小学奥数举一反三六年级
六年级奥数举一反三-假设法解题小学
假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
小学奥数(六年级)举一反三
目录目录 (1)专题1 简便运算 (2)专题2 比的应用 (5)专题3 行程问题 (8)专题4 工程问题 (11)专题5 面积计算 (14)专题6 周长、表面积和体积 (17)专题7 “牛吃草”问题 (20)专题8 浓度应用题 (23)专题9 流水行船题 (25)专题10 行程问题2 (28)专题11 工程问题2 (30)专题12 方程问题 (5)附件:小学数学基础知识整理 (33)专题1 简便运算专题简析根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的分数小数四则混合运算化繁为简、化难为易。
计算过程中,我们先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配率—提取公因式来简算,这种思考方法在四则运算中用处很大。
简便运算中,常用的方法有:找朋友,凑整法,提取公因式,分数裂项,最高的境界是抵消。
王牌例题1计算:4.75-9.63+(8.25-1.37)举一反三11. 6.73-2817+(3.27-1917) 2. 759-(3.8+159)-115王牌例题2计算:99999×11111举一反三21. 9999999999×11111111112. 66666×33333王牌例题3计算:36×1.09+1.2×67.3举一反三31. 45×2.08+1.5×37.6 2. 52×11.1+2.56×778 王牌例题4计算:112⨯+123⨯+134⨯+145⨯+…+1910⨯(提示:112⨯=1-12)举一反三41.123⨯+134⨯+145⨯+…+199100⨯2.113⨯+135⨯+157⨯+179⨯+…+19799⨯王牌例题5计算:81.5×15.8+81.5×51.8+67.6×18.5举一反三51. 53.5×35.3+53.5×43.2+78.5×46.52. 235×12.1+235×42.2-135×54.3王牌例题6计算:1234+2341+3412+4123举一反三61. 23456+34562+45623+56234+62345 王牌例题7计算:199319941 199319921994⨯-+⨯举一反三71. 548361362 362548186⨯+⨯-✈智力冲浪1. 45678+56784+67845+78456+845672. 72×2.09-1.8×73.63.113⨯+135⨯+157⨯+179⨯+…+1197199⨯4. 201220142013 201320141⨯+⨯-5. 124.68+324.68+524.68+724.68+924.68专题2 方程问题专题简析解答这类问题时,一定要耐心、细心,千万不要粗心。
六年级奥数全(举一反三)
第一章 数与计算第一单元 同余问题1. 知识前提。
(1) 整除:如果整数a 除以自然数b ,所得的商恰好是整数而没有余数(余数是0),我们就称a 能被b 整除或b 能整除a 。
(2) 乘方的意义:求n 个相同因数的乘积的运算,叫做乘方,乘方的结果叫做幂。
n 个相同因数a 相乘,即n aa aa ∙个,记做n a 。
其中a 叫做底,n 叫做指数,na 读做a 的n 次方。
(3) 幂的运算法则:① 同底数的幂相乘,底数不变,指数相加。
即m n m na a a +∙=。
② 幂的乘方,底数不变,指数相乘。
即 ()mn nm aa =。
③ 积的乘方,等于把积的每一个因数分别乘方,再把所得的幂相乘。
即()nn nab a b =∙。
2. 同余如果两个整数的a 、b 除以同一个自然数m 所得的余数相同,那么就说a 、b 对于m 是同余的,记为a h (mod m )。
我们把m 称为模。
如果a 、b 对于m 是同余的,那么a 与b 的差能被m 整除;反之,如果a 与b 的差能被M 整除,那么a 、b 对于m 是同余的。
3. 规律、方法应用。
(1) 反身性规律:a 和a 对于m 同余。
(2) 对称性规律:a 和b 对于m 同余,那么b 和a 对于m 同余。
(3) 传递性规律:如果a 和b 对于m 同余,b 和c 对于m 同余,那么a 和c 对于m 同余。
(4) 同余的加减法、乘法规律:如果a 和b 对于m 同余,c 和d 对于m 同余,那么a +c ,和b +d ,a -c 和b -d ,a c 和bd 对于m 同余。
(5) 同余的乘方规律:如果a 和b 对于m 同余,那么na 和nb 也对于m 同余。
(6) 同余的连加规律:1a 和1b 对于m 同余,2a 和2b 对于m 同余,3a 和3b 对于m 同余……n a 和n b 对于m 同余,那么123n a a a a +++和123n b b b b +++也对于m 同余。
小学奥数六年级举一反三完整版
小学奥数六年级举一反三Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】第一周定义新运算专题简析:定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些特殊算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、等,这是与四则运算中的“、、、·”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
例题1。
假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
13*5=(13+5)+(13-5)=18+8=265*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=26练习11..将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
3.设a*b=3a-×b,求(25*12)*(10*5)。
例题2。
设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6).3△(4△6).=3△【4×6-(4+6)÷2】=3△19=4×19-(3+19)÷2=76-11=65练习21.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。
2.设p、q是两个数,规定p△q=p2+(p-q)×2。
求30△(5△3)。
3.设M、N是两个数,规定M*N=+,求10*20-。
例题3。
如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44。
小学六年级奥数举一反三ppt课件
3 . 如 果 1※2 = 1+2 , 2※3 = 2+3+4 , ……5※6 = 5+6+7+8+9+10,那么x※3=54中,x=________。
16
【练习1】计算下面各题。
17
【例题2】
计算 3333871 ×79+790×666611
2
4
原式=333387.5×79+790×66661.25
=(33338.75+66661.25)×790
=100000×790
=79000000
18
【练习2】
19
【例题3】 计算:36×1.09+1.2×67.3
63
【例题1】 乙数是甲数的2/3,丙数是乙数的4/5,丙数是甲 数的几分之几? 【思路导航】 2/3×4/5=8/15
64
【练习1】1.乙数是甲数的3/4,丙数是乙数的3/5,丙数是 甲数的几分之几?
2.一根管子,第一次截去全长的1/4,第二次截去余下的1/2, 两次共截去全长的几分之几?
3.一个旅客从甲城坐火车到乙城,火车行了全程的一半时 旅客睡着了。他醒来时,发现剩下的路程是他睡着前所行路 程的1/4。想一想,剩下的路程是全程的几分之几?他睡着时 火车行了全程的几分之几?
