模型预测控制
模型预测控制
反馈校正
2 3 y
u
4
yˆ(k1)ym(k
e(k1)yˆ(k
1
k k+1
t/T
1─k时刻的预测输出ym(k) 2─k+1时刻实际输出y (k+1)
3─预测误差e(k+1)
4─k+1时刻校正后的预测输出ym(k+1)
反馈校正
y(k) e(k)
y (k+j| k)
y(k-j)
u(k-j) k-j
ym(k )
+ ym(k+j| k)
+
反馈校正
预测模型
y(k|k)
_ +
模型预测控制的基本原理
预测模型
预测模型的功能
根据被控对象的历史信息{ u(k - j), y(k -j) | j≥1 }和未来输入 { u(k + j - 1) | j =1, …, M} ,预测系统未来响应{ y(k + j) | j =1, …, P} 。
i =1, 2, 3, …, j
滚动优化
控制目的
▪通过某一性能指标J 的最优, 确定未来的控制作
用u(k+j|k)。指标J希望模型预测输出尽可能趋近
于参考轨迹。
优化过程
▪随时间推移在线优化,每时刻反复进行 ▪优化目标只关心预测时域内系统的动态性能 ▪每周期只将u(k+1|k)或u(k+m|k)施加于被控过程
模型预测控制的发展
理论背景:
新的控制理论得到发展
➢现代控制理论
状态空间分析法 最优控制理论 系统辨识与参数估计
➢新发展的控制理论
自适应控制 非线性控制 多变量控制
➢得到应用:航空、机电、军事等
模型预测控制的原理
模型预测控制的原理
模型预测控制的基本原理是根据当前时刻测量得到的系统状态,求取一个有限时域开环优化问题,得到一个控制序列,但是只把控制序列第一个元素作用于系统。
预测模块的原理预测控制伴随着工业的发展而来,所以,预测控制与工业生产有着紧密的结合,火电厂钢球磨煤机是一个多变量、大滞后、强耦合的控制对象,其数学模型很难准确建立。
模型算法(MAC)控制主要包括内部模型、反馈校正、滚动优化和参数输入轨迹等几个部分。
它采用基于脉冲响应的非参数模型作为内部模型,用过去和未来的输入输出状态,根据内部模型,预测系统未来的输出状态。
功能模块化的根据是,如果一个问题有多个问题组合而成,那么这个组合问题的复杂程度将大于分别考虑这个问题时的复杂程度之和。
这个结论使得人们乐于利用功能模块化方法将复杂的问题分解成许多容易解决的局部问题。
滚动优化滚动优化是指在每个采样周期都基于系统的当前状态及预测模型,按照给定的有限时域目标函数优化过程性能,找出最优控制序列,并将该序列的第一个元素施加给被控对象。
模型预测控制发展史
模型预测控制发展史
模型预测控制(Model Predictive Control,MPC)是一种先进的控制方法,它结合了过程建模、优化和反馈控制等技术,以实现对复杂系统的有效控制。
MPC 的发展可以追溯到20 世纪70 年代,经过几十年的发展,已经成为工业控制领域中应用广泛的控制策略之一。
MPC 的发展可以分为以下几个阶段:
1. 早期阶段:20 世纪70 年代,MPC 的概念首次提出,主要应用于化工、石油等过程工业领域。
这一阶段的MPC 算法主要基于线性模型和动态规划方法,具有计算量大、实时性差等缺点。
2. 发展阶段:20 世纪80 年代至90 年代,MPC 算法得到了快速发展,出现了许多改进的算法,如线性二次型调节器(LQR)、广义预测控制(GPC)等。
这些算法在一定程度上提高了MPC 的实时性和精度。
3. 成熟阶段:21 世纪初至今,MPC 算法逐渐成熟,应用范围不断扩大。
这一阶段的MPC 算法更加注重实际应用中的问题,如约束处理、模型不确定性等。
同时,随着计算机技术的发展,MPC 的实时性和精度得到了进一步提高。
目前,MPC 已经成为工业控制领域中应用广泛的控制策略之一,在化工、石油、电力、航空航天等领域得到了广泛应用。
同时,MPC 也在不断发展和创新,如与人工智能技术的结合、多变量MPC 等,为工业控制领域的发展带来了新的机遇和挑战。
模型预测控制
,得最优控制率:
根据滚动优化原理,只实施目前控制量u2(k):
式中:
多步优化MAC旳特点: 优点: (i)控制效果和鲁棒性优于单步MAC算法简朴;
(ii)合用于有时滞或非最小相位对象。 缺陷: (i)算法较单步MAC复杂;
(ii)因为以u作为控制量, 造成MAC算法不可防止地出现稳态误差.
第5章 模型预测控制
5.3.1.2 反馈校正 为了在模型失配时有效地消除静差,能够在模型预测值ym旳基础上 附加一误差项e,即构成反馈校正(闭环预测)。
详细做法:将第k时刻旳实际对象旳输出测量值与预测模型输出之间 旳误差附加到模型旳预测输出ym(k+i)上,得到闭环预测模型,用 yp(k+i)表达:
第5章 模型预测控制
5.1 引言
一 什么是模型预测控制(MPC)?
