频率与概率练习题

合集下载

2022年《用频率估计概率》专题练习(附答案)

2022年《用频率估计概率》专题练习(附答案)

3.2 用频率估计概率一、填空题1.“抛出的蓝球会下落〞,这个事件是 事件.〔填“确定〞或“不确定〞〕 2.有五张卡片,每张卡片上分别写有1,2,3,4,5,洗匀后从中任取一张,放回后再抽一张,两次抽到的数字和为 的概率最大,抽到和大于8的概率为 .3.在体育测试中,2分钟跳160次为达标,小敏记录了她预测时2分钟跳的次数分别为145,155,140,162,164,那么她在该次预测中达标的概率是 .4.两位同学进行投篮,甲同学投20次,投中15次;乙同学投15次,投中9次,命中率高的是 ,对某次投篮而言,二人同时投中的概率是 .5.某口袋中有红色、黄色、蓝色玻璃共72个,小明通过屡次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%.25%和40%,估计口袋中黄色玻璃球有 个.6.口袋里有红、绿、黄三种颜色的球,其中红球4个,绿球5个,任意摸出一个绿球的概率是31,那么摸出一个黄球的概率是 .7.一只不透明的布袋中有三种小球〔除颜色以外没有任何区别〕,分别是2个红球,3个白球和5个黑球,每次只摸出一只小球,观察后均放回搅匀.在连续9次摸出的都是黑球的情况下,第10次摸出红球的概率是 .8.甲、乙两同学手中各有分别标注1,2,3三个数字的纸牌,甲制定了游戏规那么:两人同时各出一张牌,当两纸牌上的数字之和为偶数时甲赢,奇数时乙赢.你认为此规那么公平吗?并说明理由._________________________________.9.一个口袋中有12个白球和假设干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有 个黑球.10.如图,创新广场上铺设了一种新颖的石子图案,它由五个过同一点且半径不同的圆组成,其中阴影局部铺黑色石子,其余局部铺白色石子.小鹏在规定地点随意向图案内投掷小球,每球都能落在图案内,经过屡次试验,发现落在一、三、五环(阴影)内的概率分别是0.04,0.2,0.36,如果最大圆的半径是1米,那么黑色石子区域的总面积约为 米2〔精确到2〕.二、选择题11.以下模拟掷硬币的实验不正确的选项是 〔 〕A .用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下B .袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上C .在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上D .将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上12.把一个质地均匀的骰子掷两次,至少有一次骰子的点数为2的概率是 〔 〕A .21B .51C .361D .3611 13.有6张反面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,假设将这六张牌反面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为〔 〕〔第10题〕〔第16题〕 A .32 B .21 C .41 D .31 14.如图,小明周末到公园走到十字路口处,记不清前面哪条路通往公园,那么他能一次选对路的概率是〔 〕A .21B .31C .41 D .015.如图,两个用来摇奖的转盘,其中说法正确的选项是〔 〕A .转盘〔1〕中蓝色区域的面积比转盘〔2〕中的蓝色区域面积要大,所以摇转盘〔1〕比摇转盘〔2〕时,蓝色区域得奖的可能性大B .两个转盘中指针指向蓝色区域的时机一样大C .转盘〔1〕中,指针指向红色区域的概率是31 D .在转盘〔2〕中只有红.黄.蓝三种颜色,指针指向每种颜色的概率都是3116.把一个沙包丢在如下图的某个方格中〔每个方格除颜色外完全一样〕,那么沙包落在黑色格中的概率是〔 〕A .21B .31C .41 D .5117.中央电视台“幸运52”栏目中的“百宝箱〞互动环节,是一种竞猜游戏,游戏规那么如下:在20个商标中,有5个商标牌的反面注明了一定的奖金额,其余商标的反面是一张苦脸,假设翻到它就不得奖.参加这个游戏的观众有三次翻牌的时机,某观众前两次翻牌均得假设干奖金,已经翻过的牌不能再翻,那么这位获奖的概率是〔 〕A .41B .61C .51D .203 18.如图,高速公路上有A 、B 、C 三个出口,A 、B 之间路程为a 千米,B 、C 之间的路程为b 千米,决定在A 、C 之间的任意一处增设一个效劳区,那么此效劳区设在A 、B 之间的概率是〔 〕A .a b B .b a C .b a a + D .b a b +小明家 公园 〔第14题〕 〔第15题〕 A BC〔第18题〕三、解答题19.小明、小华用四张扑克牌玩游戏〔方块2、黑桃4、红桃5、梅花5〕,他俩将扑克牌洗匀后,反面朝上放置在桌面上,小明先抽,小华后抽,抽出的牌不放回.〔1〕假设小明恰好抽到黑桃4.①请绘制这种情况的树状图;②求小华抽的牌的牌面数字比4大的概率.〔2〕小明、小华约定:假设小明抽到的牌的牌面数字比小华的大,那么小明胜,反之那么小明负;假设牌面数字一样,那么不分胜负,你认为这个游戏是否公平?说明你的理由.20.某商场设立了一个可以自由转动的转盘,并做如下规定:顾客购物80元以上就获得一次转动转盘的时机,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据.〔1〕计算并完成表格;〔2〕请估计,当n很大时,频率将会接近多少?〔3〕假设你去转动该盘一次,你获得洗衣粉的概率约是多少?〔4〕在该转盘中,表示“洗衣粉〞区域的扇形的圆心角约是多少?〔精确到1°〕21.某篮球队在平时训练中,运发动甲的3分球命中率是70%,运发动乙的3分球命中率是50%. 在一场比赛中,甲投3分球4次,命中一次;乙投3分球4次,全部命中. 全场比赛即将结束,甲、乙两人所在球队还落后对方球队2分,但只有最后一次进攻时机了,假设你是这个球队的教练,问:〔1〕最后一个3分球由甲、乙中谁来投,获胜的时机更大?〔2〕请简要说说你的理由.22.王强与李刚两位同学在学习“概率〞时.做抛骰子(均匀正方体形状)实验,他们共抛了54次,出现向上点数的次数如下表:向上点数 1 2 3 4 5 6出现次数 6 9 5 8 16 10 〔1〕请计算出现向上点数为3的频率及出现向上点数为5的频率.〔2〕王强说:“根据实验,一次试验中出现向上点数为5的概率最大.〞李刚说:“如果抛540次,那么出现向上点数为6的次数正好是100次.〞请判断王强和李刚说法的对错.〔3〕如果王强与李刚各抛一枚骰子.求出现向上点数之和为3的倍数的概率.23.有一个“摆地摊〞的赌主,他拿出2个白球和2个黑球,放在一个袋子里,让人摸球中奖,只要交1元钱,就可以从袋里摸2个球,如果摸到的2个球都是白球,可以得到4元的回报,请计算一下中奖的时机,如果全校一共2400人,有一半学生每人摸了一回,赌主将从学生身上骗走多少钱?24.六个面上分别标有1、1、2、3、3、5六个数字的均匀立方体的外表展开图如图6所示,掷这个立方体一次,记朝上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数为该点的纵坐标.按照这样的规定,每掷一次该小立方体,就得到平面内一个点的坐标.〔1〕掷这样的立方体可能得到的点有哪些?请把这些点在如下给定的平面直角坐标系中表示出来.〔2〕小明前两次掷得的两个点确定一条直线l,且这条直线经过点P〔4,7〕,那么他第三次掷得的点也在直线l上的概率是多少?参考答案一、填空题1.确定 2.6,325 3.25 4.甲,9205.18 6.25 7.15 8.不公平 9.48 10. 二、选择题11.D 12.D 13.D 14.B 15.B 16.B 17.B 18.D三、解答题19.〔1〕①图略,②23;〔2〕这个游戏公平 20.〔1〕0.;;;〔4〕252︒ 21.都可以.最后一个三分球由甲来投,因甲在平时训练中3分球的命中率较高;最后一个3分球由乙来投,因为在本场比赛中乙的命中率更高,投入最后一个球的可能性更大 22.〔1〕出现向上点数为3的频率为554,出现向上点数为5的频率为827;〔2〕都错;〔3〕1323.400元 24.〔1〕〔1,1〕、〔1,1〕、〔2,3〕、〔3,2〕、〔3,5〕、〔5,3〕;〔2〕通过描点和计算可以发现,经过〔1,1〕,〔2,3〕,〔3,5〕三点中的任意两点所确定的直线都经过点P 〔4,7〕,所以小明第三次掷得的点也在直线l 上的概率是46=23第2课时 比例的性质一、填空题1.a :b :c=2:3:5,那么cb b a -- =________. 2.〔a-b 〕:b=2:3,那么a :b=_______ 3.实数x ,y ,z 满足x+y+z=0,3x-y+2z=0,那么x :y :z=________.4.设实数x ,y ,z 使│x -2y│+ 〔3x-z 〕2=0成立,求x :y :z 的值________. 5、3)(4)2(y x y x -=+,那么=y x : ,=+x y x 6、543z y x ==,那么=++xz y x ,=+-++z y x z y x 53232 7、如果3:1:1::=c b a ,那么=+--+cb ac b a 3532二、选择题8、dc b a =,那么以下等式中不成立的是〔 〕 A.cd a b = B. d d c b b a -=- C. d c c b a a +=+ D. b a c b d a =++ 9、53=y x ,那么在①41=+-y x y x ②5353=++y x ③1332=+y x x ④38=+x y x 这四个式子中正确的个数是〔 〕A. 1个B. 2个C. 3个D. 4个三、解答题10、7532=b a ,求b ab a 3423+的值。

用频率估计概率(习题)

用频率估计概率(习题)

3.2用频率估计概率分层训练提分要义【基础题】1.在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在0.15.和0.45,则该袋子中的白色球可能有()A.6个B.16个C.18个D.24个2.某农科所在相同条件下做某作物种子发芽率的试验,结果如表所示:有下面四个推断:①种子个数是700时,发芽种子的个数是624,所以种子发芽的概率是0.891;②随着种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性,可以估计种子发芽的概率约为0.9(精确到0.1);③种子个数最多的那次试验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中正确的是()A.①②B.③④C.②③D.②④3.为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.人数60 260 550 130 根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32 B.0.55 C.0.68 D.0.874.对一批衬衣进行抽检,得到合格衬衣的频数表如下,若出售1200件衬衣,则其中次品的件数大约是()抽取件数50 100 150 200 500 800 1000 (件)合格频数48 98 144 193 489 784 981 A.12 B.24 C.1188 D.11765.为庆祝建党99周年,某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”:B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是()A.0.25 B.0.3 C.25 D.306.如图为某一试验结果的频率随试验次数变化趋势图,则下列试验中不符合该图的是()A.掷一枚普通正六面体骰子,出现点数不超过2B.掷一枚硬币,出现正面朝上C.从装有2个黑球、1个白球的不透明布袋中随机摸出一球为白球D.从分别标有数字l,2,3,4,5,6,7,8,9的九张卡片中,随机抽取一张卡片所标记的数字不小于77.老师组织学生做分组摸球实验.给每组准备了完全相同的实验材料,一个不透明的袋子,袋子中装有除颜色外都相同的3个黄球和若干个白球.先把袋子中的球搅匀后,从中随意摸出一个球,记下球的颜色再放回,即为一次摸球.统计各组实验的结果如下:一组二组三组四组五组六组七组八组九组十组摸球的次数100 100 100 100 100 100 100 100 100 100摸到白球的次数41 39 40 43 38 39 46 41 42 38请你估计袋子中白球的个数是()A.1个B.2个C.3个D.4个8.在一次心理健康教育活动中,张老师随机抽取了40名学生进行了心理健康测试,并将测试结果按“健康、亚健康、不健康”绘制成下列表格,其中测试结果为“健康”的频率是().类型健康亚健康不健康数据(人)32 7 1A.32 B.7 C.710D.459.某班学生做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球10.如图,已知不透明的袋中装有红色、黄色、蓝色的乒乓球共120个,某学习小组做“用频率估计概率”的摸球实验(从中随机摸出一个球,记下颜色后放回),统计了“摸出球为红色”出现的频率,绘制了如图折线统计图,那么估计袋中红色球的数目为()A.20 B.30 C.40 D.6011.从淄博汽车站到银泰城有甲,乙,丙三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从淄博汽车站到银泰城的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:线路/公交车用时的30≤t≤35 35≤t≤40 40≤t≤45 45≤t≤50 合计频数/公交车用时甲59 151 166 124 500乙50 50 122 278 500丙45 265 167 23 500早高峰期间,乘坐线路上的公交车,从淄博汽车站到银泰城“用时不超过45分钟”的可能性最大.()A.甲B.乙C.丙D.无法确定12.某位篮球爱好者进行了三轮投篮试验,结果如下表:轮数投球数命中数命中率第一轮10 8 0.8则他的投篮命中率为()A.45B.23C.34D.不能确定13.为了解某市九年级男生的身高情况,随机抽取了该市100名九年级男生,他们的身高x (cm)统计如下:根据以上结果,全市约有3万名男生,估计全市男生的身高不高于180cm 的人数是()A.28500 B.17100 C.10800 D.1500【中档题】14.一个不透明的袋子中装有4个白球和若干个黄球,它们除颜色外完全相同,从袋子中随机摸出一球,再放回,不断重复,共摸球30次,其中10次摸到白球,则估计袋子中大约有黄球______个.15.某数学小组做抛掷一枚质地不均匀纪念币的实验,整理同学们获得的实验数据,如表.则抛掷该纪念币正面朝上的概率约为_________.(精确到0.01)16.对一批口罩进行抽检,统计合格口罩的只数,得到合格口罩的频率如下:估计从该批次口罩中任抽一只口罩是合格品的概率为_____.17.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有6个黑球,从袋中随机摸出一球,记下其颜色,称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出n的值是____.【综合题】18.“网红”长沙入选2021年“五一”假期热门旅游城市.本市某景点为吸引游客,设置了一种游戏,其规则如下:凡参与游戏的游客从一个装有12个红球和若干个白球(每个球除颜色外,其他都相同)的不透明纸箱中,随机摸出一个球,摸到红球就可免费得到一个景点吉祥物.据统计参与这种游戏的游客共有60000人,景点一共为参与该游戏的游客免费发放了景点吉祥物15000个.(1)求参与该游戏可免费得到景点吉祥物的频率;(2)请你估计纸箱中白球的数量接近多少?19.在不透明的口袋中装有1个白色、1个红色和若干个黄色的乒乓球(除颜外其余都相同),小明为了弄清黄色乒乓球的个数,进行了摸球的实验(每次只摸一个,记录颜色后放回,搅匀后重复上述步骤),下表是实验的部分数据:(1)请你估计:摸出一个球恰好是白球的概率大约是(精确到0.01),黄球有个;(2)如果从上述口袋中,同时摸出2个球,求结果是一红一黄的概率.20.一个不透明的箱子里装有3个红色小球和若干个白色小球,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量重复实验后,发现摸到红色小球的频率稳定于0.75左右.(1)请你估计箱子里白色小球的个数;(2)现从该箱子里摸出1个小球,记下颜色后放回箱子里,摇匀后,再摸出1个小球,求两次摸出的小球颜色恰好不同的概率(用画树状图或列表的方法).21.新冠疫情期间,某校有“录播”和“直播”两种教学方式供学生自主选择其中一种进行居家线上学习.为了了解该校学生线上学习参与度情况,从选择这两种教学方式的学生中,分别随机抽取50名进行调查,调查结果如表(数据分组包含左端值不包含右端值).0~20% 20%~50% 50%~80% 80%~100%录播 5 18 14 13 直播2152112(1)从选择教学方式为“录播”的学生中任意抽取1名学生,试估计该生的参与度不低于50%的概率;(2)若该校共有1200名学生,选择“录播”和“直播”的人数之比为3:5,试估计选择“录播”或“直播”参与度均在20%以下的共有多少人?22.某超市经营某品牌的一种乳制品,根据往年销售经验,每天销售量与当天最高气温t (单位:C ︒)有关.为了制定六月份的订购计划,统计了前三年六月份每天的最高气温、销售量与最高气温的关系得到下表: 最高气温t(单位:C ︒)天数每天销售量(瓶)20t < 15 240 2025t ≤< 30 300 25t ≥45500(1)估计超市今年六月份某一天这种乳制品的销售量不超过300瓶的概率; (2)估计超市这种乳制品今年六月份平均每天的销售量;(3)设进货成本为每瓶4元,售价为每瓶6元,结合前三年六月份的销售数据,估计超市今年六月份经营这种乳制品的总利润.23.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频率表如下:(1)计算表中a,b的值并估计任抽一件衬衣是合格品的概率.(2)估计出售2000件衬衣,其中次品大约有几件.24.一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:(1)该学习小组发现,随着摸球次数的增多,摸到白球的频率在一个常数附近摆动,请直接写出这个常数(精确到0.01),由此估出红球有几个?(2)在这次摸球试验中,从袋中随机摸出1个球,记下颜色后放回,再从中随机摸出1个球,利用画树状图或列表的方法表示所有可能出现的结果,并求两次摸到的球恰好1是个白球,1个是红球的概率.。

