电子科技大学_矩阵理论课件!共133页文档

合集下载

矩阵及其应用ppt课件

矩阵及其应用ppt课件

线性方程组
• 根据矩阵乘法的定义,第三页中的线性方 程组可以表示成:
• Ax = y • 其中A是第五页中的系数矩阵,x是列向量
[x1, x2, ..., xn],y是列向量[y1, y2, ..., ym]。 • 当n=m时,A是n阶方阵,如果A可逆,那么:
• x = A-1y
方阵的幂
• 已知n阶方阵A和正整数m,计算Am。其中n 不超过50,m不超过1000000。
方阵的幂(二)
• 已知n阶方阵A和正整数m,计算A1 + A2 + ... + Am。其中n不超过50,m不超过1000000。
路径计数
• 给定一个有向图,问从A点恰好经过k步 (允许多次经过同一条边)走到B点的方案 总数。图中顶点数不超过50,边数不超过 1000000。
线性递推式
已知x1, x2 ,...,xn的值和线性递推关系 xk a1xk1 a2xk2 ... an xkn , 其中k n, a1, a2,...,an是常数。对于任给的正整 数m,计算xm的值。(n不超过50,m 不超过1000000)
数乘矩阵
类似地,矩阵与数c相乘定义为cy1, ..., cym的系数所对应的矩阵:
a11 ... a1n ca11 ... ca1n c ... ... ... ... ... mn
矩阵乘法
设有如下两个方程组:
z1 a11 y1 ... a1m ym .................................. zk ak1 y1 ... akm ym 和 y1 b11x1 ... b1n xn ................................ ym bm1x1 ... bmnxn

西安电子科技大学线性代数精品课课件

西安电子科技大学线性代数精品课课件

⎛ 2 ⎞ ⎛ 2 ×1 2 × 2 ⎞ ⎜ ⎟ ⎜ ⎟ 解 (1) ⎜ − 2 ⎟ (1 2 ) = ⎜− 2 × 1 − 2 × 2⎟ ⎜ 3 ⎟ ⎜ 3 ×1 3 × 2 ⎟ ⎝ ⎠ ⎝ ⎠
⎞ ⎛2 −2 BA = ⎜ ⎟ ⎝− 2 2⎠
⇒ AB = BA.
若AB=BA, 则称A与B可交换.
例4 计算下列乘积:
(1) ⎛ 2 ⎞ ⎜ ⎟ ⎜ − 2 ⎟(1 2) ⎜ 3 ⎟ ⎝ ⎠
⎛ 2 6 12⎞⎛ 1 ⎞ ⎟⎜ ⎟ ⎜ (2) (1 ,−1,0)⎜ 4 9 42⎟⎜ 0 ⎟ ⎜ − 8 10 33⎟⎜ − 1⎟ ⎝ ⎠⎝ ⎠
称为列矩阵(或列向量).
(4)同型矩阵与矩阵相等的概念: 1. 行数相等且列数相等的两个矩阵,称为同型矩阵.
例如
⎛1 ⎜ ⎜5 ⎜3 ⎝
6 −4
2 ⎞ ⎛ 14 ⎟ ⎜ 6 ⎟与⎜ 8 ⎟ 7⎠ ⎜ 3 ⎝
10 ⎞ ⎛ 2 ⎟与⎜ 5 ⎠ ⎝0
3⎞ ⎟ 4 ⎟ 为同型矩阵. 9⎟ ⎠
0 6 − 7⎞ ⎟是同型矩阵 . 3 ⎠
x 3⎞ ⎟, 1 z⎠
已知 A = B , 求 x , y , z .

Q A = B,
∴ x = 2, y = 3, z = 2.
(5)行数与列数都等于 n 的矩阵 A,称为 n 阶 方阵.也可记作 An .
⎛ a11 ⎜ 0 A=⎜ ⎜L ⎜ ⎝ 0
a12 L a1n ⎞ ⎟ a22 L a2 n ⎟ L L L⎟ ⎟ 0 L ann ⎠
( 6)若A是n阶方阵 , 则记 Ak = AAL A,
并称之为 A的k次幂 , k个A
m n m+n
易知 : ( A ) = A