新定义的算式中有括号的,要先算括号里面的。但它在没有 转化前,是不适合于各种运算定律的。
3
【例题1】 假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。 【思路导航】 这题的新运算被定义为:a*b等于a和b两数之和加上两数之 差。这里的“*”就代表一种新运算。在定义新运算中同样规 定了要先算小括号里的。因此,在13*(5*4)中,就要先算 小括号里的(5*4)。 13*5=(13+5)+(13-5)=18+8=26 5*4=(5+4)+(5-4)=10 13*(5*4)=13*10=(13+10)+(13-10)=26
小学六年级奥数举一反三
小学六年级奥数举一反三一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义’从而解答某些算式的一种运算。
解答定义新运算’关键是要正确地理解新定义的算式含义’然后严格按照新定义的计算程序’将数值代入’转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式’它使用的是一些特殊的运算符号’如;某、△、⊙等’这是与四则运算中的“+、-、某、÷”不同。
新定义的算式中有括号的’要先算括号里面的。
但它在没有转化前’是不适合于各种运算定律的。
二、精讲精练[例题1]假设a某b=(a+b)+(a-b)’求13某5和13某[5某4]。
[思路导航]这题新运算被定义为;a某b等于a和b两数之和加上两数之差。
这里“某”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此’在13某[5某4]中’就要先算小括号里的[5某4]。
练习1;1’将新运算“某”定义为;a某b=(a+b)某(a-b)’。
求27某9。
2’设a某b=a2+2b’那么求10某6和5某[2某8]。
3’设a某b=3a-b某1/2’求[25某12]某[10某5]。
[例题2]设p、q是两个数’规定;p△q=4某q-(p+q)÷2。
求3△(4△6)。
[思路导航]根据定义先算4△6。
在这里“△”是新的运算符号。
练习2;1.设p、q是两个数’规定p△q=4某q-[p+q]÷2’求5△[6△4]。
2.设p、q是两个数’规定p△q=p2+[p-q]某2。
求30△[5△3]。
3.设M、N是两个数’规定M某N=M/N+N/M’求10某20-1/4。
[例题3]如果1某5=1+11+111+1111+11111’2某4=2+22+222+2222’2/263某3=3+33+333’4某2=4+44’那么7某4=________;210某2=________。
[思路导航]经过观察’可以发现本题的新运算“某”被定义为。
因此练习3;1.如果1某5=1+11+111+1111+11111’2某4=2+22+222+2222’3某3=3+33+333’……那么4某4=________。
六年级举一反三b版奥数题及答案
六年级举一反三b版奥数题及答案六年级奥数题目通常涉及一些基础的数学概念和技巧,比如分数、比例、几何、数列等。
以下是一些典型的六年级奥数题目及答案:1. 题目:一个长方体的长、宽、高分别为20厘米、15厘米和10厘米。
如果将这个长方体的长缩短5厘米,宽增加5厘米,高度不变,那么新长方体的体积是原来的多少倍?答案:首先计算原长方体的体积:20cm × 15cm × 10cm = 3000立方厘米。
然后计算新长方体的长、宽、高分别为15cm、20cm和10cm,体积为:15cm × 20cm × 10cm = 3000立方厘米。
新长方体的体积与原长方体的体积相同,所以是1倍。
2. 题目:一个数列的前三项是2、5、10,从第四项开始,每一项都是其前三项的和。
求这个数列的第10项。
答案:根据题意,数列为2、5、10、17、29、50、87、152、265、457。
第10项是457。
3. 题目:一个班级有40名学生,其中3/5的学生喜欢数学,2/3的学生喜欢英语。
如果喜欢数学和英语的学生人数之和是31人,那么既不喜欢数学也不喜欢英语的学生有多少人?答案:喜欢数学的学生有40 × 3/5 = 24人,喜欢英语的学生有40 × 2/3 = 26.67人,取整数为26人。
喜欢数学和英语的学生有24 + 26 - 31 = 19人。
因此,既不喜欢数学也不喜欢英语的学生有40 - 19 = 21人。
4. 题目:一个水池有A、B两个进水管,单独打开A管注满水池需要3小时,单独打开B管需要5小时。
如果A、B两管同时打开,需要多少时间才能注满水池?答案: A管每小时注水1/3池,B管每小时注水1/5池。
两管同时打开,每小时注水量为1/3 + 1/5 = 8/15池。
所以,注满水池需要的时间是1 ÷ (8/15) = 15/8 = 1.875小时,即1小时52.5分钟。
小学奥数六年级举一反三--面积计算
小学奥数举一反三面积计算(一)一、知识要点计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。
这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。
有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。
二、精讲精练【例题1】已知如图,三角形ABC的面积为8平方厘米,AE=ED,BD=2/3BC,求阴影部分的面积。
【思路导航】阴影部分为两个三角形,但三角形AEF的面积无法直接计算。
由于AE=ED,连接DF,可知S△AEF=S△EDF(等底等高),采用移补的方法,将所求阴影部分转化为求三角形BDF的面积。
因为BD=2/3BC,所以S△BDF=2S△DCF。
又因为AE=ED,所以S△ABF=S△BDF=2S△DCF。
因此,S△ABC=5 S△DCF。
由于S△ABC=8平方厘米,所以S△DCF=8÷5=1.6(平方厘米),则阴影部分的面积为1.6×2=3.2(平方厘米)。
练习1:1.如图,AE=ED,BC=3BD,S△ABC=30平方厘米。
求阴影部分的面积。
2.如图所示,AE=ED,DC=1/3BD,S△ABC=21平方厘米。
求阴影部分的面积。
3.如图所示,DE=1/2AE,BD=2DC,S△EBD=5平方厘米。
求三角形ABC的面积。
【例题2】两条对角线把梯形ABCD分割成四个三角形,如图所示,已知两个三角形的面积,求另两个三角形的面积各是多少?【思路导航】已知S△BOC是S△DOC的2倍,且高相等,可知:BO=2DO;从S△ABD与S△ACD相等(等底等高)可知:S△ABO等于6,而△ABO与△AOD的高相等,底是△AOD的2倍。