模型预测控制(Model Predictive Control)是一种基于模型旳闭环 优化控制策略,已在炼油、化工、冶金和电力等复杂工业过程中得到 了广泛旳应用。
其算法关键是:可预测过程将来行为旳动态模型,在线反复优化计
算并滚动实施旳控制作用和模型误差旳反馈校正。
2. 动态矩阵控制(DMC)旳产生:
动态矩阵控制(DMC, Dynamic Matrix Control)于1974年应用在美国壳牌石 油企业旳生产装置上,并于1980年由Culter等在美国化工年会上公开刊登,
3. 广义预测控制(GPC)旳产生:
1987年,Clarke等人在保持最小方差自校正控制旳在线辨识、输出预测、 最小方差控制旳基础上,吸收了DMC和MAC中旳滚动优化策略,基于参数 模型提出了兼具自适应控制和预测控制性能旳广义预测控制算法。
分布式控制系统中的模型预测控制技术研究
分布式控制系统中的模型预测控制技术研究随着现代工业技术的不断发展,分布式控制系统在工业生产中扮演着越来越重要的角色。
尤其在大型工业设备或生产线中,采用分布式控制系统能够实现设备间的协同控制以及数据共享,提高生产效率和质量。
而模型预测控制技术(MPC)则是分布式控制系统中最为重要的控制策略之一。
在本文中,将对MPC技术进行详细介绍和研究。
一、什么是模型预测控制技术模型预测控制技术是一种基于动态模型的控制策略,通过对控制系统的建模和预测,获取未来时刻的状态变量信息,并根据控制目标和约束条件来制定合适的控制策略。
相比传统的PID控制方法,MPC技术能够在更为复杂的控制环境下保持优越的控制性能,如对非线性和时变系统的控制具有很好的适应性。
在分布式控制系统中,MPC技术能够协调多个节点之间的控制并实现全局控制。
通过建立多节点之间的动态模型,并利用模型预测来协调各节点之间的控制策略,从而实现对整个系统的精确控制和优化。
二、MPC技术在分布式控制系统中的应用在分布式控制系统中,MPC技术可以应用于各个领域。
如在制造业中,通过模型预测控制技术对生产线进行协调控制,可以提高生产效率、减少资源浪费和降低产品缺陷率。
在能源领域中,通过对电力系统进行建模和模型预测,来实现对复杂电网的稳定控制和动态调度。
在交通运输领域中,模型预测控制技术可以应用于车辆控制、交通信号灯控制和智能交通系统等方面。
在分布式控制系统中,MPC技术主要分为两种形式:集中控制和分散控制。
在集中控制中,所有节点的控制信息都由中央节点来处理和计算,然后再将控制指令下发到各个节点。
而在分散控制中,各个节点独立地计算控制信息和控制指令,并相互协作达成全局控制。
两种方式各有优缺点,具体采用哪种形式需要根据具体分布式控制系统的实际情况来决定。
三、MPC技术的优劣势MPC技术的优势在于可以对复杂的动态系统进行精确的建模和控制,并能够保证控制效果的最优化。
另外,该技术还能适应非线性和时变系统的控制,并具有较好的鲁棒性。
强化学习算法中的模型预测控制方法详解
强化学习算法中的模型预测控制方法详解强化学习是一种机器学习方法,通过与环境的交互来学习最优的行为策略。
而模型预测控制是一种强化学习算法,其核心思想是通过建立环境模型来预测未来的状态和奖励,从而对当前行为进行优化。
本文将详细介绍模型预测控制方法在强化学习中的应用,并探讨其优缺点以及相关的研究进展。
一、模型预测控制算法概述模型预测控制算法是一种基于模型的强化学习方法,其主要流程包括环境建模、状态预测和行为优化。
首先,模型预测控制算法会基于历史观测数据建立环境模型,用于预测在不同行为下环境的状态转移和奖励反馈。
接着,算法会利用环境模型对未来的状态和奖励进行预测,然后基于这些预测结果来选择最优的行为,从而达到优化控制的目的。
二、模型预测控制算法的优点模型预测控制算法具有以下几个优点:首先,通过建立环境模型,算法可以更好地理解环境的状态转移和奖励分布,从而能够更准确地预测未来的状态和奖励。
其次,模型预测控制算法可以利用环境模型进行线下仿真,从而可以在不同的环境模拟下进行策略评估和优化,提高了算法的效率和稳定性。
此外,由于模型预测控制算法是基于模型的方法,因此可以更好地处理状态空间和行为空间连续、高维等复杂情况。
三、模型预测控制算法的缺点然而,模型预测控制算法也存在一些缺点:首先,建立环境模型需要大量的样本数据和计算资源,尤其是在复杂的环境下,模型的建立和更新成本很高。
其次,环境模型的建立和更新需要一定的时间,而且环境模型可能存在误差,这些都会影响算法的实时性和准确性。
另外,模型预测控制算法对环境模型的准确性和稳定性要求较高,一旦模型出现偏差或误差,就会导致算法的性能下降。
四、模型预测控制算法的研究进展近年来,随着深度学习和强化学习的发展,模型预测控制算法得到了广泛的应用和研究。
研究者们提出了许多改进方法,以解决模型建立和更新的问题。
例如,利用深度神经网络来建立环境模型,可以更好地处理高维和连续状态空间;采用增量学习和迁移学习等方法,可以降低模型的建立成本;同时,结合强化学习和监督学习的方法,可以提高模型的准确性和鲁棒性。
模型预测控制与增强学习
模型预测控制与增强学习第一章引言1.1 研究背景和意义模型预测控制(Model Predictive Control,MPC)和增强学习(Reinforcement Learning,RL)是两种在控制系统领域非常重要的方法。
MPC是一种基于数学模型的控制方法,通过预测系统未来的演变来计算最优控制输入。
相比传统的基于反馈的控制方法,MPC可以在多个时间步骤上进行优化,可以更好地处理约束条件和非线性系统。
