矩阵理论第3章习题解答

合集下载

研究生矩阵理论课后答案矩阵分析所有习题

研究生矩阵理论课后答案矩阵分析所有习题

习题3 习题3-14
#3-14: =E,则存在 则存在U #3-14:若A∈Hm×n,A2=E,则存在U∈Un×n使得 U*AU=diag(Er,-En-r). 存在U 证:存在U∈Un×n使得 A=Udiag(λ A=Udiag(λ1,…,λn)U*, , (*) 其中λ 的特征值的任意排列 任意排列. 其中λ1,…,λn是A的特征值的任意排列. , ∵ A2=E=Udiag(1,…,1)U* 和 =E=Udiag(1, ,1)U =Udiag(λ Udiag(λ A2=Udiag(λ1,…,λn)U*Udiag(λ1,…,λn)U* , , =Udiag(λ =Udiag(λ12,…,λn2)U* , =1,即 1,i=1,…,n,. ∴ λi2=1,即λi=±1,i=1, ,n,. 1(设共有 取λ1,…,λn的排列使特征值1(设共有r个)全排在 , 的排列使特征值1(设共有r 前面, (*)式即给出所需答案 式即给出所需答案. 前面,则(*)式即给出所需答案.
(α + β, γ ) = (α + β ) Aγ * = α Aγ * + β Aγ * = (α, γ ) + (β, γ );
(α,α) ≥ 0; (α,α) =α A > 0, ∀α ≠ 0 (因A正定). α
*
Cauchy-Schwarz不等式 不等式: ②:Cauchy-Schwarz不等式: |(α, β)|≤ α β
−1 0 3 5 −1 3 6 1 1 0 = 0 − 1 − 10 W A1 W1* 1 0 0 −1 0
习题3 习题83-3(1) 0 3
6 −1 3 6 −1 3 8 3 0 3 8 = 0 , A1 = − 2 − 5 A1 0 − 2 − 5 0

大连理工大学《矩阵与数值分析》学习指导与课后参考答案第三章、逐次逼近法

大连理工大学《矩阵与数值分析》学习指导与课后参考答案第三章、逐次逼近法

第三章 逐次逼近法1.1内容提要1、一元迭代法x n+1=φ(x n )收敛条件为:1)映内性x ∈[a,b],φ(x) ∈[a,b] 2)压缩性∣φ(x) -φ(y)∣≤L ∣x-y ∣其中L <1,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。

由微分中值定理,如果∣φ’∣≤L <1,显然它一定满足压缩性条件。

2、多元迭代法x n+1=φ(x n )收敛条件为:1)映内性x n ∈Ω,φ(x n ) ∈Ω 2)压缩性ρ(▽φ)<1,其中▽φ为x n 处的梯度矩阵,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。

3、当φ(x )= Bx+f 时,收敛条件为,ρ(B )<1,此时x n+1= Bx n +f ,在不断的迭代中,就可以得到线性方程组的解。

4、线性方程组的迭代解法,先作矩阵变换 U L D A --= Jacobi 迭代公式的矩阵形式 f Bx b D x U L D x n n n +=++=--+111)(Gauss-Seidel 迭代公式的矩阵形式 f Bx b L D Ux L D x n n n +=-+-=--+111)()( 超松弛迭代法公式的矩阵形式f Bx b L D x U D L D x k k k +=-++--=--+ωωωωω111)(])1[()(三种迭代方法当1)(<B ρ时都收敛。

5、线性方程组的迭代解法,如果A 严格对角占优,则Jacob 法和Gauss-Seidel 法都收敛。

6、线性方程组的迭代解法,如果A 不可约对角占优,则Gauss-Seidel 法收敛。

7、Newton 迭代法,单根为二阶收敛 2211'''21lim)(2)(lim---∞→+∞→--=-==--k k k k k k k k x x x x f f c x x ξξαα8、Newton 法迭代时,遇到重根,迭代变成线性收敛,如果知道重数m , )()('1k k k k x f x f m x x -=+仍为二阶收敛 9、弦割法)()())((111--+---=k k k k k k k x f x f x x x f x x 的收敛阶为1.618,分半法的收敛速度为(b-a )/2n-110、Aitken 加速公式11211112)(),(),(+----+-+--+---+---===k k k k k k k k k k k x x x x x x x x x x x ϕϕ1.2 典型例题分析1、证明如果A 严格对角占优,则Jacob 法和Gauss-Seidel 法都收敛。

研究生矩阵理论课后答案3章习题

研究生矩阵理论课后答案3章习题

#3-16:设若A,BHmn,且A正定,试证:AB与BA的特 征值都是实数. 证2:由定理3.9.1,PAP*=E,则 PABP-1=PAP*(P*)-1BP-1=(P-1)*BP-1=MHmn, 即AB相似于一个Hermite矩阵M. ∴ (AB)=(M)R,得证AB的特征值都是实数.又 因BA的非零特征值与AB的非零特征值完全相 同,故BA的特征值也都是实数. 证3:det(E-AB)=det(A(A-1-B)) =det A det(A-1-B)=0. 但det A >0,A-1正定和det(A-1-B)=0的根全为实 数(见例3.9.1的相关证明)
xa
i 1 j 1
n
n
i ij
yj
xa x ya
i ij j i j i j
n
n
n
n
i ij
yj
习题3-3(1)
#3-3(1):已知A= ,试求UUnn使U*AU=R为 上三角矩阵. 解:det(E-A)=(+1)3给出=-1是A的3重特征值. 显然,1=(0,1,0)T是A的一个特征向量.作酉矩阵 V=(1,2,3),2=(1,0,0)T,3=(0,0,1)T,则 V*AV=
习题3-19设A是正定Hermite矩阵且 AUnn,则A=E
证:存在UUnn使得 A=Udiag(1,…,n)U*, (*) 其中1,…,n是A的特征值的任意排列. A 是正定蕴含 i>0,i=1,…,n AUnn 蕴含|i|=1,i=1,…,n 因此 i=1,i=1,…,n ∴ A=Udiag(1,…,n)U*=UEU*=UU*=E.
习题3-14
#3-14:若AHnn,A2=E,则存在UUnn使得 U*AU=diag(Er,-En-r).