小学六年级奥数举一反三单选题100道及答案解析
小学六年级奥数举一反三单选题100道及答案解析1. 甲、乙两车同时从A、B 两地相对开出,4 小时后相遇,甲车再开3 小时到达B 地。
已知甲车每小时比乙车快20 千米,则A、B 两地相距()千米。
A. 560B. 720C. 960D. 1120答案:C解析:相遇后甲3 小时行的路程等于相遇前乙4 小时行的路程,甲乙时间比是3:4,速度比是4:3。
甲比乙快一份,一份是20 千米/小时,甲速度是80 千米/小时,全程80×(4 + 3)= 560 千米。
2. 一个圆柱和一个圆锥的底面半径之比是2:3,体积之比是3:2,它们高的比是()A. 1:3B. 3:4C. 9:8D. 8:9答案:D解析:圆柱体积= 底面积×高,圆锥体积= 1/3×底面积×高。
设圆柱底面半径2r,圆锥底面半径3r,圆柱高h1,圆锥高h2,根据体积比列出方程:(π×(2r)²×h1) : (1/3×π×(3r)²×h2) = 3 : 2,解得h1 : h2 = 8 : 9。
3. 一件商品,先提价20%,再降价20%,现在的价格与原价相比()A. 提高了B. 降低了C. 不变D. 无法确定答案:B解析:假设原价为100 元,提价20%后价格为100×(1 + 20%) = 120 元,再降价20%,价格为120×(1 - 20%) = 96 元,所以价格降低了。
4. 把一个棱长为6 厘米的正方体木块削成一个最大的圆锥,圆锥的体积是()立方厘米。
A. 56.52B. 169.56C. 226.08D. 无法确定答案:A解析:圆锥底面直径和高都是 6 厘米,体积= 1/3×π×(6÷2)²×6 ≈56.52 立方厘米。
5. 有含糖15%的糖水20 千克,要使糖水的浓度为20%,需加糖()千克。
六年级奥数原版举一反三综合版
第一讲定义新运算王牌例题1假设a﹡b=(a+b)(a-b),求13﹡5和13﹡(5﹡4)疯狂操练11.将新运算“﹡”定义为:a﹡b=(a+b)×(a-b)。
求27﹡9。
2.设a﹡b=a+2b,那么求10﹡6和5﹡(2﹡8)。
3.设a﹡b=3a-b×21,求(25﹡12)﹡(10﹡5)。
王牌例题2设p、q是两个数,规定:p∆q=4×q-(P+q)÷2,3∆(4∆6)。
疯狂操练21.设p、q是两个数,规定:p∆q=4×q-(P+q)÷2。
求5∆(6∆4)。
2.设p、q是两个数,规定:p∆q=p2+(P-q)×2。
求30∆(5∆3)3.设M、N是两个数,规定:M﹡N=412010,-*+求MNNM。
王牌例题3如果:1﹡5=1+11+111+1111+11111,2﹡4=2+22+222+2222,3﹡33+33+333,4﹡2=4+44,那么7﹡4= ;210﹡2= 。
疯狂操练31.如果=1﹡5=1+11+111+1111+11111,2﹡4=2+22+222+2222,3﹡33+33+333,……那么4﹡4= 。
2.规定a﹡b=a+aa+aaa+……+aaa……a,那么8﹡5= 。
(b-1)个a3.如果2*1=21,3*2=331,4*3=4441,那么(6*3)÷(2*6)= .王牌例题4规定:②=1×2×3,③=2×3×4,④=3×4×5,⑤=4×5×6,……如果 ,那么A=疯狂操练4:1. 规定:②=1×2×3,③=2×3×4,④=3×4×5,⑤=4×5×6,……如果 ,那么A=2.规定:③=2×3×4,④=3×4×5,⑤=4×5×6,⑥=5×6×7,……如果 ,那么□= 。
奥数举一反三(六年级)全
奥数举一反三(六年级)全一、拓展提优试题1.如图,边长为12cm的正方形与直径为16cm的圆部分重叠(圆心是正方形的一个顶点),用S1,S2分别表示两块空白部分的面积,则S1﹣S2=cm2(圆周率π取3).2.A、B、C、D四个箱子中分别装有一些小球,现将A箱中的部分小球按如下要求转移到其他三个箱子中:该箱中原有几个小球,就再放入几个小球,此后,按照同样的方法依次把B、C、D箱中的小球转移到其他箱子中,此时,四个箱子都各有16个小球,那么开始时装有小球最多的是箱,其中装有小球个.3.12013+22013+32013+42013+52013除以5,余数是.(a2013表示2013个a 相乘)4.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下的各个数的平均数是,那么去掉的数是.5.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是平方厘米.6.如图,正方形ABCD和EFGH分别被互相垂直的直线分为两个小正方形和两个矩形,小正方形的面积的值已标在图中,分别为20和10,18和12,则正方形ABCD和EFGH中,面积较大的正方形是.7.从五枚面值为1元的邮票和四枚面值为 1.60元的邮票中任取一枚或若干枚,可组成不同的邮资种.8.如图所示的“鱼”形图案中共有个三角形.9.已知自然数N的个位数字是0,且有8个约数,则N最小是.10.根据图中的信息可知,这本故事书有页页.11.用1024个棱长是1的小正方体组成体积是1024的一个长方体.将这个长方体的六个面都涂上颜色,则六个面都没有涂色的小正方体最多有个.12.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.13.将浓度为40%的100克糖水倒入浓度为20%的a克糖水中,得到浓度为25%的糖水,则a=.14.请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是.15.若(n是大于0的自然数),则满足题意的n的值最小是.【参考答案】一、拓展提优试题1.解:3×(16÷2)2﹣122=192﹣144,=48(平方厘米);答:S1﹣S2=48cm2.故答案为:48.2.