深度解读NANDFLASH
Nandflash原理与启动详解
NandFlash原理与启动详解一、Nandflash内部是怎么工作的:1片Nandflash=1设备;1设备=4096块;1块=32页;1页=528字节=数据大小(512字节)+oob块大小(16字节)(oob用于Nandflash命令执行完成后设置状态)可以通过NAND Flash命令00h/01h/50h分别对前半部、后半部、OOB进行定位,通过NAND Flash内置的指针指向各自的首地址。
存储操作特点有:擦除操作的最小单位是块;NAND Flash芯片每一位只能从1变为0,而不能从0变为1,所以在对其进行写入操作之前一定要将相应块擦除(擦除即是将相应块的位全部变为1);OOB部分的第6字节(即517字节)标志是否是坏块,值为FF时不是坏块,否则为坏块。
除OOB第6字节外,通常至少把OOB的前3字节用来存放NAND Flash硬件ECC码。
(ECC:"Error Correcting Code" "错误检查纠正",带有奇偶校验的内存的主要功能。
)1.Nand flash以page为单位进行读写,以block为单位进行擦除,没页分为main区和spare区,main区用于存放正常的数据,spare区用于存放一些附加信息2.S3c2440 支持从Nand 启动是因为内部有一个叫做Steppingstone的SRAM buffer,当启动的时候,nand 的前4k的将会代码将被拷贝到steppingstone中执行,注意前4k代码是不会经过ECC校验的,所以必须确保这些代码的准确3.对nand的操作都是通过使用命令来实现,有的操作只要一个命令就可以完成,而有的需要两个命令才能完成,下面是K9F1G08U0B的命令表:4 Flash烧写程序原理及结构基本原理:将在SDRAM中的一段存储区域中的数据写到NAND Flash存储空间中。
烧写程序在纵向上分三层完成。
NAND-flash详解
NAND flash和NOR flash的区别详解[导读]我们使用的智能手机除了有一个可用的空间(如苹果8G、16G等),还有一个RAM容量,很多人都不是很清楚,为什么需要二个这样的芯片做存储呢,这就是我们下面要讲到的这二种存储.关键词:NOR flashNand flashFlaSh我们使用的智能手机除了有一个可用的空间(如苹果8G、16G等),还有一个RAM容量,很多人都不是很清楚,为什么需要二个这样的芯片做存储呢,这就是我们下面要讲到的。
这二种存储设备我们都统称为“FLASH”,FLASH是一种存储芯片,全名叫Flash EEPROM Memory,通地过程序可以修改数据,即平时所说的“闪存”。
Flash又分为NAND flash和NOR flash二种。
U盘和MP3里用的就是这种存储器。
相“flash存储器”经常可以与相“NOR存储器”互换使用。
许多业内人士也搞不清楚NAND闪存技术相对于NOR技术的优越之处,因为大多数情况下闪存只是用来存储少量的代码,这时NOR闪存更适合一些。
而NAND则是高数据存储密度的理想解决方案。
NOR Flash 的读取和我们常见的 SDRAM 的读取是一样,用户可以直接运行装载在 NOR FLASH 里面的代码,这样可以减少 SRAM 的容量从而节约了成本。
NAND Flash 没有采取内存的随机读取技术,它的读取是以一次读取一块的形式来进行的,通常是一次读取512 个字节,采用这种技术的 Flash 比较廉价。
用户不能直接运行 NAND Flash 上的代码,因此好多使用 NAND Flash 的开发板除了使用 NAND Flah 以外,还作上了一块小的 NOR Flash 来运行启动代码。
NOR flash是intel公司1988年开发出了NOR flash技术。
NOR的特点是芯片内执行(XIP, eXecute In Place),这样应用程序可以直接在flash 闪存内运行,不必再把代码读到系统RAM中。
nandflash原理
nandflash原理
NAND Flash的工作原理是将电压变化的门极电容器上的电流回到电源中。
当存储器被分为多个分区时,通过门极信号来访问和操作存储空间。
此时,如果将电流沿着多个存储单元传输,就可以建立一个连接,用来将存储单元中的数据传输到计算机中,从而实现数据存储与读取功能。
NAND Flash的物理组成包括存储单元、位线、字线和块等。
每个存储单元以bit的方式保存在存储单元中,通常一个单元中只能存储一个bit。
这些存储单元以8个或者16个为单位,连成bit line,形成所谓的byte(x8)/word(x16),这就是NAND Device 的位宽。
存储结构方面,NAND Flash由块构成,块的基本单元是页。
通常来说,每一个块由多个页组成。
NAND Flash每一个页内包含Data area(数据存储区)和Spare area(备用区)。
每一个页的大小为Data area+Spare area。
这个过程造成了多余的写入和擦除,这就是所谓的写放大。
在存储单元的构造方面,NAND Flash的存储单元为三端器件,与场效应管有相同的名称:源极、漏极和栅极。
栅极与硅衬底之间有二氧化硅绝缘层,用来保护浮置栅极中的电荷不会泄漏。
与场效应管一样,闪存也是一种电压控制型器件。
