土壤和植物中钼硼测定方法的比较

土壤和植物中钼硼测定方法的比较
土壤和植物中钼硼测定方法的比较

植物与土壤的关系简介

植物与土壤的关系简介 1. 土壤的生态意义 土壤是岩石圈表面的疏松表层,是陆生植物生活的基质。它提供了植物生活必需的营养和水分,是生态系统中物质与能量交换的重要场所。由于植物根系与土壤之间具有极大的接触面,在土壤和植物之间进行频繁的物质交换,彼此强烈影响,因而土壤是植物的一个重要生态因子,通过控制土壤因素就可影响植物的生长和产量。土壤及时满足植物对水、肥、气、热要求的能力,称为土壤肥力。肥沃的土壤同时能满足植物对水、肥、气、热的要求,是植物正常生长发育的基础。 2. 土壤的物理性质及其对植物的影响 (1)土壤质地和结构土壤是由固体、液体和气体组成的三相系统,其中固体颗粒是组成土壤的物质基础,约占土壤总重量的85%以上。根据固体颗粒的大小,可以把土粒分为以下几级:粗砂(直径~)、细砂(~)、粉砂(~)和粘粒(以下)。这些大小不同的固体颗粒的组合百分比称为土壤质地。土壤质地可分为砂土、壤土和粘土三大类。砂土类土壤以粗砂和细砂为主、粉砂和粘粒比重小,土壤粘性小、孔隙多,通气透水性强,蓄水和保肥性能差,易干旱。粘土类土壤以粉砂和粘粒为主,质地粘重,结构致密,保水保肥能力强,但孔隙小,通气透水性能差,湿时粘、干时硬。壤土类土壤质地比较均匀,其中砂粒、粉砂和粘粒所占比重大致相等,既不松又不粘,通气透水性能好,并具一定的保水保肥能力,是比较理想的农作土壤。 土壤结构是指固体颗粒的排列方式、孔隙和团聚体的数量、大小及其稳定度。它可分为微团粒结构(直径小于)、团粒结构(~10mm)和比团粒结构更大的各种结构。团粒结构是土壤中的腐殖质把矿质土粒粘结成~10mm直径的小团块,具有泡水不散的水稳性特点。具有团粒结构的土壤是结构良好的土壤,它能协调土壤中水分、空气和营养物质之间的关系,统一保肥和供肥的矛盾,有利于根系活动及吸取水分和养分,为植物的生长发育提供良好的条件。无结构或结构不良的土壤,土体坚实,通气透水性差,土壤中微生物和动物的活动受抑制,土壤肥

土壤学习题与答案

土壤学试题与答案 一按章节复习 第一章绪论 一、填空 1.德国化学家比希创立了(矿质营养)学说和归还学说,为植物营养和施肥奠 定了理论基础。 2.土壤形成的五大自然因素是(母质)、(气候)、(生物)、(地形)和时间。 3.发育完全的自然土壤剖面至少有(表土层)、(淀积层)和母质层三个层次。 4.土壤圈处于(岩圈)、(大气圈)、(生物圈)、(水圈)的中心部位,是它们相 互间进行物质,能量交换和转换的枢纽。 5.土壤四大肥力因素是指(水分)、(养分)、(空气)和(热量)。 6.土壤肥力按成因可分为(自然肥力)、(人工肥力);按有效性可分为(有效 肥力)、(潜在肥力) 二、判断题 1.(√)没有生物,土壤就不能形成。 2.(×)土壤三相物质组成,以固相的矿物质最重要。 3.(×)土壤在地球表面是连续分布的。 4.(×)土壤的四大肥力因素中,以养分含量多少最重要。 5.(×)一般说来,砂性土壤的肥力比粘性土壤要高,所以农民比较喜欢砂性

土壤。 6.(√)在已开垦的土壤上自然肥力和人工肥力紧密结合在一起,分不出哪是 自然肥力,哪是人工能力。 三、名词解释 1. 土壤:是具有肥力特性因而能生产植物收获物的地球陆地疏松表层。 2. 土壤肥力:土壤能适时地供给并协调植物生长所需的水、肥、气、热、固着条件和无毒害物质的能力。 3. 土壤剖面:在野外观察和研究土壤时,从地面垂直向下直到母质挖一断面。 四、简答题 1. 土壤在农业生产和自然环境中有那些重要作用? (1)土壤是植物生长繁育和生物生产的基地,是农业的基本生产资料。 (2)土壤耕作是农业生产中的重要环节。 (3)土壤是农业生产中各项技术措施的基础。 (4)土壤是农业生态系统的重要组成部分。 2. 土壤是由哪些物质组成的?土壤和土壤肥力的概念是什么? 土壤是由固体、液体和气体三相物质组成的疏松多体。 3. 简述“矿质营养学说”和“归还学说”。 矿质营养学说:土壤中矿物质是一切绿色植物唯一的养料,厩肥及其它有机肥料对于植物生长所起的作用,并不是其中所含的有机质,而是由于这些有机质在分解时形成的矿物质。 归还学说:由于不断地栽培作物,土壤中矿物质必然引起损耗,如果不把作物由土壤中摄取的那些矿物质归还给土壤,那么到最后土壤会变得十分贫瘠,甚至寸草不生。要想完全避免土壤的这种损耗是不可能的,但是恢复土壤中所损耗的物质是可能的,办法就是施用矿质肥料,使土壤的损耗和营养物质的归还之间保持着一定的平衡。 4. 土壤具有哪些特征? (1)土壤是在母质、气候、地形、生物和时间五种因素下形成的。 (2)土壤以不完全连续的状态覆盖于陆地表面,处在大气圈、水圈、生物圈和岩圈相互交接的地带。 (3)土壤具有一定的层次构造。 (4)土壤是由固体、液体和气体三相物质组成的疏松多体。 (5)土壤具有巨大的表面积。 (6)土壤是一个生态系统。 (7)土壤中进行着物质和能量的转移和转化过程。

