结构力学-第9章 矩阵位移法课堂练习
结构力学课后习题解答:9矩阵位移法习题解答.docx
第9章矩阵位移法习题解答习题9.1是非判断题(1)矩阵位移法既可计算超静定结构,又可以计算静定结构。
()(2)矩阵位移法基本未知量的数目与位移法基本未知量的数目总是相等的。
()(3)单元刚度矩阵都具有对称性和奇异性。
()(4)在矩阵位移法中,整体分析的实质是建立各结点的平衡方程。
()(5)结构刚度矩阵与单元的编号方式有关。
()(6)原荷载与对应的等效结点荷载使结构产生相同的内力和变形。
()【解】(1)正确。
(2)错误。
位移法中某些不独立的杆端位移不计入基本未知量。
(3)错误。
不计结点线位移的连续梁单元的单刚不具奇异性。
(4)正确。
(5)错误。
结点位移分量统一编码会影响结构刚度矩阵,但单元或结点编码则不会。
(6)错误。
二者只产生相同的结点位移。
习题9.2填空题(1)矩阵位移法分析包含三个基本环节,其一是结构的,其二是分析,其三是分析。
(2)已知某单元的定位向量为[3 5 6 7 8 9]七则单元刚度系数炫应叠加到结构刚度矩阵的元素中去。
(3)将非结点荷载转换为等效结点荷载,等效的原则是。
(4)矩阵位移法中,在求解结点位移之前,主要工作是形成矩阵和_________________ 列阵。
(5)用矩阵位移法求得某结构结点2的位移为4=[. V2 ft]T=[0.8 0.3 0.5]T,单元①的始、末端结点码为3、2,单元定位向量为尸>=[0 0 0 3 4 5]T ,设单元与x轴之间的夹角为a =买,则2 尹> =O(6 )用矩阵位移法求得平面刚架某单元在单元坐标系中的杆端力为F e =[7.5 -48 -70.9 -7.5 48 -121.09]T ,则该单元的轴力心=kN。
【解】(1)离散化,单元,整体;(2)灯8;(3)结点位移相等;(4)结构刚度,综合结点荷载;(5)[0 0 0 0.3 -0.8 0.5]。
(6)-7.5o离、空的值以及K ⑴中元素妍、愚、姒的值。
【解】各刚度系数的物理意义如习题解9.3图所示。
第九章矩阵位移法习题集
第九章 矩阵位移法 【练习题】9-1 是非题:1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。
2、单元刚度矩阵均具有对称性和奇异性。
3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。
4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。
5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。
6、结 构 刚 度 矩 阵 是 对 称 矩 阵 ,即 有K i j = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。
7、结构刚度方程矩阵形式为:[]{}{}K P ∆=,它是整个结构所应满足的变形条件。
8、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。
9、等效结点荷载数值等于汇交于该结点所有固端力的代数和。
10、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。
11、矩阵位移法既能计算超静定结构,也能计算静定结构。
9-2 选择题:1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是:(0,1,2)(0,0,0)(0,0,0)(0,1,3)(0,0,0)(1,2,0)(0,0,0)(0,0,3)(1,0,2)(0,0,0)(0,0,0)(1,0,3)(0,0,0)(0,1,2)(0,0,0)(0,3,4)A.B.C.D.21341234123412342、平面杆件结构一般情况下的单元刚度矩阵[]k 66⨯,就其性质而言,是: A .非对称、奇异矩阵; B .对称、奇异矩阵; C .对称、非奇异矩阵; D .非对称、非奇异矩阵。
3、单元i j 在图示两种坐标系中的刚度矩阵相比:A .完全相同;B .第2、3、5、6行(列)等值异号;C .第2、5行(列)等值异号;D .第3、6行(列)等值异号。
jxi4、矩阵位移法中,结构的原始刚度方程是表示下列两组量值之间的相互关系: A .杆端力与结点位移; B .杆端力与结点力; C .结点力与结点位移; D .结点位移与杆端力 。
结构力学(9.14.1)--矩阵位移法习题2
5kN m
8m 8m
8m
三 . 整体分析
12. 试求图示结构 ( 不计轴变 ) 的荷载列阵 ( 先处理法 ).
1(1,0,2) 2(1,0ቤተ መጻሕፍቲ ባይዱ3) 3(1,0,3)
X1
X2
4(0,0,0)
P
X
1
0
X
2
0
四 . 求杆端力
1. 连续梁在一般荷载作用下 , 单元杆端力由下式计算 . 是否正确 ?
