电子科大,矩阵理论期末参考题
西安电子科技大学线性代数试卷及参考答案

试 题 二 (考试时间:120分钟)一、填空(每小题4分,共32分) 1.若矩阵A 相似于矩阵{}2,1,1−diag ,则31−A= 。
2.设33)(×=ij a A 是实正交矩阵且111=a ,Tb )0,0,1(=,则方程组A X =b 的解为 3.设n 阶方阵A 满足2340A A E −+=,则1)4(−+E A = 。
4.设A 为4×3阶矩阵,且R (A )=2,又⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=301020204B ,则R (A B)- R (A )=5.若二次型31212322213212224),,(x x x tx x x x x x x f ++++=是正定的,则t 满足 。
6.已知三阶方阵A 的特征值为2,3,4,则A 2= 。
7.已知五阶实对称方阵A 的特征值为0,1,2,3,4,则R (A )= 。
8.设⎟⎟⎠⎞⎜⎜⎝⎛=1201A 则=kA 。
(k 为正整数)。
二、(10分)计算行列式:11223000000000000011111n n a a a a a D a a −−−=−L L L M M M O M M L L 三、(10分)设线性方程组⎪⎩⎪⎨⎧=+−+=+−+=+−+32343242432143214321x x x x x x x x x x x x λ讨论λ为何值时,方程组无解,有解?在有解的情况下,求出全部解。
四、(10分)已知二次型322322213214332),,(x x x x x x x x f +++=(1)把二次型f 写成Ax x x x x f T=)(321,,的形式; (2)求矩阵A 的特征值和特征向量;(3)求正交阵Q,使f 通过正交变换X QY =化为标准形。
五、(10分)已知向量组T)2,0,4,1(1=α,T)3,1,7,2(2=α,T a ),1,1,0(3−=α,Tb )4,,10,3(=β,试讨论(1)a,b 取何值时,β不能由331,,ααα线性表出;(2)a,b 取何值时,β可以由331,,ααα线性表出。
电子科技大学《理论力学》20春期末考试.doc

1.三力平衡定理是()A.共面不平行的三个力相互平衡必汇交于一点B.共面三力若平衡,必汇交于一点C.三力汇交于一点,则这三个力必互相平衡【参考答案】: A2.如果两个力系满足下列哪个条件,则该两个力系为等效力系()A.两个力系的主矢相等B.两个力系的主矩相等C.两个力系的主矢和主矩分别对应相等 D.两个力系作用在同一刚体上【参考答案】: C3.若一平面任意力系分别向A.B 两点简化,所得的主矢和主矩都不为零,则两者的()。
A.主矢相等,主矩相等B.主矢相等,主矩不等C.主矢不等,主矩相等 D.主矢不等,主矩不等【参考答案】: B4.两个力,它们的大小相等、方向相反和作用线沿同一直线。
这是( )。
A.它们作用在物体系统上,使之处于平衡的必要和充分条件B.它们作用在刚体系统上,使之处于平衡的必要和充分条件C.它们作用在刚体上,使之处于平衡的必要条件,但不是充分条件D.它们作用在变形体上,使之处于平衡的必要条件,但不是充分条件【参考答案】: D5.时钟上分针转动的角速度是()A. B. C.【参考答案】: B6.平面运动刚体相对其上任意两点的( )。
A.角速度相等,角加速度相等B.角速度相等,角加速度不相等C.角速度不相等,角加速度相等 D.角速度不相等,角加速度不相等【参考答案】: A7.下列属于二力构件的是( )A.杆件 ACB.杆件 BCC.杆件 DED.杆件 AE.BC和 DE均是二力构件【参考答案】: C8.作用在刚体上两个力平衡的充要条件是:两个力的大小( ),方向(),作用在()上。
A.相等,相反,同一条直线B.相等,相同,同一条直线C.相等,相同,同一条曲线D.相等,相反,同一条曲线【参考答案】: A9.已知F1、F2、F3为作用于刚体上的一个平面汇交力系,其各力矢的关系如下图所示,则该力系?()。
A.有合力 R = F1B.有合力 R = F3C.有合力 R = 2F3D.无合力。
【参考答案】: C10.某瞬时定轴转动刚体的角速度ω和角加速度ε都是一代数量()。
矩阵论往年部分真题讲解题(含解答)