矩阵论第一章第二节PPT课件

矩阵论第一章第二节PPT课件

分析: 设 dimV n, 1, 2, , n 是V的一组基,
线性变换 在这组基下的矩阵为A.
设 0是 的特征值,它的一个特征向量 在基
1,2,
, n 下的坐标记为
x01 ,
x0n
则 ( )在基 1, 2 ,
, n下的坐标为
x01 A ,
x0n
x01
而0
的坐标是
0
x0n
21 11
k 1 k
k k 1
.
例. 在线性空间 P3 中,线性变换 定义如下:
(1 ) (2 )
( 5, 0, (0, 1,
3) 6)
,
(3 ) (5, 1,9)
其中, 12((01,,10,,12)) 3 (3, 1,0)
(1)求 在标准基 1, 2 , 3 下的矩阵. (2)求 在 1,2 ,3 下的矩阵.
② 若 是 的属于特征值 0的特征向量,则 k (k P,k 0) 也是 的属于0 的特征向量.
(k ) k ( ) k(0 ) 0(k )
由此知,特征向量不是被特征值所唯一确定的, 但是特征值却是被特征向量所唯一确定的,即
若 ( ) 且 ( ) ,则 .
2、特征值与特征向量的求法
5 0 5
因而,
AX
0 3
1 6
1 9
,
5 0 5
5 0 5 1 0 3 1
A
0 3
1 6
1 9
X
1
0 3
1 6
1 9
0 2
1 1
1 0
1 7
5 4 27
20 5 18
20
2 24
(2)设 在1,2 ,3下的矩阵为B,则A与B相似,且

矩阵理论第3章课件

矩阵理论第3章课件
y 1e1 2e2 nen ,
0 || x || || y ||
x y
(1 1 )e1 ( 2 2 )e2 ( n n )en 1 1 e1 2 2 e2 n n en 1 1 2 2 n n 0
n
n
k 1
则 x 1 为向量范数,称此范数为1-范数。 证明(1)当 x 0 时,其分量 1 , 2 , , n 不全为零,因 此 x 1 0; (2)||x||1 = | k | | | | k | = || ||x||1;
k 1 k 1 n n
(3)再设 y 1, 2 , , n ,
第三章
矩阵的范数与幂级数
§1 向量范数
一、引入
在内积空间中,可以用内积定义向量长度(范数)的概 念,即 x
x, x ,但对于一般的线性空间 V ,由于没有
内积,从何引入向量的范数?抽象出上述向量范数的共性: (1)当 x 0 时, x 0 ; (2) x x ; (3) x y x y , 以此定义线性空间 V 中的向量范数。
( k k , k 1,, n )。 现取一个有界闭集 S
, , ,
1 2 n
x

1 ,(1,…,

n)的连续函数||x||在 S 上有最大值 M 和最小值 m,由于 S
中不包括零向量,所以 m > 0,即有
m ||x|| M (x S) 。
p
,1 p 。
例7 设 || ||a , || ||b 是 C n 上两种范数,证明
max || ||a ,|| ||b 是 C n 上范数。

矩阵分析第一章课件.ppt

矩阵分析第一章课件.ppt
是行满秩的。该系统是可观测的充分必要条件是可观测
性判别矩阵
C
V
CA
CAn
1
是列满秩的。
例 5:设
A
0 1
1 0
,
B
1 1
1 1
由于矩阵
B
AB
1 1
1 1 1 1 1 1
是行满秩的,所以相应的系统是可控制的。
二 矩阵理论在生物数学中的应用
在化的花瓣中存在一种特殊的生物模式。几乎所有 花,其花瓣数都是一种有规律的级数。例如百合花 的花瓣有3瓣;毛茛属的植物有5瓣花;许多翠雀属 的植物有8瓣花;万寿菊的花瓣有13瓣;紫菀属的植 物有21瓣花;大多数的雏菊有34,55,89 瓣花。 另外,在向日葵的花盘内葵花籽的螺旋式排列中也 可以发现类似的排列模式,同时植物的叶序中也存 在此种现象。这就是著名的Fibonacci级数模式。我 们称下面的数列
x2
4 3 , x3
1 3 , x4
2 3
同样可解出在第二组基下的坐标为
y1 1, y2 1, y3 1, y4 4
由此可以看出:一个向量在不同基底下的坐标是不相 同的。
基变换与坐标变换
设 1,2 , ,n(旧的)与 1, 2, , n (新的) 是 n 维线性空间V 的两组基底,它们之间的关系为
注意: 通过上面的例子可以看出线性空间的基底并不 唯一,但是维数是唯一确定的。利用维数的定义线性 空间可以分为有限维线性空间和无限维线性空间。目 前,我们主要讨论有限维的线性空间。
例 4 在4维线性空间 R22 中,向量组
0 1
1 1
,
1 1
0 1
,
1 0
1 1
,
1 1