6
48
4
2
1(0,0,0)
12
1 6
k
6
48
4(1,0,3)
3
2(0,0,0)
3
1
2
3
例 . 不计轴变 , 作弯矩图
已知 : 各杆长均为 12m, 线刚度均为 12
P 10kN, q 5kN / m
P 10kN, q 5kN / m
解 : 1 6 1 6
k
1
6
1
48 6
6 1
24
6
6
24
6
48
3(1,0,2)
2
1
1 6 1 6 1 0
k
1
6 1
48 6
6 1
24
2
0
63 1
6 24
EI
EI
EA 2l
2 2
l
l
三 . 整体分析
4(1,0,0)
5(1,0,0)
龙驭球《结构力学》笔记和课后习题(含真题)详解(矩阵位移法)【圣才出品】
第9章 矩阵位移法9.1 复习笔记一、矩阵位移法的基本思路矩阵位移法又称为杆件结构的有限元法。
分析的两个基本步骤:(1)单元分析;(2)整体分析。
单元分析:建立杆端力与杆端位移间的刚度方程,形成单元刚度矩阵。
整体分析:将单元合成整体,按照刚度集成规则形成整体刚度矩阵,建立位移基本方程。
二、单元刚度矩阵(局部坐标系)进行单元分析,推导单元刚度方程和单元刚度矩阵。
单元刚度方程是指由单元杆端位移求单元杆端力的一组方程,可以用“”表示,由位移求力称为“正问题”。
相应的由力求位移称为“反问题”。
正问题的解是唯一的确定的,但是反问题则可能无解,如果有解也非唯一解。
当外部荷载为不平衡力系时,反问题无解;当外荷载为平衡力系时,反问题有解但是因为杆件除本身变形外还可有任意刚体位移,此时反问题的解不唯一。
本书暂不考虑反问题的求解。
1.一般单元图9-1所示为平面刚架中的一个等截面直杆单元.单元的两个端点采用局部编码1和2,由端点1到端点2的方向规定为杆轴的正方向,在图中用箭头标明。
F →∆e图9-1图中采用坐标系,其中轴与杆轴重合。
这坐标系称为单元坐标系或者局部坐标系。
字母、的上面都画了一横,作为局部坐标系的标志。
推导单元刚度方程时,有以下几点需要注意:重新规定正负号规则、讨论杆件单元的一般情况、采用矩阵表示形式。
在局部坐标系中,图9-2所示的位移、力分量方向为正方向。
图9-2杆件性质:长度l ,截面面积A ,截面惯性矩I ,弹性模量E ;杆端位移u 、v 、θ。
根据杆端位移可以推导出下面两组刚度方程:(9-1)x y x x y(9-2)将上述六个刚度方程列成矩阵形式:(9-3)其中就是局部坐标系下单元刚度矩阵,即为(9-4)2.单元刚度矩阵的性质 (1)单元刚度系数的意义e e ek F∆=eK代表单元杆端第j 个位移分量等于1时所引起的第i 个杆端力分量。
(2)是对称矩阵,即。
(3)一般单元的是奇异矩阵,即,因此不存在逆矩阵。
09矩阵位移法(学习版)(1)
1
2
3 6
4
y
5
θ x
O
练习:
3 ④ 2 ① 1
8 ⑨ ⑤ 6 ⑦ ② 4 5 ⑧ 7 ⑩ ⑥
13
12 10 11 ③ 9
(2)结点位移编码 矩阵位移法基本未知量的确定: 矩阵位移法基本未知量的确定不是唯一的,它与 单元如何划分,是否考虑轴向变形以及如何编写程序 有关。 结点位移的统一编码 —— 整体码 用矩阵位移法进行结构分析时,基本未知量是结点 位移,这就需要将结构中全部结点位移分量进行统一编 码。
第九章
矩阵位移法
9.1 概述
1. 概述
结构矩阵分析是采用矩阵方法分析结构力学问题的 一种方法。与传统的力法、位移法相对应,结构矩阵分 析中也有矩阵力法和矩阵位移法,或柔度法与刚度法。 矩阵位移法易于实现计算过程程序化而被广泛应用。 矩阵位移法是以结点位移为基本未知量,借助矩阵 进行分析,并用计算机解决各种杆系结构受力、变形等 计算的方法。
e
e
建立单元的杆端力和杆端 位移之间关系的过程称单元分 析,形成的方程称单元刚度方 程。
e
⎡δ 1 ⎤ ⎡ u i ⎤ ⎢ ⎥ ⎢ ⎥ δ 2 ⎥ ⎢ vi ⎥ ⎢ e ⎡ δ i ⎤ ⎢δ 3 ⎥ ⎢θ i ⎥ e δ =⎢ ⎥ =⎢ ⎥ =⎢ ⎥ ⎣δ j ⎦ ⎢δ 4 ⎥ ⎢u j ⎥ ⎢δ 5 ⎥ ⎢ v j ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎦ ⎦ ⎢ ⎣θ j ⎥ ⎣δ 6 ⎥
2. 单元分析
y y e i x
α
j x
局部坐标系(单元坐标系):进行某一单元的单元分析时所 建立的坐标系。 局部坐标系相对于整体坐标系的方位角用α表示。α的方向 以 x 轴向 x 轴逆时针转动为正。即便在一个结构中,各单元的局 部坐标系也不完全相同。
第9章 矩阵位移法 例题
第9章 矩阵位移法习 题9-1:请给图示结构编号(同时用先处理法和后处理法)及建立坐标。
题9-1图 9-2:求图示连续梁的整体刚度矩阵。
题9-2图9-3:求图示刚架的整体刚度矩阵。
(c )(e )题9-3图9-4:求图示组合结构的整体刚度矩阵。
题9-4图9-5:求图示桁架结构的整体刚度矩阵,所有杆件的EA 均相同。
题9-5图9-6:求图示排架结构的整体刚度矩阵。
题9-6图 9-7:求图示结构的等效结点荷载,请利用结构的对称性。
1kN/m题9-7图9-8:求图示结构的等效结点荷载,请利用结构的对称性。
题9-8图9-9:求图示结构的等效结点荷载。
题9-9图9-10:求出图示结构的荷载列阵。
题9-10图9-11:求出图示结构的荷载列阵,请分别用先处理法和后处理法进行编号。