而RL是一种基于试错学习的方法,通过智能体与环境的交互来学习最优策略,通过奖励和惩罚来指导智能体的行为。
MPC和RL在不同的应用场景中都有广泛的应用,比如自动驾驶、机器人控制等。
1.2 研究内容和结构安排本文主要对MPC和RL进行介绍和比较,解释它们的原理和应用。
具体来说,第二章将详细介绍MPC的原理和方法,包括模型预测、优化算法、约束处理等。
第三章将介绍RL的原理和方法,包括马尔可夫决策过程、值函数、策略搜索等。
第四章将对MPC和RL进行比较,分析它们各自的优势和不足,并讨论它们的结合应用。
最后,本文将总结全文内容并展望未来研究方向。
第二章模型预测控制2.1 模型预测的概念和方法模型预测控制(MPC)是一种通过预测系统未来行为来计算最优控制输入的方法。
MPC将系统的模型表示为离散时间的状态空间模型,通过迭代优化来求解最优控制输入序列。
MPC的基本思想是,在每个时间步骤上,通过预测系统状态和控制输入的未来演变,选择使系统性能指标最优的控制输入。
MPC的优点在于可以处理多个时间步骤上的约束条件,能够更好地适应非线性系统和不确定性。
2.2 MPC的优化算法MPC的求解过程涉及到一个优化问题,需要求解一个非线性规划或二次规划问题。
常用的优化算法包括牛顿法、梯度下降法和内点法。
这些算法可以通过迭代的方式逐步优化控制输入序列,直到收敛到最优解。
在MPC中,需要考虑不仅系统性能指标的优化,还有约束条件的满足,比如系统状态、控制输入的范围约束等。
模型预测控制原理
模型预测控制原理在控制理论中,模型预测控制是一种基于数学模型的控制方法。
它通过建立一个数学模型来预测未来的系统行为,并根据这些预测结果进行控制,以实现系统的稳定和优化控制。
模型预测控制方法的优点在于可以处理非线性系统和时变系统,并且能够考虑到系统的约束条件,可以应用于各种不同的工业过程和控制系统中。
模型预测控制的基本原理是建立一个数学模型来描述系统的动态行为,并利用这个模型来预测未来的系统行为。
这个模型可以是基于物理原理的,也可以是基于统计学方法的。
然后,根据这个模型的预测结果,通过控制器来调节系统的输入,以使系统达到预期的状态。
在模型预测控制中,控制器不是直接控制系统的输出,而是控制系统的输入,以使系统的输出达到预期的值。
模型预测控制的基本步骤包括:建立数学模型、预测未来的系统行为、制定控制策略、执行控制策略、更新模型参数等。
其中,建立数学模型是模型预测控制的关键步骤。
模型可以是线性模型,也可以是非线性模型。
线性模型通常比较简单,但是不能处理非线性系统和时变系统。
非线性模型可以处理各种类型的系统,但是建立非线性模型比较困难。
在建立模型过程中,需要考虑到系统的约束条件,例如输入和输出的限制条件,以保证系统的安全和稳定。
预测未来的系统行为是模型预测控制的核心。
通过模型预测,可以预测未来一段时间内系统的输出值。
预测结果可以用于制定控制策略,以调节系统的输入,使系统的输出达到预期的值。
制定控制策略是根据预测结果来选择合适的控制器参数,例如比例系数、积分系数和微分系数等。
执行控制策略是根据控制器参数来调节系统的输入,以使系统的输出达到预期的值。
更新模型参数是根据实际控制结果来更新模型参数,以提高模型预测的准确性和稳定性。
模型预测控制方法的优点在于可以处理非线性系统和时变系统,并且能够考虑到系统的约束条件,可以应用于各种不同的工业过程和控制系统中。
但是,模型预测控制也存在一些缺点。
首先,建立模型需要大量的数据和计算资源,建模过程比较复杂。
模型预测控制公式
模型预测控制公式模型预测控制(Model Predictive Control,简称 MPC)公式,听起来是不是有点高大上?但其实它在很多领域都有着重要的应用。
咱们先来说说模型预测控制到底是个啥。
简单来讲,它就像是一个聪明的“指挥官”,能够根据系统当前的状态和未来的目标,提前规划出一系列的控制动作。
MPC 的核心公式可以表示为:\[\begin{align*}\min_{u(k),\cdots,u(k+N_c-1)} & \sum_{i=1}^{N_p} \left( y(k+i|k) - r(k+i) \right)^2 + \sum_{i=0}^{N_c-1} \lambda_i u^2(k+i) \\\text{s.t.} & x(k+1|k) = Ax(k) + Bu(k) \\& y(k) = Cx(k) \\& u_{\min} \leq u(k+i) \leq u_{\max} \\& x_{\min} \leq x(k+i) \leq x_{\max} \\\end{align*}\]哎呀,别被这一堆公式给吓住啦!我来给您慢慢解释解释。
这里面的 \(y(k+i|k)\) 表示在 \(k\) 时刻对未来 \(i\) 时刻的输出预测,\(r(k+i)\) 则是未来 \(i\) 时刻的期望输出。
我们的目标就是让预测输出和期望输出的差距尽可能小,同时还要考虑控制动作 \(u(k)\) 的大小,不能太大也不能太小,得在允许的范围内。
我给您讲个我自己的经历吧。
有一次,我参加了一个智能机器人的研发项目。
这个机器人要在一个复杂的环境中自主移动,避开各种障碍物,到达指定的目标点。
这时候,模型预测控制就派上用场了。
我们通过各种传感器获取机器人当前的位置、速度、姿态等信息,然后把这些数据输入到模型预测控制的公式中。
就像是给这个“聪明的大脑”提供了思考的素材。
然后,公式开始运算,计算出接下来一段时间内机器人应该怎么移动,转向多少角度,速度是多少等等。