以上内容仅供参考,如有需要可以查阅相关文献资料或咨询专业人士。
nand_flash读写工作原理_概述说明
nand flash读写工作原理概述说明1. 引言1.1 概述NAND Flash是一种非常常见和重要的存储设备,被广泛应用于各种电子产品中。
它的独特设计使得它成为一种高性能、低功耗、擦写可靠且具有较大容量的存储器解决方案。
由于其许多优点,NAND Flash在移动设备、个人电脑、服务器以及其他许多领域都有着广泛的应用。
1.2 文章结构本文将详细介绍NAND Flash的读写工作原理,并探讨其在存储领域中的优势与应用场景。
首先,我们将简要介绍NAND Flash的基本概念和特点,包括其结构和组成部分。
然后,我们将重点讲解NAND Flash进行读操作和写操作时所涉及的工作原理和步骤。
通过对这些原理的详细阐述,读者将能够全面了解NAND Flash如何实现数据的读取和写入。
除此之外,我们还将探讨NAND Flash相对于其他存储设备的优势,并介绍几个典型应用场景。
这些优势包括快速读写速度、低功耗、体积小且轻便、强大的耐久性以及较大的存储容量。
在应用场景方面,我们将重点介绍NAND Flash 在移动设备领域、物联网和服务器等各个行业中的广泛应用。
最后,我们将进行本文的小结,并对NAND Flash未来的发展进行展望。
通过全面了解NAND Flash的工作原理和优势,读者将能够更好地理解其在现代科技领域中的重要性,并对其未来发展趋势有一个清晰的认识。
1.3 目的本文的目的是通过对NAND Flash读写工作原理进行详细说明,使读者能够全面了解NAND Flash是如何实现数据读写操作的。
此外,我们还旨在向读者展示NAND Flash在存储领域中所具有的优势和广泛应用场景,使其意识到这一存储设备在现代科技产业中所扮演的重要角色。
希望通过本文,读者能够加深对NAND Flash技术的理解,并为相关领域或产品的研发与设计提供参考依据。
2. NAND Flash读写工作原理:2.1 NAND Flash简介:NAND Flash是一种非易失性存储器,采用了电子闪存技术。
FLASH的基本知识,
什么是flash的型号及ID
• 时常有人说到FLASH的型号,这个型号就所对应着各个FLASH的ID。 Wafer在生产时会跟据生产参数写入一个数字标识,这个标就是我们 的ID。这个ID同样参数的产品也会因为会根据各位厂商的定议方式不 同而不样。一般情况下这个ID由6*2组数字或字母组成。在PC上就是 就是靠ID识别各各FLASH。如: TC58NVG5D2FTA00(98,D7,94,32,76,D5),TC58NVG5D2FTA00是 东芝TSOP FLASH的型号,98 D7 94 32 76 56 D5是识别这个型号的 ID,是唯一的。 • FLASH类型 • TSOP (12*20)最常用的;TSOP(14*18)L85常见; BGA152(14*18,12*18);BGA132(14*18,12*18); BGA224(14*18);BGA100(12*20);LGA52(14*18,12*20);LGA60(14*18 ,12*20);TF(micrSD)卡类(3*7,4*6,5*6点位);M2卡类(3*6点位); sipSD卡(3*7点位);MSPD卡(3*11点位);COB(FLASH晶圆邦 定在PCB上,滴上黑色树脂);iNAND卡读晶圆(44点);iNAND读 卡(125点)等。
什么是FLASH制程
• 通常我们所说的19nm、20nm、21nm、24nm、 34nm、43nm、56nm、70nm、90nm就是指 FALSH的制程工艺。 FLASH的“制作工艺”指 得是在生产FLASH过程中,要进行加工各种电路 和电子元件,制造导线连接各个元器件。通常其 生产的精度以微米(长度单位,1微米等于千分之 一毫米)来表示(1纳米等于千分之一微米) , 未来发展的精度越高,生产工艺越先进。在同样 的材料中可以制造更多的电子元件,连接线也越 细,提高集成度,提高处理器的制造工艺具有重 大的意义,更先进的制造工艺会使FALSH的核心 面积进一步减小,也就是说在相同面积的晶圆上 可以制造出更多的产品
NandFlash工作原理
NandFlash工作原理NAND Flash,是一种非易失性存储设备,常用于闪存存储器和固态硬盘中。
与传统的动态随机存取存储器(DRAM)不同,NAND Flash存储器不需要定期刷新数据,因此具有断电保持数据的能力。
NAND Flash存储器是通过一系列具有浮栅结构的晶体管来实现存储的。
每个晶体管都包含一个浮栅,浮栅上覆盖着一层非导体材料。
这些浮栅允许在其中储存电荷,以表示数据的值。
NAND Flash存储器的基本工作原理是通过对晶体管的控制来擦除和编程这些浮栅中的电荷,从而存储和读取数据。
首先,当NAND Flash存储器被擦除时,所有浮栅中的电荷都被清空。
这是通过应用高电压来驱动控制栅(CG)和源/漏(S/D)端之间的电子流来完成的。
这个高电压会产生强烈的电场,足以将浮栅中的电荷推向源/漏区域,并完全清除。
然后,在编程NAND Flash存储器时,特定的晶体管被选中并编程。
对于存储1的位,电荷会被注入到浮栅中,这是通过应用一定的电压来驱动源/漏端和控制栅端之间的电子流来实现的。