频率概率练习题

频率概率练习题

频率概率练习题频率概率练习题概率和频率是数学中重要的概念,它们在日常生活中也有着广泛的应用。

通过练习题的形式,我们可以更好地理解和应用这些概念。

本文将通过一些例题,帮助读者更好地掌握频率和概率的基本概念。

1. 某班级有30名学生,其中有15名男生和15名女生。

如果从班级中随机选取一名学生,那么他/她是男生的概率是多少?解答:我们可以将问题转化为一个简单的概率问题。

在这个班级中,男生和女生的数量相等,所以男生和女生被选中的概率应该是相同的。

因此,他/她是男生的概率为15/30,即1/2。

2. 一副标准扑克牌中,红桃、黑桃、梅花和方块各有13张牌。

如果从中随机抽取一张牌,那么它是红桃的概率是多少?解答:一副标准扑克牌总共有52张牌,其中红桃有13张。

所以,抽到红桃的概率为13/52,即1/4。

3. 一家超市销售某种商品,根据过去的销售数据,该商品有30%的概率被购买。

如果今天有10个顾客来购买该商品,那么预计有多少个顾客会购买该商品?解答:根据商品被购买的概率为30%,我们可以预计有10个顾客中的30%会购买该商品。

所以,预计有3个顾客会购买该商品。

4. 一辆公交车每天上午8点到达某个站点,根据过去的数据,该公交车准点到达的概率为80%。

如果一个人每天都在8点到达该站点等待公交车,那么他需要等待的平均时间是多少?解答:根据公交车准点到达的概率为80%,我们可以预计有80%的概率他会在8点到达。

所以,他需要等待的平均时间为20%的时间,即每天平均等待时间为24小时的20%,即4.8小时。

通过以上的练习题,我们可以看到概率和频率在日常生活中的应用。

通过理解和应用这些概念,我们可以更好地预测和计算事件的发生概率,从而做出更明智的决策。

概率和频率的概念在统计学和数据分析中也有着重要的地位。

通过对实际数据的观察和分析,我们可以计算出某个事件发生的概率,并作出相应的判断和决策。

在现代社会中,数据分析和概率统计已经成为各个领域中不可或缺的工具。

用频率估计概率 同步练习 2022—2023学年北师大版数学九年级上册【有答案】

用频率估计概率 同步练习 2022—2023学年北师大版数学九年级上册【有答案】

北师大版九上 3.2 用频率估计概率一、选择题(共9小题)1. 用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,是指( )A. 连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次B. 连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C. 抛掷2n次硬币,恰好有n次“正面朝上”D. 抛掷n次,当n越来越大时,正面朝上的频率会越来越趋近于0.52. 将A,B两位篮球运动员在一段时间内的投篮情况记录如下,下面有三个推断:①当投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767;②随着投篮次数的增加,A运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A运动员投中的概率是0.750;③当投篮达到200次时,B运动员投中次数一定为160次.其中合理的是( )A. ①B. ②C. ①③D. ②③3. 在大量重复试验中,关于随机事件发生的频率和概率,下列说法正确的是( )A. 频率就是概率B. 频率与试验次数无关C. 在相同的条件下进行试验,如果试验次数相同,则各实验小组所得频率的值也会相同D. 随着试验次数的增加,频率一般会逐步稳定在概率数值附近4. 如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果.下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是( )A. ①B. ②C. ①②D. ①③5. 气象台预报“本市明天降水概率是80%”,对此消息,下面几种说法正确的是( )A. 本市明天将有80%的地区降水B. 明天降水的可能性比较大C. 本市明天降有80%的时间降水D. 明天肯定下雨6. 为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的可估计为( )A. 3000条B. 2200条C. 1200条D. 600条7. 在一个不透明的盒子中装有m个除颜色外完全相同的球,这m个球中只有3个红球,从,那么m的值是( )中随机摸出一个球,恰好是红球的概率为15A. 12B. 15C. 18D. 218. 一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球()A. 28个B. 30个C. 36个D. 42个9. 在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同,小明通过多次摸球试验后发现,其中摸到白色球的频率稳定在85%左右,则口袋中红色球可能有( )A. 34个B. 30个C. 10个D. 6个二、填空题(共8小题)10. 在一个不透明的盒子中装有 n 个小球,它们只有颜色上的区别,其中有 2 个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球实验后发现,摸到红球的频率稳定于 0.2,那么可以推算出 n 大约是 .11. 在一个不透明的盒子中装有 n 个球,它们除了颜色之外其他都没有区别,其中含有 3 个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在 0.03,那么可以推算出 n 的值大约是 .12. 在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是 .13. 在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”, 在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是 .14. 大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的苏康码(绿码)示意图,用黑白打印机打印于边长为 2 cm 的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在 0.6 左右,据此可以估计黑色部分的总面积约为 cm 2.15. 在一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小明在袋中放入 3 个黑球(每个球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在 0.85 左右,则袋中红球约有 个.16. 一个不透明的袋子中装有若干个除颜色外都相同的小球,小明每次从袋子中随机摸出一个球,记录下颜色,然后放回,重复这样的试验 3000 次,记录结果如下:实验次数n 100200300500800100020003000摸到红球次数m 6512417830248162012401845摸到红球频率m n0.650.620.5930.6040.6010.6200.6200.615 估计从袋子中随机摸出一个球恰好是红球的概率约为 .(精确到 0.1)17. 小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球3000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是 个.三、解答题(共5小题)18. 一只不透明的袋中装有一定数量的红球和黄球(它们除颜色外,其余完全相同),小明设计了一个摸球游戏,他摸了10次,每次摸出1个球,记录其颜色后把球放回袋中,再摸下一次,每次摸球前都把球搅匀.结果有7次摸到黄球,3次摸到红球,于是小明说:“袋中的红球一定比黄球少.”你认为他的结论合理吗?说明你的理由.19. 全班同学一起做摸球试验,不透明的布袋中共有除颜色外其余均相同的红球和黄球共5个,每次摸出一球,记下颜色后放回摇匀.一共摸了200次,其中123次是红球,77次是黄球,请你求出摸到红球的频率;布袋中有红球和黄球各多少个?20. 小红和小明在操场上做游戏,他们先在地上画了半径分别为2m和3m的同心圆,如图①,蒙上眼睛在一定距离外向圈内掷石子,若落在阴影内,则小红胜,若落在小圆内,则小明胜.(1)你认为这个游戏公平吗?为什么?(2)游戏结束,小明边走边想:“能否用频率估计概率的方法,来估算不规则图形的面积呢?”他发现地上有一个不规则的封闭图形ABC,如图②.为了知道它的面积,小明在封闭图形内画了一个半径为1m的圆,在不远处向圈内掷石子,且记录如下:掷石子次数50150300石子落在圆内的次数m114393石子落在阴影内的次数n1985186你能帮小明估计封闭图形的面积吗?试试看.21. 小明从一本书中随机抽取了6页,在累计1页至6页中的“的”字和“了”字出现的次数后,分别求出了它们出现的频率,并绘制了如下统计图(如图中页数3对应的频率是三页中累计的结果).(1)随着统计页数的增加,这两个字出现的频率是如何变化的?(2)你认为该书中的“的”和“了”两个字出现的频率哪个高?22. 某班“红领巾义卖”活动中设立了一个可以自由转动的转盘,如图.规定:顾客购物20元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的统计数据.转动转盘的次数n1002003004005001000落在"书画作品"区域的次数m60122180298a6040.60.610.6b0.590.604落在"书画作品"区域的频率mn(1)a=,b=;(2)估计当n很大时,落在“书画作品”区域的频率为,转动该转盘一次,获得“书画作品”的概率约是;(结果全部精确到0.1)(3)如果要使获得“手工作品”的可能性不小于获得“书画作品”的可能性,则表示“手工作品"区域的扇形的圆心角的度数至少还要增加多少度?。

10.3 频率与概率(精练)(解析版)

10.3 频率与概率(精练)(解析版)

