模型预测控制 ppt课件
合集下载
模型预测控制ppt
令
02 动态矩阵控制
动态矩阵控制以优化确定控制策略,在优化过程中, 同时考虑输出跟踪期望值和控制量变化来选择最优化准
则。往往不希望控制增量 Δ u 变化过于剧烈,这一因
素在优化性能指标中加入软约束予以考虑。
02 动态矩阵控制
02 动态矩阵控制
02 动态矩阵控制
02 动态矩阵控制
02 动态矩阵控制
01预测控制概述
工业过程的特点 多变量高维度复杂系统难以建立精确的数学模型 工业过程的结构、参数以及环境具有不确定性、时变性、 非线性、强耦合,最优控制难以实现
预测控制产生
基于模型的控制,但对模型要求不高 采用滚动优化策略,以局部优化取代全局优化 利用实测信息反馈校正,增强控制的鲁棒性
限时域优化策略。优化过程不是一次离线进行,而是在线反
复进行优化计算,滚动实施,从而使模型失配、时变、干扰 等引起的不确定性能及时得到弥补,提高系统的控制效果。
02滚动优化
03反馈校正
模型失配
实际被控过程存在非线性、时变性、不确定性等原因,使基于模型的预测不可能准确地与实 际被控过程相符
反馈校正
从图中可以看出: 第一根曲线是模型失配时的输出 曲线,其快速性较差,超调量小;
第二根曲线是模型未失配时的输 出曲线,其快速性较好,但超调量 略大。
这验证了预测控制对于模型精度 要求不高的优势,即使模型失配, 也能取得不错的控制效果,
05
总结
总结
模型预测控制
预测控制:不仅利用当前和过去的偏差值,而且还利用预测模 型来预测过程未来的偏差值。以滚动优化确定当前的最优控制 策略,使未来一段时间内被控变量与期望值偏差最小
增大P: 系统的快速性变差,稳定性增强; 减小P: 快速性变好,稳定性变差。
模型预测控制MIMOExamplePPT课件
Amplitude
0.5
0
0
10
20 0
10
20 0
Time (sec)
第22页/共37页
10
20
动态矩阵控制---例子
• 阶跃响应模型 • S=step(model) ? • S=[S(:,:,1),S(:,:,2),S(:,:,3)] ? • S(k,j,i), 时间k,输出j,输入i
第23页/共37页
• [A,B,C,D]=ssdata(sys);
第27页/共37页
动态矩阵控制---例子
• Now simulate closed-loop MPC in Simulink • Tstop=30; % Simulation time • mpc_miso • 解释:t=10,20时加入可测/不可测系统输入的动态特性
• %% • % We also revised the MPC design • MPCobj.Model.Disturbance=.1; % Model for unmeasured
• % measurement noise of frequency 0.1 Hz. We want to inform the MPC object
• % about this so that state estimates can be improved
• omega=2*pi/10; • MPCobj.Model.Noise=0.5*tf(omega^2,[1 0 omega^2]);
pulatedVariables; • ServoMPC.OutputVariables=OutputVar
第15页/共37页
Se r vo m o to r- 参 数 设 置 对 性 能 作用
模型预测控制课件
• 从基本思想看,预测控制优于PID控制
PPT学习交流
8
第二节 预测控制的基本原理
r(k)
+_
d(k)
在线优化 控制器
u(k)
y(k) 受控过程
+ y(k+j| k)
+
模型输出 反馈校正
动态 预测模型
y(k|k)
_ +
三要素:预测模型 滚动优化 反馈校正
PPT学习交流
9
第二节 预测控制的基本原理 一.预测模型(内部模型)
• 预测模型的功能 根据被控对象的历史信息{ u(k - j), y(k - j) |
j≥1 }和未来输入{ u(k + j - 1) | j =1, …, m} ,预测 系统未来响应{ y(k + j) | j =1, …, p} • 预测模型形式
