矩阵理论第3章习题解答

合集下载

研究生矩阵理论课后答案矩阵分析所有习题

研究生矩阵理论课后答案矩阵分析所有习题

习题3 习题3-14
#3-14: =E,则存在 则存在U #3-14:若A∈Hm×n,A2=E,则存在U∈Un×n使得 U*AU=diag(Er,-En-r). 存在U 证:存在U∈Un×n使得 A=Udiag(λ A=Udiag(λ1,…,λn)U*, , (*) 其中λ 的特征值的任意排列 任意排列. 其中λ1,…,λn是A的特征值的任意排列. , ∵ A2=E=Udiag(1,…,1)U* 和 =E=Udiag(1, ,1)U =Udiag(λ Udiag(λ A2=Udiag(λ1,…,λn)U*Udiag(λ1,…,λn)U* , , =Udiag(λ =Udiag(λ12,…,λn2)U* , =1,即 1,i=1,…,n,. ∴ λi2=1,即λi=±1,i=1, ,n,. 1(设共有 取λ1,…,λn的排列使特征值1(设共有r个)全排在 , 的排列使特征值1(设共有r 前面, (*)式即给出所需答案 式即给出所需答案. 前面,则(*)式即给出所需答案.
(α + β, γ ) = (α + β ) Aγ * = α Aγ * + β Aγ * = (α, γ ) + (β, γ );
(α,α) ≥ 0; (α,α) =α A > 0, ∀α ≠ 0 (因A正定). α
*
Cauchy-Schwarz不等式 不等式: ②:Cauchy-Schwarz不等式: |(α, β)|≤ α β
−1 0 3 5 −1 3 6 1 1 0 = 0 − 1 − 10 W A1 W1* 1 0 0 −1 0
习题3 习题83-3(1) 0 3
6 −1 3 6 −1 3 8 3 0 3 8 = 0 , A1 = − 2 − 5 A1 0 − 2 − 5 0

大连理工大学《矩阵与数值分析》学习指导与课后参考答案第三章、逐次逼近法

大连理工大学《矩阵与数值分析》学习指导与课后参考答案第三章、逐次逼近法

第三章 逐次逼近法1.1内容提要1、一元迭代法x n+1=φ(x n )收敛条件为:1)映内性x ∈[a,b],φ(x) ∈[a,b] 2)压缩性∣φ(x) -φ(y)∣≤L ∣x-y ∣其中L <1,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。

由微分中值定理,如果∣φ’∣≤L <1,显然它一定满足压缩性条件。

2、多元迭代法x n+1=φ(x n )收敛条件为:1)映内性x n ∈Ω,φ(x n ) ∈Ω 2)压缩性ρ(▽φ)<1,其中▽φ为x n 处的梯度矩阵,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。

3、当φ(x )= Bx+f 时,收敛条件为,ρ(B )<1,此时x n+1= Bx n +f ,在不断的迭代中,就可以得到线性方程组的解。

4、线性方程组的迭代解法,先作矩阵变换 U L D A --= Jacobi 迭代公式的矩阵形式 f Bx b D x U L D x n n n +=++=--+111)(Gauss-Seidel 迭代公式的矩阵形式 f Bx b L D Ux L D x n n n +=-+-=--+111)()( 超松弛迭代法公式的矩阵形式f Bx b L D x U D L D x k k k +=-++--=--+ωωωωω111)(])1[()(三种迭代方法当1)(<B ρ时都收敛。

5、线性方程组的迭代解法,如果A 严格对角占优,则Jacob 法和Gauss-Seidel 法都收敛。

6、线性方程组的迭代解法,如果A 不可约对角占优,则Gauss-Seidel 法收敛。

7、Newton 迭代法,单根为二阶收敛 2211'''21lim)(2)(lim---∞→+∞→--=-==--k k k k k k k k x x x x f f c x x ξξαα8、Newton 法迭代时,遇到重根,迭代变成线性收敛,如果知道重数m , )()('1k k k k x f x f m x x -=+仍为二阶收敛 9、弦割法)()())((111--+---=k k k k k k k x f x f x x x f x x 的收敛阶为1.618,分半法的收敛速度为(b-a )/2n-110、Aitken 加速公式11211112)(),(),(+----+-+--+---+---===k k k k k k k k k k k x x x x x x x x x x x ϕϕ1.2 典型例题分析1、证明如果A 严格对角占优,则Jacob 法和Gauss-Seidel 法都收敛。