这样,当电压降低时,源/漏区域的电子会绕过绝缘层并进入浮栅,存储为1的位。
当要读取存储器中的数据时,读取器件会对特定的晶体管进行选择,并读取浮栅中的电荷量。
当浮栅中有足够的电荷时,表示存储为1的位;当浮栅中没有电荷时,表示存储为0的位。
需要注意的是,在NAND Flash存储器中,晶体管是按矩阵排列的。
这使得可以同时编程或读取多个晶体管,从而提高了存储器的效率和速度。
此外,为了提高NAND Flash存储器的存储密度,还使用了一种称为多层单元(MLC)技术。
MLC技术允许在每个晶体管中存储多个比特的数据,通过改变电荷量的范围表示不同的数值。
然而,MLC技术增加了位错误率,因为不同电荷量之间的差异更小,容易受到噪声和电荷漏失的干扰。
总的来说,NAND Flash存储器通过控制晶体管上的浮栅电荷来存储和读取数据。
通过擦除,编程和读取操作,它可以实现非易失性的数据存储,并被广泛应用于闪存存储器和固态硬盘中。
全面理解SSD和NANDFlash
全面理解SSD和NANDFlashFlash Memory又叫做闪存,是一种非易失性存储器。
非易失性是指断电之后数据不会丢失,这里就涉及到断电保护(后面详细讲解)。
总体思路1、前言:HDD和SSD的比较引出Flash。
2、Flash的分类:NAND Flash和NOR Flash。
3、NAND Flash规则介绍。
4、SSD固件(Firmware,FW)包括:映射表(Mapping Table)、垃圾回收(Garbage Collection)、磨损平衡(Wear Leveling,WL)等。
5、补充概念:写入放大(Write Application)、预留空间(Over Provisioning)、Flash寿命(Program/Erase Count,P/E)等。
6、断电保护机制。
7、对SSD的评价标准:稳定性、性能、寿命。
1、前言(1)HDDHDD是指机械硬盘,是传统普通的硬盘。
介质:采用磁性碟片来存储。
包括:盘片、磁头、磁盘旋转轴及控制电机、磁头控制器、数据转接器、接口、缓存。
机械式硬盘最大速率约为100MB/s,由于容易发热等原因已经无法再进一步提升速度,所以引入了固态硬盘(2)SSDSSD(Solid State Drives)是固态硬盘。
介质:采用闪存颗粒来存储。
包括:控制单元、存储单元(DRAM芯片/FLASH芯片)。
(3)性能&外观区别HDD是机械式寻找数据,所以防震远低于SSD,数据寻找时间也远低于SSD。
SSD(左图)和HDD(右图)的模样区别如下:(图片来自百度)2、Flash的分类Flash又分NAND Flash和NOR Flash,NOR型存储内容以编码为主,其功能多与运算相关;NAND型主要功能是存储资料,如数码相机中所用的记忆卡。
现在大部分的SSD都是用来存储不易丢失的资料,所以SSD存储单元会选择NAND Flash芯片。
这里我们讲的就是SSD中的NAND Flash芯片。
NAND_FLASH_内存详解与读写寻址方式
NAND_FLASH_内存详解与读写寻址⽅式⼀、内存详解NAND闪存阵列分为⼀系列128kB的区块(block),这些区块是 NAND器件中最⼩的可擦除实体。
擦除⼀个区块就是把所有的位(bit)设置为"1"(⽽所有字节(byte)设置为FFh)。
有必要通过编程,将已擦除的位从"1"变为"0"。
最⼩的编程实体是字节(byte)。
⼀些NOR闪存能同时执⾏读写操作(见下图1)。
虽然NAND不能同时执⾏读写操作,它可以采⽤称为"映射(shadowing)"的⽅法,在系统级实现这⼀点。
这种⽅法在个⼈电脑上已经沿⽤多年,即将BIOS从速率较低的ROM加载到速率较⾼的RAM上。
NAND的效率较⾼,是因为NAND串中没有⾦属触点。
NAND闪存单元的⼤⼩⽐NOR要⼩(4F2:10F2)的原因,是NOR的每⼀个单元都需要独⽴的⾦属触点。
NAND与硬盘驱动器类似,基于扇区(页),适合于存储连续的数据,如图⽚、⾳频或个⼈电脑数据。
虽然通过把数据映射到RAM上,能在系统级实现随机存取,但是,这样做需要额外的RAM存储空间。
此外,跟硬盘⼀样,NAND器件存在坏的扇区,需要纠错码(ECC)来维持数据的完整性。
存储单元⾯积越⼩,裸⽚的⾯积也就越⼩。
在这种情况下,NAND就能够为当今的低成本消费市场提供存储容量更⼤的闪存产品。
NAND闪存⽤于⼏乎所有可擦除的存储卡。
NAND的复⽤接⼝为所有最新的器件和密度都提供了⼀种相似的引脚输出。
这种引脚输出使得设计⼯程师⽆须改变电路板的硬件设计,就能从更⼩的密度移植到更⼤密度的设计上。
NAND与NOR闪存⽐较NAND闪存的优点在于写(编程)和擦除操作的速率快,⽽NOR的优点是具有随机存取和对字节执⾏写(编程)操作的能⼒(见下图图2)。
NOR的随机存取能⼒⽀持直接代码执⾏(XiP),⽽这是嵌⼊式应⽤经常需要的⼀个功能。
nor flash和nand flash的原理
nor flash和nand flash的原理
Nor Flash和Nand Flash是两种不同的闪存存储器技术,具有
不同的工作原理。
1. Nor Flash原理:
Nor Flash是一种非易失性存储器技术,采用了行列式的存储
结构。