土壤与植物的基本关系

土壤与植物的基本关系 本章的目的是讨论土壤中离子交换现象,同时探讨关于土壤溶液中离子的运移及其被吸入根细胞的机理。离子交换是可逆过程,一种吸持在固相上的阳离子或阴离子可与另一种液相中的阳离子或阴离子发生交换。若使两个固体接触,其接触面上也发生离子交换。在阳离子交换和阴离子交换这两种过程中,一般认为前者更重要,因为大多数农业土壤保持阴离子的能力远逊于保持阳离子的能力。阳离子交换的性质是区别土壤与其他植物生根介质的主要特征。 第一节阳离子交换 一、阳离子交换的概念 土壤由三种状态的物质组成:固体、液体和气体。土壤中的固态物质由有机物和无机物组成。有机组分包括处于各个分解阶段的植物和动物残体,其稳定部分通常称为腐殖质。 土壤固相的无机组分由不同粒径的原生和次生矿物组成。土壤离子交换是在有效粒径小于20毫微米(μm)的有机物质和矿质组分上进行的。这些颗粒包括部分粉粒和全部粘粒(小于2μm的部分)以及胶体有机质。 因为阳离子带正电荷,故其附着于带负电胶体颗粒的表面。有机组分中,其位点由某些功能团,尤其是羧基(-COOH)和酚基(-C6H4OH)上的H+解离生成。在pH值低于7时,许多羧基会解离,在功能团所在部位留下负电荷,如以下方程式所示: -COOH ←→COO- + H+ 估计腐殖质中负电荷的85%~90%都由这两种功能团生成。另两种功能团,烯醇(-COH=CH)和酰亚胺(=NH)也为有机质提供负电荷。 无机粘粒组分的电荷一般有两个来源。一个是蒙脱石等层状硅酸盐矿物的同晶置换;另一个是硅氧四面体平面破裂边缘上连接硅原子的羟基(-OH)和层状硅酸盐矿物晶层暴露的AlOH基脱去质子造成的。 同晶置换形成的电荷由于硅或铝原子被一个几何形状相同但电荷较低原子取代所致(如Mg2+取代Al3+,或Al3+取代Si4+)。由此产生的负电荷相对均匀地分布在片状粘粒上。同晶置换主要发生在层状硅酸盐矿物结晶过程中,而且一旦产生电荷,不再受以后环境变化的影响。同晶置换形成的电荷是土壤的永久电荷。 随着pH值增加,以下反应使粘粒边缘上形成负电荷: -SiOH + OH- ←→-SiO- + H2O -AlOH + OH- ←→-AlO- + H2O 土壤中层状硅酸盐矿物分为3大类:即2∶1型,2∶1∶1型和1∶1型。2∶1型粘土矿物由多层组成,其中每层为两层硅氧片夹一层铝氧片。2∶1型粘土矿物的例子有蒙皂石(蒙脱石),伊利石和蛭石。白云母和黑云母是2∶1型原生矿物,富含于粉粒和砂粒组分中。 绿泥石通常是土壤中发现的2∶1∶1型层状硅酸盐。这种粘土矿物在上述2∶1结构层间添加了一层氢氧化物片而成。 1∶1型粘土由许多层组成,每层含一层硅氧片和一层铝氧片。高岭石和埃洛石即为此类中两个重要粘土矿物。 同晶置换是2∶1型和2∶1∶1型两类粘土矿物中负电荷的主要来源,但在1∶1型粘土矿物中作用不大。从粘土颗粒破裂边缘上脱去质子即从羟基解离出H+是1∶1型粘土矿物负电荷的主要来源。高pH值有利于裸露的羟基脱去质子。 高度风化土壤中富含的氧化物及水合氧化物,具有pH值依变电荷。这些氧化物质出现在结晶粘土矿物的表面和层间。当暴露于水分中时,其表面形成羟基。或经表面羟基的两性解离或经吸附H+或OH-,羟基化的表面上产生了电荷。土壤颗粒的总电荷通常随测定时的pH值变化。随pH值降低产生正电荷,又随pH值升高形成过量负电荷,这称为pH值依变电荷。在2∶1型粘土中仅有5~10%的负电荷为pH值依变电荷,而在1∶1型粘土矿物中pH值依变电荷可达50%或更多。 有机胶体或矿物胶体上产生的负电荷由被吸引到这些胶体表面的阳离子所中和。以每100克烘干土中的毫克当量数(meq/100g)表示的阳离子交换数量被定义为土壤阳子交换量(CEC)。这是重要的土壤化学特性之一,并且与土壤肥力密切相关。为了理解土壤肥力和土壤酸度,有必要透彻了解阳离子交换。下面简要讨论一下其定量测定的方法。测定各种土壤中阳离子交换量的程序各异,这里只简述其基本特点。 如前所述,阳离子交换是指一个阳离子被溶液中的另一个阳离子所交换。土壤胶体在其交换位点上吸附了众多阳离子,包括钙、镁、钾、钠、铵、铝、铁和氢。这些离子依其电荷及其水合半径和非水合半径不同程度地吸持。通常,二价或三价离子比一价阳离子吸持得更紧。离子水合程度越大吸持得就越松。

十年考研土壤学与植物营养学资料整理

45、缺素症状表现部位与养分再利用程度之间的关系? 46、韧皮部中矿质元素的移动性比较 47、养分向根表的迁移的影响因素? 受到根系吸收和土壤供应两方面的影响,影响因子包括多个方面:(1)土壤湿度:增加土壤湿度,可使土壤表面水膜加厚,一方面这能增加根表与土粒间的接触吸收;另一方面又可减少养分扩散的曲径,从而提高养分扩散速率。 (2)施肥:可增加土壤溶液中养分的浓度,直接增加质流和截获的供应量。同时,施肥加大了土体与根表间的养分浓度差,也增加了养分扩散迁移量。 (3)养分的吸附与固定吸附与固定使磷、钾、锌、锰铁等元素的移动性变小。向土壤直接供应有机螯合态肥料或施用有机肥,可减少养分的吸附和固定。 48、与木质部相比,韧皮部的汁液的组成有以下特点: (1)韧皮部的pH值高于木质部,前者偏碱性而后者偏酸性。 (2)韧皮部汁液中的干物质和有机化合物远高于木质部,而木质部中基本不含同化产物。 (3)某些矿质元素,如钙和硼在韧皮部汁液正的含量远小于木质部;其他矿质元素的浓度一般都高于木质部,其中钾离子的浓度最高。此外,由于光合作用形成的含碳化合物是通过韧皮部运输的,因此,韧皮部汁液中的C/N比值比木质部汁液宽。