10.3 频率与概率(精练)【题组一 频率与概率的概念区分】1.(2021·全国单元测试)下列说法正确的有( ) ①随机事件A 的概率是频率的稳定值,频率是概率的近似值. ②一次试验中不同的基本事件不可能同时发生. ③任意事件A 发生的概率()P A 总满足()01P A <<. ④若事件A 的概率为0,则A 是不可能事件. A .0个 B .1个C .2个D .3个【答案】C【解析】不可能事件的概率为0,但概率为0的事件不一定是不可能事件,如几何概率中“单点”的长度、面积、体积都是0,但不是不可能事件,∴④不对;抛掷一枚骰子出现1点和出现2点是不同的基本事件,在同一次试验中,不可能同时发生,故②正确;任意事件A 发生的概率P (A )满足()01P A ,∴③错误;又①正确.∴选C.2.(2020·全国高一课时练习)下列叙述随机事件的频率与概率的关系中,说法正确的是( ) A .频率就是概率B .频率是随机的,与试验次数无关C .概率是稳定的,与试验次数无关D .概率是随机的,与试验次数有关【答案】C【解析】频率指的是:在相同条件下重复试验下, 事件A 出现的次数除以总数,是变化的 概率指的是: 在大量重复进行同一个实验时, 事件A 发生的频率总接近于某个常数, 这个常数就是事件A 的概率,是不变的 故选:C3.(多选)(2020·山东省桓台第一中学)下列说法中,正确的是( ) A .频率反映随机事件的频繁程度,概率反映随机事件发生的可能性大小;B .频率是不能脱离n 次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;C .做n 次随机试验,事件发生次,则事件发生的频率mn就是事件的概率; D .频率是概率的近似值,而概率是频率的稳定值.【答案】ABD【解析】频率是在一次试验中某一事件出现的次数与试验总数的比值,随某事件出现的次数而变化概率指的是某一事件发生的可能程度,是个确定的理论值故选:ABD4.(多选)(2021·全国高一课时练习)下列说法正确的是()A.随着试验次数的增加,频率一般会越来越接近概率B.连续10次掷一枚骰子,结果都是出现1点,可以认为这枚骰子质地不均匀C.某种福利彩票的中奖概率为11000,那么买1000张这种彩票一定能中奖D.某市气象台预报“明天本市降水概率为70%”,指的是:该市气象台专家中,有70%认为明天会降水,30%认为不降水【答案】AB【解析】对于A,试验次数越多,频率就会稳定在概率的附近,故A正确对于B,如果骰子均匀,则各点数应该均匀出现,所以根据结果都是出现1点可以认定这枚骰子质地不均匀,故B正确.对于C,中奖概率为11000是指买一次彩票,可能中奖的概率为11000,不是指1000张这种彩票一定能中奖,故C错误.对于D,“明天本市降水概率为70%”指下雨的可能性为0.7,故D错.故选:AB.5.(多选)(2020·全国高一课时练习)下列说法正确的是()A.一个人打靶,打了10发子弹,有6发子弹中靶,因此这个人中靶的概率为0.6B.某地发行福利彩票,其回报率为47%,有个人花了100元钱买彩票,一定会有47元回报C.5张奖券中有一张有奖,甲先抽,乙后抽,则乙与甲中奖的可能性相同D.大量试验后,可以用频率近似估计概率.【答案】CD【解析】A、某人打靶,射击10次,击中6次,那么此人中靶的频率为0.6,故A错误;B、买这种彩票是一个随机事件,中奖或者不中奖都有可能,但事先无法预料,故B错误;C、根据古典概型的概率公式可知C正确;D、大量试验后,可以用频率近似估计概率,故D正确.故选:CD .6.(2020·全国高一课时练习)下列说法:①频率是反映事件发生的频繁程度,概率是反映事件发生的可能性大小; ②百分率是频率,但不是概率;③频率是不能脱离试验次数n 的实验值,而概率是具有确定性的不依赖于试验次数的理论值; ④频率是概率的近似值,概率是频率的稳定值. 其中正确的是______________. 【答案】①③④【解析】对于①,由频率和概率概念: 频率是反映事件发生的频繁程度,概率是反映事件发生的可能性大小.可知①正确;对于②,概率也可以用百分率表示,故②错误.对于③,频率与试验次数相关,而概率与试验次数无关,所以③正确;对于④,对于不同批次的试验,频率不一定相同,但概率相同,因而频率是概率的近似值,概率是频率的稳定值,所以④正确.由概率和频率的定义中可知①③④正确. 故答案为: ①③④ 【题组二 概率的计算】1.(2020·全国高一课时练习)某地为了整顿电动车道路交通秩序,考虑对电动车闯红灯等违章行为进行处罚,为了更好地了解情况,在某路口骑车人中随机选取了100人进行调查,得到如下数据,其中10a b =+.(1)用表中数据所得频率代替概率,求对骑车人处罚10元与20元的概率的差;(2)用分层抽样的方法在处罚金额为10元和20元的抽样人群中抽取5人,再从这5人中选取2人参与路口执勤,求这两种受处罚的人中各有一人参与执勤的概率. 【答案】(1)110;(2)35. 【解析】(1)由条件可得1050100a b a b =+⎧⎨++=⎩,解得3020a b =⎧⎨=⎩,所以处罚10元的有30人,处罚20元的有20人.所以对骑车人处罚10元与20元的概率的差为3020110010010-=. (2)用分层抽样的方法在受处罚的人中抽取5人,则受处罚10元的人中应抽取3人,分别记为a ,b ,c , 受处罚20元的人中应抽取2人,分别记为A ,B ,若再从这5人中选2人参与路口执勤,共有10种情况:(),a b ,(),a c ,(),a A ,(),a B ,(),b c ,(),b A ,(),b B ,(),c A ,(),c B ,(),A B ,其中两种受处罚的人中各有一人的情况有6种:(),a A ,(),a B ,(),b A ,(),b B ,(),c A ,(),c B , 所以两种受处罚的人中各有一人参与执勤的概率为63105=. 2.(2020·全国高一课时练习)2020年新型冠状病毒席卷全球,美国是疫情最严重的国家,截止2020年6月8日美国确诊病例约为200万人,经过随机抽样,从感染人群中抽取1000人进行调查,按照年龄得到如下频数分布表:(Ⅰ)求a 的值及这1000例感染人员的年龄的平均数;(同一组中的数据用该组区间的中点值作代表) (Ⅱ)用频率估计概率,求感染人群中年龄不小于60岁的概率. 【答案】(Ⅰ)250a =,平均数为52.2;(Ⅱ)0.38. 【解析】(Ⅰ)由题意知50320300801000a ++++=, ∴250a =, 年龄平均数1050302505032070300908052.21000⨯+⨯+⨯+⨯+⨯==.(Ⅱ)1000人中年龄不小于60岁的人有380人, 所以年龄不小于60岁的频率为3800.381000=, 用频率估计概率,所以感染人群中年龄不小于60岁的概率为0.38.3.(2020·全国高一课时练习)某制造商2019年8月份生产了一批乒乓球,随机抽取100个进行检查,测得每个乒乓球的直径(单位:mm ),将数据分组如下表:(1)请将上表补充完整;(2)已知标准乒乓球的直径为40.00mm ,试估计这批乒乓球的直径误差不超过0.03mm 的概率. 【答案】(1)表见解析(2)0.9 【解析】(1)(2)标准尺寸是40.00mm ,若要使误差不超过0.03mm ,则直径落在[]39.97,40.03内.由(1)中表知,直径落在[]39.97,40.03内的频率为0.20.50.20.9++=, 所以这批乒乓球的直径误差不超过0.03mm 的概率约为0.9.4.(2020·全国高一课时练习)某水产试验厂进行某种鱼卵的人工孵化,6个试验小组记录了不同的鱼卵数所孵化出的鱼苗数,如下表所示:(1)表中①②对应的频率分别为多少(结果保留三位小数)? (2)估计这种鱼卵孵化成功的概率.(3)要孵化5000尾鱼苗,大概需要鱼卵多少个(精确到百位)?【答案】(1)0.889,0.901(2)0.9(3)50005600 0.9≈【解析】(1)106721630.889,0.90112002400≈≈,所以①②对应的频率分别为0.889,0.901.(2)从表中数据可看出,虽然频率都不一样,但随着试验的鱼卵数不断增多,孵化成功的频率稳定在0.9附近,由此可估计该种鱼卵孵化成功的概率为0.9.(3)大概需要鱼卵500056000.9≈(个).5.(2021·全国高一课时练习)某个制药厂正在测试一种减肥药的疗效,有500名志愿者服用此药,结果如下:如果另有一人服用此药,估计下列事件发生的概率:(1)这个人的体重减轻了;(2)这个人的体重不变;(3)这个人的体重增加了.【答案】(1)0.552;(2)0.288;(3)0.16.【解析】(1)由频率估计概率可得:体重减轻了的概率估计值为2760.552 500=;(2)由频率估计概率可得:体重不变的概率估计值为1440.288 500=;(3)由频率估计概率可得:体重增加了的概率估计值为800.16 500=.6.(2021·全国高一课时练习)某中学有教职工130人,对他们进行年龄状况和受教育程度的调查,其结果如下:从这130名教职工中随机地抽取一人,求下列事件的概率; (1)具有本科学历; (2)35岁及以上;(3)35岁以下且具有研究生学历. 【答案】(1)813;(2)926;(3)726. 【解析】(1)具有本科学历的共有50201080++=(人),故所求概率为80813013=. (2)35岁及以上的共有331245+=(人),故所求概率为45913026=. (3)35岁以下且具有研究生学历的有35人,故所求概率为35713026=. 【题组三 生活中的概念】1.(2021·全国高一课时练习)一个游戏包含两个随机事件A 和B ,规定事件A 发生则甲获胜,事件B 发生则乙获胜.判断游戏是否公平的标准是事件A 和B 发生的概率是否相等.在游戏过程中甲发现:玩了10次时,双方各胜5次;但玩到1000次时,自己才胜300次,而乙却胜了700次.据此,甲认为游戏不公平,但乙认为游戏是公平的.你更支持谁的结论?为什么? 【答案】支持甲对游戏公平性的判断,理由见解析【解析】:当游戏玩了10次时,甲、乙获胜的频率都为0.5; 当游戏玩了1000次时,甲获胜的频率为0.3,乙获胜的频率为0.7,根据频率的稳定性,随着试验次数的增加,频率偏离概率很大的可能性会越来越小.相对10次游戏,1000次游戏时的频率接近概率的可能性更大,因此我们更愿意相信1000次时的频率离概率更近.而游戏玩到1000次时,甲、乙获胜的频率分别是0.3和0.7,存在很大差距,所以有理由认为游戏是不公平的.因此,应该支持甲对游戏公平性的判断.2.(2021·全国高二课时练习)有人说:“掷一枚骰子一次得到的点数是2的概率是16,这说明掷一枚骰子6次会出现一次点数是2.”对此说法,同学中出现了两种不同的看法:一些同学认为这种说法是正确的.他们的理由是:因为掷一枚骰子一次得到点数是2的概率是16,所以掷一枚骰子6次得到一次点数是2的概率P=16×6=1,即“掷一枚骰子6次会出现一次点数是2”是必然事件,一定发生.还有一些同学觉得这种说法是错误的,但是他们却讲不出是什么理由来.你认为这种说法对吗?请说出你的理由.【答案】见解析【解析】这种说法是错误的.上述认为说法正确的同学,其计算概率的方法自然也是错误的.为了弄清这个问题,我们不妨用类比法,即把问题变换一下说法.原题中所说的问题,类似于“在一个不透明的盒子里放有6个标有数字1,2,3,4,5,6的同样大小的球,从盒中摸一个球恰好摸到2号球的概率是16.那么摸6次球是否一定会摸到一次2号球呢?”在这个摸球问题中,显然还缺少一个摸球的规则,即每次摸到的球是否需要放回盒子里?显然,如果摸到后不放回,那么摸6次球一定会摸到一次2号球.如果摸到球后需要放回,那么摸6次球就不一定会摸到一次2号球了.由此看来,我们先要弄清这个摸球问题与上面的掷骰子问题是否完全类同,是否应当有每次摸到的球还要放回盒子里的要求.我们先看看上面掷骰子问题中的规则,在掷骰子问题中,表面上好像没写着什么规则,但实际上却藏有一个自然的规则,即第一次如果掷得某个数(如3),那么后面还允许继续掷得这个相同的数.于是摸球问题要想与掷骰子问题中的规则相同,显然每次摸到的球必须要放回盒子里才妥当.那么摸6次球就不一定会摸到一次2号球了.3.(2021·全国课时练习)甲乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)完游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设(,)i j分别表示甲、乙抽到的牌的数字,写出甲乙二人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?(3)甲乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜,你认为此游戏是否公平,说明你的理由.【答案】12,23,不公平【解析】(1)甲乙二人抽到的牌的所有情况(方片4用4’表示,红桃2,红桃3,红桃4分别用2,3,4表示)为:(2,3)、(2,4)、(2,4’)、(3,2)、(3,4)、(3,4’)、(4,2)、(4,3)、(4,4’)、(4’,2)、(4’,3)、(4’,4)共12种不同情况(没有写全面时:只写出1个不给分,2-4个给1分,5-8个给8分,9-11个给3分)(2)甲抽到3,乙抽到的牌只能是2,4,4’因此乙抽到的牌的数字大于3的概率为2 3(3)由甲抽到的牌比乙大的有(3,2)、(4,2)、(4,3)、(4’,2)、(4’,3)5种,甲胜的概率15 12p=,乙获胜的概率为27 12p=,∵57 1212<∴此游戏不公平.4.(2021·全国高一课时练习)有一个转盘游戏,转盘被平均分成10等份(如图所示),转动转盘,当转盘停止后,指针指向的数字即为转出的数字.游戏规则如下:两个人参加,先确定猜数方案,甲转动转盘,乙猜,若猜出的结果与转盘转出的数字所表示的特征相符,则乙获胜,否则甲获胜.猜数方案从以下三种方案中选一种:A.猜“是奇数”或“是偶数”B.猜“是4的整数倍数”或“不是4的整数倍数”C.猜“是大于4的数”或“不是大于4的数”请回答下列问题:(1)如果你是乙,为了尽可能获胜,你将选择哪种猜数方案,并且怎样猜?为什么?(2)为了保证游戏的公平性,你认为应制定哪种猜数方案?为什么?(3)请你设计一种其他的猜数方案,并保证游戏的公平性.【答案】(1) 应选方案B ,猜“不是4的整数倍数”;(2) 应当选择方案A;(3) 可以设计为:猜“是大于5的数”或“不是大于5的数”【解析】 (1)如题图,方案A中“是奇数”或“是偶数”的概率均为=0.5;方案B中“不是4的整数倍数”的概率为=0.8,“是4的整数倍数”的概率为=0.2;方案C中“是大于4的数”的概率为=0.6,“不是大于4的数”的概率为=0.4.乙为了尽可能获胜,应选方案B,猜“不是4的整数倍数”.(2)为了保证游戏的公平性,应当选择方案A.因为方案A猜“是奇数”或“是偶数”的概率均为0.5,从而保证了该游戏是公平的.(3)可以设计为:猜“是大于5的数”或“不是大于5的数”,此方案也可以保证游戏的公平性.5.(2020·全国课时练习)有人说:“掷一枚骰子一次得到的点数是2的概率是16,这说明掷一枚骰子6次会出现一次点数是2.”对此说法,同学中出现了两种不同的看法:一些同学认为这种说法是正确的.他们的理由是:因为掷一枚骰子一次得到点数是2的概率是16,所以掷一枚骰子6次得到一次点数是2的概率P=16×6=1,即“掷一枚骰子6次会出现一次点数是2”是必然事件,一定发生.还有一些同学觉得这种说法是错误的,但是他们却讲不出是什么理由来.你认为这种说法对吗?请说出你的理由. 【答案】见解析【解析】这种说法是错误的.上述认为说法正确的同学,其计算概率的方法自然也是错误的. 为了弄清这个问题,我们不妨用类比法,即把问题变换一下说法.原题中所说的问题,类似于“在一个不透明的盒子里放有6个标有数字1,2,3,4,5,6的同样大小的球,从盒中摸一个球恰好摸到2号球的概率是16.那么摸6次球是否一定会摸到一次2号球呢?” 在这个摸球问题中,显然还缺少一个摸球的规则,即每次摸到的球是否需要放回盒子里?显然,如果摸到后不放回,那么摸6次球一定会摸到一次2号球.如果摸到球后需要放回,那么摸6次球就不一定会摸到一次2号球了.由此看来,我们先要弄清这个摸球问题与上面的掷骰子问题是否完全类同,是否应当有每次摸到的球还要放回盒子里的要求.我们先看看上面掷骰子问题中的规则,在掷骰子问题中,表面上好像没写着什么规则,但实际上却藏有一个自然的规则,即第一次如果掷得某个数(如3),那么后面还允许继续掷得这个相同的数.于是摸球问题要想与掷骰子问题中的规则相同,显然每次摸到的球必须要放回盒子里才妥当.那么摸6次球就不一定会摸到一次2号球了. 【题组四 随机模拟】1.(2021·河南)农历正月初一是春节,俗称“过年”,是我国最隆重、最热闹的传统节日.家家户户张贴春联,欢度春节,其中“福”字是必不可少的方形春联.如图,该方形春联为边长是40cm 的正方形,为了估算“福”字的面积,随机在正方形内撒100颗大豆,假设大豆落在正方形内每个点的概率相同,如果落在“福”字外的有65颗,则“福”字的面积约为( )A .2500cmB .2560cmC .2820cmD .21040cm【答案】B【解析】设“福”字的面积为2cm x ,根据几何概型可知21006510040x -=,解得()2560cm x =.故选:B. 2.(2020·全国高一课时练习)袋子中有四个小球,分别写有“中、华、民、族”四个字,有放回地从中任取一个小球,直到“中”“华”两个字都取到才停止.用随机模拟的方法估计恰好抽取三次停止的概率,利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“中、华、民、族”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:由此可以估计,恰好抽取三次就停止的概率为( )A .19B .318C .29D .518【答案】C【解析】由随机产生的随机数可知恰好抽取三次就停止的有021,001,130,031,共4组随机数, 恰好抽取三次就停止的概率约为42189=,故选C. 3.袋子中有四个小球,分别写有“文、明、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“文、明、中、国”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:232 321 230 023 123 021 132 220 001231 130 133 231 013 320 122 103 233由此可以估计,恰好第三次就停止的概率为( )A .19B .16C .29D .518【答案】B【解析】由题意得18组随机数中,巧好第三次就停止的数为023,123,132,故恰好第三次就停止的概率为31186=,故选:B . 4.(2020·全国高一课时练习)下列不能产生随机数的是 ( )A .抛掷骰子试验B .抛硬币C .计算器D .正方体的六个面上分别写有1,2,2,3,4,5,抛掷该正方体【答案】D【解析】D项中,出现2的概率为13,出现1,3,4,5的概率均是16,则D项不能产生随机数,故选D.。