解:根据最后四个箱子都各有16个小球,所以小球总数为16×4=64个,最后一次分配达到的效果是,从D中拿出一些小球,使A、B、C中的小球数翻倍,则最后一次分配前,A、B、C中各有小球16÷2=8个,由于小球的转移不改变总数,所以最后一次分配前,D中有小球64﹣8﹣8﹣8=40个;于是得到D被分配前的情况:A8,B8,C8,D40;倒数第二次分配达到的效果是,从C中拿出一些小球,使A、B、D中的小球数翻倍,则倒数第二次分配前,A、B中各有小球8÷2=4个,D中有40÷2=20个,总数不变,所以最后一次分配前,C中有小球64﹣4﹣4﹣20=36个,于是得到C被分配前的情况:A4,B4,C36,D20,同样的道理,在B被分配前,A中有小球4÷2=2个,C中有小球36÷2=18个,D中有小球20÷2=10个,B中有小球64﹣2﹣18﹣10=34个,即B被分配前的情况:A2,B34,C18,D10;再推导一次,在A被分配前,B中有小球34÷2=17个,C中有小球18÷2=9个,D中有小球10÷2=5个,B中有小球64﹣17﹣9﹣5=33个,即A被分配前的情况:A33,B17,C9,D5;而A被分配前的情况,就是一开始的情况,所以一开始,A箱子装有最多的小球,数量为33个;答:开始时装有小球最多的是A箱,其中装有33小球个;故答案为:A,33.3.解:多个2相乘结果个位数字有一个规律:2、4、8、6每4个2相乘一个循环,多个3相乘结果个位数字有一个规律:3、9、7、1每4个3相乘一个循环,2013÷4=503…1,所以2013个2相乘后个位数字是2,2013个3相乘后个位数字是3,2013个4相乘后个位数字是4,1的任何次方都是1,5的任何次方的个位数字都是5,1+2+3+4+5=15所以12013+22013+32013+42013+52013的个位数字是5,所以除以5的余数是0;故答案为:0.4.解:设去掉的数是x,那么去掉一个数后的和是:(1+n)n÷2﹣x=×(n﹣1);显然,n﹣1是7的倍数;n=8、15、22、29、36时,x均为负数,不符合题意.n=43时,和为946,42×=912,946﹣912=34.n=50时,和为1225,49×=1064,1225﹣1064=161>50,不符合题意.答:去掉的数是34.故答案为:34.5.解:1×2=2(平方厘米);答:六瓣花形阴影部分的面积是2平方厘米.故答案为:2.6.解:小正方形的面积之和为30时,两正方形的面积差最小,则大正方形的面积越大,即EFGH的面积较大;故答案为:EFGH.7.解:根据分析可得:6×5﹣1=29(种);答:可组成不同的邮资29种.故答案为:29.8.解:由一个三角形组成:14个;由两个三角形组成:8个;由三个三角形组成:8个;由四个三角形组成:4个;由六个三角形组成:1个;总共:14+8+8+4+1=35个.故共有35个三角形.故答案为:35.9.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.10.解:(10+5)÷(1﹣×2)=15÷=25(页)答:这本故事书有25页;故答案为:25.11.解:因为1024=210=8×8×16(8﹣2)×(8﹣2)×(16﹣2)=6×6×14=504答:六个面都没有涂色的小正方体最多有504个.故答案为:504.12.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.13.解:依题意可知:根据浓度是十字交叉法可知:浓度差的比等于溶液质量比即1:3=100:a,所以a=300克故答案为:30014.解:设这个数是a,[(a+5)×2﹣4]÷2﹣a=[2a+6]÷2﹣a=a+3﹣a=3,故答案为:3.15.解:当n=1时,不等式左边等于,小于,不能满足题意;当n=2时,不等式左边等于+==,小于,不能满足题意;同理,当n=3时,不等式左边大于,能满足题意;所以满足题意的n的值最小是3.故答案是:3。
小学奥数(六年级)举一反三
小学奥数举一反三(六年级)1-20第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b等于a和b两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。
2.设p、q是两个数,规定p△q=p2+(p-q)×2。
求30△(5△3)。
3.设M、N是两个数,规定M*N=M/N+N/M,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
【word直接打印】小学奥数举一反三(六年级)全图文百度文库
【word直接打印】小学奥数举一反三(六年级)全图文百度文库一、拓展提优试题1.在一个两位数的中间加上小数点,得到一个小数,若这个小数与原来的两位数的和是86.9,则原来两位数是.2.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.3.(15分)快艇从A码头出发,沿河顺流而下,途经B码头后继续顺流驶向C码头,到达C码头后立即反向驶回B码头,共用10小时,若A、B相距20千米,快艇在静水中航行的速度是40千米/时,河水的流速是10千米/时,求B、C间的距离.4.(15分)王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有块糖,丙最多有块糖.5.一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是.6.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是平方厘米.7.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是点分.8.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.9.如图所示的“鱼”形图案中共有个三角形.10.已知自然数N的个位数字是0,且有8个约数,则N最小是.11.李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款189元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是元,李华共买了件.12.甲、乙、丙三人去郊游,甲买了9根火腿,乙买了6个面包,丙买了3瓶矿泉水,乙花的钱是甲的,丙花的钱是乙的,丙根据每人所花钱的多少拿出9元钱分给甲和乙,其中,分给甲元,分给乙元.13.一根绳子,第一次剪去全长的,第二次剪去余下部分的30%.若两次剪去的部分比余下的部分多0.4米,则这根绳子原来长米.14.如图,一个直径为1厘米的圆绕边长为2厘米的正方形滚动一周后回到原来的位置.在这个过程中,圆面覆盖过的区域(阴影部分)的面积是平方厘米.(π取3)15.如图,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,由第4个角上的小长方形的面积等于.【参考答案】一、拓展提优试题1.解:根据题意可得:86.9÷(10+1)=7.9;7.9×10=79.答:原来两位数是79.故答案为:79.2.