矩阵分析第3章习题答案

矩阵分析第3章习题答案

矩阵分析第3章习题答案第三章1、 已知()ijA a =是n 阶正定Hermite 矩阵,在n维线性空间nC 中向量1212(,,,),(,,,)n n x x x y y y αβ==L L 定义内积为(,)HA αβαβ=(1) 证明在上述定义下,nC 是酉空间;(2) 写出nC 中的Canchy-Schwarz 不等式。

2、 已知2111311101A --⎡⎤=⎢⎥-⎣⎦,求()N A 的标准正交基。

提示:即求方程0AX =的基础解系再正交化单位化。

3、 已知308126(1)316,(2)103205114A A --⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦试求酉矩阵U ,使得HUAU是上三角矩阵。

提示:参见教材上的例子4、 试证:在nC 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。

5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使HUAU为对角矩阵,已知133261(1)6322312623A ⎡⎢⎢⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦01(2)10000i A i -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,434621(3)44326962260ii i A i i i i i +--⎡⎤⎢⎥=----⎢⎥⎢⎥+--⎣⎦11(4)11A -⎡⎤=⎢⎥⎣⎦6、 试求正交矩阵Q ,使TQAQ为对角矩阵,已知 220(1)212020A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,11011110(2)01111011A -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦7、 试求矩阵P ,使HPAP E=(或TPAP E=),已知11(1)01112i i A i i +⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,222(2)254245A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦8、 设n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1()()H i E U E U -=-+是Hermite 矩阵。

反之,若H 是Hermite 矩阵,则E iH +满秩,且1()()U E iH E iH -=+-是酉矩阵。

线性代数第三章课后习题

线性代数第三章课后习题

习题三(A )1. 用矩阵的初等变换把下列矩阵A 化为行阶梯形矩阵、行最简形矩阵及标准形矩阵:(1) 112332141022-⎛⎫ ⎪= ⎪ ⎪⎝⎭(2)1111131320461135-⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭(3)24512122111212136363--⎛⎫⎪-- ⎪=⎪-- ⎪---⎝⎭2.设A 123012425⎛⎫⎪=- ⎪ ⎪⎝⎭,010(1,2)100001⎛⎫⎪= ⎪ ⎪⎝⎭E ,100(3,2(5))010051⎛⎫ ⎪= ⎪ ⎪⎝⎭E .试求(1,2)E A ;(1,2)AE ;(3,2(5))E A .3.用初等变换求下列方阵的逆矩阵:(1) A 101110012⎛⎫ ⎪=- ⎪ ⎪⎝⎭ (2)A 211124347--⎛⎫ ⎪=- ⎪ ⎪-⎝⎭(3)A1111022200330004⎛⎫⎪⎪= ⎪ ⎪⎝⎭4.用初等变换解下列矩阵方程:(1) 设A 101110120⎛⎫ ⎪= ⎪ ⎪⎝⎭,102102-⎛⎫⎪= ⎪ ⎪⎝⎭B ,且AX =B ,求X .(2)设A 220213010⎛⎫⎪= ⎪ ⎪⎝⎭,且+AX =A X ,求X .5.设矩阵A 122324111222-⎛⎫⎪=-- ⎪ ⎪-⎝⎭,计算A 的全部三阶子式,并求()R A .6.在秩为r 的矩阵中,有没有等于0的1r -阶子式?有没有等于0的r 阶子式?请举例说明.7.从矩阵A 中划掉一行得到矩阵B ,问A ,B 的秩的大小关系怎样? 请举例说明.8.求下列矩阵A 的秩:(1) 310211311344⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭(2)1121224230610304-⎛⎫ ⎪- ⎪=⎪- ⎪-⎝⎭(3)12211248022423336064--⎛⎫⎪-⎪= ⎪-- ⎪--⎝⎭(4) 112205123λλλ-⎛⎫ ⎪= ⎪ ⎪-⎝⎭ (5)111111λλλ⎛⎫⎪= ⎪ ⎪⎝⎭9. 设有矩阵A101110112111022264μμ-⎛⎫⎪⎪=⎪⎪⎝⎭,若()3R=A,求μ的值.10.判断下列命题是否正确.(1) 如果线性方程组AX=0只有零解,那么线性方程组AX=B有唯一解;(2) 如果线性方程组AX=B有唯一解,那么线性方程组AX=0只有零解.11. 解下列齐次线性方程组:(1)12312312325502303570x x xx x xx x x+-=⎧⎪+-=⎨⎪+-=⎩(2)1234123412342202220430x x x xx x x xx x x x+++=⎧⎪+--=⎨⎪---=⎩(3)31243124312431242530420476023950xx x xxx x xxx x xxx x x-+-=⎧⎪-+-=⎪⎨-+-+=⎪⎪-+-=⎩(4)3124312412431242350240347045530xx x xxx x xx x xxx x x-+-+=⎧⎪-+-=⎪⎨--=⎪⎪-+-=⎩12. 解下列非齐次线性方程组:(1)123123123343322323x x xx x xx x x-+=⎧⎪+-=-⎨⎪-+-=-⎩(2)12341234123443222333244x x x xx x x xx x x x+-+=⎧⎪++-=-⎨⎪---+=⎩(3)3124312431243124235324434733749xx x xxx x xxx x xxx x x+++=⎧⎪++-=⎪⎨+++=⎪⎪++-=⎩(4)31231231231224523438214496xx xxx xxx xxx x-+=-⎧⎪++=⎪⎨+-=⎪⎪-+=-⎩13. 确定λ的值,使下列齐次线性方程组有非零解,并求其一般解.(1)123123123x x xx x xx x xλλλ++=⎧⎪++=⎨⎪++=⎩(2)123123123240356020x x xx x xx x x-+=⎧⎪-+=⎨⎪-+=⎩λ14.讨论下列非齐次线性方程组,当λ取何值时,方程组无解、有唯一解、有无穷多解?并在有无穷多解时求出一般解:(1)12312321231x x xx x xx x xλλλλλ++=⎧⎪++=⎨⎪++=⎩(2)212312312313422321x x xx x xx x x++=⎧⎪++=⎨⎪+-=⎩λλ15. 设有方程组112223334445551x axx axx axx axx ax-=⎧⎪-=⎪⎪-=⎨⎪-=⎪-=⎪⎩,证明方程组有解的充分必要条件是51iia==∑.(B )1.设A 是n 阶可逆阵,互换A 的第i 行与第j 行(i j ≠)得到矩阵B ,求1-AB .2. (研2007数一、二、三)设矩阵0100001000010000⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭A ,则3A 的秩为___ ____. 3. (研2010数一)设A 为m n ⨯型矩阵,B 为n m ⨯型矩阵,若AB =E ,则正确的是( )(A) ()R m =A ,()R m =B (B) ()R m =A ,()R n =B(C) ()R n =A ,()R m =B (D) ()R n =A ,()R n =B4. (研2015数一、二、三)设矩阵A 21111214a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,21d d ⎛⎫ ⎪= ⎪ ⎪⎝⎭b .若集合={1,2}Ω,则线性方程组Ax =b 有无穷多解的充分必要条件是( )(A) a ∉Ω,d ∉Ω (B) a ∉Ω,d ∈Ω (C) a ∈Ω,d ∉Ω (D) a ∈Ω,d ∈Ω5. (研2016数二、三)设矩阵111111a a a --⎛⎫ ⎪-- ⎪ ⎪--⎝⎭与110011101⎛⎫ ⎪- ⎪ ⎪⎝⎭等价,则a =____ ____.6.证明:()()R R R ⎛⎫=+ ⎪⎝⎭A O AB O B . 7.设A ,B 是n 阶非零矩阵,证明:若=AB O ,则()R n <A 及()R n <B .8.设A 是m n ⨯矩阵,B 是n m ⨯矩阵,且n m <.证明:||0=AB .。