3.2+用频率估计概率同步练习2024-2025学年北师大版数学九年级上册

3.2+用频率估计概率同步练习2024-2025学年北师大版数学九年级上册

3.2用频率估计概率一、选择题。

1. 一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下颜色后再放回口袋中.不断重复这一过程,共摸了100次球,发现有69次摸到红球.请你估计这个口袋中红球的数量是()A.5 B.6 C.7 D.82. 在利用正六面体骰子进行频率估计概率的实验中,小闽同学统计了某一结果朝上的频率,绘出的统计图如图所示,则符合图中情况的可能是()A.朝上的点数是6的概率B.朝上的点数是偶数的概率C.朝上的点数是小于4的概率 D.朝上的点数是3的倍数的概率3. 某同学为了估算瓶子中有多少颗豆子,首先从瓶中取出60颗并做上记号,接着将所有做好记号的豆子放回瓶中充分摇匀.当再从瓶中取出100颗豆子时,发现其中有12颗豆子标有记号,根据实验估计该瓶装有豆子大约()A.800颗B.500颗C.300颗D.150颗4. 有一个只放满形状大小都一样的白色小球的不透明盒子,小刚想知道盒内有多少白球,于是小刚向这个盒中放了5个黑球(黑球的形状大小与白球一样),摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,则盒中白色小球的个数可能是()A.16个B.20个C.24个D.25个5.在一个不透明的布袋中,装有除颜色外其他完全相同的红色、黄色的玻璃球共40个,小李通过多次摸球试验后发现其中摸到红色的频率稳定在45%,则口袋中黄色球的个数很可能是()A.18B.20C.22D.246.某淘宝商家为“双11大促”提前进行了预热抽奖,通过后台的数据显示转盘指针落在“10元优惠券”区域的统计数据如下表.若随机转动转盘一次,得到“10元优惠券”的概率为(精确到0.01)()转动转盘的次数200600100016002000落在“10元优惠券”区域的次数64186300472602落在“10元优惠券”区域的频率0.3200.3100.3000.2950.301A.0.32B.0.31C.0.30D.0.297.一个不透明的口袋里装有除颜色外其余都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球个数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为( )A.60个B.50个C.40个D.30个8.做抛掷同一枚啤酒瓶盖的重复实验,经过统计得“凹面朝上”的频率为0.44,则可以估计抛掷这枚啤酒盖出现“凹面朝上”的概率为()A.22% B.44% C.50% D.56%9.在一个不透明的口袋中,放置3个黄球,1个红球和n个蓝球,这些小球除颜色外其余均相同,课外兴趣小组每次摸出一个球记录下颜色后再放回,并且统计了蓝球出现的频率(如图所示),则n的值最可能是()A.4 B.5 C.6 D.7 10. 在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是()A.甲组B.乙组C.丙组D.丁组11. 一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A. B. C. D.12. 甲、乙两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是()A.掷一枚质地均匀的正方体骰子,出现点的概率B.从一个装有个白球和个红球(每个球除颜色外都相同)的袋子中任取一个球,取到红球的概率C.抛一枚质地均匀的硬币,出现正面的概率D.任意写一个正整数,它的绝对值大于的概率二、填空题。

第六章 频率与概率 课堂达标练习题课堂达标练习题(每节分ABC卷,有答案)

第六章 频率与概率 课堂达标练习题课堂达标练习题(每节分ABC卷,有答案)

频率与概率(1)宁阳十中 孔新华一、选择题1、掷一枚骰子,下列说法正确的是( )A 、1点或6点朝上的概率最小,3点或4点朝上的概率最大;B 、2点或5点朝上的概率小于3点或4点朝上的概率;C 、各点朝上的概率都相同;D 、各点朝上的概率因人而异,无法确定2、已知某种彩票的中奖率为60%,下列说法正确的是( )A 、购买10张彩票,必有6张中奖;B 、10人去买彩票,必有6人中奖;C 、购买10次彩票,必有6次中奖;D 、买得越多,中奖的概率越接近60%二、填空题1.检查某工厂一批产品的质量, 从中分别抽取10件、20件、50件、100件、150件、200件、300件检查, 检查结果及次品频率列入下表053.0055.0047.0050.0060.0050.00/161175310300200150100502010n n μμ次品频率次品数抽取产品总件数请你根据次品频率稳定的趋势估计该产品是次品的概率是2、 从数字1,2,3,4,5中任取两个不同的数,构成一个两位数,则这个数大于40的概率是________.频率与概率(1)宁阳十中 孔新华一、选择题1、从1,2,…,9共九个数字中任取一个数字,取出数字为偶数的概率为( )A 、0B 、1C 、91D 、942、接连三次抛掷一枚硬币,则正反面轮番出现的概率是( )A 、81B 、41C 、21D 、23二、填空题将4个球随机地放入4个盒中,则恰有一个盒子空着的概率为________.三、解答题两人做掷硬币猜正反面的游戏。

在已进行的9次游戏中,都出现正面朝上,那么第10次猜的时候,你会怎么猜?为什么?数学九年级上册第六章第一节第1课时(C 卷)频率与概率(1)宁阳十中 孔新华一、选择题1.下列说法正确的是 ( )A. 某事件发生的概率为21,这就是说:在两次重复实验中,必有一次发生 B .一个袋子里有100个球,小明摸了8次,每次都只摸到黑球,没摸到白球,结论:袋子里只有黑色的球C .两枚一元的硬币同时抛下,可能出现的情形有:①两枚均为正;②两枚均为反;③一正一反,所以出现一正一反的概率是31 D .全年级有400名同学,一定会有2人同一天过生日2.如果采取抽签的方式决定两位选手的胜负。

频率与概率练习题及答案全套

频率与概率练习题及答案全套

§6.1.1频率与概率一、你还记得什么是频数、什么叫频率、什么叫概率吗?试举例说明.二、将一枚硬币抛起,使其自然下落,每抛两次作为一次实验,当硬币落定后,一面朝上,我们叫做“正”,另一面朝上,我们叫做“反”.(1)一次实验中,硬币两次落地后可能出现几种情况(2)做20次实验,根据实验结果,填写下表.结果正正正反反反频数频率(3)根据上表,制作相应的频数分布直方图.(4)经观察,哪种情况发生的频率较大.(5)实验结果为“正反”的频率是多大.(6)5个同学结成一组,分别汇总其中两人,三人,四人,五人的实验数据,得到40次,60次,80次,100次的实验结果,将相应数据填入下表。

次数40次60次80次100次“正反”的频数“正反”的频率(8)计算“正反”出现的概率.(9)经过以上多次重复实验,所得结果为“正反”的频率与你计算的“正反”的概率是否相近.小知识:在篮球比赛和足球比赛中,人们往往用抛硬币的方法决定由谁先来开球.那么抛硬币后,正面向上和反面向上的几率有多大呢?相等吗?下面我们来想办法解决这个问题.总抛出次数(次)正面向上次数(次)正面向上频率(…%)500 225 ?我们得到的是硬币正面向上的频率的百分比.即硬币正面向上的频率.其次我们又想到硬币的正、反面都没有什么特殊性,所以在落下时正面向上和反面向上的可能性相等.所以正面向上与反面向上都有21的可能性,也就是说正面向上的概率是___________.20选5第2003178期中奖号码05、12、15、16、17一等奖6注18678元二等奖1214注50元三等奖19202注5元本期销售额548538元出球顺序05、15、12、16、17一、掷一枚硬币,落地后,国徽朝上、朝下的概率各是多少?二、质地均匀的骰子被抛起后自由落在桌面上,点数为“1”或“3”的概率是多少?§6.1.2频率与概率三、掷两枚硬币,规定落地后,国徽朝上为正,国徽朝下为“反”,则会出现以下三种情况.“正正”“反反”“正反”分别求出每种情况的概率.(1)小刚做法:通过列表可知,每种情况都出现一次,因此各种情况发生的概率均占31. 可能出现的情况正正正反反反概率31 31 31 小敏的做法:第一枚硬币的可能情况 第二枚硬币的可能情况正 反 正 正正 反正 反正反反反通过以上列表,小敏得出:“正正”的情况发生概率为4.“正反”的情况发生的概率为21,“反反”的情况发生的概率为41. (1)以上三种做法,你同意哪种,说明你的理由.(2)用列表法求概率时要注意哪些?§6.2.1频率与概率一、如图(1)是不是所有的随机事件的概率都可以用画树形图或列表的方法来求,试举例说明你的理由.二、图(2)钉落地实验,将图钉抛在地上.(1)观察图钉落地后出现几种状态.(2)猜想哪种情况发生的概率大?(3)连续抛掷50次,将实验结果填在下表.落地状态钉尖朝上钉尖着地频数频率(4)实验结果中各种情况发生的概率与你猜想的概率是否相符呢?(5)如果班里有50位同学,每人做50次实验共做了2500次实验,请将实验数据汇总,再进一步计算各种情况发生的频率.(6)现在你能估计钉尖着地的概率了吗?(7)以上做法是:利用大量的实验数据计算出某一情况发生的频率,再利用此频率来估计这一情况发生的概率,你还能举出生活中利用这一原理求概率的实例吗?三、(如下图所示)把一小球从箭头处自由释放,落入一个内有阻碍物的容器中,小球一种情况是落入A槽,一种是落入B槽,你能通过列表法分别算出它们的概率吗?一、填空题1.口袋中有2个白球,1个黑球,从中任取一个球,用实验的方法估计摸到白球的概率为_________.2.把一对骰子掷一次,共有_________种不同的结果.3.任意掷三枚均匀硬币,如果把掷出正面朝上记为“上”,掷出正面朝下记为“下”,所有的结果为_________.4.必然事件的概率为_________,不可能事件的概率为_________,不确定事件的概率范围是_________.5.频数和频率都能反映一个对象在实验总次数中出现的频繁程度,我认为:(1)频数和频率间的关系是_________.(2)每个实验结果出现的频数之和等于_________. (3)每个实验结果出现的频率之和等于_________.6.已知全班同学他们有的步行,有的骑车,还有的乘车上学,根据已知信息完成下表.上学方式 步行 骑车 乘车 “正”字法记录正正正频数 9 频率 40%7.表中是一个机器人做9999次“抛硬币”游戏时记录下的出现正面的频数和频率.抛掷结果 5次 50次 300次 800次 3200次 6000次 9999次 出现正面的频数 1 31 135 408 1580 2980 5006 出现正面的频率 20% 62% 45% 51% 49.4% 49.7% 50.1%20%,那么,也就是说机器人抛掷完5次时,得到_________次反面,反面出现的频率是_________. (2)由这张频数和频率表可知,机器人抛掷完9999次时,得到_________次正面,正面出现的频率是_________.那么,也就是说机器人抛掷完9999次时,得到_________次反面,反面出现的频率是_________. 二、选择题8.给出以下结论,错误的有( )①如果一件事发生的机会只有十万分之一,那么它就不可能发生. ②如果一件事发生的机会达到99.5%,那么它就必然发生. ③如果一件事不是不可能发生的,那么它就必然发生. ④如果一件事不是必然发生的,那么它就不可能发生. A.1个 B.2个 C.3个 D.4个 9.一位保险推销员对人们说:“人有可能得病,也有可能不得病,因此,得病与不得病的概率各占50%”他的说法( ) A.正确 B.不正确 C.有时正确,有时不正确 D.应由气候等条件确定 10.某位同学一次掷出三个骰子三个全是“6”的事件是( )A.不可能事件B.必然事件C.不确定事件可能性较大D.不确定事件可能性较小 三、解答题11.请制作一个方案说明你在你们班的同学中花“零花钱”属于多的还是少的? 12.走近你家附近的商店,统计几类主要产品的月销量,制出相应的条形统计图. 13.与他人合作掷骰子100次,要求点数 1 2 3 4 5 6 出现的频数 (3)计算出各点的概率.(4)有可能再现7点吗?它的概率为多少?§6.2.2频率与概率一、有400位同学,其中一定有至少两人生日相同吗?若有367位同学呢?说说你的理由.二、通过本节实验,你发现50位同学中有至少两位同学出生月日相同的频率占多少,估计这个情况的概率是多少?三、通过本节学习,我们发现有些实验估计起来既费时,又费力,可以用摸球实验或其他模拟实验.(1)请再回顾一下我们是怎样将复杂的调查转化成模球实验的?(2)请熟悉你的计算器产生随机数字的操作程序.四、取出一副扑克中的红桃A至红桃K共13张牌,牌面朝下放在桌面上,每次摸取一张看后放回,共摸取4次,试用计算器产生的随机数进行摸拟实验.小知识:小威和小丽在同一天过生日,他们班共有50名同学.想一想:这样能说50个人中2个人生日相同的概率为1吗?为什么?在§6.4这一节我们将来研究怎样调查50个人中2个人生日相同的概率.下面我们来考虑几个类似的问题:1.估计六个人中同属相的概率.2.估计六个人中同星座的概率.在研究这种问题中,要想使估算的概率准确,就必须尽可能多的增加调查对象,这样既费时又费力,想一想有什么方法可以替代做调查来估算概率呢?预习下节课的内容。