矩阵论合成版 西电课件

矩阵论合成版 西电课件

第一讲线性空间一、线性空间的定义及性质[知识预备]★集合:笼统的说是指一些事物(或者对象)组成的整体集合的表示:枚举,表达式集合的运算:并( ),交( )另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。

★数域:一种数集,对四则运算封闭(除数不为零)。

比如有理数域、实数域(R)和复数域(C)。

实数域和复数域是工程上较常用的两个数域。

线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。

线性空间的概念是某类事物从量的方面的一个抽象。

1.线性空间的定义:设V是一个非空集合, 其元素用x,y,z等表示, 并称之为向量;K 是一个数域,其元素用k,l,m等表示。

如果V满足[如下8条性质,分两类](I)在V中定义一个“加法”运算,即当x,y V∈时,有唯一的和+∈(封闭性),且加法运算满足下列性质x y V(1)结合律()()++=++;x y z x y z(2)交换律x y y x+=+;(3)存在零元素0, 使x 0x +=;(4)存在负元素, 即对于任一向量x V ∈,存在向量y V ∈,使x y 0+=,且称y 为x 的负元素,记为x -。

则有()x x 0+-=。

(II )在V 中定义一个数乘 (数与向量的乘法) 运算,即当x V ∈,k K∈时,有唯一的kx V ∈(封闭性),且数乘运算满足下列性质(5)数因子分配律 ()k x y k x k y +=+; (6)分配律 ()k l x k x l x +=+; (7)结合律 ()()k l x k l x =;(8)恒等律 1x x =; [数域中一定有1] 则称V 为数域K 上的线性空间或向量空间。

注意:1)线性空间不能离开某一数域来定义,因为同一个集合,如果数域不同,该集合构成的线性空间也不同。

(2)两种运算、八条性质数域K 中的运算是具体的四则运算,而V 中所定义的加法运算和数乘运算则可以十分抽象。

(精品课件)研究生教材《矩阵理论》PPT演示文档

(精品课件)研究生教材《矩阵理论》PPT演示文档

列和第
行, x ( x1 , x2 ,, xn ) ,则有
( 2) ( n)
Ax x1 A x2 A xn A
这就是说,矩阵乘一个列向量,其结果是将该矩 阵的列向量进行线性组合,组合系数即是该列向量 的对应系数。 若令 y ( y1 , y2 ,, ym ), 则有:
yA y1 A(1) x2 A( 2) xm A( m)
其余元素均为0的矩阵。借助这些矩阵,任意 矩阵 A aij , 均能唯一地表示成: A
m n
n ij ij

a E .
i 1 j 1
m
对矩阵乘法的表达,可以利用下述性质:
Eij Ekl jk Eil ,1 i, j, k , l n,
其中 jk 是Kronecker符号,即当
.函数与极限
5
【定义1.1.4 】 一个 一个
m p
pn
p
矩阵 B bij
m n
矩阵 C cij , 其中


矩阵 A aij

的乘积是一个
cij aik bkj ,1 i m,1 j n.
j 1
★矩阵的乘法有下述性质: (M1)结合律:( AB)C A( BC);
并将其分块成
P Q1P2 ,
P 11 P P 21
.函数与极限
P 12 P22
26
其中
P 11 , P 12 , P 21 , P 22
分别为
r1 r2 ,
r1 ( p r2 ), ( p r1 ) r2 , ( p r1 ) ( p r2 )
A( E pq Eqp ) (aii Eii E pq aii Eii Eqp ) a pp E pq aqq Eqp ;

