第六章首要内容人工智能概述智能程序设计言语图搜索技术基于谓词逻辑的机器推理呆板进修与专家系统智能计算与问题求解合计学时分配35464628教学方法或手段讲授法、多媒体讲授法、多媒体探究式、多媒体讲授法、多媒体概述法、多媒体开导式、多媒体《人工智能》课程实验内容设置与教学要求一览表实学尝试序项目号名称配1)了解PROLOG语言中常1) Prolog运转环境;量、变量的表示方法;实分支2)使用PROLOG举行事实验与循实库、规则库的编写;库、规则库的编写方法;环程3)分支程序设计;一序设4)循环程序设计;一计5)输入出程序设计。

5)掌握PROLOG输入输出程序设计;1)了解PROLOG中的谓词1)谓词asserta和递归实与表实处理验程序二设计4)掌握PROLOG表处理程4)综合应用程序设计。

最新《人工智能》课程教学大纲打印版.doc

最新《人工智能》课程教学大纲打印版.doc

《人工智能》课程教学大纲(Artificial Intelligence)课程性质:院公选课适用专业:各专业先修课程:离散数学、数据结构、操作系统原理后续课程:总学分:2学分一、教学目的与要求1.教学目的人工智能主要研究解释和模拟人类智能、智能行为及其规律的一门学科,其主要任务是建立智能信息处理理论,进而设计可以展现某些近似于人类智能行为的计算机系统。

本课程要求学生掌握人工智能的基本原理,了解人工智能中常用的基本技术,诸如:知识表示技术、搜索技术、自动推理技术以及专家系统等,同时学会运用Prolog语言求解人工智能的实际问题。

2.教学要求学生必须具有离散数学、程序设计、数据结构、操作系统方面的知识。

二、课时安排三、教学内容1.人工智能概述(4学时)(1)教学基本要求了解:人工智能的发展概况理解:人工智能的概念掌握:人工智能的研究途径与方法、人工智能的分支领域灵活运用:人工智能的基本技术(2)教学内容①人工智能的概念②人工智能的研究途径与方法(重点)③人工智能的分支领域(重点、难点)④人工智能的基本技术(难点)⑤人工智能的发展概况2.人工智能程序设计语言(6学时)(1)教学基本要求了解:人工智能程序设计语言分类掌握:函数型程序设计语言LISP和逻辑型程序设计语言PROLOG灵活运用:Turbo PROLOG程序设计语言(2)教学内容①综述②函数型程序设计语言LISP(重点)③逻辑型程序设计语言PROLOG(重点、难点)④Turbo PROLOG程序设计(难点)3.基于谓词逻辑的机器推理(6学时)(1)教学基本要求理解:谓词及谓词逻辑,形式演绎推理掌握:归结演绎推理灵活运用:应用归结原理求取问题答案了解:Horn子句归结与逻辑程序、非归结演绎推理(2)教学内容①一阶谓词逻辑②归结演绎推理(重点)③应用归结原理求取问题答案(重点、难点)④归结策略⑤归结反演程序举例⑥Horn子句归结与逻辑程序(难点)⑦非归结演绎推理4.图搜索技术(8学时)(1)教学基本要求掌握:状态图搜索方法、与或图搜索方法灵活运用:状态图搜索方法进行问题求解、与或图搜索方法进行问题求解了解:博弈树搜索技术(2)教学内容①状态图搜索(重点、难点)②状态图问题求解(重点)③与或图搜索(重点、难点)④与或图问题求解(难点)⑤博弈树搜索5.产生式系统(4学时)(1)教学基本要求掌握:产生式规则、产生式系统灵活运用:产生式系统了解:产生式系统的程序实现(2)教学内容①产生式规则(重点②产生式系统(重点)③产生式系统与图搜索(重点)④产生式系统的应用⑤产生式系统的程序实现(难点)6.知识表示(4学时)(1)教学基本要求掌握:知识及其表示灵活运用:框架和语义网络(2)教学内容①知识及其表示(重点)②框架(重点、难点)③语义网络(重点、难点)四、授课方式及考核方法1.授课方式讲授2.考核方法考试形式:闭卷或论文写作课程成绩构成:平时成绩占30%,期末考试成绩占70%。