研究生矩阵理论课后答案3章习题

研究生矩阵理论课后答案3章习题

#3-16:设若A,BHmn,且A正定,试证:AB与BA的特 征值都是实数. 证2:由定理3.9.1,PAP*=E,则 PABP-1=PAP*(P*)-1BP-1=(P-1)*BP-1=MHmn, 即AB相似于一个Hermite矩阵M. ∴ (AB)=(M)R,得证AB的特征值都是实数.又 因BA的非零特征值与AB的非零特征值完全相 同,故BA的特征值也都是实数. 证3:det(E-AB)=det(A(A-1-B)) =det A det(A-1-B)=0. 但det A >0,A-1正定和det(A-1-B)=0的根全为实 数(见例3.9.1的相关证明)
xa
i 1 j 1
n
n
i ij
yj
xa x ya
i ij j i j i j
n
n
n
n
i ij
yj
习题3-3(1)
#3-3(1):已知A= ,试求UUnn使U*AU=R为 上三角矩阵. 解:det(E-A)=(+1)3给出=-1是A的3重特征值. 显然,1=(0,1,0)T是A的一个特征向量.作酉矩阵 V=(1,2,3),2=(1,0,0)T,3=(0,0,1)T,则 V*AV=
习题3-19设A是正定Hermite矩阵且 AUnn,则A=E
证:存在UUnn使得 A=Udiag(1,…,n)U*, (*) 其中1,…,n是A的特征值的任意排列. A 是正定蕴含 i>0,i=1,…,n AUnn 蕴含|i|=1,i=1,…,n 因此 i=1,i=1,…,n ∴ A=Udiag(1,…,n)U*=UEU*=UU*=E.
习题3-14
#3-14:若AHnn,A2=E,则存在UUnn使得 U*AU=diag(Er,-En-r).

矩阵分析第3章习题答案

矩阵分析第3章习题答案

矩阵分析第3章习题答案第三章1、 已知()ijA a =是n 阶正定Hermite 矩阵,在n维线性空间nC 中向量1212(,,,),(,,,)n n x x x y y y αβ==L L 定义内积为(,)HA αβαβ=(1) 证明在上述定义下,nC 是酉空间;(2) 写出nC 中的Canchy-Schwarz 不等式。

2、 已知2111311101A --⎡⎤=⎢⎥-⎣⎦,求()N A 的标准正交基。

提示:即求方程0AX =的基础解系再正交化单位化。

3、 已知308126(1)316,(2)103205114A A --⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦试求酉矩阵U ,使得HUAU是上三角矩阵。

提示:参见教材上的例子4、 试证:在nC 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。

5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使HUAU为对角矩阵,已知133261(1)6322312623A ⎡⎢⎢⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦01(2)10000i A i -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,434621(3)44326962260ii i A i i i i i +--⎡⎤⎢⎥=----⎢⎥⎢⎥+--⎣⎦11(4)11A -⎡⎤=⎢⎥⎣⎦6、 试求正交矩阵Q ,使TQAQ为对角矩阵,已知 220(1)212020A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,11011110(2)01111011A -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦7、 试求矩阵P ,使HPAP E=(或TPAP E=),已知11(1)01112i i A i i +⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,222(2)254245A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦8、 设n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1()()H i E U E U -=-+是Hermite 矩阵。

