一元一次方程的心得体会
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程的心得体会
篇一:一元一次方程学习
【知识梳理】
1.会对方程进行适当的变形解一元一次方程:解方程的基本思想就是转化,即对方程进行变形,变形时要注意两点,一时方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程的解可能不同;二是去分母时,不要漏乘没有分母的项,一元一次方程是学习二元一次方程组、一元二次方程、一元一次不等式及函数问题的基本内容。
2.正确理解方程解的定义,并能应用等式性质巧解考题:方程的解应理解为,把它代入原方程是适合的,其方法就是把方程的解代入原方程,使问题得到了转化。
3.理解方程ax=b在不同条件下解的各种情况,并能进行简单应用:
(1)a≠0时,方程有唯一解x=;
(2)a=0,b=0时,方程有无数个解;
(3)a=0,b≠0时,方程无解。
4.正确列一元一次方程解应用题:列方程解应用题,关键是寻找题中的等量关系,可采用图示、列表等方法,根据近几年的考试题目分析,要多关注社会热点,密切联系实际,多收集和处理信息,解应用题时还要注意检查结果是否符合实际意义。
篇二:用一元一次方程方程解决问题
自主探究合作交流主备人王章磊
自主探究合作交流主备人王章磊
自主探究合作交流主备人王章磊
篇三:一元一次方程的实际应用
一元一次方程的实际应用
题型一:配套问题
配套组合问题,如螺钉与螺母的配套,盒身与盒底的配套等.解决这类问题的方法是:抓住配套关系,设出未知数,根据配套关系列出方程,通过解方程来解决问题
1、某车间有100名工人,每人每天可加工螺钉18个或螺母24个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?
2、包装厂有人42,每个人平均每小时生产圆片120片,或长方形片80片,将两张圆片与一张长方形片配成一套,问如何安排工人?
3、用铝片做听装饮料瓶,每张铝片可制瓶身16张或制瓶底43张,一个瓶身和两个瓶底可配成一套,有150张铝片,用多少张制瓶身和多少张制瓶底?
4、某工厂计划生产一种新型豆浆机,每台豆浆机需3个A种零件和5个B种零件正好配套已知车间每天能生产A
种零件450个或B种零件300个,现在要使在21天中所生产的零件全部配套,那么应安排多少天生产A种零件,多少天生产B种零件?
5、车间有26名工人生产零件甲和零件乙,每人每天平均生产零件甲120个或零件乙180个,为使零件甲和零件乙按3:2配套,则需分配多少工人生产零件甲和零件乙?
利润其数量关系是:利润=售价-进价,利润率 = ×100%,售价=标价×折扣率,注意打成本
几折销售就是按原价的十分之几出售。
1、某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()
A.不赚不赔 B.赚9元 C.赔18元 D.赚18元
2、某文具店一支铅笔的售价为元,一支圆珠笔的售价为2元.该店在“6?1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为()
A.×+2×(60+x)=87 B.×+2×(60﹣x)=87
C.2×+×(60+x)=87 D.2×+×(60﹣x)=87
3、某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折
后每件服装仍能获利20%,则该服装标价是()
A.350元 B.400元 C.450元 D.500元
4、某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()
A.880元 B.800元 C.720元 D.1080元
5、某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?
6、丽丽的妈妈到百盛商场给她买一件漂亮毛衣,售货员说:“这毛衣前两天打八折,今天又在八折的基础上降价10%,只卖144元,丽丽很快算出了这件毛衣的原标价,你知道是多少元吗?
7、某商品的进价是XX元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?
这类应用题中一般有工作总量、工作时间、工作效率这三个量。这三个量的关系是:(1)__________ (2)
_________ (3)_________
人们常规定工程问题中的工作总量为______。
1、某中学的学生自己动手整修操场,如果让初二学生单独工作,需要6小时完成;如果让初三学生单独工作,需要4小时完成.现在由初二、初三学生一起工作x小时,完成了任务.根据题意,可列方程为_______________________
2、整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?
3、某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.
4、一件工作,甲单独做20小时完成,乙单独做12小时完成。若乙先做2小时,然后由甲、乙合做,问还需几小时完成?
5、一件工作,甲单独做6小时完成,乙单独做12小时完成,丙单独做18小时完成,若先由甲、乙合做3小时,然后由乙丙合做,问共需几小时完成?
题型四:分段计费问题