mpc算法原理公式解析
mpc算法原理公式解析
MPC(模型预测控制)算法是一种先进的控制策略,其原理和公式解析如下:
一、原理:
MPC算法基于模型预测和控制重构的思想,通过在线求解有限时间开环优化问题来实现对系统的控制。
在每个采样时刻,MPC算法会根据当前时刻的测量信息,预测系统未来的动态行为,然后求解一个优化问题,得到控制序列,并将控制序列的第一个元素作用于被控对象。
在下一个采样时刻,算法会用新的测量值更新预测模型并重新求解优化问题。
MPC算法的三个主要步骤是预测系统未来动态、求解开环优化问题和将优化解的第一个元素作用于系统。
二、公式解析:
1. 预测系统未来动态:基于系统的动态模型,预测系统在未来一段时间内的状态变化。
常用的预测模型有线性回归模型、神经网络模型等。
2. 求解开环优化问题:根据预测模型和设定的优化目标,求解一个开环优化问题,以得到控制序列。
开环优化问题的求解可以使用各种优化算法,如梯度下降法、牛顿法等。
3. 将优化解的第一个元素作用于系统:将得到的控制序列的第一个元素作用于被控对象,以实现对系统的控制。
在数学公式方面,MPC算法通常涉及到状态方程、预测模型和控制目标函数的建立和优化。
状态方程描述了系统动态行为的数学模型,预测模型用于预测未来一段时间内的系统状态,而控制目标函数则是优化问题的核心,旨在最大化某些性能指标或满足某些约束条件。
模型预测控制及其MATLAB实现
模型预测控制及其MATLAB实现模型预测控制(Model Predictive Control, MPC)是一种先进的控制算法,用于处理动态系统的控制问题。
MPC通过在未来的时间范围内优化控制动作序列,以使系统的性能指标最小化,从而实现对系统的优化控制。
MPC的核心思想是建立一个系统模型,然后使用该模型来预测系统的行为,并根据预测结果进行优化控制决策。
具体而言,MPC首先使用系统模型对未来的状态和输出进行预测,然后根据预测结果计算出最优的控制动作序列。
接下来,仅施加最优的第一个控制动作,并在下一个采样时刻重复该过程。
这种迭代优化的过程可以使系统在每个采样时刻都能够进行最优的控制。
MPC的优势在于它可以处理多变量、非线性和时变系统,并且可以轻松地加入约束条件。
此外,MPC还能够在面对不确定性和扰动时提供鲁棒性,以确保控制系统的稳定性和性能。
因此,MPC在多个领域中都得到了广泛的应用,例如化工、能源、机械等。
在MATLAB中,有多种方法可以实现MPC控制算法。
最简单的方法是使用MPC工具箱,该工具箱提供了一套全面的函数和工具,用于建立系统模型、设定控制参数、优化控制决策等。
使用MPC工具箱,可以通过以下几个步骤来实现MPC控制:1.建立系统模型:使用MATLAB的系统建模工具箱,建立系统的状态空间模型或传递函数模型。
2.设定控制参数:根据系统的性能指标和控制目标,设定MPC控制的参数,例如控制时域、控制权重和约束条件等。
3.优化控制决策:使用MPC工具箱提供的优化函数,根据系统模型和控制参数,计算最优的控制动作序列。
4.实施控制动作:根据最优的控制动作序列,施加最优的第一个控制动作,并等待下一个采样时刻。
5.重复步骤3和4:在每个采样时刻,重复步骤3和4,以实现迭代优化控制。
请注意,MPC控制算法的实现还可能涉及其他细节,例如状态估计、鲁棒性设计和性能评估等。
因此,在具体应用中,可能需要根据系统的特点和需求进行相应的调整和扩展。
控制系统工程中的模型预测控制技术
控制系统工程中的模型预测控制技术近年来,随着科技迅速发展,控制系统技术也在不断进步。
模型预测控制技术(Model Predictive Control,MPC)是一种最为常见的控制系统技术。
它的特点是能够考虑系统未来的动态过程,从而对系统进行优化控制。
本文将对MPC技术进行分析,探讨其应用于控制系统工程的优点与局限性。
一、MPC技术概述MPC技术是指利用数学模型预测系统未来的动态过程,从而根据预测结果采取相应的控制策略,使得系统在特定的性能指标下达到最优。
MPC技术一般由三部分组成:建模,预测和优化控制。
其中,建模部分主要是根据系统的动态特性建立数学模型;预测部分则主要是根据数学模型预测系统未来的动态变化过程;而优化控制则是根据预测结果来制定控制策略,使得系统在特定的性能指标下达到最优。
二、MPC技术在控制系统工程中的应用1. 非线性控制系统在非线性控制系统中,MPC技术具有比较显著的优势。
非线性系统较为复杂,很难通过传统的PID控制器进行控制。
而MPC技术可以根据系统的非线性特性建立数学模型,并对系统进行优化控制,从而达到更好的控制效果。
2. 多变量系统对于多变量系统来说,MPC技术也是比较适用的。
多变量系统通常涉及多个输入和输出,传统的PID控制器难以处理。
而MPC 技术可以同时考虑多个输入和输出因素,并且能够预测系统未来的状态,从而提供更加准确的控制策略。
3. 非平稳过程在非平稳过程中,传统的PID控制器往往无法对系统进行稳定控制。
而MPC技术可以对系统进行长期的预测,并且能够对未来的升降变化进行预测,从而使得系统在非平稳过程中能够保持稳定的控制状态。
三、MPC技术的局限性虽然MPC技术具有很多优点,但其也存在一些局限性。
主要表现在以下几个方面:1. 计算量大MPC算法通常需要较大的计算量,对计算机的硬件要求较高,因此在某些系统中可能不太适合使用。
2. 参数调整困难MPC技术的优化控制部分需要根据预测结果来进行控制策略的制定,但控制策略的制定与系统的性能指标密切相关,需要进行参数的调整。