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.3.解:设B、C间的距离为x千米,由题意,得+=10,解得x=180.答:B、C间的距离为180千米.4.解:甲比丙的2×3=6倍多,总数就比丙的6+3+1=10倍多200÷(2×3+3+1)=20(块),丙最多:20﹣1=19(块)此时甲乙至少有:200﹣19=181(块),181÷(2+1)=60(块)…1(块),乙最多60块,甲至少:60×2+1=121(块).故答案为:121,19.5.解:商是10,除数最大是9,余数最大是8,9×10+8=98;被除数最大是98.故答案为:98.6.解:1×2=2(平方厘米);答:六瓣花形阴影部分的面积是2平方厘米.故答案为:2.7.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.8.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.9.解:由一个三角形组成:14个;由两个三角形组成:8个;由三个三角形组成:8个;由四个三角形组成:4个;由六个三角形组成:1个;总共:14+8+8+4+1=35个.故共有35个三角形.故答案为:35.10.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.11.解:189=3×3×3×7=27×7147=3×7×7=21×7正好是27×7=189中把27看成21×7=147所以这种商品的实际单价是21元,卖了7件.12.解:丙花钱是甲的×=甲:乙:丙=1::=13:12:8(13+12+8)÷3=11每份:9÷(11﹣8)=3(元)甲:(13﹣11)×3=6(元)乙:(12﹣11)×3=3(元)答:分给甲6元,分给乙3元.故答案为:6,3.13.解:第二次剪求的占全长的:(1)×30%==,0.4÷[(1)]=0.4÷[]==0.4×15=6(米);答:这根绳子原来长6米.故答案为:6.14.解:2×1×4+3×12=8+3=11(平方厘米)答:阴影部分的面积是11平方厘米.故答案为:11.15.解:如图,设D的面积为x,9:12=15:x9x=12×15x=x=20答:第4个角上的小长方形的面积等于20.故答案为:20.。
【经典】小学奥数举一反三(六年级)全图文百度文库
【经典】小学奥数举一反三(六年级)全图文百度文库一、拓展提优试题1.从12点开始,经过分钟,时针与分针第一次成90°角;12点之后,时针与分针第二次成90°角的时刻是.2.甲、乙两人分别从A、B两地同时出发,相向而行,甲乙两人的速度比是4:5,相遇后,如果甲的速度降低25%,乙的速度提高20%,然后继续沿原方向行驶,当乙到达A地时,甲距离B地30km,那么A、B两地相距km.3.如图.从楞长为10的立方体中挖去一个底面半径为2,高为10的圆柱体后,得到的几何体的表面积是,体积是.(π取3)4.甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,店的售价更便宜,便宜元.5.图中的三角形的个数是.6.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有227张邮票,小林原有张邮票.7.如图,六边形ABCDEF的周长是16厘米,六个角都是120°,若AB=BC =CD=3厘米,则EF=厘米.8.从12点整开始,至少经过分钟,时针和分针都与12点整时所在位置的夹角相等.(如图中的∠1=∠2).9.如图,一个长方形的长和宽的比是5:3.如果长方形的长减少5厘米,宽增加3厘米,那么这个长方形边长一个正方形.原长方形的面积是平方厘米.10.如图,已知AB=2,BG=3,GE=4,DE=5,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51.那么,△ABC和△DEF的面积和是.11.已知A是B的,B是C的,若A+C=55,则A=.12.甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票张.13.等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.14.如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.15.(15分)二进制是计算机技术中广泛采用的一种数制,其中二进制数转换成十进制数的方法如下:那么,将二进制数 11111011111 转化为十进制数,是多少?【参考答案】一、拓展提优试题1.解:分针每分钟走的度数是:360÷60=6(度),时针每分钟走的度数是:6×5÷60=0.5(度),第一成直角用的时间是:90÷(6﹣0.5),=90÷5.5,=16(分钟),第二次成直角用的时间是:270÷(6﹣0.5),=270÷5.5,=49(分钟).这时的时刻是:12时+49分=12时49分.故答案为:16,12时49分.2.解:根据题意可得:相遇时,甲走了全程的4÷(4+5)=,乙走了全程的1﹣=;相遇后,甲乙的速度比是4×(1﹣25%):5×(1+20%)=1:2;当乙到达A地时,乙又走了全程的1﹣=,甲又走了全程的×=;A、B两地相距:30÷(1﹣﹣)=90(km).答:A、B两地相距90km.3.解:10×10×6﹣3×22×2+2×3×2×10,=600﹣24+120=696;10×10×10﹣3×22×10,=1000﹣120=880;答:得到的几何体的表面积是696,体积是880.故答案为:696,880.4.解:甲商店:25×(1+10%)×(1﹣20%),=25×110%×80%,=27.5×0.8,=22(元);乙商店:25×(1﹣10%),=25×90%,=22.5(元);22.5﹣22=0.5(元);答:甲商店便宜,便宜了0.5元.故答案为:甲,0.5.5.解:根据题干分析可得:10+10+10+5=35(个),答:一共有35个三角形.故答案为:35.6.解:(1﹣):1=13:19,13+19=32;1:(1﹣)=17:11,17+11=28,32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2=448张,448÷32×13=182,448÷28×17=272.小强:(182+272)÷2=227张小林:448﹣227=221.故答案为:227,221.7.