频率与概率练习题

频率与概率练习题

频率与概率练习题频率与概率练习题在数学中,频率和概率是两个重要的概念。

频率是指某一事件在一系列试验中出现的次数与试验总次数之比,而概率则是指某一事件在理论上出现的可能性。

频率与概率的关系紧密相连,通过练习题的形式,我们可以更好地理解和应用这两个概念。

1. 假设有一个骰子,每个面上的数字为1至6。

现在进行了100次投掷,每次投掷结果如下:1, 4, 2, 6, 3, 5, 1, 2, 3, 6, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6。

请计算每个数字出现的频率,并将结果以百分比的形式表示。

答案:数字1出现的频率为38%,数字2出现的频率为22%,数字3出现的频率为18%,数字4出现的频率为12%,数字5出现的频率为6%,数字6出现的频率为4%。

2. 现在假设有一个罐子,里面有红球和蓝球。

红球的数量为5个,蓝球的数量为15个。

从罐子中随机抽取一个球,请计算抽到红球的概率。

答案:抽到红球的概率为5/20,即1/4,约为25%。

3. 有一个扑克牌的标准牌组,共有52张牌。

现在从中随机抽取一张牌,请计算抽到红心牌的概率。

答案:标准牌组中有13张红心牌,所以抽到红心牌的概率为13/52,即1/4,约为25%。

九年级数学上册《用频率估计概率》练习题(附答案解析)

九年级数学上册《用频率估计概率》练习题(附答案解析)

九年级数学上册《用频率估计概率》练习题(附答案解析)学校:___________姓名:___________班级:____________一、单选题1.下列说法正确的是()A.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖B.某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则该次试验“钉尖向上”的频率是0.616 C.当试验次数很大时,概率稳定在频率附近D.试验得到的频率与概率不可能相等2.传说中的小李飞刀,飞刀绝技高超,飞刀靶心的命中率为96%,在一次飞刀演练中,前96次均命中靶心,那么他的第97次飞刀命中靶心的概率为()A.96%B.100%C.4%D.03.木箱里装有仅颜色不同的9张红色和若干张蓝色卡片,随机从木箱里摸出一张卡片后记下颜色后再放回,经过多次的重复实验,发现摸到红色卡片的频率稳定在0.6附近,则估计木箱中蓝色卡片有()A.6张B.8张C.10张D.4张4.一个不透明的箱子里装有m个球,其中红球有5个,这些球除颜色外都相同.每次将球搅拌均匀后,任意摸出一个球记下颜色后再放回.大量重复试验后发现,摸到红球的频率稳定在0.25,那么可以估算出m 的值为()A.25B.20C.15D.10P A的值不可能是()5.某随机事件A发生的概率()A.0.0001B.0.5C.0.99D.16.关于频率和概率的关系,下列说法正确的是()A.当实验次数很大时,概率稳定在频率附近B.实验得到的频率与概率不可能相等C.当实验次数很大时,频率稳定在概率附近D.频率等于概率7.在一个不透明的盒子中装有8个白球和m个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球为黄球的概率是13,则m的值为()A.16B.12C.8D.48.一个不透明的袋子中装有除颜色外均相同的4个白球和若干个绿球,每次摇均匀后随机摸出一个球,记下颜色后再放回袋中,经大量试验,发现摸到绿球的频率稳定在0.2,则摸到绿球的概率约为()A.0.2B.0.5C.0.6D.0.89.掷一枚质地均匀的骰子,前3次都是6点朝上,掷第4次时6点朝上的概率是()A.1B.56C.23D.1610.在一个不透明的袋子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中红球的个数约为()A.4B.6C.8D.12二、填空题11.一个不透明的口袋中装有5个红球和m个黄球,这些球除颜色外都相同,某同学进行了如下试验:从袋中随机摸出1个球记下它的颜色后,放回摇匀,为一次摸球试验.根据记录在下表中的摸球试验数据,可以估计出m的值为_________.12.在一个不透明的口袋中装有红球和白球共8个,这些球除颜色外都相同,将口袋中的球搅匀后,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有75次摸到红球,则口袋中红球的个数约为___________.13.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间不超过15min的频率为______.14.某水果店购进1000kg水果,进价为每千克5元,售价为每千克9元,很快所有水果都销售完.(1)这批水果全部出售后的利润是____元.(2)老板看到销售情况很好,第二次又以同样的价格购进了该水果1000kg,销售过程中有3%的水果因被损坏而不能出售.按每千克9元售出第二次进货量的一半后,为了尽快售完,水果店准备将余下的水果打折出售,两次获得的总利润为5615元.在余下的水果销售中,打了______折.15.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则盒子中大约有白球_______个.三、解答题16.某水果公司新进一批柑橘,销售人员首先从所有的柑橘中随机抽取若干柑橘,进行“柑橘损坏率”统计,并把获得的数据记录在下表中.(1)柑橘损坏的概率约为______(精确到0.1);(2)当抽取柑橘的总质量n=2000kg时,损坏柑橘质量m最有可能是______.A.99.32kg B.203.45kg C.486.76kg D.894.82kg(3)若水果公司新进柑橘的总质量为10000kg,成本价是1.8元/kg,公司希望这些柑橘能够获得利润5400元,那么在出售柑橘(去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?17.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表调查结果扇形统计图请根据以上图表,解答下列问题:(1)这次被调查的同学共有______人,a b +=________,m =________;(2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有1000人,请估计每月零花钱的数额x 在60120x ≤<范围的人数.18.在一个暗箱里放有a 个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在20%.(1)试求出a 的值;(2)从中任意摸出一个球,下列事件:①该球是红球;①该球是白球;①该球是蓝球.试估计这三个事件发生的可能性的大小,并将三个事件按发生的可能性从小到大的顺序排列(用序号表示事件).19.计算:(1) (2)按要求填空:小王计算22142x x x --+的过程如下:解:22142x x x --+ ()()()()()()21222222222x x x x x x x x x x =--------+-+-=---+-+-第一步第二步()()()()222222222x x x x x x x x x -------------+-------------+------------------+=第三步=第四步=第五步 小王计算的第一步是 (填“整式乘法”或“因式分解”),计算过程的第 步出现错误.直接写出正确的计算结果是 .参考答案与解析:1.B【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,根据选项一一判断即可.【详解】某彩票的中奖概率是5%,那么买100张彩票可能有5张中奖,A 错;某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则该次试验“钉尖向上”的频率是3080.616500=,B 正确;当试验次数很大时,频率稳定在概率附近,C 错;试验得到的频率与概率有可能相等,D 错.故选:B【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即为概率.2.A【分析】每次射出的飞刀命中都是相互独立的,每次命中靶心的概率都是96%.【详解】解:第97次飞刀命中靶心的概率与前96次没有关系,所以第97次命中靶心的概率还是96%. 故选:A .【点睛】题目考查随机事件的概率,理解概率的含义及意义是解题关键.3.A【分析】根据概率的求法,找准两点:一是全部情况的总数,二是符合条件的情况数目,求解即可;【详解】解:设木箱中蓝色卡片x 个,根据题意可得,99x +=0.6, 解得:x =6,经检验,x =6是原方程的解,则估计木箱中蓝色卡片有6张;故答案为:A .【点睛】此题考查了用频率估计概率,解题的关键是准确计算.4.B【分析】用红球的数量除以红球的频率即可.【详解】解:50.2520÷=(个),所以可以估算出m 的值为20,故选:B .【点睛】本题考查利用频率估计概率,解题的关键是掌握在大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.5.D【分析】概率取值范围:01p ,随机事件的取值范围是01p <<.【详解】解:概率取值范围:01p .而必然发生的事件的概率P (A )1=,不可能发生事件的概率P (A )0=,随机事件的取值范围是01p <<.观察选项,只有选项D 符合题意.故选:D .【点睛】本题主要考查了概率的意义和概率公式,解题的关键是:事件发生的可能性越大,概率越接近于1,事件发生的可能性越小,概率越接近于0.6.C【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.【详解】解:A、概率是定值,故本选项错误,不符合题意;B、可以相同,如“抛硬币实验”,可得到正面向上的频率为0.5,与概率相同,故本选项错误,不符合题意;C、当实验次数很大时,概率稳定在频率附近,正确,故本选项符合题意;D、频率只能估计概率,故本选项错误,不符合题意;故选:C.【点睛】此题考查利用频率估计概率,大量反复试验下频率稳定值即概率.7.D【分析】根据黄球的概率公式列出关于m的方程,求出m的值即可解答.【详解】解:由题意知:1 83mm=+,解得m=4.故选D.【点睛】本题主要考查了概率公式的应用.解决本题的关键是根据概率公式列出关于m的方程,再利用方程思想求解.8.A【分析】设袋中绿球有x个,根据经大量实验,发现摸到绿球的频率稳定在0.2,估计摸到绿球的频率为0.2,从而确定答案.【详解】】解:大量重复试验中,事件发生的频率可以估计概率,①经大量试验,发现摸到绿球的频率稳定在0.2,①摸到绿球的概率约为0.2,故选:A.【点睛】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.9.D【分析】根据概率的意义进行解答即可.【详解】解:掷一枚质地均匀的骰子,前3次都是6点朝上,掷第4次时,不会受前3次的影响,掷第4次时仍有6种等可能出现的结果,其中6点朝上的有1种,所以掷第4次时6点朝上的概率是16, 故选:D .【点睛】本题考查简单随机事件的概率,理解概率的意义是正确解答的前提,列举出所有等可能出现的结果情况是解决问题的关键.10.C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】设红球约有x 个, 根据题意可得:0.420x , 解得:x =8,故选C .【点睛】本题考查利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.11.20【分析】利用大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率求解即可.【详解】解:①通过大量重复试验后发现,摸到红球的频率稳定于0.2, ①55m +=0.2, 解得:m =20.经检验m =20是原方程的解,故答案为:20.【点睛】此题主要考查了利用频率估计概率和解分式方程,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据摸出红球的频率得到相应的等量关系.12.6【分析】用球的总个数乘以摸到红球的频率即可.【详解】解:估计这个口袋中红球的数量为8×75100=6(个).故答案为:6.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.13.0.9.【详解】试题解析:①不超过15分钟的通话次数为20+16+9=45次,通话总次数为20+16+9+5=50次,①通话时间不超过15min的频率为4550=0.9.考点:频数(率)分布表.14.4000四六【分析】(1)根据利润=(售价-进价)×销售量,可以计算出这批水果全部出售后的利润;(2)根据利润=(售价-进价)×销售量,可以列出相应的方程,然后求解即可,注意计算过程中打折数要除以10.【详解】(1)由题意可得,这批水果全部出售后的利润是:(9-5)×1000=4×1000=4000(元),故答案为:4000;(2)设在余下的水果销售中,打了x折,由题意可得:(9-5)×(1000×12)+(9×10x-5)×[1000×(1-12-3%)]+4000=5615,解得x=4.6,即在余下的水果销售中,打了四六折,故答案为:四六.【点睛】本题考查一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程.15.12【分析】根据共摸球40次,其中10次摸到黑球,则摸到黑球与摸到白球的次数之比为1:3,由此可估计口袋中黑球和白球个数之比为1:3;即可计算出白球数.【详解】解:①共摸了40次,其中10次摸到黑球,①有30次摸到白球,①摸到黑球与摸到白球的次数之比为1:3,①口袋中黑球和白球个数之比为1:3,4÷13=12(个). 故答案为:12.【点睛】本题考查的是样本估计总体,只需将样本“成比例地放大”为总体即可.关键是根据白球和黑球的比得到相应的关系式.16.(1)0.1(2)B(3)2.6元【分析】(1)根据随着总质量的增加,频率的稳定值可得答案;(2)总质量乘以柑橘损坏的概率即可得出答案;(3)设每千克定价为x 元,根据“销售额-总成本=利润”列方程求解即可.(1)根据表格信息,柑橘损坏的概率约为0.1,故答案为:0.1;(2)当抽取柑橘总质量n =2000kg 时,损坏柑橘质量m 约为2000×0.1=200(kg ),故选:B .(3)根据柑橘损坏的概率约为0.1,可得能够出售的柑橘为:()1000010.19000⨯-=(kg ) 则定价为:10000 1.85400 2.69000⨯+=(元) 答:每千克大约定价2.6元比较合适.【点睛】本题考查了用频率估计概率的知识,用到的知识点为:频率等于所求情况数与总情况数之比.得到售价的等量关系是解决问题的关键.17.(1)50,28,8;(2)144︒;(3)在60120x ≤<范围内的人数为560人.【分析】(1)利用B 组人数与百分率,得出样本的人数;再求出b ,a;再根据所有百分率之和为1,求出m .(2)利用C 组的百分率,求出圆心角度数.(3)用全样的总人数乘以在这个范围内人数的百分率即可.【详解】解:(1)调查人数:16÷32%=50,b: 50⨯16%=8,a=50-4-16-8-2=20, a+b=28; C 组点有率:20÷50=40%,m%=1-32%-40%-16%-4%=8%,m=8;(2)360°⨯40%=144°;(3) 在60120x≤<范围内的人数为:1000⨯2850=560.【点睛】本题主要考查频率,扇形统计图,利用百分率求圆心角以及用样本估计总体,解题的关键是求总出样本总量以及各组别与样本总量的百分率.18.(1)20;(2)①①①.【分析】(1)根据频率估计概率,可得到摸到红球的概率为20%,然后利用概率公式计算a的值;(2)根据概率公式分别计算出摸出一个球是红球或白球或蓝球的概率,然后根据概率的大小判断这三个事件发生的可能性的大小.【详解】解:(1)a=4÷20%=20;(2)在一个暗箱里放有20个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,蓝求有6个,所以从中任意摸出一个球,该球是红球的概率=20%;该球是白球的概率=1020=50%;该球是蓝球的概率=620=30%,所以可能性从小到大排序为:①①①.【点睛】本题考查用频率估计概率,强调“同样条件,大量试验”是解题关键.19.(1)(2)因式分解;三和五;12 x-【分析】(1)先化成最简二次根式,然后根据二次根式的四则运算法则求解即可;(2)按照分式的加减运算法则逐步验算即可.(1)解:原式632333222233;(2)解:由题意可知:2212222222222214222222122x x x x xx x x x x x x x x x x x x xx x 第一步第二步=第三步=第四步=第五步故小王的计算过程中第三步和第五步出现了错误;最终正确的计算结果为12x -. 故答案为:因式分解,第三步和第五步,12x - 【点睛】本题考查二次根式的四则运算法则及分式的加减运算法则,属于基础题,熟练掌握运算法则是解题的关键.。