控制工程中的模型预测控制算法研究与应用
控制工程中的模型预测控制算法研究与应用第一章:引言控制工程是现代工程学科中的一个重要分支,涉及到自动化、机械、电子、化工、地质等众多领域。
模型预测控制算法是一种比较新的控制算法,在控制系统的研究与应用中得到广泛的应用。
本文主要介绍模型预测控制算法的基本原理和应用,在模型预测控制算法在控制工程中的应用中所起到的作用。
第二章:模型预测控制算法的原理和方法1. 模型预测控制的基本思想模型预测控制算法(Model Predictive Control, MPC)是基于系统动态模型进行控制的一种方法,其基本思想是根据系统模型预测未来一段时间内的系统响应,并根据预测结果制定控制策略实现控制。
MPC通常采用最优控制理论的方法,通过建立系统的数学模型,解决控制过程中面对的优化控制问题。
2. 模型预测控制的步骤模型预测控制算法的步骤通常可以分为以下几个步骤:(1)建立系统的数学模型;(2)根据控制目标,制定控制策略并对控制量进行预测;(3)对预测结果进行优化;(4)根据优化结果,调节控制量实现系统的控制。
3. 模型预测控制的优点和缺点(1)优点:MPC方法通过预测未来的控制量,能够使系统在满足约束条件下获得最优的控制量,从而提高系统的控制精度和稳定性;(2)缺点:相对于其他控制算法而言,MPC的计算量较大且计算复杂。
同时,MPC需要实时重复预测和优化过程,要求控制器具有较快的计算速度,这也限制了MPC的应用范围。
第三章:模型预测控制在控制工程中的应用1. 参数自整定控制MPC可以通过反馈控制和优化控制相结合的方式,实现系统的参数自整定控制。
这种控制方法可以使系统在面对外部干扰时快速调节控制参数,保持系统的稳定性。
2. 控制器软件MPC可以通过构建控制器软件,对不同控制过程进行控制,实现全面、灵活、高效的控制。
3. 工业过程控制MPC在工业过程控制中的应用得到了广泛的关注和应用。
模型预测控制可以应用于化工、电力、制药等各个工业过程控制领域中,实现对控制过程的精细控制和优化。
模型预测控制现状与挑战
模型预测控制现状与挑战一、本文概述随着科技的不断进步,模型预测控制(Model Predictive Control, MPC)作为现代控制理论的重要分支,已在众多领域,如工业制造、能源管理、交通运输以及航空航天等,展现出其独特的优势和广泛的应用前景。
本文旨在全面概述模型预测控制的当前发展状态,深入剖析其面临的挑战,并探讨未来可能的研究方向。
我们将简要介绍模型预测控制的基本概念、原理及其发展历程。
随后,我们将重点分析模型预测控制在不同应用领域中的现状,包括其取得的成果、存在的问题以及改进的方向。
在此基础上,我们将深入探讨模型预测控制面临的主要挑战,如模型的准确性、计算的复杂性、系统的鲁棒性等。
我们将展望模型预测控制的未来发展趋势,为相关领域的研究者和实践者提供参考和启示。
二、模型预测控制的基本原理模型预测控制(Model Predictive Control, MPC)是一种基于模型的控制策略,其核心思想在于利用系统的动态模型来预测未来的系统行为,并基于这些预测结果优化控制决策。
MPC通过反复在线求解一个有限时间的最优控制问题来生成当前的控制动作,从而实现对系统状态的调节和跟踪目标轨迹的目的。
系统建模:需要建立一个描述系统动态行为的数学模型。
这个模型可以是线性的,也可以是非线性的,取决于系统的特性和控制精度要求。
模型可以是状态空间模型、传递函数模型或其他适合描述系统动态的形式。
滚动优化:在MPC中,控制决策是通过求解一个有限时间的最优控制问题来得到的。
这个问题通常包括一个性能指标函数,该函数考虑了系统状态与控制输入的代价,以及终端约束或终端代价。
这个优化问题在每个控制时刻重新求解,称为“滚动优化”或“在线优化”。
反馈校正:MPC强调控制过程中的反馈校正,即利用实际测量的系统状态来更新预测,并在每个控制周期重新求解优化问题。
这样做可以减小模型失配和未建模动态对控制性能的影响,提高系统的鲁棒性。
MPC的主要挑战在于如何设计一个有效的优化算法,使其能够在线快速求解,并且随着系统状态的变化实时调整控制策略。
model predictive control 综述 -回复
model predictive control 综述-回复什么是模型预测控制?模型预测控制(Model Predictive Control,简称MPC)是一种先进的控制方法,它将系统建模与优化技术相结合,通过使用系统的动态数学模型来预测未来一段时间的系统行为,并根据设定的性能指标和约束条件进行优化,从而实现对系统的稳定和优化控制。
MPC的基本原理是在每个时间步进行一个优化问题求解,即在当前时刻根据系统模型对未来一段时间内的系统响应进行预测,然后根据优化目标和约束条件进行优化,以得到最优的控制输入。
MPC重复进行这个优化过程,并将每个时间步的最优控制输入输出作为控制器的输出,实现对系统动态行为的跟踪和调节。
MPC的优势在于它考虑了系统的动态特性和约束条件,能够在不确定性和扰动的情况下进行鲁棒控制,并且可以灵活地应对不同的性能指标和约束条件。
因此,MPC在许多领域中都有广泛的应用,包括化工过程控制、电力系统调度、智能交通系统、机器人控制等。
MPC的基本方法和步骤有哪些?MPC的基本方法和步骤可以总结为以下几个方面:1. 建模:首先需要对系统进行数学建模,将系统的动态行为用数学方程描述出来。
这可以通过物理原理、实验数据或系统辨识等方法进行。