它由一组相互连接的存储单元组成,每个存储单元可以存储一个位信息(0或1)。
每个存储单元有自己的地址,通
过提供正确的地址和时钟信号,可以从Nor Flash中读取数据。
Nor Flash的读取操作是以字节为单位进行的,因此可以快速
地访问任何存储位置。
另外,Nor Flash还支持随机访问,即
可以直接按地址读取任何存储单元的数据。
2. Nand Flash原理:
Nand Flash也是一种非易失性存储器技术,采用了串行式的存
储结构。
它由一组相互连接的存储单元组成,每个存储单元可以存储多个位信息。
Nand Flash的读取操作是以块为单位进行的,需要按照顺序从存储块的开头读取数据。
Nand Flash没有
提供直接随机访问的功能,需要通过读取整块数据,并在内部进行解码和处理才能获取所需的数据。
Nor Flash和Nand Flash在存储密度、读写速度、擦除操作等
方面有着不同的优势和局限性。
Nor Flash适用于在系统中需
要频繁读取数据的应用场景,如代码执行、系统启动等;而Nand Flash适用于需要较大存储容量和较低成本的应用场景,
如音视频存储、移动设备存储等。
nandflash
Nand Flash是flash存储器的一种,其内部采用非线性宏单元模式,为固态大容量内存的实现提供了廉价有效的解决方案。
Nand Flash存储器具有容量较大,改写速度快等优点,适用于大量数据的存储,因而在业界得到了越来越广泛的应用,如嵌入式产品中包括数码相机、MP3随身听记忆卡、体积小巧的U盘等。
NAND型闪存以块为单位进行擦除操作。
闪存的写入操作必须在空白区域进行,如果目标区域已经有数据,必须先擦除后写入,因此擦除操作是闪存的基本操作。
S3C2440的Nand Flash控制器有一个特殊的功能,在S3C2440上电后,NandFlash控制器会自动的把Nand Flash上的前4K数据搬移到4K内部SRAM中,并把0x00000000设置内部SRAM的起始地址,CPU从内部SRAM的0x00000000位置开始启动。
这个过程不需要程序干涉。
程序员需要完成的工作,是把最核心的启动程序放在Nand Flash的前4K中。
启动程序的安排由于Nand Flash控制器从NandFlash中搬移到内部SRAM的代码是有限的,所以在启动代码的前4K里,我们必须完成S3C2440的核心配置以及把启动代码(U-BOOT)剩余部分搬到SDRAM 中运行。
u-boot源码不支持从nand flash启动,可是s3c2440支持从nand flash启动,开发板加电后s3c2440将nand flash的前4k(保存有u-boot的部分功能--拷贝功能--把nand flash 中的内容拷贝到SDRAM)拷贝到sram(s3c2440芯片内的sram)。
这就需要修改u-boot源码,增加u-boot的功能: 使u-boot在得到执行权后能够将其自身拷贝到开发板上SDRAM中,以便处理器能够执行u-boot。
* NOR FLASH地址线和数据线分开,来了地址和控制信号,数据就出来。
*NAND Flash地址线和数据线在一起,需要用程序来控制,才能出数据。
Nandflash介绍
nandflah 块Block 页page1.一个nand flash由很多个块(Block)组成,块的大小一般是-> 128KB,-> 256KB,-> 512KB此处是128KB。
2.每个块里面又包含了很多页(page)。
每个页的大小,老的nand flash,页大小是256B,512B,这类的nand flash被称作small block,。
地址周期只有4个。
对于现在常见的nand flash多数是2KB,被称作big block,对应的发读写命令地址,一共5个周期(cycle),更新的nand flash是4KB,块,也是Nand Flash的擦除操作的基本/最小单位。
3.每一个页,对应还有一块区域,叫做空闲区域(spare area)/冗余区域(redundant area),而Linux系统中,一般叫做OOB (Out Of Band),这个区域,是最初基于Nand Flash的硬件特性:数据在读写时候相对容易错误,所以为了保证数据的正确性,必须要有对应的检测和纠错机制,此机制被叫做EDC(Error Detection Code)/ECC(Error Code Correction,或者Error Checking and Correcting),所以设计了多余的区域,用于放置数据的校验值。
页, 是Nand Flash的写入操作的基本/最小的单位。
【Nand Flash数据存储单元的整体架构】简单说就是,常见的nand flash,内部只有一个chip,每个chip只有一个plane。
而有些复杂的,容量更大的nand flash,内部有多个chip,每个chip有多个plane。
这类的nand flash,往往也有更加高级的功能,比如下面要介绍的Multi Plane Program和Interleave Page Program等。