初三数学频率概率练习题

初三数学频率概率练习题

初三数学 频率概率复习题姓名_____________ 总分_____________一、选择题1. 两人在玩“石头”、“剪刀”、“布”的游戏中,那么石头胜的概率为( )A. 81 B .92 C. 41 D. 31 2. 一副扑克牌是54张,随意摸到一张是10的概率为( ) A.541 B. 261 C. 272 D. 131 3. 在1~9这九个数中,任取一个数,那么得到奇数的机会比得到偶数的机会( )A.大B.相等C.小D.无法确定4. 平面上有10个点,没有三点在一条直线上,以一个点A 为顶点的三角形的概率是( )A.401B.101C. 103D. 109 5.某淡水养殖专业户从鱼塘中捕得同时放养草鱼120尾,从中任选9尾,称得重量分别为:3.0 , 3.2, 3.1 ,2.8 ,2.9 ,2.9 ,2.8 ;3.2 ,3.1(千克) ,据此估算,这120尾鱼的总重量为( )千克。

A .360B .300 C. 280 D. 2006. 下列说法中:(1)某种事件发生的概率为21,这就是说:在两次重复的试验中,必有一次发生;(2)一个袋子里有100个球,小明摸了8次,每次都只摸到黑球,没摸到白球,因此小明断定:袋子里面只有黑球,没有白球;(3)实验中,随着实验次数的增加,随机事件发生的频率逐渐稳定到一个数值,这个数值可以作为这一个随机事件发生的机会的估计值;(4)抛两枚硬币的实验,可用这样的实验替换:在两个袋子中各放一黑一白两个球,闭上眼睛分别从两个袋子中各摸出一个球,若摸出两个黑球,代表两个正面。

其中正确的说法有( )种A. 1 B .2 C. 3 D. 47. 某商场为了吸引顾客,特举办有奖销售活动。

活动规定:凡购物满100元的顾客可得奖券一张,多购多得,每10000张奖卷为一个开奖单位,设特等奖一名,一等奖50名,二等奖100名,那么,买100元商品的中奖率是( )A .100001 B. 1000050 C. 10000100 D .10000151 8. 一年有12个月,要保证至少有两个人的出生月份相同,起码要有( )人。

(完整版)用频率估计概率 练习题

(完整版)用频率估计概率  练习题

用频率估计概率练习一、仔仔细细,记录自信1.公路上行驶的一辆汽车车牌为偶数的频率约是(A.50%B.100%C.由各车所在单位或个人定D.无法确定2.实验的总次数、频数及频率三者的关系是()A.频数越大,频率越大B.频数与总次数成正比C.总次数一定时,频数越大,频率可达到很大D.频数一定时,频率与总次数成反比3.在一副(54张)扑克牌中,摸到“A”的频率是( )A.14B.227C.113D.无法估计4.在做针尖落地的实验中,正确的是()A.甲做了4 000次,得出针尖触地的机会约为46%,于是他断定在做第4 001次时,针尖肯定不会触地B.乙认为一次一次做,速度太慢,他拿来了大把材料、形状及大小都完全一样的图钉,随意朝上轻轻抛出,然后统计针尖触地的次数,这样大大提高了速度C.老师安排每位同学回家做实验,图钉自由选取D.老师安排同学回家做实验,图钉统一发(完全一样的图钉).同学交来的结果,老师挑选他满意的进行统计,他不满意的就不要二、认认真真,书写快乐5.通过实验的方法用频率估计概率的大小,必须要求实验是在的条件下进行.6.某灯泡厂在一次质量检查中,从2 000个灯泡中随机抽查了100个,其中有10个不合格,则出现不合格灯泡的频率是,在这2 000个灯泡中,估计有个为不合格产品.7.在红桃A至红桃K这13张扑克牌中,每次抽出一张,然后放回洗牌再抽,研究恰好抽到的数字小于5的牌的概率,若用计算机模拟实验,则要在的范围中产生随机数,若产生的随机数是 ,则代表“出现小于5”,否则就不是.8.抛一枚均匀的硬币100次,若出现正面的次数为45次,那么出现正面的频率是.三、平心静气,展示智慧9.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.10.如图,某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:转动转盘的次数n100[15020050080011000落在“铅笔”的次数68111136345564701m落在“铅笔”的频率mn(2)请估计,当n很大时,频率将会接近多少?(3)假如你去转动转盘一次,你获的铅笔的概率是多少?28.3用频率估计概率一、1~4.ADBB二、5.相同或同等(意思相近即可) 6.0.1,200 7.1~13,1,2,3,4 8.0。

历年初三数学频率与概率练习题及答案

历年初三数学频率与概率练习题及答案

频率与概率回顾与思考】【例题经典】能够理解用试验得到的频率当作概率用例1 含有4 种花色的36 张扑克牌的牌面都朝下,?每次抽出一张记下花色后再原样放回,洗匀牌后再抽.不断重复上述过程,?记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有 ____________ 张.【点评】频率为25%,就作为概率即36× 25%=9 (即可)能够根据实际情况制作模拟试验例2 你几月份过生日?和同学交流,看看6 个同学中是否有2 个人同月过生日,开展调查,看看6 个月中2 个人同月过生日的概率大约是多少?【点评】以12 月份为号码编球或用计算器作模拟试验.能借助用频率估计理论概念的方法解决问题例3 为了估计池塘里有多少条鱼,从池塘里捕捞了1000 条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合鱼群中以后,再捕捞200 条,若其中有标记的鱼有10 条,则估计池塘里有鱼 ____________________________________ 条.【点评】这种方法本身就是一种估算,不能说它是一种准确值.考点精练】、基础训练1.某市对2400名年满15岁的男生的身高进行了测量,结果身高(单位:m)在1.68~1.70这一小组的频率为0.25,则该组的人数为()A.400 人B.150 人C.60 人D.15 人2.有一个不透明的布袋中,红色、黑色、白色的玻璃共有40 个,除颜色外其它完全相同.小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A .6B .16 C.18 D.243.右图是某中学七年级学生参加课外活动人数的扇形统计图,若参加舞蹈类的学生有42 人,则参加球迷活动的学生人数有A.145 B.147 C.149 D.1514.甲、乙、丙、丁四名运动员参加4×100 米接力赛,?甲必须为第一接力棒或第四接棒的运动员,那么这四名运动员在比赛过程的接棒顺序有()A.3 种B.4种C.6 种D.12种5.一个口袋中有12 个白球和若干个黑球,?在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下方法:?每次先从口袋中摸出10 个球,求出其中白球数与10 的比值,再把球放回口袋中摇匀.不断重复上述过程 5 次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2,根据上述数据,?小亮可估计口袋中大约有____________ 个黑球.6.右图是由8?块相同的等腰直角三角形黑白瓷砖镶嵌而成的正方形示意图,一只蚂蚁在上面自由爬动,并随机停留在某块瓷砖上,?蚂蚁留在黑色瓷砖上的概率是_________ .7.在一个有10 万人的小镇,随机调查了2000 人,其中有250? 人看中央电视台的早间新闻,在该镇随便问一个人,他看早间新闻的概率大约是8.某口袋中有红色、黄色、蓝色玻璃球共72 个.小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的概率依次是35%,25%和40%,?试估计口袋中三种玻璃球的数目依次是 ______ .9.在一个不透明的箱子里放有除颜色外,其余都相同的 4 个小球,其中红球有3 个、白球1 个.搅匀后,从中同时摸出2 个小球,? 请你写出这个实验中的一个可能事件:二、能力提升10.一枚均匀的正方体骰子,六个面分别标有数字1,2,3,4,5,6,连续抛掷两次,朝上的数字分别是m,n.若把m,n 作为点A 的横、纵坐标,那么点A(?m,n)在函数y=2x 的图象上的概率是多少?11.在围棋盒中有x 颗黑色棋子和y 颗白色棋子,从盒中随机地取出一个棋子,如果它是3黑色棋子的概率是.8(1)试写出y与x的函数关系式.1(2)若往盒中再放进10颗黑色棋子,则取得黑色棋子的概率变为,求x和y的值.212.有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1,2,3,4 四个数,另一个信封内的四张卡片上分别写出5,6,7,8 四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,?然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率;(2)你认为这个游戏公平吗?为什么?13.在两个布袋中分别装有三个小球,这三个小球的颜色分别为红色、白色、绿色,其他没有区别,把两袋小球都搅匀后,再分别从两袋中各取出一个小球,试求取出两个相同颜色小球的频率(要求用树状图或列表方法求解).14.将分别标有数字 2,3,5 的三张质地, ?大小完全一样的卡片背面朝上放在桌面上.(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为个位上的数字(不放回)能组成哪些两位数?并求出抽取到的两位数恰好是 三、应用与探究组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色, ?再把它放回袋中,不断重 复.下表是活动进行中的一组统计数据:(1)请估计:当 n 很大时,摸到白球的频率将会接近 _______________ ;2)假如你去摸一次, ?你摸到白球的概率是 ____________ , ?摸到黑球的概率是 __________ (3)试估算口袋中黑、白两种颜色的球各有多少只?( 4)解决了上面的问题, 小明同学猛然顿悟, 过去一个悬而未决的问题有办法了. 这 个问题是:在一个不透明的口袋里装有若干个白球, ?在不允许将球倒出来数的情况下, 如何估计白球的个数(可以借助其他工具及用品)?请你应用统计和概率的思想和方法 解决这个问题,写出解决这个问题的主要步骤及估算方法.,再抽取一张作为十位上的数字, 35 的概率.15.在一个不透明的口袋里装有只有颜色不同的黑、 ?白两种颜色的球共 20 只,某学习小13. 3答案:例题经典考点精练1 1.A 2.B 3. B 4.D 5.48 6. 27.12500人 8.25个 18个 ?29 个9.摸到两个红球10.解:根据题意,以( m ,n )为坐标的点 A 共有 36 个,而只有( ?1,2),(2,4),(3, 6)三个点在函数 y=2x 图象上,3 1 1所以,所求概率是 = ,即:点 A 在函数 y=2x 图象上的概率是36 12 125 11.(1)y= x ( 2)x=15 ,y=253 12.( 1) ?利用列表法得出所有可能的结果,如右表:由表格可知,该游戏所有可能的结果共 16 种,其中两张卡片上的数字之积大于5 的有5 种,所以甲获胜的概率为 P 甲=16 5(2)这个游戏对双方不公平,因为甲获胜的概率 P 甲= ,16 11 11 5 乙获胜的概率 P 乙 = , ≠ ,所以,游戏对双方是不公平的.16 16 16 114.( 1) 15.( 1)0.6 (2)0.6,0.4例1:9张 例 2:略 例 3: 20000 条202)3)黑球有8 个,白球12 个(4)略。

用频率估计概率练习题

用频率估计概率练习题

用频率估计概率练习题一、选择题1. 在一次随机抽样调查中,共有100名学生,其中70名学生喜欢数学,30名学生喜欢英语。

根据频率估计概率,喜欢数学的学生的概率是多少?A. 0.3B. 0.7C. 0.8D. 0.52. 某工厂生产的一批零件中,有95%是合格的。

如果随机抽取一个零件,根据频率估计,这个零件是合格品的概率是多少?A. 0.05B. 0.95C. 0.5D. 0.853. 某地区连续5天的降雨概率分别为60%、70%、80%、50%和40%。

根据这5天的频率,估计该地区明天下雨的概率是多少?A. 60%B. 65%B. 70%D. 50%二、填空题4. 某班级有50名学生,其中25名男生和25名女生。

