合肥市寿春中学数学全等三角形(篇)(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、八年级数学全等三角形解答题压轴题(难)
1.如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.
(1)请你探究线段CE与FE之间的数量关系(直接写出结果,不需说明理由);
(2)将图1中的△AED绕点A顺时针旋转,使△AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由;
(3)将图1中的△AED绕点A顺时针旋转任意的角度(如图3),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由.
【答案】(1)线段CE与FE之间的数量关系是CE2FE;(2)(1)中的结论仍然成立.理由见解析;(3)(1)中的结论仍然成立.理由见解析
【解析】
【分析】
(1)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,2EF;
(2)思路同(1)也要通过证明△EFC是等腰直角三角形来求解.连接CF,延长EF交CB 于点G,先证△EFC是等腰三角形,可通过证明CF是斜边上的中线来得出此结论,那么就要证明EF=FG,就需要证明△DEF和△FGB全等.这两个三角形中,已知的条件有一组对顶角,DF=FB,只要再得出一组对应角相等即可,我们发现DE∥BC,因此∠EDB=∠CBD,由此构成了两三角形全等的条件.EF=FG,那么也就能得出△CFE是个等腰三角形了,下面证明△CFE是个直角三角形.由上面的全等三角形可得出ED=BG=AD,又由AC=BC,因此
CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此就能得出(1)中的结论了;
(3)思路同(2)通过证明△CFE来得出结论,通过全等三角形来证得CF=FE,取AD的中点M,连接EM,MF,取AB的中点N,连接FN、CN、CF.那么关键就是证明△MEF和△CFN全等,利用三角形的中位线和直角三角形斜边上的中线,我们不难得出
EM=PN=1
2
AD,EC=MF=
1
2
AB,我们只要再证得两对应边的夹角相等即可得出全等的结
论.我们知道PN是△ABD的中位线,那么我们不难得出四边形AMPN为平行四边形,那么对角就相等,于是90°+∠CNF=90°+∠MEF,因此∠CNF=∠MEF,那么两三角形就全等了.证明∠CFE是直角的过程与(1)完全相同.那么就能得出△CEF是个等腰直角三角形,于是得出的结论与(1)也相同.
【详解】
(1)如图1,连接CF,线段CE与FE之间的数量关系是CE=2FE;
解法1:
∵∠AED=∠ACB=90°
∴B、C、D、E四点共圆
且BD是该圆的直径,
∵点F是BD的中点,
∴点F是圆心,
∴EF=CF=FD=FB,
∴∠FCB=∠FBC,∠ECF=∠CEF,
由圆周角定理得:∠DCE=∠DBE,
∴∠FCB+∠DCE=∠FBC+∠DBE=45°
∴∠ECF=45°=∠CEF,
∴△CEF是等腰直角三角形,
∴CE=2EF.
解法2:
易证∠BED=∠ACB=90°,
∵点F是BD的中点,
∴CF=EF=FB=FD,
∵∠DFE=∠ABD+∠BEF,∠ABD=∠BEF,
∴∠DFE=2∠ABD,
同理∠CFD=2∠CBD,
∴∠DFE+∠CFD=2(∠ABD+∠CBD)=90°,
即∠CFE=90°,
∴CE=2EF.
(2)(1)中的结论仍然成立.
解法1:如图2﹣1,连接CF,延长EF交CB于点G,
∵∠ACB=∠AED=90°,
∴DE∥BC,
∴∠EDF=∠GBF,
又∵∠EFD=∠GFB,DF=BF,
∴△EDF≌△GBF,
∴EF=GF,BG=DE=AE,
∵AC=BC,
∴CE=CG,
∴∠EFC=90°,CF=EF,
∴△CEF为等腰直角三角形,
∴∠CEF=45°,
∴CE=2FE;
解法2:如图2﹣2,连结CF、AF,
∵∠BAD=∠BAC+∠DAE=45°+45°=90°,又点F是BD的中点,
∴FA=FB=FD,
而AC=BC,CF=CF,
∴△ACF≌△BCF,
∴∠ACF=∠BCF=1
2
∠ACB=45°,
∵FA=FB,CA=CB,
∴CF所在的直线垂直平分线段AB,
同理,EF所在的直线垂直平分线段AD,
又DA⊥BA,
∴EF⊥CF,
∴△CEF为等腰直角三角形,
∴CE=2EF.
(3)(1)中的结论仍然成立.
解法1:如图3﹣1,取AD的中点M,连接EM,MF,取AB的中点N,连接FN、CN、
CF,
∵DF=BF,
∴FM∥AB,且FM=1
2 AB,
∵AE=DE,∠AED=90°,∴AM=EM,∠AME=90°,∵CA=CB,∠ACB=90°
∴CN=AN=1
2
AB,∠ANC=90°,
∴MF∥AN,FM=AN=CN,
∴四边形MFNA为平行四边形,
∴FN=AM=EM,∠AMF=∠FNA,
∴∠EMF=∠FNC,
∴△EMF≌△FNC,
∴FE=CF,∠EFM=∠FCN,
由MF∥AN,∠ANC=90°,可得∠CPF=90°,
∴∠FCN+∠PFC=90°,
∴∠EFM+∠PFC=90°,
∴∠EFC=90°,
∴△CEF为等腰直角三角形,
∴∠CEF=45°,
∴CE=2FE.
【点睛】
本题解题的关键是通过全等三角形来得出线段的相等,如果没有全等三角形的要根据已知条件通过辅助线来构建.
2.已知,如图A在x轴负半轴上,B(0,-4),点E(-6,4)在射线BA上,
(1) 求证:点A为BE的中点
(2) 在y轴正半轴上有一点F, 使∠FEA=45°,求点F的坐标.
(3) 如图,点M、N分别在x轴正半轴、y轴正半轴上,MN=NB=MA,点I为△MON的内角平分线的交点,AI、BI分别交y轴正半轴、x轴正半轴于P、Q两点, IH⊥ON于H, 记△POQ