矩阵理论-第八讲.ppt

矩阵理论-第八讲.ppt
k
逆命题不成立
A(k )
(1)k
1
1
k
1 2
: Cmn R
k A(k) ?
lim A(k) lim
k
F k
6
(k
1 1)2
6
{a1(1k )} 不收敛
兰州大学信息科学与工程学院
矩阵理论第8讲-13
矩阵序列
推论:
设 {A(k) : A(k) C mn , k 0,1, lim A(k) A 0
A)
A
A
兰州大学信息科学与工程学院
矩阵理论第8讲-8
矩阵的条件数
– 当A与b二者均有扰动时,由于Ax = b的线性特性,其扰动结果为二者 扰动之和
x A1 b A1 b A A1 b
x
x
b
b
A
x
A1 A
A1 A
A
x
(1 A1 A )
(1 A1
A
A)
A
A
注意到当 A1 A 1 时
为A的奇异值
兰州大学信息科学与工程学院
矩阵理论第8讲-4
矩阵的条件数
用MATLAB验证
的条件数
2 1
A
2
1.0001
与下面的方程组进行比较:
1
2
2 1
x1 x2
7 1

1
2
2 0.999
x1 x2
7 1.001
来验证其对误差的鲁棒性(Robustness)
兰州大学信息科学与工程学院
A A1
A A1
A A1
1 A1 A 1 A A1 A
A
兰州大学信息科学与工程学院
矩阵理论第8讲-9

电子科技大学 矩阵理论!ppt课件

电子科技大学 矩阵理论!ppt课件
n
( , ) H aibi i 1
则上式定义了一个内积,C n是酉空间.
返回
定义: 设1,L , n是酉空间V一组基,令aij ( i , j ),
则称矩阵A=(aij )为基1,L
,
的度量矩阵
n
,或Gram矩阵
.
定理:
设矩阵A=(aij
)为酉空间V的一组基1,L
,

n
度量矩阵,则
(1) AH A;
xi H Bx j ij .
返回
定理 6 设n n矩阵 A AH , B BH,且B正定,与B共扼 向量系x1 , x2 ,L , xn具有以下性质, (1) xi 0 ( i 1, 2,L ,n ) ; (2) x1 , x2 ,L , xn 线性无关 ; (3)i与xi满足方程Axi i Bxi ; (4)若令X ( x1 , x2 ,L , xn ) , X H BX E , X H AX diag( 1 , 2 ,L ,n )
定义 4 ( x, y) 0
向量 x和y正交,记为 x y
勾股定理: x y
|| x y ||2 || x ||2 || y ||2
垂线最短定理:欧氏空间Vn ( R) 中的一个固定向量 和一个子空间中各向量的距离“垂线最短”.
返回
定义5
n维欧氏空间V中向量1 ,2 ,L ,k的Gram行列式 :
b
(f (x), g(x)) a f ( x )g( x )dx
证明: C[a,b]是欧氏空间.
b
f ( x ), g( x ), a f ( x )g( x )dx 是唯一确定实数
返回
1
f
,
g
b
a

矩阵理论复习总结 PPT课件

矩阵理论复习总结 PPT课件

1.几种常用的矩阵范数
A (aij ) Cnn ,
n
A
1

max
1 jn
i1
|
aij
|;
nn
1
n
A


max
1in
| aij
j 1
|;
1
A ( F
| aij2 |)2 (tr( AH A))2 .
i1 j1
UA A AU .
F
F
F
三、向量与矩阵的极限
2.线性空间v中有限个向量的线性相关性.
3.线性空间的基与维数.
dim(V ) n.
4. 基变换公式.
(1,2, ,n ) (1,2, ,n )P.
X PY.
5.子空间:对加法封闭,对数乘封闭.
L(1,2, ,s ) span1,2, ,s;
A (aij ) Rmn,
1,2, ,n ,
(1)
A Pdiag(1,2 , ,n )P1
(1,2 ,
,n )diag(1,2,
,n )



1T

T 2





T n


111T

2
2

T 2

n
n

T n
1G 12G 2 nGn
k
(2) A i Ai i 1
3.正交补空间
V1 V2 , V1 V2 V
4.内积空间的同构.
(x y) (x) ( y); (x) (x); ( (x), ( y)) (x, y).