比如,型号为K9K8G08U0A这个芯片(chip),内部有:K9F4G08U0A (256MB) : Plane (1Gb), Plane (1Gb)K9F4G08U0A (256MB) : Plane (1Gb), Plane (1Gb)K9WAG08U1A,内部包含了2个K9K8G08U0AK9NBG08U5A,内部包含了4个K9K8G08U0A【Flash名称的由来】Flash的擦除操作是以block块为单位的,与此相对应的是其他很多存储设备,是以bit位为最小读取/写入的单位,Flash是一次性地擦除整个块:在发送一个擦除命令后,一次性地将一个block,常见的块的大小是128KB/256KB。
解读NANDFLASHppt课件
目前MLC和SLC 在2GB闪存芯片上的价格相差了将近100多元,他们的差异还是比 较明显的。所以对于选择数码播放器的朋友,选择更便宜廉价的MLC芯片产品还 是选择稳定性和性能更好的SLC产品,就看你的需要了。
2.东芝将在2006年推出布线宽度为55nm的产品,以求提高读写速度。东芝目前的 主力品种为布线70nm的产品,读取速度为每秒6MB,Fab1,Fab2产能达到10-11万 片
3. 2006年底英特尔正式导入50纳米投产NAND型闪存 。
4.2007年底多数NAND Flash业者将产能转进50纳米工艺世代,像是东芝 (Toshiba)旗下所有12英寸厂均已全数转进56纳米工艺出货。
第三节 NAND FLASH 品牌
从上表从而可以看出,我们现在FLASH行业的一些常见品牌: 1.SamSung三星 2.Toshiba 东芝 (最早提出闪存概念的公司) 3.Hynix 海力士 4.Micron Technology 镁光 5.Interl 英特尔(第一个生产闪存并投入市场的公司)
硅晶棒再经过研磨,抛光,切片后,即成为积体电路工厂的基本原料——硅 晶圆片,这就是“晶圆”。在硅晶片上可加工制作成各种电路元件结构,而成为
有 特定电性功能之IC产品。
第三章 FLASH的发展
1.在1984年,东芝公司的发明人Fujio Masuoka 首先提出了快速闪存存储器(此 处简称闪存)的概念。
NOR和NAND是现在市场上两种主要的非易失闪存技术。Intel于1988年 首先开发出NOR flash技术,彻底改变了原先由EPROM和EEPROM一统 天下的局面。紧接着,1989年,东芝公司发表了NAND flash结结,强调 降低每比特的成本,更高的性能,并且象磁盘一样可以通过接口轻松升 级。但是经过了十多年之后,仍然有相当多的硬件工程师分不清NOR和 NAND闪存。
Nand-Flash详述(绝对经典)
NandFlash详述1. 硬件特性:【Flash的硬件实现机制】Flash全名叫做Flash Memory,属于非易失性存储设备(Non-volatile Memory Device),与此相对应的是易失性存储设备(Volatile Memory Device)。
这类设备,除了Flash,还有其他比较常见的如硬盘,ROM等,与此相对的,易失性就是断电了,数据就丢失了,比如大家常用的内存,不论是以前的SDRAM,DDR SDRAM,还是现在的DDR2,DDR3等,都是断电后,数据就没了。
Flash的内部存储是MOSFET,里面有个悬浮门(Floating Gate),是真正存储数据的单元。
-------------------------------------------------------------------------------------------------------------------------金属-氧化层-半导体-场效晶体管,简称金氧半场效晶体管(Metal-Oxide-SemiconductorField-Effect Transistor, MOSFET)是一种可以广泛使用在模拟电路与数字电路的场效晶体管(field-effect transistor)。
MOSFET依照其“通道”的极性不同,可分为n-type与p-type的MOSFET,通常又称为NMOSFET与PMOSFET,其他简称尚包括NMOS FET、PMOS FET、nMOSFET、pMOSFET等。
-------------------------------------------------------------------------------------------------------------------------在Flash之前,紫外线可擦除(uv-erasable)的EPROM,就已经采用用Floating Gate存储数据这一技术了。
NAND_flash(最详细)
NAND flash和NOR flash详解NOR和NAND是现在市场上两种主要的非易失闪存技术。
Intel于1988年首先开发出NOR flash技术,彻底改变了原先由EPROM和EEPROM一统天下的局面。
紧接着,1989年,东芝公司发表了NAND flash结构,强调降低每比特的成本,更高的性能,并且象磁盘一样可以通过接口轻松升级。
但是经过了十多年之后,仍然有相当多的硬件工程师分不清NOR和NAND闪存。
相“flash存储器”经常可以与相“NOR存储器”互换使用。
许多业内人士也搞不清楚NAND闪存技术相对于NOR技术的优越之处,因为大多数情况下闪存只是用来存储少量的代码,这时NOR闪存更适合一些。
而NAND则是高数据存储密度的理想解决方案。