矩阵理论习题解答等材料

矩阵理论习题解答等材料

西南科技大学研究生试题单(B 卷)(2014级高等工程数学A)第一部分 矩阵理论(共32分)1、(8分)填空题(1)每个n 阶矩阵都相似于一个 矩阵。

(2)n nA C⨯∈,A 为正规矩阵的充要条件是A 对角形矩阵。

(3)正交变换在规范正交基下的矩阵是 矩阵。

(4)A 的最小多项式 A 的零化多项式。

2、(6分) 求4R 的子空间1234123412341234{(,,,)|0},{(,,,)|0}V a a a a a a a a W a a a a a a a a =-+-==+++=的交V W I 的一组基。

3、(8分) 已知111111,012A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭计算5432()2822g A A A A A E =-++-。

4、(10分)求矩阵213121242A -⎛⎫⎪= ⎪ ⎪⎝⎭的Doolittle 分解和LDU 分解。

第二部分 数值分析(共36分)5、 (4分)解答下列各题 设函数2015201420131()5.2015!f x x x x =++,求差商0120142015[2,2,2,2]?f =L 6、(8分)设函数4()f x x =,不直接用拉格朗日插值公式,而用拉格朗日余项公式求出以1,0,1,2x =-为插值节点的三次插值多项式3().L x7、(8分)设有求积公式2120()(0)(1)(2)f x dx af a f a f ≈++⎰试确定系数012,,a a a 使上述公式的代数精度尽量高,且指出其代数精度。

8、(8分)已知方程组123123123102212100.51.931x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩ (1) 构造Jacobi 迭代法的迭代格式,迭代格式是否收敛?说明理由; (2) 取(0)(0,0,0)T x=,用上述迭代法来计算一步迭代值(保留小数点后4位)。

9、(8分)若求解初值问题为24,015(0)1x y y x y y ⎧'=-≤≤⎪⎨⎪=⎩, 试写出Euler 方法求解的迭代格式(0.2)h =,并计算(0.2),(0.4)y y 的值(保留小数点后至少8位)。

线性代数习题册(第三章 矩阵的初等变换与线性方程组参考答案)

线性代数习题册(第三章 矩阵的初等变换与线性方程组参考答案)

(B) 若 A B ,则 R( A) = R(B) ;
(C ) 若 P,Q 可逆,则 R(PAQ) = R( A) ; (D) R( A + B) ≥ R( A) + R(B) .
分析:本题是考察矩阵秩的性质。(A)、(B)、(C)都是正确的。如
R(= PAQ) R= ( AQ) R( A) ,所以(C)是正确的。(D)不正确。因为
( X) (X)
3. 若矩阵 A 所有的 k 阶子式全为 0 ,则 R( A) < k .
( √)
4. 初等变换不改变矩阵的秩.
(√)
5. 设矩阵 A, B 分别为线性方程组相应的系数矩阵和增广矩阵,则线性方程组 Ax = b 有唯
一解当且仅当 R( A) = R(B).
(X)
6. 若 A 是 m × n 矩阵,且 m ≠ n ,则当 R( A) = n 时,齐次线性方程组 Ax = 0 只有零解.
( x j − xi ) ≠ 0