【矩阵理论课件】课件5

【矩阵理论课件】课件5

J
k
P
1
ak
k0
J1kPP 1Fra bibliotekakJ
k s
k0
f (J1)
P
P
1
f
(
J
s
)
f (Ji )
ak
J
k i
k 0
ik
ak
k0
C1 k1 ki
L
ik
O
mi 1 k (mi 1)
C k i
M
C1 k1 ki ik
ak ik
k0
akCk1
k 1 i
二、矩阵函数值的计算
1、利用相似对角化:
设P1AP diag(1, 2, , n ) D
f ( A)
ck
Ak
ck
( PDP 1 )k
P
ck
Dk
P
1
k0
k0
k0
ck
k0
1k
P
P 1
ck
k0
nk
f (1)
P
P
1
f
(n
)
同理
f ( At) Pdiag( f (1t), f (2t), , f (nt)).
0.1 0.7 k
r( A)
A
0.9
1
k 0
0.3
0.6
1
0.1 0.7 0.9
0.7 1
E
0.3
0.6
0.3
0.4
1
1 10
9 3
7
4
1 0.15
0.4
0.3
0.7
0.9
例:A 1,求 kAk-1

电子科技大学矩阵理论!

电子科技大学矩阵理论!
一、n 阶方阵的三角分解
1.上三角矩阵R 的逆 R 1 也是上三角矩阵,且对角 元是R 对角元的倒数;
2.两个上三角矩阵 R1、R2 的乘积 R1R2也是上三角
矩阵,且对角元是 R1与R2对角元之积; 3.酉矩阵U 的逆 U 1也是酉矩阵; 4.两个酉矩阵之积 U1U2也是酉矩阵.
返回
返回
返回
返回
(3 )三角 |A | 不 B | ||A ||等 ||B || |式 ,A ,B P m n .
则称映 |||射 |为pmn上的矩阵 . 范数
返回
例 1 设APmn, 则
nm
|| A||m1
| aij |
j1i1
nm
1
|| A||m2(
| aij |2)2
j1i1
|A ||m | m i,j{a a i||j} x 1 i m 1 j n
返回
定义 2 设 |||a | : P m l R ,|||b | : P l n R ,
||||c:Pmn R是 矩 阵 范 数 , 如 果 ||A|c B | ||A |a |||B |b |
则 称 矩 |||a |阵 ,|||b |和 范 |||c |数 相. 容 如果 ||A|B |||A ||||B ||
0 0 0 0 0 0
返回
定理 2 设 A C r m n ,且 A B 1 D 1 B 2 D 2 均 为 A 的最大秩分解,则
(1) 存在 r阶可逆Q, 矩使 阵得 B 1 B 2 Q D 1 Q 1 D 2
( 2 ) D 1 H ( D 1 D 1 H ) 1 ( B 1 H B 1 ) 1 B 1 H D 2 H (D 2 D 2 H ) 1 (B 2 H B 2 ) 1 B 2 H

矩阵论 第二讲 西安电子科技大学 翟会清老师

矩阵论 第二讲 西安电子科技大学 翟会清老师

2014/2/24
AEMC Group
11
二、子空间的交与和
1.定义:设V1、V2是线性空间V的两个子空间,则
V1 V2 x | x V1 ,x V2
V1 V2 x y | x V1 ,y V2
分别称为V1和V2的交与和。
2014/2/24
AEMC Group
i i
k x p y
i i i i i
i
k x p y
z k'i xi
但是,x1、x2、〃〃〃、xm、y1、y2、〃〃〃、yn1-m是V1的一 个基。因此, pi 0
2014/2/24
AEMC Group
17
pi 0
k x p y q z
2014/2/24
AEMC Group
16
假定上述元素组线性相关,则存在一组不全为0的数k1、 k2、〃〃〃、km、p1、p2、〃〃〃、pn1-m、q1、 q2、〃〃〃、qn2-m使
k x p y q z
i i i i
i i
0 z V1
z V1 V2
z qi z i V2
t 0
2014/2/24
AEMC Group
23
这与其线性相关性矛盾,x1、x2、· · · 、xs、y1、y2、· · · 、yt线性无 关, 所以: x1、x2、· · · 、xs、y1、y2、· · · 、yt可作为 的基 (4)(1):已知(4)成立 在 x 1、 x 2、 · · · 、xs、y1、y2、· · · 、yt这组基下
V1 V2 x y | x V1 , y V2
反映的是两个子空间的关系特殊。