49、载体学说? 载体学说是以酶的动力学说为理论依据的,它能够比较圆满的从理论上解释关于离子吸收中的三个基本问题,即:(1)离子的选择性吸收;(2)离子通过质膜以及在质膜上的转移;(3)离子吸收与代谢的关系。 Vmax.c V=———— Km+c Vmax:载体饱和时的最大吸收速率。大小决定于载体数量的多少(浓度),浓度因作物种类而异。 Km:离子-载体在膜内的解离常数。表示载体对离子的亲和力。值越小,亲和力愈大,吸收离子的速率也愈快。大小取决于载体的特性。(3)Cmin:如果外界离子浓度太低,那么在离子被完全消耗之前,其净吸收就停止了。这时的外界浓度称为最小浓度。其值越小植物对该离子的吸收值能力越强 50、阳离子交换作用的特征: 阳离子交换作用是可逆反应;交换是等当量进行的;阳离子交换受质量作用定律的支配。 51、阳离子专性吸附的实际意义 土壤和沉积物中的锰、铁、铝、硅等氧化物及其水合物,对多种微量重金属离子起富集作用,其中以氧化锰和氧化铁的作用更为明显。由于专性吸附对微量金属离子具有富集作用的特性,因此,正日益成为地球化学领域或地球化学探矿等学科的重要内容。 专性吸附在调控金属元素的生物有效性和生物毒性方面起着重要作用。有试验表明,在被铅污染的土壤中加入氧化锰,可以抑制植物对铅的吸收,土壤是重金属元素的一个汇,对水体中的重金属污染起到一定的净化作用,并对这些金属离子从土壤溶液向植物体内迁移和累积起一定的缓冲和调节作用。另一方面,专性吸附作用也给土壤带来了潜在的污染危险。 52、活性酸和潜性酸的关系 活性酸和潜酸的总和,称为土壤总酸度。由于它通常是用滴定法测定的,故又称之为土壤的滴定酸度。它是土壤的酸度的容量指标。它与pH值在意义上是不同的。土壤总酸度=活性酸度+潜在酸度;活性酸是土壤酸度的起源,代表土壤酸度的强度;潜在酸是土壤酸度的主体,代表土壤酸度的容量。 淹水或施有机肥促进土壤还原的发展,对土壤pH有明显的影响。酸性土淹水后pH升高的原因主要是由于在嫌气条件下形成的还原性碳酸铁、锰呈碱性,溶解度较大,因之pH值升高。

花卉生长需要的土壤

花卉生长需要的土壤 土壤是花卉生长发育的环境条件之一,根系在土壤中舒展延伸,只要土层深厚,排水透气,酸碱度适宜,并有一定的肥力,就能正常生长和开花。由于花卉的生长发育所要求的环境条件不同,包括对土壤的理化特性的要求也因花卉的种类而异。因此,土壤处理技术为花卉栽培成功与否的关键。一般盆栽花卉根系被局限在花盆里。依靠有限的土壤来供应养分和水分,维持生长和发育的需要。因此,对土壤的要求就更加严格。 一、花卉对土壤的基本要求花卉的种类很多,与其生长发育相适应土壤的特性也有很大的差别。一般而言,多数花卉要求土壤富含腐殖质,土壤疏松肥沃,排水良好,透气性强。绝大多数露地花卉要求土壤的pH值在7.0左右,而温室花卉则要求酸性土壤。 1、花卉要求的土壤特性: ①团粒结构良好,排水透气团粒结构是土壤中的腐殖质与矿物值粘结所成的0.01~5mm 大小的团粒。团粒内部有毛管孔隙,可蓄水保肥,团粒之间又有较大的孔隙,可以排水透气,浇水或雨后不板结。团粒结构不良的土壤,多为粘重、板结、排水不畅,栽培花卉容易导致花卉根系腐烂,叶片发黄,甚至干枯死亡。 ②腐殖质丰富,肥效持久腐殖质是动植物残体及排泄物经腐烂后形成的有机物。腐殖质含量丰富,有效态营养元素的含量丰富,利于花卉根系的吸收。增加土壤的腐殖质的方法,主要依靠增加充分腐熟的有机肥。 ③酸碱度(pH值)要适宜一般大多数露地花卉要求中性土壤,而大多数温室花卉要求酸性土壤。植物对环境中酸碱性的适应性是由植物的根系特性决定的。根据植物根系对环境酸碱性的适应性将其分为:酸性土植物;弱酸性土植物;近中性(偏酸性)土植物;弱碱性土植物。各种植物对氢离子浓度的适应范围见表1-1。土壤的酸碱度通常可以用硫酸和生石灰调节,硫酸亚铁也可调节土壤的pH值。一般用工业废硫酸调节,以节约成本。 2、各类花卉对土壤的要求: ⑴露地花卉: ①一、二年生花卉:在排水良好的沙质壤土、壤土上均可生长良好,粘土及过轻质的土壤生长不良。适宜的土壤为表土深厚、地下水位较高、干湿适中、富含有机质的土壤。夏季开花的种类最忌土壤干燥,,因此要求排灌方便。秋播花卉以粘质壤土为宜,如金盏菊、矢车菊、羽扇豆等。 ②多年生宿根花卉:根系较强,入土较深,应有40~50cm的土层;下层应铺设排水物,使其排水良好。栽植时应施较多的有机肥,以长期维持较好的土壤结构。一次施肥后可维持多年开花。一般宿根花卉在幼苗期要求富含腐殖质的轻质壤土。而在第二年以后则以稍粘重的土壤为宜。 ③球根花卉:对土壤的要求十分严格。球根花卉一般都以富含腐殖质的轻质排水良好的壤土为宜。壤土也可。尤以下层为排水良好的砾石土、表土为深厚的沙质壤土为宜。但水仙花、风信子、百合、石蒜、晚香玉、及郁金香等则以壤土为宜。 ⑵温室花卉要求富含腐殖质,土壤疏松柔软,透气性和排水性良好,能长久维持土壤的湿润状态,不易干燥。一般绝大多数温室花卉都要求酸性土壤.。

钼量的测定 示波极谱法(土壤)