qq题9-11图9-12:求图示结构的荷载列阵,考虑轴向变形。
题9-12图9-13:求图示结构的荷载列阵。
题9-13图9-14:图示连续梁中间支座发生了下向的移动a ,请求出其整体刚度方程。
题9-14图10kN/mq9-15:请求出图示连续梁的整体刚度方程。
题9-15图9-16:求图示连续梁的整体刚度矩阵。
题9-16图9-17:图示结构温度发生了变化,请求出整体刚度方程。
杆件的EI 、EA 相同。
题9-17图9-18:图示结构温度发生了变化,请求出整体刚度方程。
题9-18图9-19:图示结构发生了支座移动,请画出结构的内力图。
00题9-19图9-20:已知图示梁B 点的B v 、B ϕ和C 点的C ϕ,请求出单元杆端力的列阵。
题9-20图9-21:求题9-3图示刚架的整体刚度矩阵,忽略轴向变形。
9-22:求题9-10图示结构的整体刚度矩阵,用后处理法编号。
9-23:求出梁的整体刚度方程,弹簧的刚度系数为k 。
题9-23图9-24:求出图示结构的整体刚度方程,忽略轴向变形,弹簧刚度系数为k 。
题9-24图L。
结构力学基础矩阵位移法基本概念、计算程序和例题讲解
例形成图示刚架可动结点劲度矩阵,E,I ,A为常数。
解: 1.编号,如图(b) 2.确定单元杆端自由度序号。
3.计算 kmi 4.计算单元转换矩阵
5.形成单元在整体坐标系中的劲度矩阵
6.根据单元杆端自由度序号叠加
二、可动结点劲度矩阵性质
1.对称方阵
反力互等定理
2.非奇异矩阵 考虑了约束条件,排除了刚体位移
7.求杆端力Fmi
8.求支座反力 支座反力由下式
计算,得
9.内力图
例2 求图2-21(a)所示平面刚架的内力,已知各杆 I 0.005m4
A0.05m2,E2106kNmA2B杆、CD杆杆
返回
§9—3 可动结点劲度矩阵
一、形成可动结点劲度矩阵的步骤
步骤: 1.对结构进行结点编号、单元标号、自由度编号: 2.确定单元杆端自由度序号(考虑约束条件); 3.计算单元在局部坐标系中的劲度矩阵kmi 4.计算单元转换矩阵Ti 5.形成单元在整体坐标系中的劲度矩阵ki TiTkmiTi
6.按”对号入座”原则,将ki叠加到 k 中。
结构力学基础 矩阵位移法基本概念、计算程
序和例题讲解
§9-1 矩阵位移法基本概念 §9-2 单元劲度矩阵 §9-3 可动结点劲度矩阵 §9-4 可动结点等效荷载列阵 §9-5 单元杆端力和支座反力 §9-6 例题 §9-7 平面刚架计算程序
§9—1 矩阵位移法的基本概念
一、坐标系和符号规定 图示连续梁:
4.求 K
(1)计算机各单元的方向余弦和杆长:
(2)求 kmi
(3)求ki
单元(1):Cx=0 Cy=1
杆长:l 同理:
(4)求 按照“对号入座“原则,由ki形成k哪
例如: 同理:
矩阵位移法练习题
结构力学自测题(第八单元)矩阵位移法姓名 学号一、是 非 题(将 判 断 结 果 填 入 括 弧 :以 O 表 示 正 确 ,以 X 表 示 错 误 )1、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵作 坐 标 变 换。
()2、结 构 刚 度 矩 阵 是 对 称 矩 阵 ,即 有K ij = K ji ,这 可 由位 移 互 等 定 理 得 到 证 明 。
() 3、图 示 梁 结 构 刚 度 矩 阵 的 元 素 K EI l 11324=/ 。
()EI llEI 212xy M , θ附:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------l EI l EI l EI l EI lEI l EI l EI l EI l EAl EA l EI lEI l EI l EI l EI l EI l EI l EI lEA l EA 4602606120612000002604606120612000002223232223234、在 任 意 荷 载 作 用 下 ,刚 架 中 任 一 单 元 由 于 杆 端 位移 所 引 起 的 杆 端 力 计 算 公 式 为 :{}[][]{}FT K eee=δ 。
()二、选 择 题 ( 将 选 中 答 案 的 字 母 填 入 括 弧 内 )1、已 知 图 示 刚 架 各杆 EI = 常 数,当 只 考 虑 弯 曲 变 形 ,且各 杆 单 元 类 型 相 同 时 ,采 用 先 处 理 法 进 行 结 点 位 移 编 号 ,其 正 确 编 号 是 :(0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0) (1,2,0) (0,0,0) (0,0,3)(1,0,2)(0,0,0) (0,0,0) (1,0,3) (0,0,0)(0,1,2)(0,0,0) (0,3,4)A.B.C.D.2134 123 4 12 34 1 2 3 4 xyM , θ ( ) 2、平 面 杆 件 结 构 一 般 情 况 下 的 单 元 刚 度 矩 阵 []k 66⨯,就 其 性 质 而 言 ,是 :()A .非 对 称 、奇 异 矩 阵 ;B .对 称 、奇 异 矩 阵 ;C .对 称 、非 奇 异 矩 阵 ;D .非 对 称 、非 奇 异 矩 阵 。
(整理)《结构力学2》习题集同济版.