2011年《矩阵论》习题解答一、 掌握线性空间的定义及判断是否为线性空间。
二、 在4R 中有两组基,()()()()12341,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1αααα====()()()()12342,1,1,1,0,3,1,0,5,3,2,1,6,6,1,3ββββ=-=== 求 (1)由基1234,,,αααα到基1234,,,ββββ的过渡矩阵;(2)向量()1234,,,x ξξξξ=在基1234,,,ββββ之下的坐标; (3)在两组基下有相同坐标的非零向量。
解:(1)因为 ()()()12341234123420561336,,,,,,,,,11211013C ββββαααααααα⎛⎫ ⎪⎪== ⎪- ⎪⎝⎭所以由基1234,,,αααα到基1234,,,ββββ的过渡矩阵2056133611211013C ⎛⎫⎪⎪= ⎪- ⎪⎝⎭(2) ()()()112211234123412343344,,,,,,,,,x C ξξξξξξξξααααββββξξξξ-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭所以向量()1,0,1,0在基1234,,,ββββ之下的坐标为12134C ξξξξ-⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭ 或解 非齐次线性方程组的解 11223344k k C k k ξξξξ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(3)由 (2)式有112213344C ξξξξξξξξ-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则有()12340C E ξξξξ⎛⎫ ⎪ ⎪-= ⎪ ⎪⎝⎭,该方程组的通解为()1,1,1,1T k -,对两个基有相同坐标的非零向量为()1234k x x x x ++-,k 非零常数。
二、已知线性空间V 是矩阵空间22R ⨯, (1) 证明:123410010000,,00001001E E E E ⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦是V 的一组基;(2) 求向量1223A ⎡⎤=⎢⎥⎣⎦在基1234,,,E E E E 下的坐标。
电子科大矩阵理论试题答案(2005级)

2005级硕士研究生《矩阵理论》试卷参考答案一、判断题(40分)(对者打∨,错者打⨯) 1、A n 为阶实对称矩阵,n R x 对中的列向量,||x |Ax =定义, ||x||x 则为向量 的范数. ( ⨯ )2、设A n 为阶Hermite 矩阵,12,,,n λλλ是矩阵A 的特征值,则2221||||nm i i A λ==∑.( ∨ ) 3、如果m n A C ⨯∈,且0A ≠,()H AA AA --=, 则2||||AA n -=. ( ⨯ ) 4、设||||a 为丛属于向量范数||||a x 的算子范数,2H H E uu =-(其中,E 为n 阶单位矩阵,2||||1n u C u ∈=且),则||||a H n = ( ⨯ )5、设1/51/51/51/51/62/61/61/61/71/73/71/71/81/81/84/8A ⎛⎫⎪⎪=⎪⎪⎝⎭,则A 矩阵的谱半径()1r A <. ( ∨ )因为||||1A ∞<,故结论成立6、若(1)m m A C m ⨯∈>严格对角占优,则A 的谱半径()||2||.m r A A ∞< ( ∨ )7、若设n x R ∈,则212||||||||||x x x ≤≤. ( ∨ )8、设111122223333A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则1||||1m A +=. ( ⨯ )9、设G 为矩阵()m n r A C r n ⨯∈<的广义逆A -,A BD =为A 的最大秩分解,则 秩()DGB n =. ( ⨯ )10、设A ⎛⎫ ⎪⎪ ⎪⎝⎭0.90.010.12=0.010.80.130.010.020.4,则A 的特征值均为实数. ( ∨ )二、证明:(1) 当0A =时,||||0A =;当0A ≠时,存在,i j 使得0ij a ≠,从而|||||0ij A a ≥>。
(2) ,||||||ij i jkA ka=,||||ij i jk a =||||||k A =.(3) ,||||||ij ij i jA B a b +=+,|||)ij ij i ja b ≤+,,||max ||)ij ij i ji ja b ≤+||||||||A B ≤+.(4) 22211||||||mn ij j i j Ax a x ===∑∑22111(||||)m nnij j i j j a x ===≤∙∑∑∑22111(||)||m nnij j i j j a x ===≤∙∑∑∑222max ||||||ij ijmn a x ≤∙222||||||||A x ≤∙三、证明:()||||1r A A ∞≤=|1|0E A -=⇒1为A 的特征值 ∴()1r A =四、设m n D C ⨯∈为列满秩矩阵,D +为M-P 广义逆,n n A C ⨯∈,证明: 2||||||||A DAD += 为n n C ⨯上的矩阵范数. (10分)证明:(1) 当0A =时,||||0A =;当0A ≠时,m n D C ⨯∈为列满秩矩阵, 则1()H H D D D D +-=, D D E +=。
矩阵理论试题答案最终版