钼量的测定示波极谱法 土壤中有效钼的测定 刘运航,杨敬旻,刘虹谷 (成都仪器厂,分析仪器部,028 ********,159********) 一范围 本部分适用于测定各类土壤中有效钼含量 二原理 样品经草酸-草酸铵溶液浸提,用硝酸-高氯酸破坏草酸盐、消除铁的干扰后,在硫酸-苯羟乙酸-饱和氯酸钾底液中,钼产生灵敏的催化波,原点电位为-96mv。 三仪器和设备 JP-2D型示波极谱仪(成都仪器厂制造) 三电极系统:滴汞电极、铂电极、饱和甘汞电极 电热板 振荡机 塑料瓶(200mL) 比色管(25mL) 四试剂(除注明外,均为优级纯) 高氯酸 硝酸 草酸-草酸铵浸提剂:称取24.9g草酸铵和12.6g草酸溶于水,定容至1L。酸度为pH3.3。 盐酸 苯羟乙酸(苦杏仁酸)【0.5mol/L,宜新配,勿久置】 硫酸【2.5mol/L】 饱和氯酸钾溶液 钼标准储备液:称取0.2522g钼酸钠溶于水,加入1mL浓盐酸,移入1L容量瓶中,用水定容,含钼100mg/L。 钼标准溶液:吸取钼标准储备液5.00mL于500mL 容量瓶中,用水定容。此标准液含钼1mg/L。 分别吸取含钼1mg/L的标准溶液0.00mL、0.40mL、0.80mL、1.20mL、1.60 mL、2.00 mL 于100 mL容量瓶中,用水定容,即为含钼0.000mg/L、0.004 mg/L、0.008 mg/L、0.012 mg/L、0.016 mg/L、0.020 mg/L的标准系列溶液,备用。 五分析步骤

样品处理 称取通过2mm孔径筛的风干试样5.00g于200mL塑料瓶中,加50mL草酸-草酸铵浸提剂,盖紧瓶塞,振荡0.5h后放置过夜,干过滤,同时做空白试验。吸取1.00mL滤液于25mL 烧杯中,在通风橱中于电热板上低温蒸发至干。取下烧杯,向蒸干的残渣中加入10滴浓硝酸,和2滴弄高氯酸,于电热板上,在较高温度下蒸发,使试液在1min~2min左右沸腾,蒸干且烟冒尽后,取下稍冷,再向蒸干的残渣中加入5滴盐酸溶液(1+1),在电热板上低温蒸发至湿盐状,取下冷去后,依次加入1mL硫酸溶液、1mL苯羟乙酸溶液、8mL饱和氯酸钾溶液,于极谱仪上测定,原点电位-96mv,作阴极化导数波。 标准曲线 分别吸取1.00mL含钼0.000mg/L、0.004 mg/L、0.008 mg/L、0.012 mg/L、0.016 mg/L、0.020 mg/L的标准系列溶液于6个预先盛有1.00mL浸提剂的25mL烧杯中,同时取1.00mL 水于另一25mL烧杯中,加1.00mL浸提剂,于电热板上低温蒸发至干,以下步骤同样品操作。于极谱仪上测定,原点电位-96mv,作阴极化导数波。

第十章 植物对逆境土壤条件的适应性

第十章植物对逆境土壤条件的适应性植物正常生长发育有赖于良好的土壤环境。但在自然界中,植物生长的土壤往往存在着各种各样的障碍因素,限制着植物生长。例如,世界陆地表面大面积盐碱土中有高浓度的盐分;酸性土壤中有高浓度的H+ , A13+ , Mn 2+和Fe2+等;淹水土壤中有过量的还原性物质和Fe2+等;石灰性土壤中缺乏足够的有效磷、铁和锌等。这些具有植物生长障碍因素的土壤称为逆境土壤。逆境土壤分布的面积广泛,而且改良难度大,因此,已成为农业生产发展的限制因素。 植物在长期进化过程中对各种逆境产生了一定的适应能力。某些植物在一定程度上能够忍耐上述不良的逆境条件。了解植物对土壤环境的生理反应和抗逆机理,对发展农业生产是十分重要的。第一节植物对酸性土壤的适应性酸性土壤是低pH值土壤的总称,包括红壤、黄壤、砖红壤、赤红壤和灰化土等。酸性土壤地区降水充沛,淋溶作用强烈,盐基饱和度较低,酸度较高。酸性土壤在世界范围内分布广泛,在农业生产中占有重要地位。 一、酸性土壤的主要障碍因子 酸性土壤的主要障碍因子是低pH值,游离铝和交换性铝浓度过高(铝毒),还原态锰浓度过高(锰毒),缺磷、钾、钙和镁,有时也缺钼。各种障碍因子在不同生态条件下其危害程度不同,有时只是某一因素起主导作用,而有时则是几种因素的综合作用。 (一)氢离子毒害 当土壤pH<4时,H+对植物生长会产生直接的毒害作用,不仅根的数量减少,而且形态也会发生变化,如根系变短,变粗,根表呈暗棕色至暗灰色等症状,严重时造成根尖死亡。 1. 破坏生物膜高浓度H+通过离子竞争作用将稳定原生质膜结构的阳离子交换下来,其中最为重要的是钙,从而使质膜的酯化键桥解体,导致膜透性增加。 2. 降低土壤微生物活性根瘤菌的固氮作用对豆科植物的氮素营养有重要作用,而高浓度H+抑制根瘤菌的侵染,并降低其固氮效率,从而造成植物缺氮。土壤过酸还会严重降低土壤有机质的矿化速率。当土壤pH值过低时,多种微生物的活性都会受到严重影响。 在自然土壤中,pH值一般都不会低于4,因而H+直接产生毒害的可能性不大。更重要的是低土壤pH值所产生的间接影响。这时土壤中抑制植物生长的主要因素是铝和锰的浓度过高,即铝毒和锰毒。 (二)铝的毒害 无论是水田还是旱地,酸性土壤的铝毒现象都较为普遍。根系是铝毒危害最敏感的部位。土壤溶液中的铝可以多种形态存在,各种形态铝的含量及其比例取决于溶液的pH值。在pH<5的土壤溶液中, A13+离子浓度较高;pH值在5- 6 时, Al (0H)2+离子占优势,而在pH> 6的条件下,其他形态的可溶性铝,如Al (0H)3+和Al (OH)4-数量很多。当土壤溶液中可溶性铝离子浓度超过一定限度时,植物根就会表现出典型的中毒症状:根系生长明显受阻,根短小,出现畸形卷曲,脆弱易断。在植株地上部往往表现出缺钙和缺铁的症状。(三)锰的毒害