反之,若H 是Hermite 矩阵,则E iH +满秩,且1()()U E iH E iH -=+-是酉矩阵。

线性代数第三章课后习题

线性代数第三章课后习题

习题三(A )1. 用矩阵的初等变换把下列矩阵A 化为行阶梯形矩阵、行最简形矩阵及标准形矩阵:(1) 112332141022-⎛⎫ ⎪= ⎪ ⎪⎝⎭(2)1111131320461135-⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭(3)24512122111212136363--⎛⎫⎪-- ⎪=⎪-- ⎪---⎝⎭2.设A 123012425⎛⎫⎪=- ⎪ ⎪⎝⎭,010(1,2)100001⎛⎫⎪= ⎪ ⎪⎝⎭E ,100(3,2(5))010051⎛⎫ ⎪= ⎪ ⎪⎝⎭E .试求(1,2)E A ;(1,2)AE ;(3,2(5))E A .3.用初等变换求下列方阵的逆矩阵:(1) A 101110012⎛⎫ ⎪=- ⎪ ⎪⎝⎭ (2)A 211124347--⎛⎫ ⎪=- ⎪ ⎪-⎝⎭(3)A1111022200330004⎛⎫⎪⎪= ⎪ ⎪⎝⎭4.用初等变换解下列矩阵方程:(1) 设A 101110120⎛⎫ ⎪= ⎪ ⎪⎝⎭,102102-⎛⎫⎪= ⎪ ⎪⎝⎭B ,且AX =B ,求X .(2)设A 220213010⎛⎫⎪= ⎪ ⎪⎝⎭,且+AX =A X ,求X .5.设矩阵A 122324111222-⎛⎫⎪=-- ⎪ ⎪-⎝⎭,计算A 的全部三阶子式,并求()R A .6.在秩为r 的矩阵中,有没有等于0的1r -阶子式?有没有等于0的r 阶子式?请举例说明.7.从矩阵A 中划掉一行得到矩阵B ,问A ,B 的秩的大小关系怎样? 请举例说明.8.求下列矩阵A 的秩:(1) 310211311344⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭(2)1121224230610304-⎛⎫ ⎪- ⎪=⎪- ⎪-⎝⎭(3)12211248022423336064--⎛⎫⎪-⎪= ⎪-- ⎪--⎝⎭(4) 112205123λλλ-⎛⎫ ⎪= ⎪ ⎪-⎝⎭ (5)111111λλλ⎛⎫⎪= ⎪ ⎪⎝⎭9. 设有矩阵A101110112111022264μμ-⎛⎫⎪⎪=⎪⎪⎝⎭,若()3R=A,求μ的值.10.判断下列命题是否正确.(1) 如果线性方程组AX=0只有零解,那么线性方程组AX=B有唯一解;(2) 如果线性方程组AX=B有唯一解,那么线性方程组AX=0只有零解.11. 解下列齐次线性方程组:(1)12312312325502303570x x xx x xx x x+-=⎧⎪+-=⎨⎪+-=⎩(2)1234123412342202220430x x x xx x x xx x x x+++=⎧⎪+--=⎨⎪---=⎩(3)31243124312431242530420476023950xx x xxx x xxx x xxx x x-+-=⎧⎪-+-=⎪⎨-+-+=⎪⎪-+-=⎩(4)3124312412431242350240347045530xx x xxx x xx x xxx x x-+-+=⎧⎪-+-=⎪⎨--=⎪⎪-+-=⎩12. 解下列非齐次线性方程组:(1)123123123343322323x x xx x xx x x-+=⎧⎪+-=-⎨⎪-+-=-⎩(2)12341234123443222333244x x x xx x x xx x x x+-+=⎧⎪++-=-⎨⎪---+=⎩(3)3124312431243124235324434733749xx x xxx x xxx x xxx x x+++=⎧⎪++-=⎪⎨+++=⎪⎪++-=⎩(4)31231231231224523438214496xx xxx xxx xxx x-+=-⎧⎪++=⎪⎨+-=⎪⎪-+=-⎩13. 确定λ的值,使下列齐次线性方程组有非零解,并求其一般解.(1)123123123x x xx x xx x xλλλ++=⎧⎪++=⎨⎪++=⎩(2)123123123240356020x x xx x xx x x-+=⎧⎪-+=⎨⎪-+=⎩λ14.讨论下列非齐次线性方程组,当λ取何值时,方程组无解、有唯一解、有无穷多解?并在有无穷多解时求出一般解:(1)12312321231x x xx x xx x xλλλλλ++=⎧⎪++=⎨⎪++=⎩(2)212312312313422321x x xx x xx x x++=⎧⎪++=⎨⎪+-=⎩λλ15. 设有方程组112223334445551x axx axx axx axx ax-=⎧⎪-=⎪⎪-=⎨⎪-=⎪-=⎪⎩,证明方程组有解的充分必要条件是51iia==∑.(B )1.设A 是n 阶可逆阵,互换A 的第i 行与第j 行(i j ≠)得到矩阵B ,求1-AB .2. (研2007数一、二、三)设矩阵0100001000010000⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭A ,则3A 的秩为___ ____. 3. (研2010数一)设A 为m n ⨯型矩阵,B 为n m ⨯型矩阵,若AB =E ,则正确的是( )(A) ()R m =A ,()R m =B (B) ()R m =A ,()R n =B(C) ()R n =A ,()R m =B (D) ()R n =A ,()R n =B4. (研2015数一、二、三)设矩阵A 21111214a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,21d d ⎛⎫ ⎪= ⎪ ⎪⎝⎭b .若集合={1,2}Ω,则线性方程组Ax =b 有无穷多解的充分必要条件是( )(A) a ∉Ω,d ∉Ω (B) a ∉Ω,d ∈Ω (C) a ∈Ω,d ∉Ω (D) a ∈Ω,d ∈Ω5. (研2016数二、三)设矩阵111111a a a --⎛⎫ ⎪-- ⎪ ⎪--⎝⎭与110011101⎛⎫ ⎪- ⎪ ⎪⎝⎭等价,则a =____ ____.6.证明:()()R R R ⎛⎫=+ ⎪⎝⎭A O AB O B . 7.设A ,B 是n 阶非零矩阵,证明:若=AB O ,则()R n <A 及()R n <B .8.设A 是m n ⨯矩阵,B 是n m ⨯矩阵,且n m <.证明:||0=AB .。