1≤i< j≤n
1
xn

x n−1 n
故齐次线性方程组只有唯一的零解,即 a=1 a=2 = a=n 0 。
13. 设 A 为 m × n 矩阵,且 R( A=) m < n ,则(
).
( A) 若 AB = O ,则 B = 0 ;
(B) 若 BA = O ,则 B = 0 ;

1
1 0
0
0


a11 a21
a12 a22
a13 a23

=

a21 a11
a22 a12
a23 a13

0 0 1 a31 a32 a33 a31 a32 a33

矩阵论(方保镕、周继东、李医民)习题1-3章

矩阵论(方保镕、周继东、李医民)习题1-3章
5. 解:(1)是线性空间;(2)不是线性空间(加法不封闭;或 因无零向量).
6. 解:(1)设 A 的实系数多项式 f A的全体为
f A a0 I a1 A am Am ai R, m正整数
1
显然,它满足两个封闭性和八条公理,故是线性空间. (2)与(3)也都是线性空间.
(ai bi ) ai bi 2
i1
i1
i1
于是可知 L,因此 L 不是 V 的子空间.
18.
解:
Span(
' 1
,

' 2
,

' 3
)
的基为
1'
,

' 2
,

' 3
的一个最大无关组,

' 1
,

' 2
,

' 3
在基1
,

2
,

3
下的坐标依次为
(1, -2, 3) T , (2 , 3 , 2) T , (4, 13, 0 ) T
故 C =(1 , 2 , 3 , 4 ) 1 ( 1 , 2 , 3 , 4 )
1 0 0 0 1 2 0 5 6
= 0100
0010
1 336 1 1 2 1
0001
1 013
2 056 1 336
= 1 1 2 1 .
1 013
⑵ 显然,向量α在基1 , 2 , 3 , 4 下的坐标为 X =(1 ,2 ,3,4 ) T ,
7
(2)取
A

1 0
0 0
,B

矩阵分析与计算 (朱元国 饶玲 严涛 张军 李宝成 著) 国防工业出版社 课后答案

矩阵分析与计算 (朱元国 饶玲 严涛 张军 李宝成 著) 国防工业出版社 课后答案




( )( ) = ������ Λ������ −1 ������ ������������ −1 = ������������,

( )( ) ������������ = ������ ������������ −1 ������ Λ������ −1 = ������ ������Λ������ −1 = ������ Λ������������ −1
概率与数理统计 第二, C语言程序设计教程 第 西方经济学(微观部分) C语言程序设计教程 第 复变函数全解及导学[西 三版 (浙江大学 三版 (谭浩强 张 (高鸿业 著) 中 二版 (谭浩强 张 安交大 第四版]
社区服务
社区热点
进入社区
/
2009-10-15

其中 ������ 和 Λ 是对角矩阵。于是有
w.
m
co m
ww
w.
2. (两个可对角化矩阵������, ������ ∈ ������ ������×������ 称为同时可对角化的,如果存在
co
m
矩阵分析与计算 第1章习题解答与提示
1
第1章 习题解答与提示
课后答案网
同一个相似变换矩阵������ ∈ ������ ������×������ ,使得������ −1 ������������ 和������ −1 ������������ 同为对角矩 阵。)
充分性 若������和������ 同时可对角化,则存在可逆矩阵������ ,使得 ������ = ������ ������������ −1 , ������ = ������ Λ������ −1 ,
是对应������的特征向量,而������是������的单特征值,所以������, ������������ 线性相关。因

矩阵论课后习题答案

矩阵论课后习题答案

第一章 线性空间与线性映射 习题一 (43-45)1、(1)对于V y x ∈∀,,x y x y x y x y y x y x y x y x +=⎪⎪⎭⎫⎝⎛+++=⎪⎪⎭⎫ ⎝⎛+++=+112211112211;(2)对于V z y x ∈∀,,,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+++=++))()(1111112221111112112211121112211z y z x y x z y x z y x y x z z y x y x z y x z z y x y x y x z y x ,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛++++⎪⎪⎭⎫ ⎝⎛=++))()(1111112221111111122211111221121z y z x y x z y x z y x z y x z y z y x z y x z y z y z y x x z y x ,即)()(z y x z y x ++=++。

(3)对于⎪⎪⎭⎫⎝⎛=00θ和V x ∈∀,显然x x x x x x x =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+++=+21121000θ; (4)对于V x ∈∀,令⎪⎪⎭⎫⎝⎛--=2211x x x y , 则θ=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--+-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+0021221211221121x x x x x x x x x x x y x ,即x y -=。

(5)对于R ∈∀μλ,和V x ∈∀,有x x x x x x x x x x x x x x x x x x x x x x x )()()]()[(21)()()2(21)()()]1()1([21)1(21)1(2121212212122212121221121212121μλμλμλμλμλμλμλμλμλμλμλλμμμλλμλμλμμμμλλλλμλ+=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛--+++++=⎪⎪⎪⎭⎫ ⎝⎛+-+-+++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+(6)对于R ∈∀λ和V y x ∈∀,,有⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎭⎫ ⎝⎛+++=+211112211112211))(1(21)()()(y x y x y x y x y x y x y x y x λλλλλλ, ⎪⎪⎪⎭⎫ ⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛-+-++-++++=⎪⎪⎪⎭⎫ ⎝⎛+-++-++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+211112211112212211122111122122121121212121))(1(21)()()1(21)1(21)()1(21)1(21)1(21)1(21y x y x y x y x y x y y x y x y x y x y x y y x x y x y y y x x x y x λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ,即y x y x λλλ+=+)(。