2015年中国农业大学815土壤学与植物营养考研大纲及出题思路,考研参考书

【温馨提示】现在很多小机构虚假宣传,育明教育咨询部建议考生一定要实地考察,并一定要查看其营业执照,或者登录工商局网站查看企业信息。 目前,众多小机构经常会非常不负责任的给考生推荐北大、清华、北外等名校,希望广大考生在选择院校和专业的时候,一定要慎重、最好是咨询有丰富经验的考研咨询师. 中国农业大学815土壤学与植物营养考研大纲 一、考试性质 土壤学和植物营养学考试是生态环境类硕士生入学考试科目之一,是由教育部授权的相关专业硕士生招生院校自行命题的选拔性考试。本考试大纲的制定力求反映生态环境类硕士专业学位的特点,科学、公平、准确、规范地测评考生的相关知识基础、基本原理和综合分析问题能力。本科目考试的目的是选拔高素质的适于从事生态环境类科学研究的研究生,为国家培养该领域高素质的研究人才。 二、评价目标 (1)要求考生具有较全面的土壤学和植物营养学基础知识。 (2)要求考生掌握土壤学和植物营养学的基本原理。 (3)要求考生具有较强的分析土壤和植物营养实际问题的能力。 三、考试内容 土壤学和植物营养学硕士入学考试内容由“土壤学和植物营养学基本知识、基本原理和基本问题分析三部分组成。 (一)基本知识 考试测试以下内容: 1.土壤学和植物营养学常识 2.土壤学和植物营养学基本概念 3.土壤学和植物营养学常用术语包括中文名称和英文解释

(二)基本原理 考试测试以下内容: 1.土壤物理过程、土壤化学过程、土壤生物化学过程、土壤形成与发育过程、土壤退化过程以及土壤分类与分布的基本原理。 2.营养元素的功能、养分吸收机理、养分运输与再利用、土壤养分有效性、植物对营养逆境的适应性、肥料的基本性质、肥料的合理施用原理等。 (三)基本问题分析 考试测试以下内容: 1.土壤现象分析、土壤过程机理分析、土壤实际问题分析; 2.作物营养缺素症状成因分析、作物生长过程中的营养问题分析、肥料施用中的问题分析等。 四、考试形式和试卷结构 (一)考试时间 考试时间为180分钟。 (二)答题方式 答题方式为闭卷、笔试。 试卷由试题和答题纸组成。答案必须写在答题纸相应的位置上。 (三)试卷满分及考查内容分数分配 试卷满分为150分。其中土壤学知识75分,植物营养学知识75分。 (四)试卷题型比例 基础知识30分 名词解释题10题,每小题3分,共30分 基本原理30分 简答题6题,每小题5分,共30分 基本问题分析:90分 论述题6题,每题15分,共90分

第3章+植物与土壤基础知识答案

第3章植物与土壤基础知识 第1节土壤中有什么 1、土壤的层次结构:一般分枯枝落叶层、上土层和下土层,其中枯枝落叶层是小动物活动的主要场所;上土层植物根系大量分布。 2、土壤环境特点:主要指的是土壤的湿度、土壤疏松程度、土壤温度、光照和植物生长状况等环境因素。 3、在特定生态系统中数量较多的生物称优势物种。 4、在观察土壤生物的调查表格中,简要分析栏应着重分析土壤中生物,特别是优势物种的生活与 环境之间的相互关系。 5、我们把生活在土壤中的微生物、动物、和植物等称为土壤生物;其中微生物包括细菌、真菌、放线菌。土壤中含有的非生命物质有①空气;②水;③有机物(腐殖质);④无机盐(矿物质)。 6、在烧杯内盛一定量的水,将干燥的土壤块慢慢放入水中,你观察到的现象有气泡产生。 说明土壤中有空气;其作用是为植物根呼吸和微生物的生命活动提供氧气。 7、书本P77页图3-2测量土壤中空气的体积分数实验: (1)在烧杯中放入一块土壤(土壤的体积为V),缓慢注入水,直到水面把土壤全部浸没为止。记录在烧杯中所加的水的体积。记做V1. (2)用与土壤体积相等的铁块替代土壤,重复上述实验。记录所加水的体积记做V2。 (3) V1大于 V2(大于,小于或等于),因为土壤间隙中有空气。土壤中空气的体积分数约为(V1-V2)/V ;在土壤中,空气约占土壤体积的 15%~35% 。 8、取少许土壤,放入试管中,在酒精灯上加热,观察到的现象是试管壁上有小水珠;试管口冒出水雾;这个实验说明土壤中有水;它是植物生长的必要条件;(其中小部分水供给植物光合作用,大部分水供给植物蒸腾作用。 9、实验:给你一只坩埚、一把刻度尺、一只酒精灯和一台精确度足够的天平,你有办法测量土壤水分体积占土壤体积的体积分数吗? (1)选取一规则几何体状的土壤样本,用刻度尺测出其相关数据,算出土壤体积数V; (2)用天平称出其质量M ; (3)将土壤捣碎,放在坩埚上用酒精灯加热,让其水分充分汽化充分散失,再称其质量M1。 (4)将水分的质量换算成体积:V水= (M-M1)/ρ水; (5)土壤中水分的体积分数= (M-M1)/(ρ水V)。