(2024年)人工智能教学大纲

(2024年)人工智能教学大纲

02
讨论如何保障人工智能系统中的数据安全,包括数据加密、访
问控制等。
数据泄露与应对
03
分析数据泄露的原因、后果及应对措施,以及如何在人工智能
系统中预防数据泄露。
28
算法偏见与歧视问题
2024/3/26
算法偏见
探讨算法偏见产生的原因、表现形式以及对社会的影响。
歧视性算法
分析歧视性算法的危害,以及如何避免在人工智能系统中出现歧 视性算法。
门控循环单元(GRU)
熟悉GRU的原理和实现细节, 了解其与LSTM的异同点以及 在特定任务中的表现。
循环神经网络的训练与调 优
掌握循环神经网络的训练方法 和调优技巧,如梯度爆炸/消失 问题的解决方法、序列数据的 预处理等。
2024/3/26
18
05 自然语言处理
2024/3/26
19
词法分析
词汇识别
公平性与透明度
讨论如何在人工智能系统中实现算法公平性和透明度,以及如何 评估算法的公平性和透明度。
29
人工智能的法律责任与监管
法律责任
探讨人工智能系统在不同应用场景下的法律责任归属问题,包括民 事责任、刑事责任等。
监管政策
分析国内外对人工智能的监管政策及其发展趋势,以及如何在合规 的前提下推动人工智能的发展。
介绍情感分析的基本原理和 方法,包括如何识别和分析 文本中的情感倾向和情感表 达。
2024/3/26
22
06 计算机视觉
2024/3/26
23
图像分类与目标检测
01 02
图像分类
学习如何使用深度学习算法对图像进行分类,包括卷积神经网络( CNN)的基本原理、常见网络结构(如VGG、ResNet等)以及训练和 优化技巧。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人工智能基础(8017)考试大纲一、课程性质与设置目的(一)课程性质和特点“人工智能”是21世纪计算机科学发展的主流,为了培养国家建设跨世纪的有用人才,在计算机专业本科开设《人工智能基础》课程是十分必要的。

《人工智能基础》是计算机专业本科的一门必修课程,本课程中涉及的理论、原理、方法和技术有助于学生进一步学习其他专业课程。

开设本课程的目的是培养学生软件开发的“智能”观念;掌握人工智能的基本理论、基本方法和基本技术;提高解决“智能”问题的能力,为今后的继续深造和智能系统研制,以及进行相关的工作打下人工智能方面的基础。

(二)本课程的基本要求(课程总目标)《人工智能基础》是理论性较强,涉及知识面较广,方法和技术较复杂的一门学科。

通过对本课程的学习,学生应掌握人工智能的一个问题和三大技术,即通用问题求解和知识表示技术、搜索技术、推理技术。

具体要求是:学生在较坚实打好的人工智能数学基础(数理逻辑、概率论、模糊理论、数值分析)上,能够利用这些数学手段对确定性和不确定性的知识完成推理;在理解Herbrand域概念和Horn子句的基础上,应用Robinson 归结原理进行定理证明;应掌握问题求解(GPS)的状态空间法,能应用几种主要的盲目搜索和启发式搜索算法(宽度优先、深度优先、有代价的搜索、A算法、A*算法、博弈数的极大—极小法、α―β剪枝技术)完成问题求解;并能熟悉几种重要的不确定推理方法,如确定因子法、主观Bayes方法、D—S证据理论等,利用数值分析中常用方法进行正确计算。

另外,学生还应该了解专家系统的基本概念、研究历史、系统结构、系统评价和领域应用。

学生还应认识机器学习对于智能软件研制的重要性,掌握机器学习的相关概念,机器学习的方法及其相应的学习机制,几个典型的机器学习系统的学习方法、功能和领域应用。

(三)本课程与相关课程的联系、分工或区别与本课程相关的课程有:离散数学、算法设计、数值分析、程序设计语言等。

离散数学中的命题逻辑、谓词逻辑、树/图、表等知识是本课程的数学基础之一。

本课程中的知识表示需要利用矩阵、表、树/图、多元组等手段,因此学生前期的离散数学学习,对于本课程起到了基础作用。

-1-本课程涉及到许多算法设计(尤其是问题求解),算法分析中的算法的可计算性和计算复杂性、算法的可纳性等理论作为本课程中搜索算法的理论支撑。

数值分析中的曲线插值方法要在本课程中仅作为数学工具进行使用,本课程并不象数值分析课程那样去介绍方法的理论。

在本课程中,研究问题求解方法需要从算法到代码的转换,而这种转换的工具是程序设计语言,所以本课程要求学生已经掌握了这方面的知识。

二、课程内容与考核目标第一章绪论(一)学习目的与要求本章内容是本课程的导论。

本章的重点是:人工智能研究目标、研究内容、研究的途径(方法)、研究的领域等内容。

通过对本章的学习,学生应理解什么是智能、深刻理解什么是人工智能、人工智能研究的目标(近期目标和长远目标)、人工智能研究的内容、人工智能研究的途径,要了解人工智能研究的历史和研究领域的大致情况(不少于八个领域)。