《线性代数》第三章矩阵的初等变换与线性方程组精选习题及解答

《线性代数》第三章矩阵的初等变换与线性方程组精选习题及解答

例 3.10
求齐次线性方程组
⎧ ⎪ ⎨
x1 x1
− −
x2 x2
− +
x3 x3
+ x4 = 0 − 3x4 = 0
的通解.
⎪⎩x1 − x2 − 2x3 + 3x4 = 0
解 系数矩阵经过初等变换得
⎡1 −1 −1 1 ⎤
⎡1 −1 0 −1⎤
A = ⎢⎢1 −1 1 −3⎥⎥ ⎯r⎯→ ⎢⎢0 0 1 −2⎥⎥
阶梯形的非零行数判断矩阵的秩.
2
⎛1 3 1 4⎞

A
⎯r⎯→
⎜ ⎜
0
6
−4
4
⎟ ⎟
,故
R(
A)
=
2
.
⎜⎝ 0 0 0 0⎟⎠
⎡1 1 2 2 3 ⎤
例 3.2
设A=
⎢⎢0 ⎢2
1 3
1 a+2
−1 3
−1 a+6
⎥ ⎥ ⎥
,则
A
的秩
R(
A)
=
(
).
⎢⎣4 0 4 a + 7 a +11⎥⎦
(A) 必为 2
6
⎡ 1 1 0 −2 1 −1⎤
⎡1 0 0 2 −1 −1⎤
( A | b) = ⎢⎢−2 −1
1
−4 2
1
⎥ ⎥
⎯r⎯→
⎢⎢0
1
0
−4
2
0
⎥ ⎥
⎢⎣−1 1 −1 −2 1 2 ⎥⎦
⎢⎣0 0 1 −4 2 −1⎥⎦
R( A) = R( A | b) = 3 < 5 ,所以方程组有无穷多解,令 x4 = c1, x5 = c2 ,得

第第三章矩阵

第第三章矩阵

第三章矩阵§3.1 矩阵的运算练习题1. 如果矩阵X满足X+2A=B-X,其中A=101032302-⎛⎫⎪⎪⎪-⎝⎭,B=321402010⎛⎫⎪⎪⎪-⎝⎭求X。

2. 已知矩阵A=123031⎛⎫⎪⎝⎭,B=130210101⎛⎫⎪⎪⎪⎝⎭,计算AB,AB-AB T.3. 设矩阵A=110 011 001⎛⎫ ⎪ ⎪ ⎪⎝⎭,计算A n,其中n为正整数。

4. 设()1,0,1Tα=-,矩阵A=T αα。

计算n aE A -,其中E 为三阶单位阵,n 为正整数。

5. 设4阶矩阵A=()234,,,αγγγ,B=()234,,,βγγγ,其中234,,,,αβγγγ均为4维列向量,且已知行列式4, 1.A B ==求A B +。

6. 设A为n阶矩阵,n为奇数,且满足AA T=E,A1=。

求A-E。

7. 设矩阵A=110011001⎛⎫⎪⎪⎪⎝⎭。

求3阶矩阵X,使得AX=XA。

8.设A是n阶实矩阵。

证明如果AA T=O,则A=O。

9. 设A,B是n阶实矩阵,若A2=A,B2=B,则称A,B为幂等阵。

已知A,B是幂等阵,证明A+B也是幂等阵的充要条件是AB=BA=O。

§3.2 几种特殊的矩阵练习题1. 设矩阵A=12n a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭, 其中12,,,n a a a 两两不同。

证明:与A 可交换的矩阵必是对角阵。

2. 设A 是n 阶对称矩阵,B 是n 阶反对称矩阵。

证明:AB 是反对称矩阵的充分必要条件是AB=BA 。

§3.3 分块矩阵练习题1. 设矩阵A=3400 4300 0020 0022⎛⎫ ⎪-⎪ ⎪ ⎪⎝⎭利用分块矩阵求8A。

2. 设矩阵A=100000001000aabb⎛⎫⎪⎪⎪⎪⎝⎭,B=000100001000aabb⎛⎫⎪⎪⎪⎪⎝⎭利用分块矩阵计算AA T,(A-B)B T。

3. 设矩阵A=1111 1111 1111 1111 --⎛⎫ ⎪--⎪ ⎪--⎪--⎝⎭利用分块矩阵求A6。

矩阵分析第3章习题答案

矩阵分析第3章习题答案

矩阵分析第3章习题答案第三章1、已知()ij A a =是n 阶正定Hermite 矩阵,在n 维线性空间nC 中向量1212(,,,),(,,,)n n x x x y y y αβ==定义内积为(,)H A αβαβ=(1)证明在上述定义下,nC 是⾣空间;(2)写出nC 中的Canchy-Schwarz 不等式。

2、已知2111311101A --??=?-??,求()N A 的标准正交基。

提⽰:即求⽅程0AX =的基础解系再正交化单位化。

3、已知308126(1)316,(2)103205114A A --??=-=-??----??试求⾣矩阵U ,使得HU AU 是上三⾓矩阵。

提⽰:参见教材上的例⼦4、试证:在nC 上的任何⼀个正交投影矩阵P 是半正定的Hermite 矩阵。

5、验证下列矩阵是正规矩阵,并求⾣矩阵U ,使H U AU 为对⾓矩阵,已知11332611(1)6322312623i i A i i ??--=--???01(2)10000i A i -=??,434621(3)44326962260ii i A i i i i i +--=----?+--??11(4)11A -??=??6、试求正交矩阵Q ,使TQ AQ 为对⾓矩阵,已知220(1)212020A -=---??,11011110(2)01111011A -??-?=-??-??7、试求矩阵P ,使H P AP E =(或T P AP E =),已知11(1)01112i i A i i +=-??-,222(2)254245A -??=---8、设n 阶⾣矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1()()H i E U E U -=-+是Hermite 矩阵。

