初中数学经典四边形习题50道

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典四边形习题

50道(附答案)

1.已知:在矩形ABCD 中,AE ⊥BD 于E , ∠DAE=3∠BAE ,求:∠EAC 的度数。

2.已知:直角梯形ABCD 中,BC=CD=a

且∠BCD=60度,E 、F 分别为梯形的腰AB 、 DC 的中点,求:EF 的长。

3、已知:在等腰梯形ABCD 中,AB ∥DC ,

AD=BC ,E 、F 分别为AD 、BC 的中点,BD 平分∠ABC 交EF 于G ,EG=18,GF=10 求:等腰梯形ABCD 的周长。

4、已知:梯形ABCD 中,AB ∥CD ,以AD , AC 为邻边作平行四边形ACED ,DC 延长线

交BE 于F ,求证:F 是BE 的中点。

5、已知:梯形ABCD 中,AB ∥CD ,AC ⊥CB , AC 平分∠A ,又∠B=60度,梯形的周长是 20cm, 求:AB 的长。

6、从平行四边形四边形ABCD 的各顶点作对角线的垂线AE 、BF 、CG 、DH ,垂足分别是E 、F 、G 、H ,求证:EF ∥GH 。

7、已知:梯形ABCD 的对角线的交点为E

_D

_C

_B _C

_A _B

_A

_B

_E _A

_B

_A

_B

若在平行边的一边BC 的延长线上取一点F , 使S ABC ∆=S EBF ∆,求证:DF ∥AC 。

8、在正方形ABCD 中,直线EF 平行于 对角线AC ,与边AB 、BC 的交点为E 、F , 在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H ,

求证:AH 与正方形的边长相等。

9、若以直角三角形ABC 的边AB 为边, 在三角形ABC 的外部作正方形ABDE ,

AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。

10、正方形ABCD ,E 、F 分别是AB 、AD 延长线 上的一点,且AE=AF=AC ,EF 交BC 于G ,交AC 于K ,交CD 于H ,求证:EG=GC=CH=HF 。

11、在正方形ABCD 的对角线BD 上,取BE=AB , 若过E 作BD 的垂线EF 交CD 于F , 求证:CF=ED 。

12、平行四边形ABCD 中,∠A 、∠D 的平分线相交

于E ,AE 、

DE 与DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA 。

13、在正方形ABCD 的边CD 上任取一点E ,

_B

_

C

_B

_F

_B _C

_

F _C

_D

_B

_F

_ F

_G

_B

_D

_A _E

延长BC到F,使CF=CE,

求证:BE⊥DF

完整的自己,其实散落在世界各地,你去每一个地方,你就学习到那边人看世界跟生命的角度,你就捡回来一片,然后可以一片一片地拼回完整的自己,你就会有一个比较不一样的世界观,跟看待生命的角度。

14、在四边形ABCD中,AB=CD,P、Q

分别是AD、BC中点,M、N分别是对角线AC、BD的中点,求证:PQ⊥MN。

15、平行四边形ABCD中,AD=2AB,

AE=AB=BF求证:CE⊥DF。

16、在正方形ABCD中,P是BD上一点,过P引PE⊥BC交BC于E,过P引PF⊥CD 于F,求证:AP⊥EF。

17、过正方形ABCD的顶点B引

对角线AC的平行线BE,

在BE上取一点F,

使AF=AC,若作菱形CAFÉ,

求证:AE及AF三等分∠BAC。

18、以⊿ABC的三边AB、BC、CA分别

为边,在BC的同侧作等边三角形ABD、BCE、CAF,求证:ADEF是平行四边形。

_B_C

_Q

_E_F

_A_B

_C

_D_F

_E

_F _B_C

_B_C

_N

19、M、N为⊿ABC的边AB、AC的中点,

E、F为边AC的三等分点,延长ME、NF

交于D点,连结AD、DC,求证:

⑴BFDE是平行四边形,

⑵ABCD是平行四边形。

20、平行四边形ABCD的对角线交于O,作OE⊥BC,AB=37cm, BE=26cm, EC=14cm,求:平行四边形ABCD的面积。

21、在梯形ABCD中,AD∥BC,高AE=DF =12cm,两对角线BD=20cm,AC=15cm,

求梯形ABCD的面积。

22、在梯形ABCD中,二底AD、BC

的中点是E、F,在EF上任取一点O,

求证:S

OAB

∆=S

OCD

23、平行四边形ABCD中,EF平行于

对角线AC,且与AB、BC分别交于E、F,

求证:S

ADE

∆=S

CDF

24、梯形ABCD的底为AD、BC,若CD的中点为E

求证:S

ABE

∆=

2

1

S

ABCD

25、梯形ABCD的面积被对角线BD分成

3:7两部分,求这个梯形被中位线EF分成的两部分的面积的比。

_B_E

_B_C

_E_F

_B_C

_F

_B_C

_F

_B_C

_A_B

相关文档
最新文档