解:如图延长并反向延长AF,BC,DE,分别相交与点G、H、N,因六边形ABCDEF的每个角是120°所以∠G=∠H=∠N=60°所以△GHN,△GAB,△HCD,△EFN都是等边三角形AB=BC=CD=3厘米,△GHN边长是3+3+3=9(厘米)AN=9﹣3=6(厘米)AN=AF+EFDE=六边形ABCDEF的周长﹣AB﹣BC﹣CD﹣(AF+EF)=16﹣3﹣3﹣3﹣6=1(厘米)EF=EN=9﹣3﹣1=5(厘米)答:EF=5厘米.故答案为:5.8.解:设所走的时间为x小时.30x=360﹣360x3x+360x=360﹣30x+360390x=360x=小时=55分钟.故答案为:55.9.解:先求出一份的长:(5+3)÷(5﹣3)=8÷2=4(厘米)长是:4×5=20(厘米)宽是:4×3=12(厘米)原来的面积是:20×12=240(平方厘米);答:原来长方形的面积是240平方厘米.故答案为:240.10.解:作CM⊥AD,垂足为M,作FN⊥AD,垂足为N,设CM=x,FN=y.由题意得方程组,解方程组得,所以△ABC与△DEF的面积和是:AB•CM+DE•FN=×2×8+×5×6=8+15=23.故答案为:23.11.解:A是C的×=,即A=C,A+C=55,则:C+C=55C=55C=55÷C=40A=40×=15故答案为:15.12.解:5÷()=5=45(张)答:两人共有邮票 45张.故答案为:45.13.解:180°×=180°×=90°答:角度最大可以是 90度.故答案为:90.14.解:依题意可知:将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,变面积增加了10个面,那么每一个面的面积为100÷10=10平方分米.10米=100分米.体积为:10×100=1000(立方分米).故答案为:100015.解:(11111011111)2=1×210+1×29+1×28+1×27+1×26+0×25+1×24+1×23+1×22+1×21+1×20=1024+512+256+128+64+0+16+8+4+2+1=(2015)10答:是2015.。
小学奥数教材举一反三六年级课程40讲全整理
修改整理加入目录,方便查用,六年级奥数举一反三目录第1讲定义新运算 (3)第2讲简便运算(一) (6)第3讲简便运算(二) (9)第4讲简便运算(三) (11)第5讲简便运算(四) (14)第6讲转化单位“1”(一) (17)第7讲转化单位“1”(二) (19)第8讲转化单位“1”(三) (22)第9讲设数法解题 (25)第10讲假设法解题(一) (28)第11讲假设法解题(二) (31)第12讲倒推法解题 (34)第13讲代数法解题 (37)第14讲比的应用(一) (40)第15讲比的应用(二) (43)第16讲用“组合法”解工程问题 (47)第17讲浓度问题 (50)第18讲面积计算(一) (54)第19讲面积计算(二) (59)第20讲面积计算 (64)第二十一周抓“不变量”解题 (69)第二十二周特殊工程问题 (71)第二十三周周期工程问题 (75)第二十四周比较大小 (83)第二十五周最大最小问题 (87)第26周加法、乘法原理 (90)第27周表面积与体积(一) (92)第28周表面积与体积(二) (101)第二十九周抽屉原理(一) (104)第三十周抽屉原理(二) (109)第三十一周逻辑推理(一) (114)第三十二周逻辑推理(二) (122)第三十三周行程问题(一) (129)第三十四周行程问题(二) (137)第三十五周行程问题(三) (148)第三十六周流水行船问题 (155)第三十七周对策问题 (158)第三十八周应用同余问题 (160)第三十九周“牛吃草”问题 (162)第四十周不定方程 (165)第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
小学奥数举一反三六年级
小学奥数举一反三六年级小学奥数是指小学生参加的数学竞赛,其目的是培养学生的逻辑思维能力和解决问题的能力。
其中,举一反三是指通过理解一个问题的解法,推导出其他类似问题的解法。
本文将重点介绍小学六年级学生在小学奥数中如何运用举一反三的方法。
小学六年级是学生们数学基础知识掌握较为扎实的阶段。
在小学奥数中,学生会遇到一些相对复杂的数学问题,其中包括多步骤的问题,需要学生进行较多计算的问题等。
举一反三方法的运用可以帮助学生更好地解决这些复杂问题。
具体来说,学生可以通过以下几个步骤来运用举一反三方法:首先,学生需要充分理解所给问题。
在阅读题目时,学生应该仔细审题,理解题目所要求的计算步骤和答案形式。
只有对问题充分理解,学生才能够准确运用举一反三的方法。
接下来,学生可以尝试从已知的解题思路中寻找规律。
例如,如果遇到一道多步骤的问题,学生可以先通过举例子的方式解决其中的一个步骤,然后再运用相同的思路解决其他步骤。
在这个过程中,学生可以反复思考问题的共同点和规律,然后尝试将这些规律应用到其他类似的问题上。
然后,学生需要将找到的规律应用到其他类似问题上。
通过将已经解决的问题中的规律迁移到其他问题上,学生可以加速解题的速度,并且更好地掌握解题方法。
最后,学生需要验证他们的解答是否正确。
在小学奥数中,验证解答的方法通常是通过逆向计算来进行。
即将答案带入原题计算,以确保得到的结果和所给条件一致。
如果验证结果一致,那么学生可以确定自己的解答是正确的。
通过运用举一反三的方法,小学六年级学生可以更好地解决小学奥数中的复杂问题。
除了提高解题的速度,举一反三也培养了学生的逻辑思维能力和问题解决能力。
这些能力将对学生以后的学习和生活产生积极的影响。
在平时的学习中,学生可以通过积极参加奥数培训班、阅读相关的奥数题目等方式来提升自己的举一反三能力。
通过不断的练习和思考,学生可以逐渐掌握举一反三的方法,并且在日常生活和学习中更自如地应用。
小学奥数举一反三(六年级)
第10讲假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
六年级小学生奥数举一反三练习题
六年级小学生奥数举一反三练习题L六年级小学生奥数举一反三练习题篇一股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。
老王10月8日以股票10. 65元的价格买进一种科技股票3000股,6月26日以每月13. 86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?答案10. 65^1%=0. 1065 (元)10. 65⅛%=0. 213 (元)10. 1065+0. 213=0. 3195 (元)0. 3195+10. 65=10. 9695 (元)13. 86^1%=0. 1386 (元)13. 86⅛%=0o 2772 (元)0. 1386+0. 2772=0. 415813.86+0.4158=14. 2758 (元)14. 2758-10. 9695=3. 3063 (元)答:老王卖出这种股票一共赚了 3.3063元。