NOR的特点是芯片内执行(XIP, eXecute In Place),这样应用程序可以直接在flash 闪存内运行,不必再把代码读到系统RAM中。
NOR的传输效率很高,在1~4MB的小容量时具有很高的成本效益,但是很低的写入和擦除速度大大影响了它的性能。
NAND结构能提供极高的单元密度,可以达到高存储密度,并且写入和擦除的速度也很快。
应用NAND的困难在于flash的管理和需要特殊的系统接口。
1. 性能比较flash闪存是非易失存储器,可以对称为块的存储器单元块进行擦写和再编程。
任何flash器件的写入操作只能在空或已擦除的单元内进行,所以大多数情况下,在进行写入操作之前必须先执行擦除。
NAND器件执行擦除操作是十分简单的,而NOR则要求在进行擦除前先要将目标块内所有的位都写为0。
由于擦除NOR器件时是以64~128KB的块进行的,执行一个写入/擦除操作的时间为5s,与此相反,擦除NAND器件是以8~32KB的块进行的,执行相同的操作最多只需要4ms。
执行擦除时块尺寸的不同进一步拉大了NOR和NADN之间的性能差距,统计表明,对于给定的一套写入操作(尤其是更新小文件时),更多的擦除操作必须在基于NOR的单元中进行。
nand flash基本组成单元-概述说明以及解释
nand flash基本组成单元-概述说明以及解释1.引言1.1 概述Nand Flash作为一种大容量、快速、稳定的闪存存储器件,在现代电子设备中扮演着重要角色。
本文将深入探讨Nand Flash的基本组成单元,包括闪存芯片、控制器和存储单元。
通过对这些组成单元的分析,我们可以更好地理解Nand Flash的工作原理和性能特点。
同时,文章还将探讨Nand Flash在未来的应用前景,并展望其在电子设备领域的发展趋势。
通过本文的阅读,读者将能够对Nand Flash有更全面的认识,并了解其在存储技术领域的重要性和应用前景。
1.2 文章结构:本文主要分为引言、正文和结论三个部分。
在引言部分中,将概述nand flash的基本组成单元,介绍文章结构和目的。
在正文部分中,将详细介绍nand flash基本组成单元的三个主要部分:闪存芯片、控制器和存储单元。
最后,在结论部分将对本文内容进行总结,探讨nand flash在未来的应用前景和展望。
整篇文章将逐步深入探讨nand flash的基本组成单元,帮助读者更好地了解这一存储设备的结构和原理。
1.3 目的本文旨在深入探讨Nand Flash的基本组成单元,包括闪存芯片、控制器以及存储单元。
通过对这些组成单元的详细分析,读者可以更好地了解Nand Flash的工作原理和内部结构。
同时,本文也旨在展现Nand Flash在存储领域的重要性和广泛应用,为读者提供对其应用前景和未来发展的展望。
通过本文的阅读,读者将获得关于Nand Flash基本组成单元的全面了解,为其在相关领域的学习和研究提供帮助。
2.正文2.1 Nand Flash基本组成单元在Nand Flash存储器中,主要由闪存芯片、控制器和存储单元三个基本组成单元构成。
2.1.1 闪存芯片闪存芯片是Nand Flash存储器的核心部件,它由大量的存储单元组成,每个存储单元都可以存储多个比特的数据。
闪存芯片通过存储单元的组织和管理,实现对数据的读写操作。
终于有人说清楚了什么是DRAM、什么是NANDFlash
终于有⼈说清楚了什么是DRAM、什么是NANDFlash所有使⽤者对“存储器”这个名词可是⼀点都不陌⽣,因为所有的电⼦产品都必须⽤到存储器,且通常⽤到不只⼀种存储器。
不过对于存储器种类、规格与形式,很多⼈容易搞混。
⽐如,最近价格贵到炸的 NAND Flash,产业新闻⾥常常提到的DRAM,还有SRAM、SDRAM、DDR 3、DDR 4、NOR Flash … 这些⼜是什么?先来⼀段百度百科。
存储器是⽤来存储程序和数据的部件,对于计算机来说,有了存储器,才有记忆功能,才能保证正常⼯作。
存储器的种类很多,按其⽤途可分为主存储器和辅助存储器,主存储器⼜称内存储器(简称内存,港台称之为记忆体)。
外储存器是指除计算机内存及CPU缓存以外的储存器,此类储存器⼀般断电后仍然能保存数据。
常见的外存储器有硬盘、软盘、光盘、U盘等。
⽽简单来说,DRAM就是我们⼀般在⽤的内存,⽽NAND Flash 闪存,它在做的事情其实是硬盘。
(这段是给电脑⼩⽩的科普,⼤家可以酌情跳过)不熟悉PC知识的朋友常常在选购设备时问,硬盘和内存到底有什么差别?我硬盘容量明明有 1TB,但PC还是跑得很慢哎?硬盘和内存的差异,在于把电源关掉后、空间中储存的数据还会不会留着。
就算关掉电源,硬盘的数据也不会消失。
但我们要运算数据时,如果 CPU 要直接从硬盘⾥⾯抓数据,时间会太久。
所以”内存”会作为中间桥梁,先到硬盘⾥⾯复制⼀份进来、再让 CPU 直接到内存中拿数据做运算。
这样会⽐直接去硬盘抓数据,快约数百万倍。
打开任务管理器,就可以看到现在执⾏中程序占掉的内存空间,很多⼈就在骂Chrome 耗费的运算资源很⾼,内存使⽤率⾼于其他浏览器,多开⼏个分页内存就被吃完了。
所以简单来说,计算机在运作就像是办公⼀样,喝饮料、看书本、听⾳响… 想⼀次使⽤越多东西、桌⾯(内存)就要越⼤。
但其他⼀时间没有要⽤到的东西,都会放在抽屉(硬盘)⾥⾯。