矩阵PPT课件

矩阵PPT课件

.
am1 am1 amn
第21页/共179页
2、数乘矩阵的运算规律
(设 为A、矩B阵, m为数)n
,
1 A A;
2 A A A; A B A B.
31A A.
4若kA O,则k 0或A O.
矩阵相加与数乘矩阵合起来,统称为矩阵的线 性运算.
第22页/共179页
例1 已知矩阵
第16页/共179页
思考题解答
矩阵与行列式有本质的区别,行列式是一个 算式,一个数字行列式经过计算可求得其值,而 矩阵仅仅是一个数表,它的行数和列数可以不同.
第17页/共179页
§2.2 矩阵的运算
一、矩阵的加法
1、定义
设有两个m 矩n阵 A aij 那, B么矩b阵ij ,
A与 的B和记作 A,规B定为
3 6 8 3 2 1 12 1 3 8 5 9 13 11 4 1 6 9 5 0 4 7 4 4. 3 3 6 2 8 1 6 8 9
第19页/共179页
2、 矩阵加法的运算规律
1 A B B A;
2 A B C A B C .
3 A O O A A.
是一个m 矩n阵 C , 其cij 中
cij
a bi1 1 j
ai b2 2 j
aisbsj
s
aik bkj
k 1
i 1,2,m; j 1,2,,n,
并把此乘积记作 C AB .
第25页/共179页
例3 C 2
1
4 2
222 3
4
622
16 8
?
32 16 22
B 18 6,
1 4
AT
2
5 ;

矩阵分析课件

矩阵分析课件

初等变换及其性质
初等行变换
01
对矩阵进行某行乘以非零常数、交换两行、某行加上另一行的
若干倍的操作。
初等列变换
02
对矩阵进行某列乘以非零常数、交换两列、某列加上另一列的
若干倍的操作。
初等变换的性质
03
不改变矩阵的秩,且任意多次初等变换可用一个初等变换表示

矩阵等价性判断方法
1 2
矩阵等价的定义
若两个矩阵经过有限次初等变换可以相互转化, 则称这两个矩阵等价。
对角化条件及判别方法
对角化条件
n阶方阵A可对角化的充分必要条件是A有n个线性无关的特征向量。
判别方法
计算A的特征多项式,求出全部特征值。对于每个特征值,求解(A-λE)x=0得到对应的特征向量。如果所有特征 向量线性无关,则A可对角化。
应用案例:动力学系统稳定性分析
01
系统稳定性定义
动力学系统的稳定性是指系统在受到微小扰动后,能否恢复到原来的平
06
CATALOGUE
矩阵函数与微分运算
常见矩阵函数类型及性质介绍
指数函数
矩阵指数函数具有类似于标量指数函数的性质, 如可微性、可积性等。
三角函数
矩阵三角函数与标量三角函数有类似的性质,如 周期性、奇偶性等。
ABCD
对数函数
矩阵对数函数在某些条件下可以定义为矩阵指数 函数的反函数,具有一些独特的性质。
标准型转化过程
通过正交变换或配方法,可以将二次型转化为标准型,即$f = lambda_1y_1^2 + lambda_2y_2^2 + ... + lambda_ny_n^2$,其中$lambda_i$为特征值。
正定、负定和半正定矩阵判别方法

矩阵理论

矩阵理论
(������)
},
其中 ������
(������)
= (������������������ ) ∈ ������ ������×������ .
(������)
(������)
刘西奎 (山东科技大学)
矩阵理论
2016
年 9 月 20 日
6 / 48
定理 1.1 设 lim ������
������→∞
(2)
������→∞
������→∞ ������=1 ������ =1
lim
|������������������ |2 = 0
(������)
(������)
= ������
的充分且必要条件是
矩阵理论
������→∞
lim ||������(������) ||������ = 0.
lim (������(������) − ������) = 0,
(������)
由定理 1.2, 存在 ������ > 0, 使得对一切 ������, 都有
|������������������ | < ������, ������ = 1, 2, · · · , ������; ������ = 1, 2, · · · , ������
(������)
������ (������) − ������������ ||������ = ||������(������) ������ (������) − ������(������) ������ + ������(������) ������ − ������������ ||������ = ||������(������) ������ (������) −