反之,若H 是Hermite 矩阵,则E iH +满秩,且1()()U E iH E iH -=+-是⾣矩阵。

证明:若||0+=E U ,观察0-=E U λ知1-为U 的特征值,⽭盾,所以矩阵E U +满秩。

矩阵理论第3章习题解答

矩阵理论第3章习题解答

第三章 习题解答1.求矩阵1141⎡⎤=⎢⎥⎣⎦A 的谱分解.解:(1) 求特征值()()12310E A λλλ-=-+=,所以特征值为123,1λλ==-.(2) 求特征向量:13λ=对应的特征向量为()11,2;Tp =21λ=-对应的特征向量为()21,2Tp =-.(3)谱分解:令1211(,)22P p p ⎡⎤==⎢⎥-⎣⎦,则1121124.1124TT P ωω-⎡⎤⎢⎥⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦-⎢⎥⎣⎦令1111124,112TA p ω⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦2221124,112T A p ω⎡⎤-⎢⎥==⎢⎥⎢⎥-⎢⎥⎣⎦故谱分解式为123A A A =- 2 求单纯矩阵296182051240825A -⎛⎫⎪=- ⎪ ⎪-⎝⎭的谱分解式.3.设()1,2,i i n λ=是正规矩阵n?n A ∈C 的特征值,证明:()21,2,ii n λ=是H A A 与HAA 的特征值.证:根据题设矩阵A ,则A 酉相似与对角矩阵,即()12diag ,,,H n A U U λλλ=其中U 为酉矩阵,则()()()()1212diag ,,diag ,,HH H H n n A A U U U U λλλλλλ=()22212diag ,,,HnU Uλλλ=即HA A 的特征值为()21,2,ii n λ=,同理可证()21,2,i i n λ=也是H AA 的特征值。

4 设A 是n n ⨯阶的实对称矩阵,并且20,A =你能用几种方法证明0.A =证:(1)设λ是矩阵A 的一个特征值,x 是对应于λ的一个非零特征向量,即,Ax x λ=220,A x x λ==所以20,λ=即0,λ=所以矩阵A 的特征值全为零,又A 酉相似与对角矩阵()12diag ,,,n λλλ所以0.A =(2)设0,A ≠则20,HA A A =≠与题设矛盾,所以结论成立。

5 试证:对于每一个实对称矩阵A ,都存在一个n 阶方阵S ,使3A S =。

线性代数(含全部课后题详细答案)3第三章矩阵习题解答.docx

线性代数(含全部课后题详细答案)3第三章矩阵习题解答.docx

习题三A 组1 •填空题.(1)设口 = (1,1,1), 6 = (-1,-1,-1),则ah x= _____________ , a vh= _________ro o>1 ](3)若么=(1, 2, 3), B — 1, —, — , A — a}d ,则 A n =I 2 3丿‘1 0⑷设A= 0 2J o解0.(5)设 a = (l, 0, -if ,矩阵 A=aa l \ 斤为正整数,贝 i\kE - A n解 k 2(k-2n ).(6)设昇为斤阶矩阵,且A =2,贝ij AA T= _________ , AA : = _______2(2)设八1-3 2),B =-3丿1 -13 1 3>则AB = (0 0丿(—3 -3丿2 13232 3 1 1)0 ,正整数 /7 > 2 ,则 A n -2A ,l ~' =2“+i2".(cos& -sin&\(7)、sin& cos& 丿cos& sin&\、一sin& cos& 丿0 0、2 0 ,则(A*y =4 5,解討丫2(10)设矩阵/二,矩阵B满足BA = B + 2E,则B二,B<-1 2(2 0(11)设/,〃均为三阶矩阵,AB = 2A + B f B= 0 4,2 0‘0 0 P解0 1 0b o oj(12)设三阶矩阵/满足|力|二*, (3A)~l-2A* =1627(13)设/为加阶方阵,B为兀阶方阵,同=Q,\B\ = b, C =°, 则\c\ =(8)设…®?工0 ,则、\Z曾丿1)a n1%■■1 1■色丿丿a lP(9)设A= 22、0 ,贝=2丿/0、0 ,矩阵〃满足关系式ABA =2BA ^E,其屮才'为力的伴随矩阵,则|B | =解*•解0.解一3・是nxp 矩阵,C 是pxm 矩阵,加、n 、p 互不相等,则下列运算没有(B) ABC ;解D.(2)设/是mxn 矩阵(m n), B 是nxm 矩阵,则下列解(一l)〃5b ・(15)设4阶矩阵/的秩为1,则其伴随矩阵/的秩为 (14)设三阶矩阵/ =R(4)解1.(17)设矩阵力'a 、b\ a }b 2■ ■a 2b 2 ■ • ■a n b2,其中匕・工0, (Z=l,2,•••,/?),则力的秩,且7?(J) = 3,则丘=0、 -2i,则将/可以表示成以下三个初等矩阵的乘积(D) AC T .的运算结果是n 阶力•阵.(A) AB ;解B.(B) A YBT;(C) B r A T ;(D) (4B)T.(16 )设?1 = •咕、 ・仇 ・ a n b n)解2.选择题.(1)设/是mxn 矩阵,(3) 设力」是斤阶方阵,AB = O,贝I 」有 ________ • (A) A = B = Ox(B) A + B = O ; (C)同=0或|同=0;(D)同 + 圖=0・解C ・(4) 设力,〃都是斤阶矩阵,则必有 _______ . (A) \A + B\ = \^ + \B\; (B) AB = BA ; (C) \AB\ = \BA\ ;(D) (/1 + B)T M /T + BT ・解C ・(5) 设/,B 是斤阶方阵,下列结论正确的是 __________ ・ (A)若均可逆,则A^B 可逆; (B)若力,〃均可逆,则力〃可逆; (C)若A + B 可逆,则A-B 可逆;(D)若A + B 可逆,则4〃均可逆.解B.(6) 设斤阶方阵A,B,C 满足关系式 ABC = E ,则必有 ___________ ・ (A) ACB = E ; (B) CBA = E ;(C) BAC = E ;(D) BCA = E .解D.(7) 设昇,B,力 + B, /T+BT 均为斤阶可逆矩阵,贝等于 ________________________ (A)(B) A + B ;(C) (D) g + 3)".解C.(8) 设£B,C 均为兀阶矩阵,若B = E + MB , C = A^CA.则B-C 为 ________________ . (A) E\ (B) —E ; (C) ; (D) —A.. 解A.(9) 设矩阵A = (a i .} 满足才其中才是/的伴随矩阵,川为昇的转置矩阵.若\ "3x3。