阵
G
为
(2, 2) (2, t + 1) (2, t 2 − 1) 2 (t + 1, 2) (t + 1, t + 1) (t + 1, t − 1) (t 2 − 1, 2) (t 2 − 1, t + 1) (t 2 − 1, t 2 − 1)
1 ∫−1 4dt 1 = ∫ 2*(t + 1)dt −1 1 ∫ 2*(t 2 − 1)dt −1 −8 4 8 3 10 −4 = 4 3 3 −8 −4 16 3 15 3
2
x ' −1 0 x 1 = + y ' 0 2 y −1 求多项式 P(x)经此仿射变换所得到的曲线,变换后的曲线是什么曲线? 解:(1)由平面的四个点我们可得如下方程。
a0 + a1 *1 + a2 *12 = 0 2 −1 a0 + a1 *(−1) + a2 *(−1) = 2 1 a0 + a1 * 2 + a2 * 2 = a + a *(−3) + a *(−3) 2 = 2 2 0 1
∫ ∫ ∫
1 −1 1
1
−1
2*(t + 1)dt
−1
(t 2 + 2t + 1)dt
(t + 1) *(t 2 − 1)dt
1 2 ∫−1 (t + 1) *(t − 1)dt 1 2 2 t dt t ( 1) *( 1) − − ∫−1
∫
1
−1
2*(t 2 − 1)dt
工程矩阵理论试题A

杭州电子科技大学研究生考试卷(A卷)课程名称:工程矩阵理论一、单项选择题(每题4分,共20分)1. 设A∈C m⨯n,对A的奇异值分解,下列说法正确的是:(1)存在且唯一(2)存在但不唯一(3)可能不存在(4)可能存在但不唯一2. 设A∈C n⨯n,则A的幂序列E,A,A2/2!, A k/k!,(1)收敛于零(2)发散(3)收敛与否与具体A有关(4)收敛3. 设A∈C n⨯n满足A3= E,则下列说法正确的是:(1)A的最小多项式与特征多项式相同(2)A不可对角化(3)A的约当标准型中约当块的数目为n(4)不能确定A是否可对角化4. 设A为n阶方阵,则有:(1)R(A) ⊕ N(A)= C n , (2)R(A) + N(A)= C n(3)R(A) ⊕ N(A T)= C n, (4)R(A T) ⊕ N(A T)= C n5. 设A为n阶Hermite矩阵,则:(1)A的n个特征值全大于零(2)存在可逆矩阵P使得P H AP=E(3)存在正线上三角矩阵R使得A=R H R(4)存在酉矩阵U使得U H AU=Λ,其中Λ为实对角矩阵二、填空题(每题4分,共20分)1. 设ε1, ε2, ε3为3维线性空间V的一组基,σ是V到自身的一个线性变换。
σ在基ε1, ε2, ε3下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211a a a a a a a a a ,则σ在基ε3, 2ε2, 3ε1下的矩阵为。
2. 设方阵A 满足A 2= 3A, 则sin (3A ) = 。
3.矩阵A = diag 21312,,0203⎛⎫⎡⎤⎡⎤ ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭,则A 的最小多项式为 。
4. 设X = (x 1, x 2, , x n )T 为变向量,α = (a 1, a 2, , a n )T 为常向量,H = (h ij )n ⨯n 为常矩阵,则:,()=HX X XT D D。
5. 设A ∈C n ⨯n 为Hermite 矩阵,X ∈C n ,A 的n 个特征值为λ1,λ2, ,λn ,满足λ1 ≤ λ2 ≤ ≤ λn ,则: XX AXX H X H 0max ≠ =。
西安电子科技大学线性代数试卷及参考答案3