南华大学《结构力学II》习题集(适合于大土木工程各专业方向)组编:刘华良班级:姓名:学号:建筑工程与资源环境学院道路桥梁工程教研室衡阳2005年前言本习题集取材于第九章位移法9-l 确定下列各结构的位移法未知数目,并绘出基本结构。
9-2~9-3 用位移法计算下列结构内力.并绘出其弯矩图、剪力图和轴力图。
题9-2图题9-3图9-4~9-11 用位移法绘制下列结构弯矩图。
题9-4图题9-5图题9-6图题9-7图题9-8图题9-9图题9-10图题9-11图9-12~9-15 用位移法绘制下列具有斜杆的刚架的弯矩图。
题9-12图题9-13图题9-14图题9-15图9-16~9-17 列出下列结构的位移法典型方程式,并求出所有系数和自由项。
题9-16图题9-17图9-18~9-23 用位移法绘制下列具有无限刚性杆结构的M图。
题9-18图题9-19图题9-20图题9-21图题9-22图题9-23图9-24~9-26 用位移法绘制下列刚架M图。
题9-24图题9-25图题9-26图9-27 用位移法绘制图9-27所示结构弯矩图,并求桁架杆的轴向力。
题9-27图9-28 用位移法求图9-28所示桁架各杆轴向力。
题9-28图9-29 图9-29所示为一个三角形刚架,考虑杆件的轴向变形,试写出位移法的典型方程,并求出所有系数和自由项。
题9-29图9-30~9-31 用位移法计算图示有剪力静定杆组成的刚架的M图。
题9-30图题9-31图9-32~9-41 利用对称性,用位移法求作下列结构的M图。
题9-32图题9-33图题9-34图题9-35图题9-36图题9-37图题9-38图题9-39图题9-40图题9-41图9-42~9-48 试直接按平衡条件建立位移法方程计算题9-2、9-5、9-8、9-11、9-12、9-24、9-35,并绘出M图。
题9-42图题9-43图题9-44图题9-46图题9-47图题9-48图9-49~9-52 试用位移法求作下列结构由于支座位移产生的M图。
习题课1 矩阵位移法(含答案作业)_518706462
4
5
6
7
8
k
i = 2,3 (1) 54
+ k
i = 2,3 (1) 55
(2) (3) (3) (3) k16 k15 k16 k14 0 (2) (3) (3) (3) k26 k25 k26 k24 0 (2) (3) (3) (3) k36 k34 k35 k36 0
+ k
+
(i ) 33
k
3EIa 2 a 3 + b3
A
3EIab a 3 + b3
B A
3EIab a 3 + b3
3EIb 2 a 3 + b3
B
3EIa a 3 + b3
e θA =1
−3EIa a 3 + b3
3EIb a 3 + b3
e θB =1
−3EIb a 3 + b3
[k ]
e
=
a2 ab
ab b2
e
3EI a 3 + b3
{F }
u2
v2 θ 2 θ 3 ]
−M 0 ]
[0 M 0
0 0 2M 0
T
4
3
3
4
5
0
0
6
2 2 2 2 2 2 k12 k13 k14 k15 k16 k11
2 2 2 2 2 2 k22 k24 k25 k21 k23 k26 2 2 2 2 2 2 k32 k34 k35 k31 k33 k36 2 2 2 2 2 2 k42 k45 k44 k41 k46 k43
y
x
解: T 用位移法求解,未知量为 {∆} = [θ 2 v3 ] 。 1) 杆端弯矩表达式
结构力学 第九章 矩阵位移法-董 - 副本
Cx Cx
2
2
C xC y
C xC y 2 C y EA C xC y l 2 Cy
K
(2)
0 .75 0 .433 0 .75 0 .433
0 .433 0 .25 0 .433 0 .25
0 .75 0 .433 0 .75 0 .433
[例]
形成连续梁的整体刚度矩阵
(0) 1 (1)
2
(2)
3
(3)
4
(4)
5
(5)
i1
1 2
i2
3
i3
4
i4
5
i5
6
解:1)编号及建立坐标
2)单元刚度矩阵
(连续梁每个结点只一个位移)
0
4 i1 [k ] 2 i1
①
1
定位向量 ②
1
4 i2 [k ] 2 i2
2
定位向量
(2) 整体坐标系中的单元 刚 度矩阵 单元①: 0 , T I
0
k
(1)
k
1 0 0 0 0 0
(1)
90 0 , 单元②:
0 1 0 T 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
e
k (6×6);
e
转换成整体坐标系 k
e
;
(5)把单元定位向量标在整体坐标系的单元刚度矩阵边上, 并划去已知支座位移等于零的行和列; (6)按照定位向量号,“对号入座”集合成整体刚度矩阵。
例 求整体刚度矩阵[K]。已知各杆刚度系数为 5 4 2 : EA 6.6 10 kN , EI 1.2 10 kN .m 。
位移法习题答案
位移法习题答案位移法的基本步骤包括:1. 选择位移函数:根据结构的边界条件和对称性,选择合适的位移函数。
2. 建立位移矩阵:将位移函数表示为位移矩阵的形式。
3. 应用位移边界条件:根据结构的固定边界条件,确定位移矩阵中的未知数。
4. 计算内力:利用位移矩阵和结构的几何关系,计算出结构的内力。
5. 验证位移法结果:通过比较位移法的结果与其他方法(如力法)的结果,验证位移法的准确性。