第三章矩阵的初等变换练习题参考答案

第三章矩阵的初等变换练习题参考答案

第三章 矩阵的初等变换练习题参考答案一、判断题( √ )1.设A 是n 阶可逆方阵,则齐次线性方程组0Ax =只有零解。

( √ )2.若n 阶矩阵A 可逆,则()R A n =。

( × )3.n 元非齐次线性方程组Ax b =有解的充分必要条件()R A n =。

( √ )4. 两个n 阶矩阵A ,B 行等价的充要条件是存在n 阶可逆矩阵P 使得B PA =。

( × )5. 任何矩阵都可以经过有限次初等行变换化为行阶梯形矩阵,并且化为的行阶梯形矩阵是唯一确定的。

( × )6. 若n 阶矩阵A 的秩为1n -,则A 的所有1n -阶子式均不为零。

( √ )7. 可逆矩阵A 总可以只经过有限次初等行变换化为单位矩阵E 。

( √ )8. 设矩阵A 的秩为r ,则A 中所有1+r 阶子式必为零。

( × )9.设A 为)n m (n m <⨯矩阵,则Ax b =有无穷多解。

( × )10. 只有行等价的矩阵才具有相同的秩,列等价的矩阵不具有相同的秩.二、填空题1. 矩阵102120313043-⎛⎫ ⎪ ⎪ ⎪-⎝⎭的行最简形矩阵为100000100001⎛⎫⎪ ⎪ ⎪⎝⎭。

2. 设A 是5阶方阵,且满足2A A E +=, 则()R A E += 5 。

3.非齐次线性方程组的增广矩阵为B =21011101400000122000(1)1k k k kk --⎛⎫⎪⎪⎪-- ⎪--⎝⎭,则当k =0时方程组无解;当k =1时方程组有无穷解。

4.设线性方程组的增广矩阵为132331234102420210400130000a a a a a a a a a +⎛⎫⎪-⎪ ⎪- ⎪⎪+--⎝⎭,则该方程组有解的充要条件是12340a a a a +--=。

5. 设矩阵A 经初等行变换可化为行阶梯形矩阵B 。

若A 的秩为3,则B 中非零行的行数为 3 。

(完整版)线性代数习题[第三章]矩阵的初等变换与线性方程组

(完整版)线性代数习题[第三章]矩阵的初等变换与线性方程组

习题3-1 矩阵的初等变换及初等矩阵1.用初等行变换化矩阵102120313043A-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦为行最简形.2.用初等变换求方阵321315323A⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的逆矩阵.3.设412221311A-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,32231-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦1B=,求X使AX B=.4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B.(1) 证明B可逆(2)求1AB-.习题 3-2 矩阵的秩1.求矩阵的秩:(1)310211211344A ⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦(2)111212122212n n n n n n a b a b a b a b a b a b B a b a b a b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦L L L L L L L 01,2,,i i a b i n ≠⎡⎤⎢⎥=⎣⎦L2.设12312323k A k k -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3)()3R A =.3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 ..()()a R A R B = .()()b R A R B <;.()()1c R B R A >-; .()()() 1.d R A R B R A ≥≥-4. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------815073*********的秩R= . a.1; b . 2; c . 3; d . 4.5. 设n (n ≥3)阶方阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=111ΛΛΛΛΛΛΛΛa a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 11-n .6.设A 为n 阶方阵,且2A A =,试证:()()R A R A E n +-=习题 3-3线性方程组的解1. 选择题(1)设A 是m n ⨯矩阵,0Ax =是非齐次线性方程组Ax b =所对应的齐次线性方程组,则下列结论正确的是( ).A. 若0Ax =仅有零解,则Ax b =有唯一解B. 若0Ax =有非零解,则Ax b =有无穷多个解C. 若Ax b =有无穷多个解,则0Ax =仅有零解D. 若Ax b =有无穷多个解,则0Ax =有非零解,(2)对非齐次线性方程组m n A x b ⨯=,设()R A r =,则( ).A.r m =时,方程组Ax b =有解B.r n =时,方程组Ax b =有唯一解C.m n =时,方程组Ax b =有唯一解D.r n <时,方程组Ax b =有无穷多解(3)设齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0003213213221x x x x x x x x x λλλλ的系数矩阵为A ,且存在三阶方阵B ≠0,使AB =0,则 .2.-=λa 且0=B ; 2.-=λb 且0≠B ;C. 1=λ且0=B ; d . 1=λ且0≠B .(4)设非齐次线性方程组AX=b 的两个互异的解是21,X X ,则 是该方程组的解.121212121.;.;.();..22X X a X X b X X c X X d -+-+2.解下列方程组: (1)12341234123420363051050x x x x x x x x x x x x ++-=⎧⎪+--=⎨⎪++-=⎩(2)21 422221x y z wx y z wx y z w+-+=⎧⎪+-+=⎨⎪+--=⎩3.设123123123(2)2212(5)42 24(5)1x x xx x xx x xλλλλ-+-=⎧⎪+--=⎨⎪--+-=--⎩问λ为何值时,此方程组有唯一解,无解或有无穷多解?并在有无穷多解时求其通解.4. 设线性方程组⎪⎩⎪⎨⎧=++=++=++000222z c y b x a cz by ax z y x(1) a,b,c 满足何种关系时,方程组仅有零解?(2) a,b,c 满足何种关系时,方程组有无穷多解?求出其解.5.设,,,,,515454343232121a x x a x x a x x a x x a x x =-=-=-=-=-证明这个方程组有解的充分必要条件为051=∑=j j a,且在有解的情形,求出它的一般解.。