所以硬盘就算再⼤,你⼀次想执⾏很多任务,还是得要看内存⼤⼩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.2007年1月,东芝公司宣布,与合作伙伴SanDisk一起开发成功56nm工艺 8Gb(1GB)/16Gb(2GB)闪存芯片。与以往的产品一样,这两种芯片仍 然采用MLC(Multi Level Cell)存储架构。
6.三星50nm制程打造16Gb NAND闪存送样。 7.三星率先量产51nm制程16Gb NAND闪存芯片,成为首家量产51nm 16Gb NAND闪存的公司,该容量为业内最高,而51nm工艺也是目前最精密的制 程技术。
8.争抢苹果NAND闪存订单 海力士跑步进入57纳米制程 。
第四节 NAND FLASH的40-30纳米时代
海力士NAND Flash从60纳米直接跳到48纳米工艺,但这一步却走了相当久,原预 计2008年初量产,却一延再延,眼看三星电子(Samsung Electronics)下半年量 产42纳米,东芝(Toshiba)43纳米工艺也将步入量产,以及美光(Micron)和英特 尔(Intel)34纳米工艺计划量产,使得海力士亟欲将48纳米工艺推上前线。事实 上,海力士最新48纳米工艺,与三星和东芝50纳米工艺是同一个世代。 1.2006年9月,韩国三星电子公司宣布,开发成功40nm工艺生产容量达32b(4GB) 的NAND闪存芯片, 2.英特尔镁光发布采用34纳米工艺 生产32Gbit闪存芯片 。 市调机构Semiconductor Insights更指出,NAND Flash未来至少能精进至20纳米 工艺,使得业界原本规划欲取代Flash的Universal Memory技术,包括FeRAM、 MRAM、OUM与其它存储器技术,都有可能不敌Flash如此迅猛的进步速度,甚至将 导致它们因此退出历史舞台。
2.虽然BGA的功耗增加,但由于采用的是可控塌陷芯片法焊接,从而可以 改善 热性能。 3.信号传装方式二 COB
COB(Chip on board)工艺,是指厂商为节省成本,没有采用标准的闪存芯 片+控制芯片独立封装的形式,而是将闪存芯片和控制器芯片直接连接,封 装在一体,并固定于印刷线路板上的生产方式。
单芯片TSOP生产工艺流程比较简单,只需要经过一次贴片、一次烘烤、一次 引线键合就可以了,流程如图所示:
第二节 FLASH具体制作封装过程
晶圆是制造IC的基本原料,而晶圆又是什么制作来的呢--硅,晶圆的原始材 料是硅,而地壳表面有用之不竭的二氧化硅 。
硅是由沙子所精练出来的,晶圆便是硅元素加以纯化(99.999%)接着是将 这些纯硅制成长硅晶棒,成为制造积体电路的石英半导体的材料,经过照相制 版,研磨,抛光,切片等程序,将多晶硅融解拉出单晶硅晶棒,然后切割成一片 一片薄薄的晶圆。我们会听到几寸的晶圆厂,如果硅晶圆的直径越大,代表著这 座晶圆厂有较好的技术。另外还有scaling技术可以将电晶体与导线的尺寸缩 小,这两种方式都可以在一片晶圆上,制作出更多的硅晶粒,提高品质与降低成 本。所以这代表6寸、8寸、12寸晶圆当中,12寸晶圆有较高的产能。当然,生产 晶圆的过程当中,良品率是很重要的条件。 硅晶棒再经过研磨,抛光,切片后,即成为积体电路工厂的基本原料——硅 晶圆片,这就是“晶圆”。在硅晶片上可加工制作成各种电路元件结构,而成为 有 特定电性功能之IC产品。
3.2005年,三星将大批量生产70纳米技术4G NAND闪存 2005年6月,三星本周一宣布,已经开始在 12寸晶圆上投产 70纳米制程的 NAND flash 记忆芯片,这也是目前业界所能投产的最高制程!每月12英寸晶 圆产能约7,000片,年底达到月产能1.5万片水平 。 4.2006年,海力士Hynix发布NAND闪存路线图 ,采用70纳米技术年量产 16Gb产品
第二节 NAND FLASH的70纳米时代
1.三星于2005年1月初宣布成功导入70nm制程科技投产4Gb NAND型闪存,不到 1个月内又宣布即将自3月开始,量产高容量4Gb NAND型闪存,与90nm制程相 较,导入70nm制程量产后,可望为三星增加4成左右的NAND型闪存产能。 2.2005年出,东芝与SanDisk公司宣布,已经成功开发出使用70nm制造工艺的 8Gb NAND闪存芯片,实现了单一芯片存储1GB数据的目标。
第一节 闪存前期发展至90纳米制程的过渡
90纳米对半导体厂商来说,是更加尖端的技术领域,过去工艺都以“微米”做 单位,微米是纳米(nm)的1000倍。我们常以工艺线宽来代表更先进的半导体技 术,如0.25微米、0.18微米、0.13微米,0.13微米以下的更先进工艺则进入了 纳米领域。130纳米(0.13微米)在2001年是各大半导体公司的研发重点 ,接着 三星于2002年9月宣布90纳米工艺成功试产2G Flash。
2.Toshiba 东芝 (最早提出闪存概念的公司)
3.Hynix 海力士 4.Micron Technology 镁光 5.Interl 英特尔(第一个生产闪存并投入市场的公司)
第二章 FLASH制作过程
第一节 封装方式
