难点探究专题:平面直角坐标系中的变化规律解题技巧.doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

难点探究专题:平面直角坐标系中的变化规律
——掌握不同规律,以不变应万变
◆类型一沿坐标轴方向运动的点的坐标规律探究
1.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2016次运动后,动点P的坐标是________.
2.(2017·阿坝州中考)如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,-1),P5(2,-1),P6(2,0),…,则点P2017的坐标是________.
◆类型二绕原点呈“回”字形运动的点的坐标规律探究
3.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.如图,由里向外数第2个正方形开始,分别是由第1个正方形各顶点的横坐标和纵坐标都乘2,3,…得到的,请你观察图形,猜想由里向外第10个正方形四条边上的整点个数共有( ) A.10个B.20个
C.40个D.80个
第3题图第4题图
4.(2017·温州中考)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧P 1P 2︵,P 2P 3︵,P 3P 4︵
,…得到斐波那契螺旋线,然后顺次连接P 1P 2,P 2P 3,P 3P 4,…得到螺旋折线(如图),已知点P 1(0,1),P 2(-1,0),P 3(0,-1),则该折线上的点P 9的坐标为( )
A .(-6,24)
B .(-6,25)
C .(-5,24)
D .(-5,25)
◆类型三 图形变化中的点的坐标探究
5.(2017·河南模拟)如图,点A(2,0),B(0,2),将扇形AOB 沿x 轴正方向做无滑动的滚动,在滚动过程中点O 的对应点依次记为点O 1,点O 2,点O 3…,则O 10的坐标是( )
A .(16+4π,0)
B .(14+4π,2)
C .(14+3π,2)
D .(12+3π,0)
6.如图,在直角坐标系中,第一次将三角形OAB 变换成三角形OA 1B 1,第二次将三角形OA 1B 1变换成三角形OA 2B 2,第三次将三角形OA 2B 2变换成三角形OA 3B 3.已知A(1,3),A 1(2,
3),A 2(4,3),A 3(8,3),B(2,0),B 1(4,0),B 2(8,0),B 3(16,0).
(1)观察每次变换后的三角形有何变化,找出规律,按此变换规律再将三角形OA 3B 3变换成三角形OA 4B 4,则A 4的坐标是__________,B 4的坐标是__________;
(2)若按(1)中找到的规律将三角形OAB 进行了n 次变换,得到三角形OA n B n ,比较每次变换中三角形顶点坐标有何变化,找出规律,推测点A n 的坐标是__________,点B n 的坐标是__________.
参考答案与解析
1.(2016,0) 解析:结合图象可知,当运动次数为偶数次时,P点运动到x轴上,且横坐标与运动次数相等.∵2016为偶数,∴运动2016次后,动点P的坐标是(2016,0).2.(672,1) 解析:由已知得P7(2,1),P13(4,1),所以P6n+1(2n,1).因为2017÷6=336……1,所以P2017(336×2,1),即P2017(672,1).
3.C 解析:每个正方形四个顶点一定为整点,由里向外第n个正方形每条边上除顶点外的整点个数如下表所示:
4(n-1)个整点,加上4个顶点,共有4(n-1)+4=4n(个)整点.当n=10时,4n=4×10=40,即由里向外第10个正方形的四条边上共有40个整点.故选C.
4.B 解析:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离为21+5=26,所以P9的坐标为(-6,25),故选B.
5.C
6.(1)(16,3) (32,0) (2)(2n,3) (2n+1,0)
解析:(1)∵A1(2,3),A2(4,3),A3(8,3),∴A4的横坐标为24=16,纵坐标为3.故点A4的坐标为(16,3).又∵B1(4,0),B2(8,0),B3(16,0),∴B4的横坐标为25=32,纵坐标为0.故点B4的坐标为(32,0).(2)由A1(2,3),A2(4,3),A3(8,3),可以发现它们各点坐标的关系为横坐标是2n,纵坐标都是3.故点A n的坐标为(2n,0).由B1(4,0),B2(8,0),B3(16,0),
可以发现它们各点坐标的关系为横坐标是2n+1,纵坐标都是0.故点B n的坐标为(2n+1,0).。

相关文档
最新文档