同时,学生要掌握图灵测试的过程。

(二)课程内容第一节人工智能概况1、什么是人工智能:学者们从不同的研究角度对人工智能有多种不同的定义,在这些定义中学生应掌握其定义的实质。

2、人工智能研究的对象是知识3、人工智能研究概括为一大问题和三大技术4、关于智能的定义5、图灵测试6、D.B.Lenat和E.A.Fengenbaum的知识阈Nilsson的物理符号假设7、日本渡边慧的定义第二节人工智能研究途径1、以思维理论和认知心理学基础的符号主义学派基本思想2、符号主义学派的代表人物3、以阈值理论为基础的联结主义学派基本思想4、联结主义(神经网络)研究不存在符号运算-2-5、联结主义研究的历史6、联结主义研究的代表任务7、以进化理论为基础的行为主义学派基本思想8、行为主义学派的代表人物第三节人工智能研究的目标1、人工智能近期研究目标2、人工智能远期研究目标第四节人工智能研究的内容1、机器感知2、机器思维3、机器学习4、机器行为5、智能系统及智能计算机的构造技术第五节人工智能研究领域1、模式识别(Pattern Recognition)2、问题求解(Problem Solving)3、自然语言理解(Natural langrage Understanding)4、专家系统(Expert System)5、机器学习(Machine Learning)6、自动定理证明(Automatic Theorem Proving)7、自动程序设计(Automatic Programming)8、机器人学(Robots)9、博弈(Game)10 、智能决策支持系统(Intelligent Decision Support System)11、人工神经网络(Artificial natural networks)第六节人工智能研究的历史回顾及进展1、对人工智能起到奠基作用的几项工作2、人工智能诞生的时间和地点3、1957年纽厄尔、西慕的GPS4、1960年麦卡锡的LISP语言-3-5、1964年鲁宾逊的归结原理6、70年代的专家系统黄金时代(1977年费根鲍母提出知识工程概念)7、1987年Computational Intelligence杂志发表“纯粹理性批判”的论文,次年又发表“计算机理解质疑”,开展了对人工智能发展的理性辩论8、1991年Artificial Intelligence杂志发表了人工智能基础专集,著名专家们对人工智能基础性假设进行了辩论。

(三)考核知识点1、人工智能定义2、人工智能研究的对象3、图灵测试4、人工智能研究的三大途径5、人工智能研究的近期目标和远期目标6、人工智能研究的五大内容7、人工智能研究的主要领域(四)考核要求1、人工智能定义(1)识记:人工智能的通常定义(2)领会:人工智能的其他定义2、人工智能研究的对象(1)识记:人工智能研究的对象是知识(2)领会:与计算机科学其他学科的区别(3)简单应用:知识+推理=智能程序;数据+算法=程序3、图灵测试(1)识记:图灵测试过程的描述(2)领会:图灵测试是判断机器是否是智能机的一个标准4、人工智能研究的三大途径(1)识记:人工智能研究的三种途径(2)领会:每种研究途径的理论基础和基本思想(3)简单应用:结合系统的研制,举例说明各个研究途径的实施方法(4)综合应用:结合机器人的研制,说明三种研究方法在其中的应用5、人工智能研究的近期目标和远期目标(1)识记:人工智能研究的近期目标和远期目标的内容(2)领会:为什么近期目标只能是研制模拟人思维的智能程序6、人工智能研究的五大内容-4-(1)识记:人工智能研究的五个内容(2)领会:每种研究内容的理论基础和基本方法(3)简单应用:利用机器学习的概念,判断程序是否是智能程序7、人工智能研究的主要领域(1)识记:至少记忆人工智能研究的八个领域(2)领会:每个研究领域的研究内容、基本方法以及应用第二章问题求解的基本原理(一)学习目的与要求本章讨论问题求解的基本原理和基本方法,它直接关系到智能系统的性能和效率,因而它是本课程的重点章节。

本章的重点知识有:知识的状态空间表示法、盲目搜索的宽度优先和深度优先法、启发式搜索的估价函数、与/或树、A算法和A*算法、博弈树的α-β剪枝算法。

通过对本章的学习,学生应掌握状态及状态空间表示问题的几种主要方法(矩阵法、多元组法、树/图法等),掌握问题通过等价变换和分解,分别形成或节点和与节点以及节点的可解性;掌握搜索的各种算法;掌握启发函数的含义并能根据问题实际正确构造估价函数;理解OPEN表和CLOSED表的作用及其特点;深刻理解博弈树节点α值和β值的意义和其倒推值的计算,并掌握α-β剪枝技术。