2.六年级小学生奥数举一反三练习题篇二一列火车通过360米长的铁路桥用了24秒钟,用同样的速度通过216米长的铁路桥用16秒钟,这列火车长米。
分析:这道题让我们求火车的长度。
我们知道:车长二车速X通过时间-桥长。
其中“通过时间”和“桥长”都是已知条件。
我们就要先求出这道题的解题关键: 车速。
通过审题我们知道这列火车通过不同长度的两个桥用了不同的时间。
所以我们可以利用这两个桥的长度差和通过时间差求出车速。
解答:解:车速:(360-216) ÷(24-16)=144÷8=18 (米),火车长度:18X24-360=72 (米),或18X16-216=72 (米)。
答:这列火车长72米。
故答案为:72o3.六年级小学生奥数举一反三练习题篇三甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8: 7: 5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果, 甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?答案根据甲乙丙村可灌溉的面积比算出总份数:8+7+5=20份每份需要的人数:(60+40) ÷20=5人甲村需要的人数:8X5=40人,多出劳力人数:60-40二20人乙村需要的人数:7X5=35人,多出劳力人数:40-35二5人丙村需要的人数:5X5=25人或20+5=25人每人应得的钱数:1350÷25=54元甲村应得的工钱:54X20=1080元4.六年级小学生奥数举一反三练习题篇四有一户人家,共有三个人:爸爸、妈妈和他们的独生儿子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数举一反三六年级第6讲转化单位“1”(一)一、知识要点把不同的数量当作单位“1”,得到的分率可以在一定的条件下转化。
如果甲是乙的a/b,乙是丙的c/d,则甲是丙的ac/bd;如果甲是乙的a/b,则乙是甲的b/a;如果甲的a/b等于乙的c/d,则甲是乙的c/d÷a/b=bc/ad,乙是甲的a/b÷a/b=ad/bc。
二、精讲精练【例题1】乙数是甲数的2/3,丙数是乙数的4/5,丙数是甲数的几分之几?练习1:1.乙数是甲数的3/4,丙数是乙数的3/5,丙数是甲数的几分之几?2.一根管子,第一次截去全长的1/4,第二次截去余下的1/2,两次共截去全长的几分之几?3.一个旅客从甲城坐火车到乙城,火车行了全程的一半时旅客睡着了。
他醒来时,发现剩下的路程是他睡着前所行路程的1/4。
想一想,剩下的路程是全程的几分之几?他睡着时火车行了全程的几分之几?【例题2】修一条8000米的水渠,第一周修了全长的1/4,第二周修的相当于第一周的4/5,第二周修了多少米?练习2:用两种方法解答下面各题:1.一堆黄沙30吨,第一次用去总数的1/5,第二次用去的是第一次的1又1/4倍,第二次用去黄沙多少吨?2.大象可活80年,马的寿命是大象的1/2,长颈鹿的寿命是马的7/8,长颈鹿可活多少年?3.仓库里有化肥30吨,第一次取出总数的1/5,第二次取出余下的1/3,第二次取出多少吨?【例题3】晶晶三天看完一本书,第一天看了全书的1/4,第二天看了余下的2/5,第二天比第一天多看了15页,这本书共有多少页?练习3:1.有一批货物,第一天运了这批货物的1/4,第二天运的是第一天的3/5,还剩90吨没有运。
这批货物有多少吨?2.修路队在一条公路上施工。
第一天修了这条公路的1/4,第二天修了余下的2/3,已知这两天共修路1200米,这条公路全长多少米?、3.加工一批零件,甲先加工了这批零件的2/5,接着乙加工了余下的4/9。
已知乙加工的个数比甲少200个,这批零件共有多少个?- 2 -【例题4】男生人数是女生人数的4/5,女生人数是男生人数的几分之几?练习4:1.停车场里有小汽车的辆数是大汽车的3/4,大汽车的辆数是小汽车的几分之几?2.如果山羊的只数是绵羊的6/7,那么绵羊的只数是山羊的几分之几?3.如果花布的单价是白布的1又3/5倍,则白布的单价是花布的几分之几?【例题5】甲数的1/3等于乙数的1/4,甲数是乙数的几分之几,乙数是甲数的几倍?练习5:1.甲数的3/4于乙数的2/5,甲数是乙数的几分之几?乙数是甲数的几分之几?2.甲数的1又2/3倍等于乙数的5/6,甲数是乙数的几分之几?乙数是甲乙两数和的几分之几?3.甲数是丙数的3/4,乙数是丙数的2/5,甲数是乙数的几分之几?乙数是甲数的几分之几?(想一想:这题与第一题有什么不同?)第7讲转化单位“1”(二)一、知识要点我们必须重视转化训练。
通过转化训练,既可理解数量关系的实质,又可拓展我们的解题思路,提高我们的思维能力。
二、精讲精练【例题1】甲数是乙数的2/3,乙数是丙数的3/4,甲、乙、丙的和是216,甲、乙、丙各是多少?练习1:下面各题怎样计算简便就怎样计算:1.甲数是乙数的5/6,乙数是丙数的3/4,甲、乙、丙三个数的和是152,甲、乙、丙三个数各是多少?2.橘子的千克数是苹果的2/3,香蕉的千克数是橘子的1/2,香蕉和苹果共有220千克,橘子有多少千克?3.某中学的初中部三个年级中,初一的学生数是初二学生数的9/10,初二的学生数是初三学生数的1又1/4倍,这个学校里初三的学生数占初中部学生数的几分之几?【例题2】红、黄、蓝气球共有62只,其中红气球的3/5等于黄气球的2/3,蓝气球有24只,红气球和黄气球各有多少只?练习2:1.甲数的2/3等于乙数的5/6,甲、乙两数的和是162,甲、乙两数各是多少?2.今年8月份,甲所得的奖金比乙少200元,甲得的奖金的2/3正好是乙得奖金的4/7,甲、乙两人各得奖金多少元?- 4 -3.商店运来香蕉、苹果和梨子共900千克,香蕉重量的1/4等于苹果重量的1/3,梨子的重量是200千克。
香蕉和苹果各多少千克?【例题3】已知甲校学生数是乙校学生数的2/5,甲校的女生数是甲校学生数的3/10,乙校的男生数是乙校学生数的21/50,那么两校女生总数占两校学生总数的几分之几?练习3:1.在一座城市中,中学生数是居民的1/5,大学生是中学生数的1/4,那么占大学生总数的2/5的理工科大学生是居民数的几分之几?2.某人在一次选举中,需3/4的选票才能当选,计算2/3的选票后,他得到的选票已达到当选票数的5/6,他还要得到剩下选票的几分之几才能当选?3.某校有3/5的学生是男生,男生的1/20想当医生,全校想当医生的学生的3/4是男生,那么全校女生的几分之几想当医生?【例题4】仓库里的大米和面粉共有2000袋。