土壤和植物中的锰

土壤和植物中的锰 锰在地壳中是一个分布很广的元素,至少能在大多数岩石中,特别是铁镁物质中找到微量锰的存在。锰在植株中的正常浓度一般是20×10-6~500×10-6。植物根及叶片以锰离子(Mn2+)及其与某些天然或合成络合剂结合成的分子形式吸收。 原生矿物风化后释放的锰与O2、CO32-和SiO2结合生成许多次生矿物,包括软锰矿(MnO2)、墨锰矿(Mn3O4)、水锰矿(MnOOH)、菱锰矿(MnCO3)和蔷薇辉石(MnSiO3),其中软锰矿及水锰矿等含锰氧化物含量最丰富。锰在土壤中常见的形态是各种氧化物和氢氧化物。它们常包被在土壤颗粒上,沉积在裂缝和矿脉中,与铁的氧化物和其它土壤组分混合形成结核。单个雏晶体积很小,表面积很大。 一般认为,土壤中锰以下列形态存在:(1)交换态锰(Mn2+);(2)水溶性锰(Mn2+);(3)水溶和不溶性有机束缚态锰;(4)易还原态锰;(5)各种锰氧化物。各种形态的锰对植物有效性程度不同,它们彼此处于平衡状态。 在锰循环中存在两种主要过程,一个是氧化还原过程,另一个是能络合可溶性和不溶性锰的天然络合剂的合成和分解过程。一般认为,有机质的不断消长和植物残体的分解在溶解惰性锰和维持水溶性锰方面贡献最大。 锰在土壤溶液中的主要离子态是锰离子(Mn2+),另外一些次要形态有水溶性MnSO4、MnHCO3+和MnOH+。 土壤pH值对Mn2+溶解度影响很大,pH值每增加1,Mn2+浓度就降低100倍。在高pH值、石灰性土壤、缓冲性能差、粗质地土壤中锰的有效性低,可通过施用产酸氮肥和含硫化合物的酸化作用来纠正。在极酸性土壤中Mn2+的溶解性可大到足以使敏感作物受毒害的程度,可用施石灰的办法降低土壤pH值而降低Mn2+浓度。高pH值也有利于土壤微生物将可溶性Mn2+氧化成Mn4+生成沉淀,或生成有效性差的锰有机复合物。 扩散是锰向植物根系运移的重要机制。土壤中相当大一部分锰与有机质络合。有机锰络合物大大增加了溶液中的锰浓度,因此增强了浓度梯度。在有机质含量高的碱性土壤上,可生成难溶性螯合Mn2+化合物导致锰有效性降低。在泥炭土或腐殖土中,锰也能被禁锢在无效的有机络合物中。 在酸性和低氧化还原电位下,土壤溶液中的锰大大增加。土壤淹水或水涝会降低氧(O2)分压,从而降低氧化还原电位。当氧化还原电位低时,Mn4+还原为Mn2+,使锰的有效性增加。这和铁十分相似。在紧实土壤中,通气不良以及根系密集区二氧化碳(CO2)积累也能增加锰的有效性。 因为锰的有效性与土壤微生物有关,就与水分干湿,温度高低等气候因素有关,受季节变化的影响。 植物组织中锰和磷之间存在着负相关。锰与铁也有强烈的拮抗关系,铁抑制锰的吸收和积累。锰也可以作为氧化剂使作物体内的Fe2+氧化成 Fe3+或抑制Fe3+还原为Fe2+。锰过多会导致缺铁。 湿润地区土壤较易缺锰。大多数中性或碱性土壤有可能缺锰。石灰性土壤,尤其是排水不良和有机质含量高的石灰性土壤易缺锰。长年一贯施用粪肥和石灰的老菜园黑土上较易缺锰。极砂的酸性矿质土壤天生含锰低,而且有限的有效态锰已从根区淋出。因Mn2+有移动性,所以能从土壤中淋失,尤其是在酸性灰壤中更易淋失。在排水不良的矿质土壤和有机土壤这经常出现的缺锰现象往往是可溶性Mn2+的过分淋失造

中药材种植对土壤的要求

中药材种植对土壤的要求 土壤的选择 土壤是植物生长繁育的基地,土壤质地、营养、水分、酸碱度、土壤空气及土壤微生物等均影响土壤肥力及中药材生长发育和产量品质,土壤污染程度也是中药材品质好坏的重要影响因素。另外,种植中药材选择土壤地块重点关注四个指标。 指标1:土壤质地 沙土:沙粒含量在50%以上,土壤通气性、透水性好,但保水能力差,土壤温度变化剧烈,对热的缓冲能力差,所以易干旱。如河滩、季节性河床等。此类土壤适宜种植耐旱的药用植物,如甘草、防风等。 黏土:土壤结构致密,保水保肥能力强,通气、透水性差,但供给养分慢,土壤耕性差,耕作阻力大,不利于根系生长。药用植物一般生长周期较长,不能每年进行耕翻,同一般农作物相比,对多数中药材更不适宜。品种也只能选择以植株、花朵、叶子、果实入药的品种。如紫苏、蒲公英、枸杞等。

壤土(两合土):土壤各种颗粒的粗细比列适度,沙粒、黏粒适宜,兼有沙土和黏土的优点,是多数中药材栽培最理想的土壤类型。特别是以根、根茎、鳞茎做药的植物最为合适。适于沙土种植的中药材在此类土壤中也能更好的生长。 指标2:有机质含量 有机质对植物生长具有以下作用:一是所含营养成分较为全面,含有较多的大量元素和丰富的微量元素,是植物营养的主要来源。二是腐殖质是良好的胶结剂,能促进土壤团粒结构的形成。三是腐殖质可提高保水保肥能力。四是腐殖质为黑色,容易吸收光能,提高土温。五是有机质可以使土壤保持较好的水、肥、气、热条件,这是植物生长所需的最佳环境。 指标3:土壤PH值 酸碱度(PH值)小于6.5的为酸性土壤,在6.5---7.5的为中性土壤,大于7.5的为碱性土壤。不同的酸碱度影响着土壤微生物的活动和土壤中化学元素的含量,从而影响着植物的生长和发育。对中药材种植来讲,酸碱度中性土壤最好。 PH值调节改良

2012年中国农业大学土壤学与植物营养学考研真题

4.1 中国农业大学土壤学与植物营养学2012年硕士研究生入学考试试题及参考答案 中国农业大学土壤学和植物营养学2012年研究生入学考试试题 一、名词解释 1、土壤质量 答案:土壤在生态系统界面内维持生产,保障环境质量,促进动物和人类健康行为的能力。 2、土壤腐殖质 答案:土壤有机物质在微生物作用下形成的一类结构复杂、性质稳定的特殊性质的高分子化合物。 3、基质势 答案:在土壤中,由于吸附力和毛管力所制约的土水势,一般为负值,当水分饱和是,为零。 4、富铝化作用 答案:热带、亚热带地区,高温多雨,并有一定的干湿季节交替条件下,硅铝酸盐发生强烈分解,释放出大量的盐基物质,形成弱碱条件,硅和大量盐基离子犹如溶解度大而淋失,铁铝滞于原土层而相对富集,使土体呈现鲜红色。 5、CEC 答案:为阳离子交换量即是指土壤胶体所能吸附各种阳离子的总量,其数值以每千克土壤中含有各种阳离子的物质的量来表示,即mol/kg 6、离子通道 答案:离子通道是生物膜上具有选择性功能的孔道蛋白,孔道的大小和其表面电荷密度决定运输蛋白的选择性强弱,而不取决于与该蛋白的选择性结合。 7、缓控释肥 答案:施入土壤后转变为植物有效养分的速度比普通肥料缓慢的肥料并通过各种机制措施预先设定肥料的释放模式,与作物养分吸收基本同步,从而达到提高肥效目的的一类肥料。8、共质体 答案:由穿过细胞壁的胞间连丝把细胞相连,构成一个相互联系的原生质的整体,共质体包括细胞质和胞间连丝。 9、最小养分率 作物产量受土壤中相对含量最少的养分所控制,作物产量的高低则随着最小养分补充量的多少而变化。 10、K肥利用率 答案:植物从施用的钾肥吸收的量占所施钾肥养分总量的百分率。 二、简答题 1、土壤的基本功能 答案:①具有生命力的多孔介质,对动植物生长和粮食供应至关重要。②净化和储存水分。 ③对植物的生长期支撑作用。④具有复杂的物理、化学、生物化学过程的自然体,直接影响养分的循环和有机废弃物的处置。⑤土壤陆地与大气界面气体和能量的调节器。⑥生物的栖息地,地球生物多样性的基础。⑦环境中巨大的自然缓冲介质。⑧常用的工程建筑材料。2、影响土壤交换性离子有效性的因素 答案:①交换性阳离子的饱和度:饱和度大,该离子的有效性大; ②陪伴离子的种类:对于某一特定的离子来说,其它与其共存的离子都是陪伴离子。与胶体