α1 = (1,1, 0 ) ,
T
α 2 = ( 0, 0,1)
T
同理,当 λ2 = 0 时,得线性无关的特征向量为 α 3 = ( −1,1, 0 ) .
T
将 α1 , α 2 , α 3 单位化得
η1 =
1 1 T T T (1,1, 0 ) ,η2 = ( 0, 0,1) ,η3 = ( −1,1, 0 ) 2 2
n
0 0
L
0 0
L L
n −1 1− n
L
三、 (12 分)问 a, b 为何值时,线性方程组
⎧ x1 + x2 + 2 x3 + 3 x4 = 1; ⎪ x + 3 x + 6 x + x = 3; ⎪ 1 2 3 4 ⎨ ⎪3 x1 − x2 − ax3 + 15 x4 = 3; ⎪ ⎩ x1 − 5 x2 − 10 x3 + 12 x4 = b.
故 λ1 = −1 为 A 的三重特征值.
⎛ −3 1 −2 ⎞ ⎛ 1 0 1 ⎞ ⎜ ⎟ ⎜ ⎟ 解 (λ1 E − A) X = 0 .因 − E − A = −5 2 −3 → 0 1 1 ⎜ ⎟ ⎜ ⎟ ⎜ 1 0 1 ⎟ ⎜ 0 0 0⎟ ⎝ ⎠ ⎝ ⎠
得其基础解系中只含一个解向量 α = (−1, −1,1) ,从而属于 λ1 = −1 的线性无关的特征向
⎛1 ⎜ 0 初等行 三 解: A ⎯⎯⎯ →⎜ ⎜0 ⎜ ⎜0 ⎝
( −1) 或
2
n −1
( n + 1)! )
1 2 3 −1 1 2 0 2−a 2 0 0 3
1 ⎞ ⎟ 1 ⎟ = A1 4 ⎟ ⎟ b+5 ⎟ ⎠
西安电子科技大学线性代数试卷及参考答案1

{
x1 + x2 + x3 = 0, 2 x1 + 2 x2 + x3 = 0, xi ∈ R} ,则 dim V =
3.已知向量组 α1 , α 2 , α 3 , α 4 线性无关,而向量组 β 1 = 4α 1 + α 2 , β 2 = α 2 + α 3 ,
β 3 = α 3 + α 4 , β 4 = α 4 + 2λα 1 线性相关,则 λ =
经正交变换化为标准形
2
2
2
f ( y1 , y 2 , y3 ) = 2 y1 + 5 y 2 + 5 y3
2
2
2
, 求参数 a ,b 及用的正交变换。
⎛2 ⎜ ⎜1 六、 (6 分) 已知四阶方阵 A ,X 满足关系式 AXA − 2 A = XA , 且A=⎜ 0 ⎜ ⎜0 ⎝
2
5 3 0 0
0 0 4 7
(1) a ≠ −2 且 a ≠ 1 时,有唯一解 (2) a = −2 时,因为: R ( A) ≠ R( B) ,所以方程组无解。 (3) a = 1 时,因为: R ( A) = R( B) =1<3,所以方程组有无穷多解。
⎛ − 1⎞ ⎛ − 1⎞ ⎛ x1 ⎞ ⎛ 2 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 其通解为 ⎜ x 2 ⎟ = ⎜ 0 ⎟ + k1 ⎜ 1 ⎟ + k 2 ⎜ 0 ⎟ ⎜1⎟ ⎜0⎟ ⎜ x ⎟ ⎜ 0⎟ ⎝ ⎠ ⎝ ⎠ ⎝ 3⎠ ⎝ ⎠
3n + 1 3 L 3 3 3n + 1 3 L 3 3 c1 + c 2 3n + 1 4 L 3 3 r2 − r1 0 1 L 0 0 c1 + c3 L L L L L r3 − r1 L L L L L = 3n + 1 二 解: Dn 3n + 1 3 L 4 3 0 0 L 1 0 M M 0 L 0 1 c1 + c n 3n + 1 3 L 3 4 rn − r1 0