1999我爱数学少年夏令营试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1999我爱数学少年夏令营试题
计算竞赛
1.202-192+182-172+…+22-12 =_________ 。
2.(112233-112.233)÷(224466-224.466) =_________ 。
3. =_________ 。
4. =_________ 。
5. =_________ 。
6. =_________ 。
7.乘积的各位数字之和是 =______ 。
8. =_________ 。
9. =_________ 。
10.(1234567891)2-1234567890×1234567892 =_________ 。
11. =_________ 。
12. =_________ 。
13. =_________ 。
14. =_________ 。
15. =_________ 。
16.A=1999×1+1999×2+1999×3+…+1999×1999,A被9除余数是_________ 。
17. =_________ 。
18. =_________。
19.1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)÷(6÷7)÷(7÷8)÷(8÷9) =_________ 。
20.的整数部分是_________ 。
21.A = ,那么100A的整数部分是_________ 。
22. =_________ 。
23. =_________ 。
24. =_________ 。
25.若,那么四个□中的数的乘积为_________ 。
数学竞赛
1.由三个非零数字组成的三位数与这三个数字之和的商记为K,如果K为整数,那么K的最大值是________。
2.右式是经过四舍五入得到的一个式子:。其中每一个△代表一个一位自然数,这三个△所代表的三个自然数分别是__________。
3.现有一堆工程废料需要清理出去。第一次运走总量的,第二次运走余下废料的,第三次运走余下的
,第四次运走余下的,第五次运走余下的,依此规律继续运下去,那么当运走50次后,余
下废料是总量的__________。
4.下图中给出6×6=36个点,请一笔画出一条折线,使得这条折线通过36个给定点中的每点至少一次,而且组成这条折线的直线段的条数最少。那么你所画出的折线中直线段的条数是_________。
5.右上图中所有不同的三角形的个数是_________。
6.甲、乙两人从周长为250米的环形跑道上一点P同时、同向出发沿着跑道匀速慢跑。甲每秒跑
米,乙每秒跑
米。那么从出发到两人第一次在点P相遇所用去的时间是_______分钟。
7.在右面的算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字,每个△代表一个数字,当算式成立时,乘积是________。
8.五个连续偶数之和为平方数,中间三个偶数之和为立方数(即一个整数的三次方)。这样一组数中的最大数的最小值是________。
9.一张8×8的方格纸,每个方格都涂上红、蓝两色之一。能否适当涂色,使得每个3×4
(不论横竖)的12个方格中都恰好有4个红格和8个蓝格?如果能行,请在右面的表格中
画出来。
10.甲、乙、丙三堆石子共196块,先从甲堆分给另外两堆,使得后两堆石子数增加一倍;
再把乙堆照样分配一次;最后把丙堆也照样分配一次。结果丙堆石子数为甲堆的
,那
么原来三堆石子中,最少的一堆石子数为_______。
11.在右图中,AE:EC=1:2,CD:DE=1:4,BF:FA=1:3,△ABC的面积S=1,那么四边形AFHG的面积为_________。
12.兄弟两人骑自行车同时出发从甲地到乙地,弟弟在前一半的路程每小时行5千米,后一
半的路程每小时行7千米;哥哥按时间分段,前
时间每小时行4千米,中间
时间每
小时行6千米,后
时间每小时行8千米。结果哥哥比弟弟早到20分钟。那么甲、乙两地
的距离是______千米。
接力竞赛
1.甲、乙、丙三人参加一次考试,共得260分。已知甲得分的,乙得分的与丙得分的一半减去22分都相等。那么丙得_____分。
2.设上题答案为a。三个班学生共有(a+65)人,且三个班的男生人数都相等。第一班男生占全班人数的,第二班男
生占。那么第三班的女生人数是_____人。
3.设上题答案的个位数字为b。有一个最简分数,以它的分母的2倍与分子之差为分子,以它的分子的b倍与分母之和为
分母,所得分数为。那么原来的分数是______。
4.设上题答案的分子为c。甲、乙两个运输队分别承包两堆同样货物的运输任务,原计划甲队比乙队提前两天完成,但(c-6)天后遇上连雨天,尽管两队冒雨抢运,但甲、乙两队的工作效率还是分别下降了40%和25%,结果两队同时运完。原计划甲队完成任务共要_____天。
5.设上题答案为d。某种游戏,胜一局得d分,平一局得5分,负一局得0分。那么无论玩多少局,无论胜、平、负结果如何,都不可能得到的分数共有_____个。
6.设上题答案为e。某段高速公路收费站的收费标准是大型车元,中型车8元,小型车5元。在2小时的时间内共收费2137元,并且过境车辆中小型车不少于40%。那么在这段时间内过境的中型车最多有______辆。
7.设上题答案的各位数字之和为f。现有三堆苹果,其中第一堆个数比第二堆多,第二堆个数比第三堆多。如果从每堆苹果中各取出一个,那么所剩下的苹果中,第一堆个数是第二堆的3倍;如果从每堆苹果中各取出同样多个,使得第一堆还剩下(2f+2)个,那么第二堆所剩下的苹果数是第三堆的2倍。原来三堆苹果数之和的最大值是______。
8.设上题答案的各位数字之和为g。A,B,C三个城镇在同一条公路上,B在A与C之间,并且BC=3g千米。甲、乙二人于中午12时分别从A,B两地乘不同的车向C进发,下午1时两车首先在C地相遇,然后两车都立即从C返A,再立即从A返C,这样往返多次。如果甲、乙二人第二次和第三次相遇在同一地点D,那么甲、乙第三次相遇的时间是下午______。
9.设第七题答案的十位数字是h。从1,2,3,…,h这h个数中选取4个数,使得它们两两之差为6个互不相同的自然数。那么所有不同的选法共有______种。(仅只次序不同的两种选法算是同一种),请具体写出来。