线性代数课后习题解答第三章习题解答

线性代数课后习题解答第三章习题解答

第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2) ⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫ ⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---000000000022********(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~r r r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r rr --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。

矩阵理论(科学出版社)习题详细解答

矩阵理论(科学出版社)习题详细解答

习题 一1.(1)因 cos sin sin cos nx nx nx nx ⎡⎤⎢⎥-⎣⎦ cos sin sin cos x x x x ⎡⎤⎢⎥-⎣⎦= cos(1) sin(1)sin(1) cos(1)n x n x n x n x ++⎡⎤⎢⎥-++⎣⎦,故由归纳法知cos sin sin cos nnx nx A nx nx ⎡⎤=⎢⎥-⎣⎦。

(2)直接计算得4A E =-,故设4(0,1,2,3)n k r r =+=,则4(1)n k r k r A A A A ==-,即只需算出23,A A 即可。

(3)记J=0 1 0 1 1 0 ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,则 , 112211111 () n n n nn n n n n n n n n nii n inni n nna C a C a C a C a C a A aE J Ca Ja C a a -----=-⎡⎤⎢⎥⎢⎥⎢⎥=+==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n∑。

2.设1122 (1,0),0 a A P P a A E λλ-⎡⎤===⎢⎥⎣⎦则由得21112111 1 1 210 0 0 a λλλλλλλ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦1时,不可能。

而由2112222 0 0 000 0 0 a λλλλλλ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦1时,知1i λ=±所以所求矩阵为1i P B P -, 其中P 为任意满秩矩阵,而1231 0 1 0 1 0,,0 10 1 0 1B B B -⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦。

注:2A E =-无实解,n A E =的讨论雷同。

3.设A 为已给矩阵,由条件对任意n 阶方阵X 有AX=XA ,即把X 看作2n 个未知数时线性方程AX -XA=0有2n 个线性无关的解,由线性方程组的理论知其系数矩阵为零矩阵,通过直接检验即发现A 为纯量矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即 的特征值为 ,同理可证 也是 的特征值。
4设 是 阶的实对称矩阵,并且 你能用几种方法证明
证:(1)设 是矩阵 的一个特征值, 是对应于 的一个非零特征向量,即 所以 即 所以矩阵 的特征值全为零,又 酉相似与对角矩阵 所以
(2)设 则 Βιβλιοθήκη 题设矛盾,所以结论成立。5试证:对于每一个实对称矩阵 ,都存在一个 阶方阵 ,使 。
证:矩阵 是一个对称矩阵,则 酉相似于一个对角矩阵,即
令 ,则
又由 令 则 。
7证明:一个正规矩阵若是三角矩阵,则它一定是对角矩阵.
证明参考课本101页引理3必要性的证明.
8证明:正规矩阵是幂零阵 的充要条件是
证:充分性: 则结论显然。
必要性:若 ,由题设矩阵 是正规矩阵,则 酉相似于一个对角矩阵,即
证:必要性:设 为正定的Hermite矩阵,根据定义有 ,即 ,同时有 所以
充分性:设 ,则 ,则矩阵 是Hermite矩阵。由于矩阵 是正定Hermite矩阵,存在一个正定的Hermite矩阵 ,使得 则有 对矩阵 施行相似变换: 则矩阵 与矩阵 有相同的特征值,且 是Hermite矩阵.
对 可得 即 是正定的Hermite矩阵,所以其所有的特征值为正,从而矩阵 所有的特征值为正,即矩阵 为正定的Hermite矩阵.
矩阵 的特征值为 ;其对应的特征向量构成的矩阵为
则酉变换为
13设矩阵 的最大秩分解为 ,证明:
证:充分性显然。
必要性:(反证法)如果存在向量 使得 ,但 ,令 ,则 。由于 是矩阵 的最大秩分解,则矩阵 的列向量是线性无关的,如果 ,则 ,从而 ,与题设矛盾,所以 。
15设 , 均为正定矩阵的Hermite矩阵,则 为正定的Hermite矩阵的充要条件是 .

所以矩阵 至少有一个正的特征值。
11求下列矩阵的最大秩分解式。

解:(1)对矩阵 实行行初等变换,得

, ,
则 就是矩阵 的最大秩分解。
(2)同理对矩阵 进行行初等变换,可得

, ,
则 就是矩阵 的最大秩分解。
12设矩阵为
试问: 与 是正规矩阵吗?若是,通过酉变换把它们化成相似对角矩阵.
解:由于
所以矩阵 是正规矩阵。
第三章习题解答
1.求矩阵
的谱分解.
解:(1)求特征值 ,所以特征值为 .
(2)求特征向量: 对应的特征向量为
对应的特征向量为 .
(3)谱分解:令 ,则

故谱分解式为
2求单纯矩阵
的谱分解式.
3.设 是正规矩阵 的特征值,证明: 是 与 的特征值.
证:根据题设矩阵 ,则 酉相似与对角矩阵,即
其中 为酉矩阵,则

所以,可得
即 结论成立。
9求矩阵 的谱分解式,并给出 的表达式。
解:矩阵 的特征值: 所以矩阵 的特征值为

对应的特征向量分别为


则 的谱分解为 。
所以
10证明:如果一个实对称矩阵 的主对角元都大于零,则 至少有一个正的特征值。
证:设矩阵 ,由于矩阵 是对称矩阵,则其特征值 都是实数,根据矩阵特征值与矩阵迹的关系,可得
相关文档
最新文档