芯片封装是指包裹于硅晶外层的物质。目前最常见的封装方式有 TSOP(ThinSmall Outline Packaging),BAG,COB ,一体成型等 ,早期的芯片设计以 DIP(DualInline Package) 以及 SOJ(Small Outline J-lead) ,CSP(Chip ScalePackage)的 方式封装为主。以下对不同封装方式的介绍能够帮助了解它们的不同点。
第三章 FLASH发展
闪存前期发展至90纳米制程的过渡 NAND FLASH的70纳米时代 NAND FLASH的60-50纳米时代 NAND FLASH的40纳米时代 NAND FLASH 30纳米时代及前景发展
第四章 FLASH的应用
第一章 FLASH的感性认识
第一节 什么叫FLASH
第三节 NAND FLASH的60-50纳米时代
如果说90纳米工艺和300mm晶圆厂已经让很多半导体制造商望而怯步的话,那么 65纳米则是半导体制造产业的分界线 。 1.2005年,美国内存大厂美光(Micron)日前宣布,该公司高容量8Gb与4Gb NAND 型快闪存(Flash),已通过客户面验证,目前正出货中。
1.2001年初,三星电子18日表示,已推出采用0.15微米制程技术的512Mb NAND型快闪内存。
2.2001年9月,三星电子领先业界首度采0.12微米制程,将1G NAND型闪存 (Flash Memory)商用化,此次共推出1G单颗闪存及2颗堆栈式2G闪存,计 划用于近来需求遽增的PDA与记忆卡等需储存量多资料的产品。 3. 2004年ST采用120纳米技术发布两款256Mbit与128Mbit的“小型页 面”NAND型闪存。 4.东芝将推出全球第一颗4Gb的NAND闪存芯片 2004年4月东芝采用90纳米技术推出容量4Gb的NAND FLASH,售价为12,000日 元(114美元),2004年第三季度全面量产。 5.美光将生产NAND型闪存 2GB产品年底上市 2004年Q2,美光网络和通讯业务副总Jan du Preez指出:“ 美光积极进军 NAND市场,初期将推出采用90纳米制程的产品,然后升级到72和58纳米。我 们的NAND产品计划包括多重组态及高达16GB的容量,预期会很快量产以满足 市场预测的需求。” 6. 2005年Q2,海力士用90纳米技术推出单颗2GB的NAND FLASH。
2.东芝将在2006年推出布线宽度为55nm的产品,以求提高读写速度。东芝目前的 主力品种为布线70nm的产品,读取速度为每秒6MB,Fab1,Fab2产能达到10-11万 片 3. 2006年底英特尔正式导入50纳米投产NAND型闪存 。
4.2007年底多数NAND Flash业者将产能转进50纳米工艺世代,像是东芝 (Toshiba)旗下所有12英寸厂均已全数转进56纳米工艺出货。
目前MLC和SLC 在2GB闪存芯片上的价格相差了将近100多元,他们的差异还是比 较明显的。所以对于选择数码播放器的朋友,选择更便宜廉价的MLC芯片产品还 是选择稳定性和性能更好的SLC产品,就看你的需要了。
第三节 NAND FLASH 品牌
从上表从而可以看出,我们现在FLASH行业的一些常见品牌: 1.SamSung三星
b)
A.读写速度较慢。相对主流SLC芯片,MLC芯片目前技术条件下,理论速度只能达 到2MB左右,因此对于速度要求较高的应用会有一些问题。 B.MLC能耗比SLC高,在相同使用条件下比SLC要多15%左右的电流消耗。 C.MLC理论写入次数上限相对较少,因此在相同使用情况下,使用寿命比较SLC短。 D.MLC的价格比SLC低30%~40%,有些甚至更低。
Flash Memory中文名字叫闪存,是一种长寿命的非易失性(在断电情 况下仍能保持所存储的数据信息)的存储器。
第二节 FLASH的分类
功能特性分为两种:一种是NOR型闪存,以编码应用为主,其功能多与 运算相关;另一种为NAND型闪存,主要功能是存储资料,如数码相机 中所用的记忆卡。
1. NOR FLASH和NAND FLASH
第三章 FLASH的发展
1.在1984年,东芝公司的发明人Fujio Masuoka 首先提出了快速闪存存储器(此 处简称闪存)的概念。 2.Intel是世界上第一个生产闪存并将其投放市场的公司。1988年,公司推出了 一款256K bit闪存芯片。 3.第二种闪存称为NAND闪存。它由东芝公司于1989年研制,并被认为是NOR 闪存的理想替代者。 4.MLC是英特尔(Intel)在1997年9月最先开发成功的。 5.2004年,除三星和东芝增加产能外,包括Hynix、英飞凌及瑞萨等大厂,也自 2004年起陆续进入NAND闪存市场。
封装方式一 BGA
BGA(Ball Grid Array Package)---球栅阵列封装
随着集成电路技术的发展,对集成电路的封装要求更加严格。这是因为封装技术 关系到产品的功能性,当IC的频率超过100MHz时,传统封装方式可 能会产生所 谓的“CrossTalk”现象,而且当IC的管脚数大于208 Pin时,传统的封装方式有其 困难度。因此,除使用QFP封装方式外,现今大多数的高脚数芯片(如图形芯片 与芯片组等)皆转而使用BGA(Ball Grid Array Package)封装技术。BGA一出现 便成为CPU、主板上南/北桥芯片等高密度、高性能、多引脚封装的最佳选择。 BGA封装具有以下特点: 1.I/O引脚数虽然增多,但引脚之间的距离远大于QFP封装方式,提高了成品率。