2000年我爱数学夏令营数学竞赛
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2000年我爱数学夏令营数学竞赛
1.请在右面算式中的每个□中填入一个偶数数字,使得算式成立,且所得的乘积中0,2,4,6,8都出现。
2.把两筐苹果分给甲、乙、丙三个班。甲班分得总量的2/5,剩下的按5:7分给乙、丙班。
已知第二筐苹果重量是第一筐的9/10 ,且比第一筐少5千克。甲、乙、丙班分得的苹果分别是_________ 、_________ 、_________ 千克。
3.设a,b使得6位数 a2000b 能被26整除。所有这样的6位数是________。
4.把右面8×8的方格纸沿格线剪成4块形状、大小都相同的图形,使得每一块上都有罗、牛、山3个字。在图上用实线画出剪的结果。
5.某容器中装有盐水。老师让小强再倒入5%的盐水800克,以配成20%的盐水。但小强却错误地倒入了800克水。老师发现后说,不要紧,你再将第三种盐水400克倒入容器,就可得到20%的盐水了。那么第三种盐水的浓度是_________ %。
6.设6个口袋分别装有18,19,21,23,25,34个小球。小王取走了其中的3袋,小李取走了另外的2袋。若小王得到的球的个数恰好是小李得到的球数的2倍,则小王得到的球的个数是_________ 。
7.一水池装有甲、乙两个水管。乙管每小时排水量是甲管的75%。先用乙管排水5小时后,改用甲管排水,结果比只用乙管提前1小时把水池中的水排空;如用乙管排水120吨后再改用甲管排水,则比只用乙管可提前2小时把水池中的水全部排空。那么水池原有水_________ 吨。
8.右图中,四边形FMCG和FDHG都是梯形。D为BC的中点,BE=BA,MF=MA,△ABC的面积为1。那么梯形FDHG的面积是_________ 。
9.A,B,C三辆汽车以相同的速度同时从甲市开往乙市。开车后1小时A车出了事故,B 和C两车照常前进。A车停了半小时后以原来速度的4/5 继续前进。B,C两车行至距离甲市200千米处B车出了事故,C车照常前进。B车停了半小时后也以原来速度的4/5 继续前进。结果到达乙市的时间C车比B车早1小时,B车比A车早1小时,甲、乙两市的距离为_________ 千米。
10.图中共有_________ 个不同的三角形。
11.设四个不同的正整数构成的四数组中,最小的数与其余三数的平均值之和为17,而最大的数与其余三数的平均值之和为29。在满足上述条件的四数组中,其最大数的最大值是_________ 。
12.一队和二队两个施工队的人数之比为3:4,每人工作效率之比为5:4。两队同时分别接受两项工作量与条件完全相同的工程,结果二队比一队早完工9天。后来,由一队工人的2/3 与二队工人的1/3 组成新一队,其余的工人组成新二队。两支新队又同时分别接受两项工作量与条件完全相同的工程,结果新二队比新一队早完工6天。那么前后两次工程的工作量之比是_________ 。
2001年我爱数学夏令营计算竞赛
1.28.8÷(0.4×0.18)=________。
2.0.76+29.44×1.6=________。
3.11111×99999=________。
4.(1+11+21+31+41)+(9+19+29+39+49) =________。
5.0.1+0.3+…+0.9+0.11+0.13+0.15+…+0.97+0.99=________。
6.从1--9这九个数中选出八个数分别填入下面八个空中,使算式的结果尽可能大,你的结果是
[○÷○×(○+○)]-[○×○+(○-○)] =________。
7.99+99×99+99×99×99=________。
8.=________。
9.35×+137×=________。
10.=________。
11.1+2×2×1+3×3×2×1+4×4×3×2×1+5×5×4×3×2×1+6×6×5×4×3×2×1=________。
12.18×+0.65×-×18+×O.65=________。
13.=________。
14.=________。
15.=________。
16.=________。
17.=________。
18.=________。
19.=________。
20.
=________。
21.=________。
22.=________。
23.=________。
24.若3.5×[6.8-(1.6+□÷0.9)]÷8.4=0.5,则□=________。
25.若,则□=________。
2001年我爱数学夏令营数学竞赛
1.下面算式中每个文字和□各代表一个数字,其中相同文字代表相同数字,不同文字代表不同数字,当算式成立时,算式的乘积是________。
2.满足被3除余1,被4除余2,被5除余3,被6除余4的最小自然数是________。
3.三个自然数的最大公约数是10,最小公倍数是100,满足这种要求的三数组共有________组。
4.在三角形ABC中,D为BC的中点,E为AB上一点,且BE=AB。已知四边形BDME的面积是35,那么,三角形ABC的面积是________。
5.10名选手参加象棋比赛,每两名选手之间都要比赛一盘。记分办法是胜一盘得1分,平一盘得0.5分,负一盘得0分。比赛结果是选手们所得分数各不相同。第一名和第二名一盘都没输过,前两名的总分比第三名多10分,第四名与最后四名得分总和相等,则第三名得________分。
6.某城市青菜价格在六、七两个月中起伏较大。每日的平均菜价与前一日不是上涨10%,就是下降10%,且7月31日的平均菜价不低于6月1日的平均莱价,那么在这两个月中最少有________天的平均菜价高于前一日的平均菜价。
7.某班在课堂E进行汁算游戏。老师首先在黑板上写一个大于2000小于3000的整数.第一个学生将老师写的数减1,然后乘以,将所得结果写在黑板上;第二个学生再将第
一个学生所写的数减1,然后乘以,再写到黑板上;依此类推。全部写完后发现前5个学生写的都是整数,那么第五个学生在黑板上写的数是________。
8.在1000到10000的所有整数中,满足千位数字>百位数字>十位数字>个位数字或者千位数字<百位数字<十位数字<个位数字的数,共有________个。
9.从一张大方格纸上剪下5个相连方格(只有一个公共顶点的两个方格不算相连),共能剪出________种不相同的图形(经过旋转或翻转就相同的图形视为同一种)。
10.现有五个自然数,其中第一个数小于第二个数的2倍,第二个数小于第三个数的3倍,第三个数小于第四个数的4倍,第四个数小于第五个数的5倍,而第五个数小于100,那么第一个数的最大值是________。
11.如图,A、B是一圆形道路的一条直径的两个端点,现有甲、乙二人分别从A、B两点同时沿相反方向绕道匀速跑步(甲、乙X的速度未必相同)。假设当乙跑完100米时,甲、乙二人第一次相遇,当甲差60米跑完一圈时,甲、乙二人第二次相遇。那么当甲、乙二人第十二次相遇时,甲跑完________圈又________米。