2. 预测:利用系统的数学模型,在每个时间步进行一次预测,即预测未来一段时间内的系统行为。
预测的时间范围可以根据实际需求和控制器的设计选择。
3. 优化:在每个时间步,通过对预测结果进行优化,即根据设定的性能指标和约束条件,求解一个优化问题,寻找最优的控制输入。
优化问题可以通过数学规划方法进行求解,如线性二次规划、非线性规划等。
4. 反馈:将优化得到的控制输入应用到系统中,实施控制。
在下一个时间步,更新系统状态和测量数据,再次进行预测和优化,形成一个闭环控制过程。
5. 约束处理:MPC对约束条件的处理特别重要。
如果预测或优化产生的控制输入超出了约束范围,需要进行约束处理,如修正控制输入、重新求解优化问题、调整控制器参数等。
课件--模型预测控制
h1
h1
h2
PM 1
hi
i1
PM
第三节 模型算法控制(MAC) 二. 反馈校正
以当前过程输出测量值与模型计算值之差修正模型预测值
yP (k j) ym (k j) jy(k) ym (k)
N
ym (k) hiu(k i) i 1
对于P步预测
j 1, 2, , P
YP (k) Ym (k) βe(k)
主要内容 预测模型 反馈校正 参考轨迹 滚动优化
第四节 动态矩阵控制(DMC) 一. 预测模型
DMC的预测模型
渐近稳定线性被控对象的单位阶跃响应曲线
和给定值的偏差来确定当前的控制输入 预测控制:不仅利用当前的和过去的偏差值,
而且还利用预测模型来预测过程未来的偏差值。 以滚动优化确定当前的最优控制策略,使未来 一段时间内被控变量与期望值偏差最小 从基本思想看,预测控制优于PID控制
第二节 预测控制的基本原理
r(k)
+_
d(k)
在线优化 控制器
u(k)
y(k) 受控过程
+ y(k+j| k)
+
模型输出 反馈校正
动态 预测模型
y(k|k)
_ +
三要素:预测模型 滚动优化 反馈校正
第二节 预测控制的基本原理 一.预测模型(内部模型)
预测模型的功能 根据被控对象的历史信息{ u(k - j), y(k - j) |
j≥1 }和未来输入{ u(k + j - 1) | j =1, …, m} ,预测 系统未来响应{ y(k + j) | j =1, …, p} 预测模型形式 参数模型:如微分方程、差分方程 非参数模型:如脉冲响应、阶跃响应
模型预测控制的概念
模型预测控制的概念模型预测控制(Model Predictive Control,简称MPC)是一种先进的控制策略,广泛应用于工业过程控制、能源管理、自动驾驶等领域。
它基于模型预测、优化目标和控制律设计,实现实时控制。
1.模型预测模型预测是模型预测控制的基础。
它通过建立被控对象的数学模型,对未来的行为进行预测。
这个数学模型可以是一个线性或非线性模型,描述了系统的输入与输出之间的关系。
模型预测的准确性直接影响到控制系统的性能。
2.优化目标模型预测控制的目标是实现系统的优化。
这个优化目标可以是能源消耗最小化、污染物排放最小化、生产成本最低化等。
为了实现这个目标,模型预测控制采用优化算法,根据预测的未来行为和设定的优化目标,计算出最优的控制策略。
3.控制律设计控制律设计是模型预测控制的核心。
它根据优化目标和对未来的预测,设计出一个最优的控制律。
这个控制律规定了何时进行何种控制操作,以达到最优化的效果。
控制律设计需要考虑系统的动态特性、约束条件和优化目标,是一个复杂的问题。
4.实时控制实时控制是模型预测控制的实施过程。
它根据模型预测和控制律设计,对被控对象进行实时的控制操作。
这个过程需要快速、准确地进行,以保证控制效果的及时性和有效性。
实时控制需要考虑系统的实时性和稳定性,是一个具有挑战性的问题。
总之,模型预测控制是一种先进的控制策略,具有预测和控制相结合的特点。
它通过建立数学模型、设定优化目标、设计控制律和实施实时控制,实现了对被控对象的精确控制。
随着计算机技术和优化算法的发展,模型预测控制在各个领域的应用前景越来越广阔。
模型预测控制的参数优化
模型预测控制的参数优化模型预测控制(Model Predictive Control,MPC)是一种基于数学模型的高级控制方法,通过预测模型对系统进行模拟预测和优化求解,实现对系统的精确控制。
不同模型预测控制的应用领域广泛,例如工业过程控制、机器人、交通系统等。
为了获得最佳控制效果,参数优化是MPC中非常重要的一环。
MPC的基本原理是通过建立系统模型来预测系统未来的行为,并根据预测结果选择最佳控制信号。
为了实现最佳控制,需要优化一些关键参数,这些参数包括:1.预测模型参数:优化预测模型参数是实施MPC的首要任务。
预测模型可以是线性或非线性的,参数优化的目标是使得预测模型能够最准确地描述系统的行为。
对于线性模型,常用的优化方法是最小二乘法,通过最小化预测误差来优化模型参数。
对于非线性模型,可以使用最优化算法,例如梯度下降法或遗传算法等。
2.控制器权重:MPC中的控制器权重是用来平衡各个控制目标的重要参数。
例如,在工业过程控制中,可能需要同时优化温度、压力和流量等多个目标。
优化权重可以根据不同目标的重要性来分配,以实现最佳控制效果。
权重的优化可以通过试错法或者通过经验法则来获得。
3.控制时域:控制时域是指每次控制操作的时间长度。
控制时域的选择需要考虑到系统的动态响应和计算复杂性。
较短的时域可以提高控制的灵敏度和准确性,但同时也会增加计算负担。
较长的时域可以降低计算负担,但可能导致控制器的响应时间较慢。
因此,控制时域的选择需要进行权衡和优化。
4.约束参数:约束参数是限制系统操作的条件。