矩阵理论习题解答等材料

矩阵理论习题解答等材料

西南科技大学研究生试题单(B 卷)(2014级高等工程数学A)第一部分 矩阵理论(共32分)1、(8分)填空题(1)每个n 阶矩阵都相似于一个 矩阵。

(2)n nA C⨯∈,A 为正规矩阵的充要条件是A 对角形矩阵。

(3)正交变换在规范正交基下的矩阵是 矩阵。

(4)A 的最小多项式 A 的零化多项式。

2、(6分) 求4R 的子空间1234123412341234{(,,,)|0},{(,,,)|0}V a a a a a a a a W a a a a a a a a =-+-==+++=的交V W I 的一组基。

3、(8分) 已知111111,012A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭计算5432()2822g A A A A A E =-++-。

4、(10分)求矩阵213121242A -⎛⎫⎪= ⎪ ⎪⎝⎭的Doolittle 分解和LDU 分解。

第二部分 数值分析(共36分)5、 (4分)解答下列各题 设函数2015201420131()5.2015!f x x x x =++,求差商0120142015[2,2,2,2]?f =L 6、(8分)设函数4()f x x =,不直接用拉格朗日插值公式,而用拉格朗日余项公式求出以1,0,1,2x =-为插值节点的三次插值多项式3().L x7、(8分)设有求积公式2120()(0)(1)(2)f x dx af a f a f ≈++⎰试确定系数012,,a a a 使上述公式的代数精度尽量高,且指出其代数精度。

8、(8分)已知方程组123123123102212100.51.931x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩ (1) 构造Jacobi 迭代法的迭代格式,迭代格式是否收敛?说明理由; (2) 取(0)(0,0,0)T x=,用上述迭代法来计算一步迭代值(保留小数点后4位)。

9、(8分)若求解初值问题为24,015(0)1x y y x y y ⎧'=-≤≤⎪⎨⎪=⎩, 试写出Euler 方法求解的迭代格式(0.2)h =,并计算(0.2),(0.4)y y 的值(保留小数点后至少8位)。

线性代数习题册(第三章 矩阵的初等变换与线性方程组参考答案)

线性代数习题册(第三章 矩阵的初等变换与线性方程组参考答案)

(B) 若 A B ,则 R( A) = R(B) ;
(C ) 若 P,Q 可逆,则 R(PAQ) = R( A) ; (D) R( A + B) ≥ R( A) + R(B) .
分析:本题是考察矩阵秩的性质。(A)、(B)、(C)都是正确的。如
R(= PAQ) R= ( AQ) R( A) ,所以(C)是正确的。(D)不正确。因为
( X) (X)
3. 若矩阵 A 所有的 k 阶子式全为 0 ,则 R( A) < k .
( √)
4. 初等变换不改变矩阵的秩.
(√)
5. 设矩阵 A, B 分别为线性方程组相应的系数矩阵和增广矩阵,则线性方程组 Ax = b 有唯
一解当且仅当 R( A) = R(B).
(X)
6. 若 A 是 m × n 矩阵,且 m ≠ n ,则当 R( A) = n 时,齐次线性方程组 Ax = 0 只有零解.
( x j − xi ) ≠ 0

1≤i< j≤n
1
xn

x n−1 n
故齐次线性方程组只有唯一的零解,即 a=1 a=2 = a=n 0 。
13. 设 A 为 m × n 矩阵,且 R( A=) m < n ,则(
).
( A) 若 AB = O ,则 B = 0 ;
(B) 若 BA = O ,则 B = 0 ;

1
1 0
0
0


a11 a21
a12 a22
a13 a23

=

a21 a11
a22 a12
a23 a13

0 0 1 a31 a32 a33 a31 a32 a33

矩阵论(方保镕、周继东、李医民)习题1-3章

矩阵论(方保镕、周继东、李医民)习题1-3章
5. 解:(1)是线性空间;(2)不是线性空间(加法不封闭;或 因无零向量).
6. 解:(1)设 A 的实系数多项式 f A的全体为
f A a0 I a1 A am Am ai R, m正整数
1
显然,它满足两个封闭性和八条公理,故是线性空间. (2)与(3)也都是线性空间.
(ai bi ) ai bi 2
i1
i1
i1
于是可知 L,因此 L 不是 V 的子空间.
18.
解:
Span(
' 1
,