例题:考虑一个简支梁,长度为L,受集中力P作用于中点。
使用位移法求解梁的弯矩和剪力分布。
解答:首先,我们假设梁的位移函数为:\[ w(x) = \frac{Px(L-x)}{2EI} \]其中,\( w(x) \) 是梁在x位置的位移,\( E \) 是材料的弹性模量,\( I \) 是截面惯性矩。
接下来,根据位移函数,我们可以计算梁的弯矩和剪力:\[ M(x) = -EI \frac{d^2w}{dx^2} \]\[ V(x) = -EI \frac{dw}{dx} \]应用位移边界条件,我们可以确定位移函数中的未知数。
对于简支梁,位移在支点处为零,即:\[ w(0) = w(L) = 0 \]将位移函数代入上述条件,我们可以验证假设的位移函数满足边界条件。
最后,代入位移函数到弯矩和剪力的表达式中,我们可以得到:\[ M(x) = -\frac{P}{2} \left( \frac{L^2}{4} - x^2 \right) \]\[ V(x) = -\frac{P}{2} \left( L - 2x \right) \]通过上述计算,我们得到了梁在任意位置的弯矩和剪力分布。
结论:位移法是一种有效的结构分析方法,它通过位移函数来求解结构的内力和位移。
通过本题的解答,我们可以看到位移法在求解简支梁问题中的应用。
请注意,上述内容是一个示例答案,具体的习题答案会根据具体的题目而有所不同。
在实际应用中,需要根据具体的结构和受力情况来选择合适的位移函数和计算方法。
结构力学基础矩阵位移法基本概念、计算程序和例题讲解
序和例题讲解
§9-1 矩阵位移法基本概念 §9-2 单元劲度矩阵 §9-3 可动结点劲度矩阵 §9-4 可动结点等效荷载列阵 §9-5 单元杆端力和支座反力 §9-6 例题 §9-7 平面刚架计算程序
§9—1 矩阵位移法的基本概念
一、坐标系和符号规定 图示连续梁:
4.求 K
(1)计算机各单元的方向余弦和杆长:
(2)求 kmi
(3)求ki
单元(1):Cx=0 Cy=1
杆长:l 同理:
(4)求 按照“对号入座“原则,由ki形成k哪
例如: 同理:
5.求: 对于桁架,一般只有结点荷
载,于是
得 6.求结点位移
7.求杆端力Fmi
8.求支座反力
例 设 EI=常数,EA=常数, EI=20EA,试用矩阵位移法分析
5
6
1 2
88.889 0.0
0.0 5.268
0.0 11.852
-88.889 0.0
0.0 -5.268
0.0 11.852
1 2
k②
EA l1
3 4
0.0 88.889
5 0.0
11.852 0.0
5.268
35.556 0.0
11.852
0.0 88.889
0.0
11.852 0.0
返回
§9—3 可动结点劲度矩阵
一、形成可动结点劲度矩阵的步骤
步骤: 1.对结构进行结点编号、单元标号、自由度编号: 2.确定单元杆端自由度序号(考虑约束条件); 3.计算单元在局部坐标系中的劲度矩阵kmi 4.计算单元转换矩阵Ti 5.形成单元在整体坐标系中的劲度矩阵ki TiTkmiTi
矩阵位移法
TT T T T T I
Fx1 F y1 M1 单元坐标 转换矩阵 F x2 Fy 2 M 2
e
Hale Waihona Puke eF e TF e
T 1 T T
单元坐标转换矩阵T是一正交矩阵。
EI 25 104 kN m l
0 300 0
5m
0 为了简洁,下面将矩阵 中各元素的单位略去。 12 30 0 12 30 30 100 0 30 50 4 EA 10 0 0 l 0 0 300 0 0 12 30 0 12 30 12 EI 6 EI [k11 ] 0 3 2 30 50 0 30 100 l l 6 EI 4 EI 第一列元素变符号即第四列,第二列元素变符号即第五列 0 ①: 2 ②求整体坐标系中的单刚, k l l 第一行元素变符号即第四行,第二行元素变符号即第五行
3、有限单元法的三个基本环节: ①单元划分:一根等截面直杆作为一个单元,单元间由结点相联。 ②单元分析:建立单元刚度方程,形成单元刚度矩阵(物理关系)。 ③整体分析:由单元刚度矩阵形成整体刚度矩阵,建立结构的 位移法基本方程(几何关系、平衡条件)。
§9-2 单元刚度矩阵(element stiffnessmatrix)(局部坐标系)
T11 T12 T T T 21 22
因此,(a)式的逆转换式为: 同理
F e T TF e
e T e
(b)
e T T e
整体坐标系中的单元刚度矩阵
F e TF e
(a)
e T e
(b)
单元刚度矩阵的性质 设局部坐标系中、整体坐标系中的单元刚度方程分别为: ①单元刚度矩阵是杆端力用杆端位移来表达的联系矩阵。 e e e F k Δ (c) ②其中每个元素称为单元刚度系数,表示由于单位杆端位移引起的杆端力。 ③单元刚度矩阵是对称矩阵。 F e k eΔe (d ) ④第k列元素分别表示当第k个杆端位移=1时引起的六个杆端力分量。 e e e e ⑤一般单元刚度矩阵是奇异矩阵。不存在逆矩阵。因此, 将式(a)、(b)代入式(c) k eT IF T T TTF ke T T 可由单元刚度方程,由杆端位移唯一确定杆端力;但由杆端力反推杆端位移时, 可能无解、可能解不唯一。 k e T T k eT
《结构力学》第9章矩阵位移法.