土壤检测标准

土壤检测标准 NY/T 1121-2006 土壤检测系列标准: NY/T 土壤检测第1部分:土壤样品的采集、处理和贮存NY/T 土壤检测第2部分:土壤pH的测定 NY/T 土壤检测第3部分:土壤机械组成的测定 NY/T 土壤检测第4部分:土壤容重的测定 NY/T 土壤检测第5部分:石灰性土壤阳离子交换量的测定NY/T 土壤检测第6部分:土壤有机质的测定 NY/土壤检测第7部分:酸性土壤有效磷的测定 NY/土壤检测第8部分:土壤有效硼的测定 NY/土壤检测第9部分:土壤有效钼的测定 NY/T 土壤检测第10部分:土壤总汞的测定 NY/T 土壤检测第11部分:土壤总砷的测定 NY/T 土壤检测第12部分:土壤总铬的测定 NY/T 土壤检测第13部分:土壤交换性钙和镁的测定 NY/T 土壤检测第14部分:土壤有效硫的测定 NY/T 土壤检测第15部分:土壤有效硅的测定 NY/T 土壤检测第16部分:土壤水溶性盐总量的测定 NY/T 土壤检测第17部分:土壤氯离子含量的测定 NY/T 土壤检测第18部分:土壤硫酸根离子含量的测定NY/T 1119-2006 土壤监测规程 NY/T 52-1987 土壤水分测定法 NY/T 53-1987 土壤全氮测定法(半微量开氏法) NY/T 88-1988 土壤全磷测定法 NY/T 87-1988 土壤全钾测定法 NY/T 86-1988 土壤碳酸盐测定法 NY/T 1104-2006 土壤中全硒的测定 NY/T 296-1995 土壤全量钙、镁、钠的测定 NY/T 295-1995 中性土壤阳离子交换量和交换性盐基的测定NY/T 889-2004 土壤速效钾和缓效钾

土壤和植物中锰的测定(高锰酸盐比色法)

土壤和植物中锰的测定(高锰酸盐比色法) (一)土壤有效锰测定 (二)植物中锰的测定 一、方法原理: 在酸性溶液中,加热煮沸条件下,用强氧化剂将二价锰氧化为MnO4-,溶液显紫红色,在一定范围内颜色深度与锰的含量成正比,可直接比色测定. 反应: 2Mn2+ + 5IO4- + 3H20 → 2Mn04- + 5I03- + 6H+ 吸收峰在540nm,测定范围0.6 ~ 25ppm 二、试剂: 1.KIO4,分析纯 2.H3P04(85%),HN03,H2S04,HCl04 3.H202 4.1mol/lNH4OAc(pH7):冰醋酸57ml,溶于400ml水,加入69ml浓氨水,加水至950ml,用HOAe或NH4OH调pH7.0(用酸度计),加水至1000ml; 5.1mol/l中性NH4OAc—对苯二酚溶液:100m11mol/l中性NH4OAc溶液中溶解0.2g对苯二酚,用前加人。 6.锰标准溶液:0.4060g MnS04·4H20(分析纯或优级纯)溶于水,加lml浓H2SO4,定容为1000ml,此液含Mn为100ppm. 三、仪器: 振荡机、721分光光度计。 四、操作步骤: (一)样品待测液制备: A1、土壤代换态Mn: 取lmm风干土样5.0g→三角瓶中,加入1mol/l中性NH4OAc 50ml,塞紧,振荡30分钟,再放置和间或振荡6小时,过滤,得滤液。 取滤液25ml呻100ml烧杯中,小心加热蒸干,加浓HN03ml,H202 2ml,水浴加热30分钟,再蒸发至干,用20ml水溶解,待测。 A2、土壤易还原态Mn: 取1mm风干土5.0g,加1mol/l NH40Ac—0.2%对苯二酚提取液50ml,同土壤代换态Mn的操作步骤进行。 B、植物中的Mn: ①湿消化:取磨碎的植物样1~2g加入开氏瓶中,加混合酸(HN03: H2S04 : HCl04 5:2: 1) 8ml,加热消化,至冒白烟;如不清,再加少量HCl04消化,至清亮后,再加热5分钟,冷却,用20ml水稀释,冷却后转入50ml容量瓶中,用水定容,澄清或过滤后取滤液测定,也可以直接将开氏瓶中消化液用水转入烧杯中测定。 ②干灰化法:称取样品1 ~ 2g,放人瓷坩埚中,在电炉上炭化至无烟。移人马福炉中,5500C 灰化至无黑色。取出加3ml水,加2ml l:1 HN03溶解灰分,移入50ml容量瓶,水洗净坩埚,洗液并入容量瓶中,水定容,澄清或过滤后取溶液测定。 (二)显色测定: 1.在盛有待测液的烧杯中(如样品处理时已转入50ml容量瓶定容,则吸取10 ~25ml溶液或滤液至lOOml烧杯中进行显色测定),加入HN03 2ml,H3PO5 5ml.