根据频率估计,随机抽取一名学生是女生的概率是________。

5. 某次考试中,共有200名学生参加,其中120名学生及格。

根据频率估计,一名学生及格的概率是________。

6. 在一个装有红球和白球的袋子里,红球和白球的数量比为3:2。

如果随机抽取一个球,根据频率估计,抽到红球的概率是________。

三、简答题7. 解释什么是频率估计概率,并给出一个实际生活中的例子。

8. 如果一个骰子被掷了60次,其中出现“6”的次数为10次,根据频率估计,掷出“6”的概率是多少?四、计算题9. 在一次掷硬币实验中,硬币正面朝上出现了30次,反面朝上出现了20次。

根据这些数据,计算掷硬币时正面朝上的概率。

10. 某公司有100名员工,其中60名员工有本科学历,40名员工有研究生学历。

如果随机选择一名员工,根据频率估计,该员工具有研究生学历的概率是多少?五、应用题11. 某医院统计了过去一年内,每天接待的病人数量。

数据显示,平均每天接待病人数量为120人。

如果今天随机选择一天,根据频率估计,今天接待的病人数量在110到130人之间的概率是多少?12. 某彩票每期有1000万种可能的组合,其中只有1种组合是中奖的。

频率与概率练习题(1)

频率与概率练习题(1)

频率与概率练习题一、〖预习练习〗1、指出下列事件是必然事件,还是随机事件,还是不可能事件?①5张卡片上各写2,4,6,8,10中的一个数,从中任取一张是偶数;②从(1)题的5张中任取一张是奇数;③从(1)题的5张卡片中任取一张是3的倍数.2、下列事件,哪些是必然发生的事件?哪些是不可能发生的事件?哪些是随机事件?(1)13人至少有两人出生的月份是相同的()(2)十五的月亮像一条弯弯的小船()(3)小明买彩票,中500万奖金()(4)打开书本任意翻开一页,其页码是85页()(5)2006年我们将搬到太阳上去()(6)你在一大串中随便选中一把,用它打开了门()(7)一个有理数的绝对值是负数()(8)闭上眼睛,从装了1万只标有1~10000的小球的口袋中一次任意某处三个球,它们的号吗是3,33,333()3、下列事件中,是确定事件的是()A、掷一枚6个面分别标有1~6的数字的均匀骰子,骰子停止运动后偶数点超上;B、从一副扑克牌中任意抽出一张牌,花色是红桃;C、任意选中电视的某一个频道,正在播放动画片;D、在一年出生的367名学生中,至少有两个人的生日在同一天4、从一副扑克牌中抽取5张红桃,4张梅花、3张黑桃放在一起,洗匀后,从中抽取10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事()A、可能发生B、不可能发生C、很可能发生D、必然发生5、下列事件,哪些是必然发生的事件?哪些是不可能发生的事件?哪些是随机事件?(1)有一副洗好的只有数字1~10的10张扑克牌。

①任意抽取一张牌,它比6小②一次任意抽出两张牌,它们的和是24 。

③一次任意抽出两张牌,它们的和不小于2 。

(2)在一个不透明的口袋中,装有10个大小和外形一模一样的小球,其中有5个红球,3个蓝球,2个白球,并在口袋中搅匀。

①从口袋中摸出一个球,它们恰好是白球②从口袋中任意抽出2个球,它们恰好是白球③从口袋中一次摸出3个球,它们的颜色分别是红色、蓝色、白色④从口袋中一次摸出5个球,它们恰好是1个红色、1个蓝色和3个白色6、同时抛掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能事件的是( )(A)点数之和为12. (B)点数之和小于3.(C)点数之和大于4且小于8. (D)点数之和为13.7、掷一个质地均匀的骰子,观察向下的一面的点数,求下列事件的概率(1)点数为2 (2)点数为奇数(3)点数大于2且小于5 8、一副扑克牌共有54张,含大、小王,大王看成红色,小王看成是黑色,任意抽出一张回答下列问题。

九年级数学: 25.3 用频率估计概率(同步练习题)( 含答案)

九年级数学: 25.3 用频率估计概率(同步练习题)( 含答案)

25.3 用频率估计概率1.一般地,在大量重复试验中,如果事件A 发生的频率mn会稳定在某个常数P 附近,那么事件A 发生的概率P(A)=__mn___,__0___≤P(A)≤__1___.2.用频率估计概率,其适用范围更广,既可以用于有限的等可能性事件,也可以用于无限的或可能性不相等的事件.只要试验的次数n 足够大,频率mn就可以作为概率P 的__近似值___.知识点1:频率与概率的关系1.关于频率与概率的关系,下列说法正确的是( B ) A .频率等于概率B .当试验次数很大时,频率稳定在概率附近C .当试验次数很大时,概率稳定在频率附近D .试验得到的频率与概率不可能相等2.某人做投硬币试验时,投掷m 次,正面朝 n 次(即正面朝上的频率P =mn),则下列说法正确的是( D )A .P 一定等于12B .P 一定不等于12C .多投一次,P 更接近12D .投掷次数逐渐增加,P 稳定在12附近3.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”和“6”,如果试验的次数增多,出现数字“6”的频率的变化趋势是接近__16___.知识点2:用频率估计概率4.在一所有2000名学生的小学学校中,随机调查了300名学生,其中269人认为月球上有水,那么在这所小学学校里随机问1名学生,认为月球上有水的概率约是( A )A .0.9B .0.10C .0.8D .0.2__0.8___6.在一个不透明布袋中,红色、黑色、白色乒乓球共有20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球试验后,发现其中摸到红色、黑色乒乓球的频率稳定在5%和15%,则口袋中白色乒乓球的个数很可能是__16___.7.一个不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲,乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之(1)如果试验继续进行下去,根据上表数据,“和为8”出现的频率稳定在它的概率附近,估计“和为8”出现的概率是__0.33___;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图法说明理由;如果x 的值不可以取7,请写出一个符合要求的x 的值.解:x 不可以取7,画树状图(略),从图中可知,数字和为9的概率为212=16.当x =6时,摸出的两个小球上数字之和为9的概率是138.为了估计水塘中的鱼的条数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放回鱼塘,再从鱼塘中打捞200条鱼.如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的条数估计为( C)A.3000条B.2200条C.1200条D.600条9.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量的摸球试验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%.对此试验,他总结出下列结论:①若进行大量的摸球试验,摸出白球的频率应稳定于30%;②若从布袋中随机摸出一球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( B)A.①②③B.①②C.①③D.②③10.如图,创新广场上铺设了一种新颖的石子图案,它由五个过同一点且半径不同的圆组成,其中阴影部分铺黑色石子,其余部分铺白色石子.小鹏在规定地点随意向图案内投掷小球,每球都能落在图案内,经过多次试验,发现落在一、三、五环(阴影)内的频率分别是0.04,0.2,0.36,如果最大圆的半径是1米,那么黑色石子区域的总面积约为__1.88___平方米.(精确到0.01平方米)11.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)这种树苗成活的频率稳定在__0.9___,成活的概率估计值为__0.9___;(2)该地区已经移植这种树苗5万棵.①估计这种树苗成活__4.5___万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?解:18÷0.9-5=15(万棵)12.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.推测计算:由上述的摸球试验可推算:(1)盒中红球、黄球各占总球数的百分比分别是多少? (2)盒中有红球多少个?解:(1)红球占40%,黄球占60% (2)设总球数为x 个,由题意得8x =450,解得x =100,100×40%=40,即盒中红球有40个13.小红和小明在操场做游戏,他们先在地上画了半径分别2 m 和3 m 的同心圆(如图),蒙上眼睛,在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内不算,你来当裁判.(1)你认为游戏公平吗?为什么?(2)游戏结束,小明边走边想:“反过来,能否用频率估计概率的方法,来估算非规则图形的面积呢?”请你设计方案,解决这一问题.(要求画出图形,说明设计步骤、原理,写出公式)解:(1)不公平,因为P(阴影)=9π-4π9π=59.即小红获胜的概率为59,则小明获胜的概率为49,所以游戏对双方不公平 (2)能用频率估计概率的方法估算非规则图形的面积.设计方案:①如图,设计一个可测量面积的规则图形,将非规则图形围起来(如正方形面积为S);②往图形中掷点(如蒙上眼睛往图形中随意掷石子,掷在图形外不作记录);③当掷点数充分大(如1万次)记录并统计结果,设掷入正方形内m 次,其中n 次掷入非规则图形内;④设非规则图形面积为S′,概率P(掷入非规则图形内)=S′S ,故n m ≈S′S ,∴S ′≈nSm专题训练(九) 概率的求法及应用一、用列举法求概率 (一) 两步概率1.(2014·扬州)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是__14___;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.解:画树状图(略),∵共有12种可能的结果,他恰好买到雪碧和奶汁的有2种等可能情况,∴P(他恰好买到雪碧和奶汁)=212=162.如图,管中放置着三根同样的绳子AA 1,BB 1,CC 1.(1)小明从这三根绳子中随机选一根,恰好选中绳子AA 1的概率是多少?(2)小明先从左端A ,B ,C 三个绳头中随机选两个打一个结,再从右端A 1,B 1,C 1三个绳头中随机选两个打一个结,求这三根绳子能连接成一根长绳的概率.解:(1)P(恰好选中绳子AA 1)=13(2)画树状图(略),可知分别在两端随机任选两个绳头打结,总共有9种等可能情况,其中能连接成一根长绳的有6种,故P(这三根绳子连接成一根长绳)=69=233.在一个口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,小明和小强采取了不同的摸取方法,分别是:小明:随机摸取一个小球记下标号,然后放回,再随机地摸取一个小球,记下标号; 小强:随机摸取一个小球记下标号,不放回,再随机地摸取一个小球,记下标号. (1)用画树状图(或列表法)分别表示小明和小强摸球的所有可能出现的结果; (2)分别求出小明和小强两次摸球的标号之和等于5的概率.解:(1)略 (2)由树状图可知:小明摸取小球,可能出现的结果有16个,它们出现的可能性相等,其中满足标号之和为5(记为事件A)的结果有4个,即(1,4),(2,3),(3,2),(4,1),所以P(A)=416=14;小强摸取小球,可能出现的结果有12个,它们出现的可能性相等,其中满足标号之和为5(记为事件B)的结果有4个,即(1,4),(2,3),(3,2),(4,1),所以P(B)=412=134.(2014·黄冈)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果; (2)求恰好选派一男一女两位同学参赛的概率. 解:(1)画树状图(略),一共有12种选派方案 (2)恰有一男一女参赛,共有8种可能,∴P(一男一女)=812=23(二) 三步概率5.如图,用红、蓝两种颜色随机地对A ,B ,C 三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A ,C 两个区域所涂颜色不相同的概率.解:画树状图(略),所有等可能的情况有8种,其中A ,C 两个区域所涂颜色不相同的有4种,则P =48=126.两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序,两人采用了不同的乘车方案:甲无论如何总是上开来的第一辆车,而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况,如果第二辆车的状况比第一辆好,他就上第二辆车;如果第二辆不比第一辆好,他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等,请尝试着解决下面的问题: (1)三辆车按出现的先后顺序共有哪几种不同的可能?(2)你认为甲、乙两人采用的方案,哪一种方案使自己乘坐上等车的可能性大?为什么? 解:(1)略 (2)对于乙,共有6种等可能结果,乘上等车的有3种,所以乙乘上等车的可能性为36=12,而甲乘上等车的可能性为13,故乙乘上等车的可能性大二、概率的应用7.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?解:(1)P(转动一次转盘获得购物券)=1020=12(2)200×120+100×320+50×620=40(元).∵40元>30元,∴选择转转盘对顾客更合算8.(2014·怀化)甲、乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一个球,标号是1的概率;(2)从袋中随机摸出一个球然后放回,摇匀后再随机摸出一个球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜.试分析这个游戏公平吗?请说明理由.解:(1)P(标号是1)=13 (2)这个游戏不公平,理由如下:列表(略),P(和为偶数)=59,P(和为奇数)=49,二者不相等,说明游戏不公平三、统计与概率9.某校九年级有10个班,每班50名学生,为调查该校九年级学生一学期课外书籍的阅读情况,准备抽取50名学生作为一个样本进行分析,并规定如下:设一个学生一学期阅读课外书籍本数为n ,当0≤n <5时为一般读者;当5≤n <10时为良好读者;当n ≥10时为优秀读者.(1)下列四种抽取方法最具有代表性的是__B ___; A .随机抽取一个班的学生 B .随机抽取50名学生 C .随机抽取50名男生 D .随机抽取50名女生(2)由上述最具代表性的抽取方法抽取50名学生一学期阅读本数的数据如下: 8 10 6 9 7 16 8 11 0 13 10 5 8 2 6 9 7 5 7 6 4 12 10 11 6 8 14 15 7 12 13 8 9 7 10 12 11 8 13 10 4 6 8 13 6 5 7 11 12 9根据以上数据回答下列问题: ①求样本中优秀读者的频率;②估计该校九年级优秀读者的人数;③在样本为一般读者的学生中随机抽取2人,用树状图或列表法求抽得2人的课外书籍阅读本数都为4的概率.解:①25 ②200人 ③1610.每年3月12日,是中国的植树节.某街道办事处为进一步改善人居环境,准备在街道两边种植行道树,行道树的树种选择取决于居民的喜爱情况.为此,街道办事处的人员随机调查了部分居民,并将结果绘成如图中扇形统计图,其中∠AOB =126°.请根据扇形统计图,完成下列问题:(1)本次调查了多少名居民?其中喜爱“香樟”的居民有多少人?(2)请将条形统计图补全;(在图中完成)(3)某中学的一些同学也参与了投票,喜爱“小叶榕”的有四人,其中一名男生;喜爱“黄葛树”的也有四人,其中三名男生.若街道办事处准备分别从这两组中随机选出一名同学参与到街道植树活动中去,请你用列表或画树状图的方法求出所选两名同学恰好一名女生和一名男生的概率.解:(1)800人;40人(2)补图略(3)错误!。