结构力学
第1章 结构的计算简图 第2章 平面体系的几何组成 第3章 静定结构的受力分析 第4章 静定结构的位移计算 第5章 力法 第6章 位移法 第7章 力矩分配法 第8章 影响线 第9章 矩阵位移法 第10章 结构动力计算基础
结构力学
9.1 概 述 9.2 结构离散化及位移、力的表示与编码 9.3 单元刚度方程和单元刚度矩阵 9.4 结构的整体刚度方程和整体刚度矩阵 9.5 非结点荷载的等效化 9.6 计算步骤和算例
2. 局部坐标系下的单元刚度方程和单元刚度矩阵
单元刚度方程,指单元杆端力与杆端位移之间的关系。
结构力学
局部坐标系下的单元刚度方程
可简记为
结构力学
局部坐标系下的单元刚度矩阵
结构力学
3.单元刚度矩阵的性质
(1)单元刚度系数的意义。 中的元素称为单元刚度矩阵的系 数,代表单元杆端位移与其所引起的杆端力的关系,数值上等 于单位杆端位移引起的杆端力的大小。通常用下标i,j分别表 示元素在矩阵中所处的行、列号。 (2)单元刚度系数仅与单元的横截面积A、惯性矩I、弹性模量E 和长度l有关。 (3) 是对称矩阵,它的对称性指其元素有关系:
图9.1
结构力学
2.位移、力的正方向规定
为了统一(如力的正、负号可直接代入平衡方程等),在矩阵 位移法中,对于所有的外力、结点位移、杆端力、杆端位移等矢 量,规定坐标系的正方向为它们的正方向。 本章采用左手坐标系,用oxy表示结构平面,z轴为截面惯性轴方 向。转角位移、力矩、弯矩以顺时针方向为正(即左手螺旋轴与z 相同为正。
结构力学
9.3 单元刚度方程和单元刚度矩阵
1. 单元局部坐标系
结构中每个杆件的位置、方向各不相同,为了便于讨论杆 件本身杆端力与杆端位移间的关系,对每个单元分别建立单元 局部坐标系。 在局部坐标系下,可表示出杆端力分量分别为轴向力、横向力、 弯矩,杆端位移分量分别对应轴向位移、横向位移、转角位移。
结构力学教学课后作业答疑 矩阵位移法 弹性稳定
0
(5)各跨杆端弯矩依次为:(单位kN.m)
MM12((11))
4i 2i
2i 35 / 6i 30 0
4i
10
/
3i
30
55 (i
EI
/
l,
j
1, 2,3)
MM12((22
) )
4i 2i
2i 4i
9.1(a)
EI=常数,不考 虑轴向变形
解:(1)按图示结点与杆元的整体编码,各杆的固端弯矩依次为: (单位kN.m)
M F ,(1)
a2bFp
b2aFp
22 6 20
62 2 20
30
1
l2
l2
82
82
M F ,(1) 2
a2bFp l2
b2aFp l2
22
6 82
20
62
2 82
20
30
M F ,(2) 1
ql 2 12
10 82
12
160 3
M F ,(2) 2
ql 2 12
10 82 12
160 3
M F ,(3) 1
M F ,(3) 2
0
结构的等效 结点荷载
✓杆端力方向 ✓节点力和杆 端力区别
(2)各杆的单元刚度矩阵
k
( j)
4i 2i
2i 4i
(i
EI
0.096 0 7.5
0.128
0.096
0.128
40
157.5
0
10 7.5 10
1/3 0
(3)
F
第九章 矩阵位移法例题
Cy
=
3 5
⎡ 192
[k](4) =
EA
⎢ ⎢
144
3000 ⎢−192
⎢⎣− 144
144 108 − 144 − 108
− 192 − 144 192 144
− 144⎤
− 108⎥⎥
144 ⎥
108
⎥ ⎦
贡献刚度矩阵
⎡192 144 0 0⎤
[K ](4) = EA ⎢⎢144 108 0 0⎥⎥
⎪⎪ ⎨ ⎪
40 0
⎪⎪ ⎬
=
⎪⎪ ⎨
⎪⎪
0 0
⎪⎪ ⎬ ⎪
⎢0 − 3 − 6 0 3 − 6⎥ ⎪ 0 ⎪ ⎪ 60 ⎪ ⎪ 22.74 ⎪
⎢ ⎢⎣0 6
8
0
−6
⎥ 16 ⎥⎦
⎪⎪⎩ 12.033 ⎪⎪⎭
⎪⎪⎩− 40⎪⎪⎭ ⎪⎪⎩−10.98⎪⎪⎭
{ } 单元(2){δ }(2) = δ (2) = 1 {− 50.081 0 12.033 − 50.081 0 11.382}T EI
结点 4 荷载
荷载贡献
{P}= {0 0 0 20}T
总荷载向量
{P}= {−10 −13.33 13.33 10}T
解结构方程,求出位移向量
{∆} = 1 {− 50.081 −19.350 12.033 11.382}T
EI 求单元内力
{ } 单元(1){δ }(1) = δ (1) = 1 {− 50.081 0 −19.350 − 50.081 0 12.033}T EI
⎢ ⎢⎣0 6
⎥ 8 0 − 6 16 ⎥⎦
⎪⎪⎩11.382⎪⎪⎭ ⎪⎪⎩ 10 ⎪⎪⎭ ⎪⎪⎩ 2.60 ⎪⎪⎭
第9章矩阵位移法典型题
第9章矩阵位移法典型题
1. 用矩阵位移法计算图持续梁,并画M图,EI=常数。
图
解:
(1)成立坐标系,对单元和结点编号如图,单元刚度矩阵
单元定位向量λ①=(01)T,λ②=(12)T,λ③=(20)T
(2)将各单元刚度矩阵中的元素按单元定位向量在K中对号入座,得整体刚度矩阵
(3)持续梁的等效结点荷栽
(4)将整体刚度矩阵K和等效结点荷载P代人大体方程
(5)求杆端力并绘制弯矩图(图)。
2. 图结构,荷载只在(1),(3)杆上作用,已知(1),(3)杆在局部坐标系(杆件箭头方向)中的单元刚度矩阵均为(长度单位为m,角度单位为rad,力单位为kN)
杆件(2)的轴向刚度为EA=×l06kN,试形成结构的整体刚度矩阵。
图
解:
(1)结构的结点位移编号及局部坐标方向(杆件箭头方向)见图。
(2)单元(1),(3)的局部与整体坐标方向一致,故其在整体坐标系中的单元刚度矩阵与局部坐标系中的相同。
(3)桁架单元(2)的刚度矩阵
桁架单元只有轴向的杆端力和杆瑞位移,