(二)课程内容第一节基本概念1、什么是搜索:搜索分为盲目搜索和启发式搜索2、状态空间表示法:由状态和算法表示慰问体的一种方法3、与/或树表示法:分解、等价变换、本原问题、节点的可解性第二节状态空间搜索策略1、状态空间的一般搜索过程OPEN表:用来存放刚生成的节点CLOSED表:用来存放将要扩展或者已扩展的节点2、宽度优先搜索策略3、深度优先搜索策略4、有界的深度优先搜索策略5、代价树的宽度优先搜索策略6、代价树的深度优先搜索策略-5-第三节启发式搜索1、启发信息和启发函数2、局部择优搜索3、全局择优搜索4、A*算法第四节与/或树的搜索策略1、与/或树的一般搜索过程2、与/或树的宽度优先搜索3、与/或树的深度优先搜索4、与/或树的有序搜索第五节博弈树1、博弈树的启发式搜索2、极大极小法3、α-β剪枝技术(三)考核知识点1、状态空间搜索的基本概念2、宽度优先搜索算法的基本思想3、深度优先搜索算法的基本思想4、有界的深度优先搜索算法的基本思想5、代价树的宽度优先搜索的基本思想6、代价树的深度优先搜索的基本思想7、启发式搜索8、与/或树的有序搜索的基本思想(四)考核要求1、状态空间搜索的基本概念(1)识记:状态、状态空间的定义;本原问题、可解节点、不可解节点、解树的定义(2)领会:节点的等价变换和分解(1)简单应用:对应用问题构造状态空间(树)2、宽度优先搜索算法的基本思想(1)识记:盲目搜索与启发式搜索的区别宽度优先搜索算法的描述-6--7- (2) 领会:宽度优先搜索算法OPEN 表的数据结构是队列宽度优先搜索算法的优缺点(3) 简单应用:宽度优先搜索算法的程序设计(4) 综合应用:八数码问题的宽度优先搜索3、深度优先搜索算法的基本思想(1) 识记:深度优先搜索算法的描述(2) 领会:深度优先搜索算法OPEN 表的数据结构是堆栈深度优先搜索算法的优缺点(3) 简单应用:深度优先搜索算法的程序设计(4) 综合应用:黑白将牌问题的深度优先搜索4、有界的深度优先搜索算法的基本思想(1) 识记:有界的深度优先搜索算法描述状态空间节点的深度定义(2) 领会:有界的深度优先搜索与深度优先搜索的区别(3) 简单应用:有界的深度优先搜索算法的程序设计(4) 综合应用:三阶汉诺塔问题的有界的深度优先搜索5、代价树的宽度优先搜索的基本思想(1) 识记:代价树的概念:),()()(2112x x c x g x g +=代价树的宽度优先搜索的算法描述(2) 领会:代价树的宽度优先搜索仍然是一种盲目搜索方法在OPEN 表中全部节点按代价从小到大排序(3) 简单应用:代价树的宽度优先搜索算法的程序设计6、代价树的深度优先搜索的基本思想(1) 识记:代价树的深度优先搜索的算法描述(2) 领会:代价树的深度优先搜索与代价树的宽度优先搜索扩展的子节点按代价从小到大排序,并存放在OPEN 表的首部(3) 简单应用:代价树的深度优先搜索算法的程序设计7、启发式搜索(1) 识记:启发性信息和估价函数:)()()(x h x g x g +=估价函数)()()(x h x g x g +=各项的物理意义(2) 领会:估价函数)()()(x h x g x g +=各项的物理意义局部择优搜索和全局择优的基本思想A*算法的基本思想(3) 简单应用:写出黑白将牌问题的估价函数(4)综合应用:八数码问题的局部择优和全局择优算法8、与/或树的有序搜索的基本思想(1)识记:与/或树的有序搜索的一般过程与/或树的有序搜索的宽度优先算法与/或树的有序搜索的深度优先算法与/或树的有序搜索的有序搜索算法博弈树的启发式搜索算法(2)领会:博弈树的假设条件大极小法α-β剪枝技术(3)简单应用:节点的α值、β值的计算;α-β剪枝技术的应用(4)综合应用:博弈树中各节点倒推值的计算以及α-β剪枝的应用第三章知识与知识表示(一)学习目的与要求人类的智能活动过程主要是一个获取知识和应用知识的过程。

相关文档
最新文档