在MPC中,常常会对系统状态、输入信号和输出信号等进行约束。
约束参数的优化是为了确保系统操作在安全和合理的范围内,例如保持输入信号在一定范围内、确保状态变量不会超过设定范围等。
约束参数的优化可以通过调整约束边界或者动态更新来实现。
总之,模型预测控制的参数优化是提高MPC控制效果的重要任务。
参数优化的目标是实现系统的最优控制,同时考虑到系统的动态响应、计算复杂性和约束条件等方面的综合因素。
模型预测控制
模型预测控制模型预测控制(Model Predictive Control,MPC)是一种现代控制方法,被广泛应用于工业过程和汽车控制等领域。
MPC基于数学模型对未来系统行为进行预测,并通过优化算法计算当前时刻的最优控制动作。
本文将全面讲解MPC的原理、应用以及优缺点等方面。
MPC的基本原理是通过使用系统数学模型对未来一段时间内的系统行为进行预测,然后通过一个优化算法计算当前时刻的最优控制动作。
MPC的控制器与传统的PID控制器不同,它不仅仅根据当前系统状态进行控制,而是根据预测模型对未来的系统行为进行优化调整。
MPC的核心是系统模型。
对于一个要进行MPC控制的系统,需要建立一个准确的系统模型,该模型包括系统的动态方程以及输入和输出的关系。
系统模型可以基于物理原理、统计学方法或者机器学习等方式进行建立。
对于复杂的系统,模型的表示可能是非线性的,并且可能包含未知参数。
针对这种情况,可以使用非线性模型预测控制(NMPC)或者递归模型预测控制(RMPC)等方法。
MPC的控制周期可以根据具体的应用场景进行选择,例如在汽车控制中可以选择10ms的控制周期。
在每个控制周期内,MPC首先对当前状态进行估计,然后根据模型预测未来一段时间内的系统行为,并通过一个优化算法计算出当前时刻的最优控制动作。
最后,控制器将最优控制动作发送给执行机构,并等待下个控制周期的到来。
MPC的优点之一是可以对系统的限制条件进行灵活处理。
在优化算法中可以加入对输入和输出的限制条件,例如电流限制、速度限制等。
这可以确保系统在正常工作范围内进行控制,并且可以防止系统因超过限制条件而导致的事故或者损坏。
另一个优点是MPC可以考虑未来系统行为的不确定性。
通过对未来一段时间内的系统行为进行预测,MPC可以在控制过程中主动调整以应对不确定因素,例如外部干扰、传感器噪声等。
这使得MPC在不确定环境下更加鲁棒可靠。
MPC在许多领域都有广泛的应用。
在化工领域,MPC被用于优化生产过程中的控制策略,以提高生产效率和质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i 1 N
即近似认为:
gi gi 0
N
iN iN
模型截断长度
离散脉冲响应模型
存在未建模动态(或建模误差):
~ y (k ) g i u (k i 1)
优点:
iN
无需知道系统的阶次等结构信息 模型长度 N 可以调整
预测模型(P > M)
当前 过去 未来
y (k+j|k) 1 y (k+j|k) 2 u (k+j|k) 1 u (k+j|k) 2
y(k-j)
预测时域P
u(k-j) 控制时域M k-j k k+m k+p
常用模型预测的形式
差分方程
y(k ) ai y(k i) b j u(k j )
现代控制理论
状态空间分析法 最优控制理论 系统辨识与参数估计
新发展的控制理论
自适应控制 非线性控制 多变量控制
得到应用:航空、机电、军事等
模型预测控制的发展
存在问题——过程工业应用差
控制理论的问题:
依赖精确模型 适合多变量控制,但算法复杂 实现困难:计算量大、鲁棒性差….
工程实际的问题:
缺点:
不适合非自衡对象 模型参数冗余
预测模型
y (k ) g i u (k i ) (k )
i 1 N
g1u (k 1) g 2u (k 2) g1 z 1u (k ) g 2 z 2u (k ) z 1 gi z i 1u (k ) (k )
i 1 N
g N u (k N ) (k ) g N z N u (k ) (k )
z 1 g ( z 1 )u (k ) (k )
输出预测
预测模型:
1 ˆ y (k ) G ( z )u (k ) (k ) 1 ˆ z ( z )u (k ) (k ) 1
开环控制+滚动优化的实施需要闭环特性的分析, 甚至是标称稳定性的分析 在线计算量较大。目前广泛应用于慢过程对象的 控制问题上 非线性对象,需要额外的在线计算 需要辨识模型,分析干扰,确定性能指标,整个 问题集合了众多信息
模型预测控制的未来发展
多变量预测控制系统的稳定性、鲁棒性 线性系统 自适应预测—理论性较强 非线性预测控制系统 内部模型用神经网络( ANN )描述 针对预测控制的特点开展研究 国内外先进控制软件包开发所采用 分布式预测控制
1970
电动仪表,标准信号:4~20mA CAD;自动机械工具;机器人;DCS; PLC
1980
办公自动化;数字化技术;通讯、 数字化仪表;智能化仪表;先进控制 网络技术;重视环境 软件 现场总线;分析仪器的在线应用;优 化控制
1990后 智能控制;工业控制高要求
模型预测控制的发展
理论背景:
新的控制理论得到发展
m<j 全局看是动态优化
滚动优化(P = M)
yr y u k+1时刻优化 2 1 3 k时刻优化 2 1 3 1─参考轨迹yr (虚线) 2─最优预测输出y(实线) 3─最优控制作用u
yr
y u k
k+1
t/T
滚动优化(P > M)
当前 过去 设定值 轨迹 未来
y (k+j| k)