' 2
,

' 3
)
的基为
1'
,

' 2
,

' 3
的一个最大无关组,

' 1
,

' 2
,

' 3
在基1
,

2
,

3
下的坐标依次为
(1, -2, 3) T , (2 , 3 , 2) T , (4, 13, 0 ) T
故 C =(1 , 2 , 3 , 4 ) 1 ( 1 , 2 , 3 , 4 )
1 0 0 0 1 2 0 5 6
= 0100
0010
1 336 1 1 2 1
0001
1 013
2 056 1 336
= 1 1 2 1 .
1 013
⑵ 显然,向量α在基1 , 2 , 3 , 4 下的坐标为 X =(1 ,2 ,3,4 ) T ,
7
(2)取
A

1 0
0 0
,B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即 的特征值为 ,同理可证 也是 的特征值。
4设 是 阶的实对称矩阵,并且 你能用几种方法证明
证:(1)设 是矩阵 的一个特征值, 是对应于 的一个非零特征向量,即 所以 即 所以矩阵 的特征值全为零,又 酉相似与对角矩阵 所以
(2)设 则 Βιβλιοθήκη 题设矛盾,所以结论成立。5试证:对于每一个实对称矩阵 ,都存在一个 阶方阵 ,使 。
证:矩阵 是一个对称矩阵,则 酉相似于一个对角矩阵,即
令 ,则
又由 令 则 。
7证明:一个正规矩阵若是三角矩阵,则它一定是对角矩阵.
证明参考课本101页引理3必要性的证明.
8证明:正规矩阵是幂零阵 的充要条件是
证:充分性: 则结论显然。
必要性:若 ,由题设矩阵 是正规矩阵,则 酉相似于一个对角矩阵,即
证:必要性:设 为正定的Hermite矩阵,根据定义有 ,即 ,同时有 所以
充分性:设 ,则 ,则矩阵 是Hermite矩阵。由于矩阵 是正定Hermite矩阵,存在一个正定的Hermite矩阵 ,使得 则有 对矩阵 施行相似变换: 则矩阵 与矩阵 有相同的特征值,且 是Hermite矩阵.
对 可得 即 是正定的Hermite矩阵,所以其所有的特征值为正,从而矩阵 所有的特征值为正,即矩阵 为正定的Hermite矩阵.
矩阵 的特征值为 ;其对应的特征向量构成的矩阵为
则酉变换为
13设矩阵 的最大秩分解为 ,证明:
证:充分性显然。
必要性:(反证法)如果存在向量 使得 ,但 ,令 ,则 。由于 是矩阵 的最大秩分解,则矩阵 的列向量是线性无关的,如果 ,则 ,从而 ,与题设矛盾,所以 。
15设 , 均为正定矩阵的Hermite矩阵,则 为正定的Hermite矩阵的充要条件是 .

所以矩阵 至少有一个正的特征值。
11求下列矩阵的最大秩分解式。

解:(1)对矩阵 实行行初等变换,得

, ,
则 就是矩阵 的最大秩分解。
(2)同理对矩阵 进行行初等变换,可得

, ,
则 就是矩阵 的最大秩分解。
12设矩阵为
试问: 与 是正规矩阵吗?若是,通过酉变换把它们化成相似对角矩阵.
解:由于
所以矩阵 是正规矩阵。
第三章习题解答
1.求矩阵
的谱分解.
解:(1)求特征值 ,所以特征值为 .
(2)求特征向量: 对应的特征向量为
对应的特征向量为 .
(3)谱分解:令 ,则

故谱分解式为
2求单纯矩阵
的谱分解式.
3.设 是正规矩阵 的特征值,证明: 是 与 的特征值.
证:根据题设矩阵 ,则 酉相似与对角矩阵,即
其中 为酉矩阵,则

所以,可得
即 结论成立。
9求矩阵 的谱分解式,并给出 的表达式。
解:矩阵 的特征值: 所以矩阵 的特征值为

对应的特征向量分别为


则 的谱分解为 。
所以
10证明:如果一个实对称矩阵 的主对角元都大于零,则 至少有一个正的特征值。
证:设矩阵 ,由于矩阵 是对称矩阵,则其特征值 都是实数,根据矩阵特征值与矩阵迹的关系,可得
相关文档
最新文档