【矩阵理论课件】课件6

【矩阵理论课件】课件6
Ab 最佳逼近解
例:已知A的M
-
P逆A+
,

A A
A
A
A
BD
A A
A A
B B
D
D
A A
A
A
1 4
A A
A
A
例:已知A的M -
A
BD
A A
P逆A+
B B
D
, 求AAA
A
1 2
A
A
例:已知A的逆A-
1
,

0 0
A
0
0
0
A
0
ቤተ መጻሕፍቲ ባይዱ
E 0
0 1
1 1
A
2 1 1
DH (DDH )1(BH B)1 BH
1
4
2
2
33 1 5 6
1 6 5
step3: 检验 AAb b是否成立.
1
AAb
2
b
1
故Ax b是不相容的方程.
3 0
x1 2x2 2x3 x4 3
是否有解 ?如果有解,求通解和最小范数解;
如果无解,求最小二乘解和最佳逼进解.
2 4 1 1 3

A
1
2
-1
2
,
b
0
1 2 -2 1 3
step1:求A的最大秩分解 : A BD
2 1
B step2
1
: 求1A
1 2
,
D
1 0
2 0
(3) ACrmn ,
A
U
Dr 0
0
0
V
UDV
(1)

5西安电子科技大学矩阵论

5西安电子科技大学矩阵论
• (2)分配律 (x , y + z)= (x , y)+ (x , z) • (3)齐次律 (kx , y) = k (x , y) • (4)非负性 , (x , x)≥0
– 当且仅当x=0时, (x ,x)=0
( x , ky ) = k ( x , y )
lexu@
′= x3 x3 + k31 y1 + k32 y2
′ x2 ′| | x2
′ x3 ′| | x3
k31 = − ( x3 , y1 ) k32 = − ( x3 , y2 )
xi′ yi = | xi′ |
kij = − xi , y j
(
)
. . .
矩阵论
′ xi + ∑ kij y j x = i
{x , x
' 1
' 2
' , , x n
}
' ' 且 [x1' , x 2 ] = [x1 , x 2 ,, x n ]C 则 , , x n
B = C −1 AC
定理
n阶方阵A和B相似的充要条件是A和B为同一线 性变换在不同基下的矩阵
lexu@ 矩阵论
= x ( y1 , x) y1 + ( y2 , x) y2 + + ( yn , x) yn
证明
yi
lexu@
x= ξ1 y1 + ξ 2 y2 + + ξ n yn
(i = 1, 2, , n)
ξi = ( yi , x)
矩阵论
15
正规矩阵 实对称矩阵与厄米矩阵
矩阵论
11
内积空间 以n维向量空间为例

矩阵论课件

矩阵论课件

P 是数域, 若 n是正整数, 则系数属于 P 而未知元为 x 的
所有次数不超过 n 的多项式的集合,此集合连同零多 项式在内按通常多项式的加法及数与多项式的乘法, 构成数域 P 上的一个线性空间全体记作: Pn [ x ].
4 December 2014 河北科技大学
机动 目录 上页 下页 返回 结束
, t 可以由1 , 2 ,
, s 线性表
, t 线性相关.
推论1 若 1 , 2 ,
, t 可 以 由 1 , 2 ,
, s 线 性 表 示 , 且
1 , 2 , , t 线性无关,则 t s .
推论2 若 1 , 2 ,
, t 与 1 , 2 , , s 等 价 ,且 均 线性 无
实数域 R 上的线性空间简称为实线性空间; 复数域 C 上的线性空间简称为复线性空间.
下面看几个线性空间的例子.
4 December 2014
河北科技大学
机动 目录 上页 下页 返回 结束
矩阵论
例1 若 P= 是数域,V 是分量属于 P= 的 n元有序数组的集合
V a1 , a2 ,
, an | ai P,i 1, 2,
矩阵论
例4 所有定义在区间 a , b a t b 上的实值连续
函数全体构成的集合, 按照函数的加法及数与函数 的数量乘法,构成实数域 R 上的一个线性空间,记 作: R a , b .
例5 实(复)系数齐次线性方程组 Ax 0( A R mn
或 C mn ; x R n 或 C n ;行向量和列向量不做区别) 的解空间 S 构成 R 或C 上的一个线性空间.
才成立,称 x1 , x2 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子科技大学_矩阵理论课件!
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
相关文档
最新文档