y(k-j)
y (k+j| k )
ym(k ) u (k+j )
ym(k+j| k -1)
u(k-j)
ˆ (k 1) ym (k 1) e(k 1) y e(k 1) e(k ) y (k ) ym (k )
k k+P
k-j
模型预测控制的基本算法
动态矩阵控制(DMC,Dynamic Matrix Control ) 模型算法控制(MAC,Model Algorithm Control) 广义预测控制(GPC,Generalized Predictive Control) 预测函数控制(PFC,Predictive Functional Control) 滚动时域控制(RHC,Receding Horizon Control)
滚动优化
滚动进行有限时域在线优化
反馈校正
通过预测误差反馈,修正预测模型,提高预测精度
通过滚动优化和反馈校正弥补模型精度不高 的不足,抑制扰动,提高鲁棒性。
模型预测控制的优势
建模方便 不需要深入了解过程内部机理 有利于提高系统鲁棒性的控制器设计 滚动的优化策略 不增加理论困难 较好的动态控制效果 可推广到有约束条件、大纯
i 1 j 1 n m
状态方程
x(k 1) Ax(k ) Bu (k ) y (k ) C x(k )
脉冲传递函数
y( z) 1 G( z ) C zI A B u( z)
由于
( zI A) ( I z 1 Az2 A2 z 3 ) I
MAC主要包括内部预测模型、反馈校正、滚动优 化和参考轨迹等几个部分。 MAC采用系统脉冲响应作为内部预测模型,是一 种非参数模型。 用过去和当前的输入输出状态,根据内部模型, 预测系统未来的输出状态。 经过用模型输出误差进行反馈校正以后,再与 参考轨迹进行比较,应用二次型性能指标进行 滚动优化,然后再计算当前时刻加于系统的控 制,完成整个动作循环。
工业自动化工具的发展(仪表)
年代 工业发展状况 仪表技术
1950
化工、钢铁、纺织、造纸等,规 模较小;电子管时代
气动仪表,标准信号:20~100kPa 采用真空电子管;自动平衡型 记录仪
1960
半导体技术;石油化工;计算机; 电动仪表,标准信号:0~10mA 大型电站;过程工业大型化 仪表控制室;模拟流程图;DDC 集成电路技术;微处理器;能源 危机;工业现代化;微机广泛应 用
预测模型形式
参数模型:如微分方程、差分方程、状态方程、 传递函数等 非参数模型:如脉冲响应、阶跃响应、模糊模型、 智能模型等
预测模型
基于模型的预测示意图(P=M)
过去 y 未来 3 4
1 u
k 时刻 2 1—控制策略Ⅰ 2—控制策略Ⅱ 3—对应于控制 策略Ⅰ的输出 4—对应于控制策略Ⅱ的输出
模型预测控制正式问世 Cutler 壳牌石油公司 多变量模型预测控制软件 Setpoint公司 多变量控制器
Richalet 专利转让
模型预测控制的基本特点
首先在工程实践获得成功应用
是经典和现代控制理论的结合
反馈控制
最优控制
(滚动优化+反馈校正);
是处理过程控制中多变量约束控制问题的最有效方法 典型代表:MAC、DMC和GPC
模型算法控制-MAC
u(k)
参考轨迹 输入
Z-1
y(k)
受控对象
优化计算
内部模型
预测输出
e(k)
模型算法控制原理框图
离散脉冲响应模型
y
gi:脉冲响应系数
11 g
g2
gN
0
t /T
1 2
N
开环稳定系统的离散脉冲响应曲线
离散脉冲响应模型
适宜对象:线性、定常、自衡系统 在输入端加入控制量 数学表达式:
u (k i ) 0
ik ik
y (k ) g i u (k i 1)
i 0
无限脉冲响应模型 离散脉冲响应序列 g1, g2,…, gi…
可以直接测量
也可以从其它模型转换得到
离散脉冲响应模型
线性、定常、自衡系统的脉冲响应总是会收敛的
可以用有限脉冲响应替代
反馈校正
2
3
y u k k+1
4 1
ˆ (k 1) ym (k y ˆ (k e(k 1) y
1─k时刻的预测输出ym(k) 2─k+1时刻实际输出y (k+1) 3─预测误差e(k+1) 4─k+1时刻校正后的预测输出ym(k+1)
t/T
反馈校正
y ( k) y(k-j) e (k )
控制理论与控制工程专题
模型预测控制 Model Predictive Control MPC
模型预测控制
模型预测控制的发展 模型预测控制的基本特点 模型预测控制的基本原理 模型预测控制的基本算法
模型预测控制的发展
时代背景:
20世纪70年代
工业生产规模不断扩大 对生产过程要求不断提高:质量、性能、安全…… 复杂性:非线性、时变性、耦合、时滞…… 控制仪表获得很大发展
现代典型过程对象的控制系统层次图
Unit1 为 传 统 结构 Unit2 为 MPC 结构
模型预测控制的基本特点
预测控制算法的核心内容:
建立内部模型 确定参考轨迹 设计控制算法 实行在线优化
预测控制算法的三要素为:
预测模型 滚动优化 反馈校正
模型预测控制的三要素
预测模型
对未来一段时间内的输出进行预测
ym(k+j|k)=f [u(k-i), y(k-i)] i =1, 2, 3, …, j
滚动优化
控制目的
通过某一性能指标J 的最优, 确定未来的控制作
用u(k+j|k)。指标J希望模型预测输出尽可能趋近 于参考轨迹。
优化过程
随时间推移在线优化,每时刻反复进行 优化目标只关心预测时域内系统的动态性能 每周期只将u(k+1|k)或u(k+m|k)施加于被控过程
受控过程越来越复杂,难以建模 不确定因素多 能源危机 经济效益