中国农业大学2018年《土壤学与植物营养学》考研大纲_中国农业大学考研网

中国农业大学2018年《土壤学与植物营养学》考研大纲 一、考试性质 土壤学和植物营养学考试是生态环境类硕士生入学考试科目之一,是由教育部授权的相关专业硕士生招生院校自行命题的选拔性考试。本考试大纲的制定力求反映生态环境类硕士专业学位的特点,科学、公平、准确、规范地测评考生的相关知识基础、基本原理和综合分析问题能力。本科目考试的目的是选拔高素质的适于从事生态环境类科学研究的研究生,为国家培养该领域高素质的研究人才。 二、评价目标 (1)要求考生具有较全面的土壤学和植物营养学基础知识。 (2)要求考生掌握土壤学和植物营养学的基本原理。 (3)要求考生具有较强的分析土壤和植物营养实际问题的能力。 三、考试内容 土壤学和植物营养学硕士入学考试内容由“土壤学和植物营养学基本知识、基本原理和基本问题分析三部分组成。 (一)基本知识 考试测试以下内容: 1.土壤学和植物营养学常识 2.土壤学和植物营养学基本概念 3.土壤学和植物营养学常用术语包括中文名称和英文解释 (二)基本原理 考试测试以下内容: 1.土壤物理过程、土壤化学过程、土壤生物化学过程、土壤形成与发育过程、土壤退化过程以及土壤分类与分布的基本原理。 2.营养元素的功能、养分吸收机理、养分运输与再利用、土壤养分有效性、植物对营养逆境的适应性、肥料的基本性质、肥料的合理施用原理等。 (三)基本问题分析 考试测试以下内容: 1.土壤现象分析、土壤过程机理分析、土壤实际问题分析; 2.作物营养缺素症状成因分析、作物生长过程中的营养问题分析、肥料施用中的问题分析等。 四、考试形式和试卷结构

(一)考试时间 考试时间为180分钟。 (二)答题方式 答题方式为闭卷、笔试。 试卷由试题和答题纸组成。答案必须写在答题纸相应的位置上。 (三)试卷满分及考查内容分数分配 试卷满分为150分。其中土壤学知识75分,植物营养学知识75分。 (四)试卷题型比例 基础知识30分 名词解释题10题,每小题3分,共30分 基本原理30分 简答题6题,每小题5分,共30分 基本问题分析:90分 论述题6题,每题15分,共90分 文章来源:文彦考研

土壤和植物中的铁

土壤和植物中的铁 地壳中大约含铁5%,是岩石圈中第四个含量丰富的元素。作物充足含铁量一般是50×10-6~250×10-6 。铁既作为结构组分,又充当酶促反应的辅助因子。代谢需要亚铁离子(Fe 2+)且以此形态被作物吸收。Fe +2活性高且有效地结合进生物分子结构。而一些富含高铁(Fe 3+)的植物组织却能出现缺铁症状。 含铁矿物通常有橄榄石[(Mg,Fe)2SiO 4]、黄铁矿(FeS )、菱铁矿(FeCO 3)、赤铁矿(Fe 2O 3)、针铁矿 (FeOOH )、磁铁矿(Fe 3O 4)和褐铁矿[FeO(OH)?nH 2O+ Fe 2O 3.nH 2O]。土壤中大多数铁存在于原生矿物、粘粒、 氧化物和氢氧化物中,赤铁矿和针铁矿是土壤中最常见的含铁氧化物。 铁以低铁离子(Fe 2+)形态被植物根系吸收,并以螯合态铁被运移到根表面。含高铁离子(Fe 3+)的化合物可溶性低,这严重限制了Fe 3+的有效性和植物对Fe3+的吸收。一般认为,扩散和质流是铁从土壤向根表面转移的机制。土壤中铁的溶解度主要受氧化铁控制。水解作用、土壤酸度、螯合作用和氧化作用都影响铁的溶解度。 无机铁在土壤溶液中可能被水解为Fe(OH)42+、Fe 3+、Fe(OH)2+、Fe(OH)30、和Fe(OH)4-。在酸性条件下以 前四种形式为主,在pH 值大于7时主要为后两种形式。植物吸收这些离子中任何一种都将引起其它离子解离,所有这些离子之间将重新恢复平衡关系。 铁在土壤溶液中的溶解度取决于土壤pH 值,pH 值每增加1,Fe 3+和Fe 2+的溶解度就各降低1000倍和100倍。在pH 值=3时,可溶性铁总浓度将会高得足以全部由质流为根系充分供铁。在正常土壤pH 值条件下,即使铁以扩散、根系截获和质流全部三种方式向根系转移,有效铁的数量也远远低于植物所需。土壤溶液中铁的溶解度在pH 值介于7.4~8.5时达到最低点,这是常见的土壤缺铁范围。土壤中碳酸氢根离子(HCO 3-)多最易出现缺铁。碳酸氢根离子在石灰性土壤中是通过二氧化碳和水作用于方解石而形成的: CaCO 3 + CO 2 +H 2O ←----→Ca 2+ +2HCO 3- 虽然单凭石灰不一定诱导缺铁,但石灰与一定环境条件相结合似乎可能造成某些植物缺铁。石灰性土壤中形成难溶的碳酸铁。在中性和微酸性土壤中铁主要形成氢氧化铁沉淀。酸性土壤尤其是长期淹水时铁被还原为速效性的亚铁,亚铁离子过多使植物发生铁中毒。形成亚铁还与氧化还原作用有关。 土壤空气中氧分压的改变引起铁离子的氧化还原反应,显著影响土壤溶液中可溶性铁的数量。排水良好的土壤中铁以Fe 3+形式存在,而土壤因水分过多缺氧时,可溶性Fe 2+水平则显著提高。要与土壤pH 值同时考虑氧化还原电位。氧化还原电位低时可溶性Fe 2+水平高。 根系分泌物、土壤有机质、微生物活动代谢产物等可溶性有机复合物在溶液中与铁发生络合或螯合反应。在土壤溶液中,这些天然螯合铁保持的铁浓度一般远高于仅与无机铁化合物处于平衡状态的离子铁浓度。土壤腐殖质中的富里酸和胡敏酸具有络合和转移的能力。这些螯合物有助于增加土壤溶液中铁的浓度,促使铁向植物根系扩散。 铜、锰、锌、钴等养分会引起缺铁。过多的磷或钼也会造成缺铁。植物吸收硝酸盐导致根区附近和植物体内的碱化作用,显著降低铁的溶解性;而当植物利用铵态氮时,铵盐产出的酸有利于铁的溶解,提高其有效性。缺钾和缺锌可扰乱铁在植物体内的移动,造成铁在玉米茎节内的积累。在淹水土壤中,还原含

相关文档
最新文档