(3)定位向量
单元(1):
单元(2):
单元(3):
(4)整体刚度矩阵
=
3. 求图结构整体刚度矩阵。
各标EI相同,不考轴向变形。
图
解:
(1)单元结点编号(图)
(2)单元的定位向量
(0051)T(0054)T
(5354)T(5200)T (3)单元刚度矩阵
(4)整体刚度矩阵。
矩阵位移法习题
EA 3 8 3
3 1
1 3 0 3 8 总刚度矩阵: K EA 3 8 0 3 0 1 8 8
位移向量:
v2 T
荷载向量:
P 15kN
20kN T
u2
1 3 3 0 8 8 u2 15kN 3 结构刚度方程: EA 20kN 3 0 1 v2 0 8 8
F
(e)
广西大学土木建筑工程学院
•
作业:已知单元和结点的离散如图,给定荷载作用 下各结点整体坐标下的位移:
u2 141006 / E, v2 37 / E, 2 18356 / E
u3 140988 / E, v3 763/ E, 3 32874 / E
20 20 2 (2) 370
0 4 6 EI 0 l 2 0 4 EI l
K (3)
0 0.04 0.12 0 0.12 105 0.48
EA 0 0 l 12 EI 6 EI 0 l3 l2 4 EI 0 6 EI l l2 0 0 4 0 0.04 0.12 105 0 0.12 0.48
单元①③ a=0° 单元②
EA 4 105 l
EI 0.12 105 l
3. 单元坐标表示的单 元刚度矩阵 先处理法
K
(1)
a=45° EA 2.8285 105 EI 0.0849 105 l l
EA l 0 0
0 12 EI l3 6 EI l2
K (1) K (1) 1 0 1 0 0 1 0 0 0 1 0 0 0 0 EA 0 3 0
位移法习题与答案
位移法习题与答案位移法是结构力学中常用的一种分析方法,通过计算结构在外力作用下的位移,来求解结构的应力、应变和变形等问题。
在学习位移法时,习题与答案的练习是非常重要的,可以帮助我们加深对位移法的理解和掌握。
下面将给大家介绍一些位移法习题及其答案。
习题一:求解简支梁的弯矩分布已知一根长度为L的简支梁,受到均布载荷q作用,求解弯矩分布。
解答:首先,我们需要根据受力分析确定梁的反力。
对于简支梁,两个支座处的反力相等,且为qL/2。
接下来,我们可以利用位移法求解弯矩分布。
假设梁的弯矩分布为M(x),则根据位移法的基本原理,可以得到以下方程:d2M(x)/dx2 = -q对该方程进行两次积分,得到:M(x) = -q*x^2/2 + C1*x + C2由于梁两端是简支条件,即位移和转角为零,可以得到边界条件:M(0) = 0M(L) = 0代入上述方程,解得C1 = qL/2,C2 = -qL^2/2。
因此,弯矩分布为:M(x) = -q*x^2/2 + qL/2*x - qL^2/2习题二:求解悬臂梁的挠度已知一根长度为L的悬臂梁,受到集中力F作用在悬臂端点,求解梁的挠度。
解答:首先,我们需要根据受力分析确定梁的反力。
对于悬臂梁,端点处的反力只有一个,即为F。
接下来,我们可以利用位移法求解梁的挠度。
假设梁的挠度为δ(x),则根据位移法的基本原理,可以得到以下方程:d2δ(x)/dx2 = -F/(EI)对该方程进行两次积分,得到:δ(x) = -F*x^2/(2EI) + C1*x + C2由于梁端点处的位移为零,可以得到边界条件:δ(0) = 0dδ(x)/dx|_(x=L) = 0代入上述方程,解得C1 = 0,C2 = 0。
因此,梁的挠度为:δ(x) = -F*x^2/(2EI)习题三:求解悬臂梁的最大挠度已知一根长度为L的悬臂梁,受到均布载荷q作用,求解梁的最大挠度。
解答:首先,我们需要根据受力分析确定梁的反力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构力学练习题——矩阵位移法
一、是 非 题(将 判 断 结 果 填 入 括 弧 :以 O 表 示 正 确 ,以 X 表 示 错 误 ) 1、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。
)(对 2、结 构 刚 度 矩 阵 是 对 称 矩 阵 ,即 有
K ij = K ji ,这 可 由 位 移 互 等 定 理 得 到 证
明 。
()错 3、图 示 梁 结 构 刚 度 矩 阵 的 元 素 K EI l 113
24=/ 。
(
)错
l
l
附:
⎥⎥⎥⎥⎥
⎥
⎥⎥⎥⎥⎥⎥⎥⎦⎤
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎣
⎡--------l EI l EI l EI l EI l
EI l EI l EI l EI l EA l EA l EI l
EI l EI l EI l EI l EI l EI l EI l
EA l EA 4602606120612000002604606120612000002
22323222323
二、选 择 题 ( 将 选 中 答 案 的 字 母 填 入 括 弧 内 )
1、已 知 图 示 刚 架 各杆 EI = 常 数,当 只 考 虑 弯 曲 变 形 ,且 各 杆 单 元 类 型 相 同
时 ,采 用 先 处 理 法 进 行 结 点 位 移 编 号 ,其 正 确 编 号 是 :A
(0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0) (1,2,0) (0,0,0) (0,0,3)
(1,0,2)
(0,0,0) (0,0,0) (1,0,3) (0,0,0)
(0,1,2)
(0,0,0) (0,3,4)
A.