大米运走2/5,面粉运作1/10后,仓库里剩下大米和面粉正好相等。
原来大米和面粉各有多少袋?练习4:1.甲、乙两人各准备加工零件若干个,当甲完成自己的2/3、乙完成自己的1/4时,两人所剩零件数量相等,已知甲比乙多做了70个,甲、乙两人各准备加工多少个零件?2.一批水果四天卖完。
第一天卖出180千克,第二天卖出余下的2/7,第三、四天共卖出这批水果的一半,这批水果有多少千克?3.甲、乙两人合打一篇书稿,共有10500字。
如果甲增加他的任务的20%,乙减少他的任务的20%,那么甲打的字数就是乙的2倍,问两人原来的任务各是多少?【例题5】400名学生参加植树活动,计划每个男生植树20棵,每个女生植树15棵。
除抽出25%的男生搞卫生外,其他的同学都按计划完成了植树任务。
问共植树多少棵?练习5:1.有一块菜地和一块麦地,菜地的一半和麦地的1/3放在一起是13公顷,麦地的一半和菜地的1/3放在一起是12公顷,那么,菜地有多少公顷?2.师徒两人加工同样多的零件,师傅要10分钟,徒弟要18分钟。
两人共同加工零件168个,如果要在相同的时间内完成,两人各应加工零件多少个?3.有5元和2元的人民币若干张,其金额之比为15:4。
如果5元人民币减少6张,则两种人民币的张数相等。
求原来两种人民币的张数各是多少?第8讲转化单位“1”(三)一、知识要点解答较复杂的分数应用题时,我们往往从题目中找出不变的量,把不变的量看作单位“1”,将已知条件进行转化,找出所求数量相当于单位“1”的几分之几,再列式解答。
- 6 -二、精讲精练【例题1】有两筐梨。
乙筐是甲筐的3/5,从甲筐取出5千克梨放入乙筐后,乙筐的梨是甲筐的7/9。
甲、乙两筐梨共重多少千克?练习1:1.某小学低年级原有少先队员是非少先队员的1/3,后来又有39名同学加入少先队组织。
这样,少先队员的人数是非少先队员的7/8。
低年级有学生多少人?2.王师傅生产一批零件,不合格产品是合格产品的1/19,后来从合格产品中又发现了2个不合格产品,这时算出产品的合格率是94%。
合格产品共有多少个?3.某校六年级上学期男生占总人数的54%,本学期转进3名女生,转走3名男生,这时女生占总人数的48%。
现在有男生多少人?【例题2】某学校原有长跳绳的根数占长、短跳绳总数的3/8。
后来又买进20根长跳绳,这时长跳绳的根数占长、短跳绳总数的7/12。
这个学校现有长、短跳绳的总数是多少根?练习2:1.阅览室看书的同学中,女同学占3/5,从阅览室走出5位女同学后,看数的同学中,女同学占4/7,原来阅览室一共有多少名同学在看书?2.一堆什锦糖,其中奶糖占45%,再放入16千克其他糖后,奶糖只占25%,这堆糖中有奶糖多少千克?3.数学课外兴趣小组,上学期男生占5/9,这学期增加21名女生后,男生就只占2/5了,这个小组现有女生多少人?【例题3】有两段布,一段布长40米,另一段长30米,把两段布都用去同样长的一部分后,发现短的一段布剩下的长度是长的一段布所剩长度的3/5,每段布用去多少米?练习3:1.有两根塑料绳,一根长80米,另一根长40米,如果从两根上各剪去同样长的一段后,短绳剩下的长度是长绳剩下的2/7,两根绳各剪去多少米?2.今年父亲40岁,儿子12岁,当儿子的年龄是父亲的5/12时,儿子多少岁?3.仓库里原来存大米和面粉袋数相等,运出800袋大米和500袋面粉后,仓库里所剩的大米袋数时面粉的3/4,仓库里原有大米和面粉各多少袋?4.甲、乙、丙、丁四个筑路队共筑1200米长的一段公路,甲队筑的路时其他三个队的1/2,乙队筑的路时其他三个队的1/3,丙队筑的路时其他三个队的1/4,丁队筑了多少米?- 8 -【例题4】某商店原有黑白、彩色电视机共630台,其中黑白电视机占1/5,后来又运进一些黑白电视机。
这时黑白电视机占两种电视机总台数的30%,问:又运进黑白电视机多少台?练习4:1.书店运来科技书和文艺书共240包,科技书占1/6。
后来又运来一批科技书,这时科技书占两种书总和的3/11,现在两种书各有多少包?2.某市派出60名选手参加田径比赛,其中女选手占1/4,正式比赛时,有几名女选手因故缺席,这样女选手人数占参赛选手总数的2/11。
问:正式参赛的女选手有多少人?3.把12千克的盐溶解于120千克水中,得到132千克盐水,如果要使盐水中含盐8%,要往盐水中加盐还是加水?加多少千克?4.东风水果店上午运进梨和苹果共1020千克,其中梨占水果总数的1/5;下午又运进梨若干千克,这时梨占两种水果总数的2/5,下午运进梨多少千克?【例题5】一堆煤,运走的比总数的2/5多120吨,剩下的比运走的5/6多60吨,这堆煤原有多少吨?练习5:1.修一条路,第一天修了全长的2/5多60米,第二天修的长度比第一天的3/4多35米,还剩100米没有修,这条路全长多少米?2.修一条路,第一天修了全长的2/5多60米,第二天修的长度比第一天的3/4少35米,这两天共修路420米,这条路全长多少米?3.某工程队修筑一条公路,第一天修了全长的2/5,第二天修了剩下部分的5/9又20米,第三天修的是第一天的1/4又30米,这样,正好修完,这段公路全长多少米?第9讲设数法解题一、知识要点在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。
二、精讲精练【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=()个△。
练习1:1.已知△=○○□□,△○=□□,☆=□□□,问△□☆=()个○。
2.五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?- 10 -3.甲、乙、丙三个仓库原有同样多的货,从甲仓库运60吨到乙仓库,从乙仓库运45吨到丙仓库,从丙仓库运55吨到甲仓库,这时三个仓库的货哪个最多?哪个最少?最多的比最少的多多少吨?【例题2】足球门票15元一张,降价后观众增加一倍,收入增加1/5,问一张门票降价多少元?练习2:1.某班一次考试,平均分为70分,其中3/4及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?2.游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?3.五年级三个班的人数相等。