利用频率估计概率 习题精选

利用频率估计概率  习题精选

利用频率估计概率习题精选1.判断下列说法是否正确,在括号内填上“正确”或“错误”。

(1)连续10次抛掷均匀的骰子,出现1点向上的频率是310,所以出现1点向上的概率就是310。

()(2)小明任意画了一个三角形,量出三个内角的度数,计算它们的和小于180,于是他得出结论:三角形的内角和小于180°。

()(3)某同学练习投篮,他投了1000次,投进了701次,那么他的命中率是70%。

()(4)在10件产品中随意抽出3件产品,都是次品,所以断定这10件产品都是次。

()(5)某彩票的中奖机会是1/22,那么某人买了22张彩票,肯定有一张中奖。

()(6)抛掷一枚质量均匀的硬币,出现“正面”和“反面”的机会均等,因此抛1000次的话,一定有500次“正”,500次“反”。

()(7)世界乒乓球冠军王楠,预定在亚运会上夺冠军的机率为100%。

()2.填空题(1)在一个不透明的布袋子中有只有颜色不同的10个球,连续10次从中任意摸出1个球,放回搅匀再摸.在连续10次实验中,摸到红球的频率是30%,在连续500次实验中摸到红球的频率是40%,那么袋中很可能有红球_______个。

(2)一个硬币抛起后落地时“正面朝上”的机会有多大?①写出你的猜测。

_________________________________________。

②一位同学在做这个实验时说:“我只做了10次实验就得到了正面朝上的机会约为30%。

”你认为他说的对吗?为什么?③还有一位同学在做这个实验中觉得用硬币麻烦,改用可乐瓶盖做这个实验,你认为他的做法科学吗?为什么?答案1.(1)错误(2)错误(3)正确(4)错误(5)错误(6)错误(7)错误2.(1)4(2)①12②不对,实验次数较小,事件出现的频率与事件出现的机会有较大差距,不能据此估计事件发生的机会③不对,实验条件不同。

2022版人教A版高中数学必修第二册练习题--频率与概率

2022版人教A版高中数学必修第二册练习题--频率与概率

2022版人教A版高中数学必修第二册--10.3频率与概率10.3.1频率的稳定性10.3.2随机模拟基础过关练题组一频率与概率的意义1.下列说法中正确的是()A.任何事件发生的概率总是在区间(0,1)内B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,频率一般会越来越接近概率D.概率是随机的,在试验前不能确定2.(2020江苏无锡高一下期末)某医院治疗一种疾病的治愈率为50%,下列说法正确的是()A.如果第1位病人没有被治愈,那么第2位病人一定能被治愈B.2位病人中一定有1位能被治愈C.每位病人被治愈的可能性是50%D.所有病人中一定有一半的人能被治愈3.(2021安徽淮南高一下月考)下列结论正确的是()A.事件A发生的概率P(A)=0.001,则事件A是不可能事件B.事件A发生的概率P(A)=0.999,则事件A是必然事件C.用某种药物对患有胃溃疡的500名病人进行治疗,结果有380名有明显的疗效,现有胃溃疡的病人服用此药,则估计其有明显疗效的可能性为76%D.某奖券的中奖率为50%,则某人购买此种奖券10张,一定有5张中奖4.下列说法中,不正确的是()A.某人射击10次,击中靶心8次,则他击中靶心的频率是0.8B.某人射击10次,击中靶心7次,则他击不中靶心的频率是0.7C.某人射击10次,击中靶心的频率是12,则他击中靶心5次D.某人射击10次,击中靶心的频率是0.6,则他击不中靶心的次数应为4次5.抛掷一枚质地均匀的硬币,如果连续抛掷1 000次,那么第999次出现正面朝上的概率是()A.1999B.11000C.9991000D.12题组二用频率估计概率6.从存放号码分别为1,2,…,10的卡片的盒子中有放回地取100次,每次取一张卡片并记下号码,统计结果如表:卡片号码12345678910取到的次数101188610189119则取到的号码为奇数的概率估计值是()A.0.53B.0.5C.0.47D.0.377.从一堆苹果中任取20个,并得到它们的质量(单位:克)数据分布表如下:分组[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]频数1231031则在这堆苹果中随机抽取一个,其质量不小于120克的概率为.题组三用随机模拟方法估计概率8.用随机模拟方法估计概率时,其准确程度取决于()A.产生的随机数的大小B.产生的随机数的个数C.随机数对应的结果D.产生随机数的方法9.一个袋子中有红、黄、蓝、绿各一个小球,有放回地从中任取一个小球,将“三次抽取后,红色小球、黄色小球都取到”记为事件M,用随机模拟的方法估计事件M发生的概率.利用计算机随机产生0,1,2,3四个随机数,分别代表红、黄、蓝、绿四个小球,以每三个随机数为一组,表示取小球三次的结果,经随机模拟产生了以下18组随机数:110321230023123021132220001231130133231031320122103233由此可以估计事件M发生的概率为()A.29B.13C.518D.2310.在利用整数随机数进行随机模拟试验中,整数a到整数b之间(包括a,b,且a<b)的每个整数出现的可能性是.11.一个袋中有7个大小、形状相同的小球,其中6个白球,1个红球,现任取1个,若为红球就停止,若为白球就放回,搅拌均匀后再接着取,试设计一个模拟试验计算恰好第三次取到红球的概率.能力提升练题组一用频率估计概率1.(2021黑龙江哈尔滨三校高二上期末联考,)随着互联网的普及,网上购物已逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4 500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如表:满意情况不满意比较满意满意非常满意人数200n 2 100 1 000根据表中数据,估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率是()A.715B.25C.1115D.13152.(多选)(2021山东菏泽一中高二上月考,)小张上班从家到公司开车有两种方案,所需时间(分钟)随交通堵塞状况有所变化,其概率分布如下表所示:所需时间(分钟)30405060方案一0.50.20.20.1方案二0.30.50.10.1则下列说法正确的是()A.任选一种方案,“所需时间小于50分钟”与“所需时间为60分钟”是对立事件B.从所需的平均时间看,方案一比方案二更节省时间C.如果要求在45分钟以内从家赶到公司,小张应该走方案一D.若小张上、下班选择不同的方案,则所需时间之和大于100分钟的概率为0.043.()某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234≥5保费0.85a a1.25a1.5a1.75a2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数01234≥5频数605030302010(1)记A为事件“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;(2)记B为事件“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;(3)求续保人本年度平均保费的估计值.题组二随机模拟方法的应用4.(2020山东济南历城二中高一下月考,)为了配合新冠疫情防控,某市组织了以“停课不停学,成长不停歇”为主题的“空中课堂”教学活动,为了了解一周内学生的线上学习情况,从该市抽取了1 000名学生进行调查,根据所得信息制作了如图所示的频率分布直方图.(1)为了估计从该市任意抽取的3名同学中恰有2名线上学习时间在[200,300)内的概率P,特设计如下随机模拟试验:先由计算器产生0到9之间取整数值的随机数,依次用0,1,2,3,…,9的前若干个数字表示线上学习时间在[200,300)内,剩余的数字表示线上学习时间不在[200,300)内;再以每三个随机数为一组,代表线上学习的情况.假设用上述随机模拟方法产生了如下30组随机数,请根据这批随机数估计概率P;907966191925271569812458932683431257393027 556438873730113669206232433474537679138598 602231(2)为了进一步进行调查,用比例分配的分层随机抽样方法从这1 000名学生中抽取20名学生,在抽取的20人中,再从线上学习时间在[350,450]内的同学中任意选择2名,求这2名同学来自同一组的概率.答案全解全析基础过关练1.C必然事件发生的概率为1,不可能事件发生的概率为0,所以任何事件发生的概率总在区间[0,1]内,故A中说法错误;B,D混淆了频率与概率的概念.故选C.2.C治愈率为50%是一种概率,只是一种可能性,针对具体的个体并不一定发生,故A、B、D均不正确,C正确.故选C.3.C对于A,P(A)=0.001只说明事件A发生的可能性很小,但不是不可能事件;对于B ,P (A )=0.999只说明事件A 发生的可能性很大,但不是必然事件; 对于D ,该人不一定有5张中奖,可能一张也不中; 易知C 正确.故选C.4.B 某人射击10次,击中靶心8次,所以他击中靶心的频率是810=0.8,故A 中说法正确;某人射击10次,击中靶心7次,所以他击不中靶心的频率是10-710=0.3,故B 中说法不正确;某人射击10次,击中靶心的频率是12,所以他击中靶心10×12=5(次),故C中说法正确;某人射击10次,击中靶心的频率是0.6,所以他击不中靶心10×(1-0.6)=4(次),故D 中说法正确.故选B.5.D 抛掷一枚质地均匀的硬币,每次都只出现两种结果:正面朝上,反面朝上,每种结果出现的可能性相等,故所求概率为12.6.A 由题表得,取到的号码为奇数的频率是10+8+6+18+11100=0.53,所以取到的号码为奇数的概率的估计值为0.53. 7.答案 0.7解析 计算出样本中质量不小于120克的苹果的频率,来估计随机抽取一个苹果,其质量不小于120克的概率,由题意知10+3+120=0.7.8.B 随机数数量越多,概率越接近实际数.9.B 由题表中数据知表示事件M 发生的随机数有110,021,001,130,031,103,共6组,由此可以估计事件M 发生的概率P =618=13.故选B.10.答案1b -a+1解析 [a ,b ]中共有(b -a +1)个整数,每个整数出现的可能性相等,所以每个整数出现的可能性是1b -a+1.11.解析本题答案不唯一.用1,2,3,4,5,6表示白球,7表示红球,利用计算器或计算机产生1到7之间(包括1和7)取整数值的随机数.因为要求恰好第三次摸到红球的概率,所以每三个随机数作为一组.例如,产生20组随机数:666743671464571561156567732375 716116614445117573552274114662相当于进行了20次试验,在这些数组中,前两个数字不是7,第三个数字恰好是7就表示第一次、第二次摸到的是白球,第三次摸到的是红球,它们分别是567和117,共两组,因此恰好第三次摸到红球的概率约为220=0.1.能力提升练1.C由题意,n=4 500-200-2 100-1 000=1 200,所以对网上购物“比较满意”或“满意”的人数为1 200+2 100=3 300,由此估计对网上购物“比较满意”或“满意”的概率为33004500=1115,故选C.2.BD“所需时间小于50分钟”与“所需时间为60分钟”是互斥而不对立事件,A错误;方案一所需的平均时间为30×0.5+40×0.2+50×0.2+60×0.1=39(分钟),方案二所需的平均时间为30×0.3+40×0.5+50×0.1+60×0.1=40(分钟),所以方案一比方案二更节省时间,B正确;方案一所需时间小于45分钟的概率为0.7,方案二所需时间小于45分钟的概率为0.8,所以小张应该选择方案二,C错误;若所需时间之和大于100分钟,则方案一、方案二的时间可以为(50,60),(60,50)和(60,60)三种情况,概率为0.2×0.1+0.1×0.1+0.1×0.1=0.04,D正确.故选BD.3.解析(1)事件A发生当且仅当一年内出险次数小于2.=0.55,故P(A)的估计值为由所给数据知,一年内出险次数小于2的频率为60+502000.55.(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30=0.3,200故P(B)的估计值为0.3.(3)由所给数据得下表:保费0.85a a1.25a1.5a1.75a2a频率0.300.250.150.150.100.05调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a(元).因此续保人本年度平均保费的估计值为1.192 5a元.4.解析(1)由题中频率分布直方图可知,线上学习时间在[200,300)内的频率为(0.002+0.006)×50=0.4,所以可以用数字0,1,2,3表示线上学习时间在[200,300)内,数字4,5,6,7,8,9表示线上学习时间不在[200,300)内.观察题中随机数组可得,3名同学中恰有2名线上学习时间在[200,300)内的有191,271,812,932,431,393,027,730,206,433,138,602,共12组.用频率估计概率可得,该市3名同学中恰有2名线上学习时间在[200,300)内的概率P=12=0.4.30(2)抽取的20人中,线上学习时间在[350,450]内的同学有20×(0.003+0.002)×50=5(人),其中线上学习时间在[350,400)内的同学有3名,设为A,B,C,线上学习时间在[400,450]内的同学有2名,设为a,b,则从5名同学中任取2名的样本空间Ω={(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),(a,b)},共10个样本点,用M表示“2名同学来自同一组”这一事件,则=0.4.M={(A,B),(A,C),(B,C),(a,b)},共4个样本点,所以P(M)=410。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

频率与概率练习题
课前复习
1.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是( )
A.12
B.9
C.4
D.3
2.随机掷两枚硬币,落地后全部正面朝上的概率是( )
考点归纳
求概率的方法
(1)利用概率的定义直接求概率_________________.
(2)用___________________和___________________求概率;
(3)用_________________的方法估计一些随机事件发
生的概率.
典型例题
例1 初三年(1)班要举行一场毕业联欢会,规定每个同学同时转动下图中①、②两个转盘(每个转盘分别被二等分和三等分),若两个转盘停止后指针所指的数字之和为奇数,
则这个同学要表演唱歌节目;若数字之和为偶数,则要表演其他节目.试求出这个同学表演唱歌节目的概率.(要求用树状图或列表方法求解)
中考练习
1.在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是_______.
2.四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上.若随机抽取一张扑克牌,则牌面数字恰好为5的概率是_______.
3. 小明与父母从广州乘火车回梅州参观叶帅纪念馆,他们买到的火车票是同一排相邻的三个座位,那么小明恰好坐在父母中间的概率是_______.
4.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1、2、3、4、5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是_______.
5. 甲、乙两名同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是( )
A. 从一装有2个白球和1个红球的袋子中任取一球,
取到红球的概率
B. 掷一枚正六面体的骰子,出现1点的概率
C. 抛一枚硬币,出现正面的概率
D. 任意写一个整数,它能被2整除的概率
(2)小明选的数字是5,小颖选的数字是6.如果你也加入游戏,你会选什么数字,使自己获胜的概率比他们大?请说明理由.
以上就是小编为大家准备的频率与概率练习题,希望能对大家有所帮助。

同时也能把数学学好,学精。

相关文档
最新文档