B.
C.
D.
2
1
3
4 1
2
3 4 1
2 3
4 1 2 3 4
( )
2、平 面 杆 件 结 构 一 般 情 况 下 的 单 元 刚 度 矩 阵
[]k 66
⨯,就 其 性 质 而 言 ,是 :
(
)B
A .非 对 称 、奇 异 矩 阵 ;
B .对 称 、奇 异 矩 阵 ;
C .对 称 、非 奇 异 矩 阵 ;
D .非 对 称 、非 奇 异 矩 阵 。
3、单 元 i j 在 图 示 两 种 坐 标 系 中 的 刚 度 矩 阵 相 比 :B
A . 完 全 相 同 ;
B . 第 2、3、5、6 行 (列 ) 等 值 异 号 ;
C . 第 2、5 行 (列 )等 值 异 号 ;
D . 第 3、6 行 (列 ) 等 值 异 号 。
(
)
y
x
i
4、矩 阵 位 移 法 中 ,结 构 的 原 始 刚 度 方 程 是 表 示 下 列 两 组 量 值 之 间 的 相 互
关 系 :
(
)C
A .杆 端 力 与 结 点 位 移 ;
B .杆 端 力 与 结 点 力 ;
C .结 点 力 与 结 点 位 移 ;
D .结 点 位 移 与 杆 端 力 。
5、单 元 刚 度 矩 阵 中 元 素 k ij 的 物 理 意 义 是 :B
A .当 且 仅 当 δi =1 时 引 起 的 与 δj 相 应 的 杆 端 力 ;
B .当 且 仅 当 δj =1时 引 起 的 与 δi 相 应 的 杆 端 力 ;
C .当 δj =1时 引 起 的 δi 相 应 的 杆 端 力 ;
D .当 δi =1时 引 起 的 与 δj 相 应 的 杆 端 力。
()
7、用 矩 阵 位 移 法 解 图 示 结 构 时 ,已 求 得 1 端 由 杆 端 位 移 引 起 的 杆 端 力 为
{}[]T F 461--=,则 结 点 1 处 的 竖 向 反 力 Y 1 等 于 :D
A .6-;
B .-10;
C .10 ;
D .14 。
(
)
M 20kN/m
三、填 充 题 ( 将 答 案 写 在 空 格 内)
1、图 示 桁 架 结 构 刚 度 矩 阵 有 1个 元 素 ,其 数 值 等 于2EA/L。
3m
3m A
B
C D
EA
EA
EA
2、图 示 刚 架 用 两 种 方 式 进 行 结 点 编 号 ,结 构 刚 度 矩 阵 最 大 带 宽 较 小 的 是
图
B 。
35
641
2
71
234567
(a)
(b)
3、图 示 梁 结 构 刚 度 矩 阵 的 主 元 素 K K 1122== , 12I 4I 。
l
l
五、图 a 所 示 结 构 (整 体 坐 标 见 图 b ),图 中 圆 括 号 内 数 码 为 结 点 定 位 向 量 (力
和 位 移 均 按 水 平 、竖 直 、转 动 方 向 顺 序 排 列 )。
求 结 构 刚 度 矩 阵 []K 。
(不 考 虑 轴 向 变
形 )
6m
(a)
(b)
六、求 图 示 结 构 的 自 由 结 点 荷
载 列 阵 {}P 。
l
l
七、图 a 所 示 结 构 ,整 体 坐 标 见 图 b ,图 中 圆 括 号 内 数 码 为 结 点 定 位 向 量 (
力 和 位 移 均 按 水 平 、竖 直 、转 动 方 向 顺 序 排 列 )。
求 等 效 结 点 荷 载 列 阵 {}P E 。
( 不 考 虑 轴 向 变 形 )
3m 36
八、已 知 图 示 连 续 梁 结 点 位 移 列 阵 {}θ如 下 所 示 ,试 用 矩 阵 位 移 法 求 出 杆
件 23 的 杆 端 弯 矩 并 画 出 连 续 梁 的 弯 矩 图 。
设 q = 20kN/m ,23 杆 的
i =⨯⋅10106.kN cm 。
{}θ=--⎧⎨⎪⎪⎩⎪⎪⎫⎬⎪⎪⎭⎪⎪⨯-365
714572286104
....rad
6m
3m
3m
九、已 知 图 示 桁 架 的 结 点 位 移 列 阵 为
{}[]∆=--017265
04007 0 2.5677 0.0415 1.0415 1.3673 1.6092 1.6408 0 1.2084 T
..
,EA =1kN 。
试 求 杆 14 的
轴 力 。
1m
1m
矩阵位移法答案
一、 1 O 2 X 3 X
二、 1 A 2 B 3 B 4 C 5 B
6 C
7 D
三、
1、 1 、 2EA/L
2、 b
3、 i EI l
K i K i === , , 1122124 (7分 )
五、
[]K i =--⎡⎣⎢⎢⎢⎤
⎦
⎥⎥⎥ 1 0 1 8 2 0 2 413/ (10分 )
六、
{}[]
T
/ql +m -/ql -P 12202= (7分 )
七、
{}[] 2 3
422142
E T
1P =-- (7分 )
八、
M M 233242885140⎧⎨⎩⎫⎬⎭=-⎧⎨⎩⎫⎬⎭.. 42.88
51.40
90
(kN m).M
( 7分)
九、
N 1400587=-.kN (7分 )。