• 参数模型:如微分方程、差分方程 • 非参数模型:如脉冲响应、阶跃响应
• Adersa(法) : HIECON
• Invensys : Predictive Control Ltd : Connoisseur
• DOT(英) : STAR
PPT学习交流
6
第一节 预测控制的发展
预测控制的特点 • 建模方便,对模型要求不高 • 滚动的优化策略,具有较好的动态控制效果 • 简单实用的反馈校正,有利于提高控制系统的鲁
5
第一节 预测控制的发展
预测控制有关公司及产品
• SetPoint : IDCOM
• DMC
: DMC
• AspenTech : SetPoint Inc : SMC- IDCOM
DMC Corp : DMCplus
• Profimatics: PCT
PPT学习交流
8
第二节 预测控制的基本原理
r(k)
+_
d(k)
在线优化 控制器
u(k)
y(k) 受控过程
+ y(k+j| k)
+
模型输出 反馈校正
动态 预测模型
y(k|k)
_ +
三要素:预测模型 滚动优化 反馈校正
PPT学习交流
9
第二节 预测控制的基本原理 一.预测模型(内部模型)
• 预测模型的功能 根据被控对象的历史信息{ u(k - j), y(k - j) |
j≥1 }和未来输入{ u(k + j - 1) | j =1, …, m} ,预测 系统未来响应{ y(k + j) | j =1, …, p} • 预测模型形式
• 参数模型:如微分方程、差分方程 • 非参数模型:如脉冲响应、阶跃响应
• Adersa(法) : HIECON
• Invensys : Predictive Control Ltd : Connoisseur
• DOT(英) : STAR
PPT学习交流
6
第一节 预测控制的发展
预测控制的特点 • 建模方便,对模型要求不高 • 滚动的优化策略,具有较好的动态控制效果 • 简单实用的反馈校正,有利于提高控制系统的鲁
5
第一节 预测控制的发展
预测控制有关公司及产品
• SetPoint : IDCOM
• DMC
: DMC
• AspenTech : SetPoint Inc : SMC- IDCOM
DMC Corp : DMCplus
• Profimatics: PCT
模型预测控制讲解
? 系统的线性性
– 则保证了可用线性系统的迭加性等
2019/6/9
第五讲 模型预测控制
16
计算机控制系统理论与应用
5-2 DMC的预测模型(1)
----Coperight by SEC----
t/T 12
计算机控制系统理论与应用
5-1 反馈校正(1)
----Coperight by SEC----
? 每到一个新的采样时刻,都要通过实际 测到的输出信息对基于模型的预测输出 进行修正,然后再进行新的优化。不断 根据系统的实际输出对预测输出值作出 修正使滚动优化不但基于模型,而且利 用了反馈信息,构成闭环优化。
----Coperight by SEC----
2019/6/9
第五讲 模型预测控制
2
计算机控制系统理论与应用
----Coperight by SEC----
模型预测控制的发展背景(1)
? 现代控制理论及应用的发展与特点
– 要求 ? 精确的模型 ? 最优的性能指标 ? 系统的设计方法
– 应用 ? 航天、航空 ? 军事等领域
4
计算机控制系统理论与应用
预测控制的特点(1)
----Coperight by SEC----
? 建模方便,不需要深入了解过程内部机理 ? 非最小化描述的离散卷积和模型,有利于
提高系统的鲁棒性 ? 滚动的优化策略,较好的动态控制效果 ? 不增加理论困难,可推广到有约束条件、
大纯滞后、非最小相位及非线性等过程 ? 是一种计算机优化控制算法
第五讲 模型预测控制
11
计算机控制系统理论与应用
----Coperight by SEC----
5-1 滚动优化(在线优化) (2)
– 则保证了可用线性系统的迭加性等
2019/6/9
第五讲 模型预测控制
16
计算机控制系统理论与应用
5-2 DMC的预测模型(1)
----Coperight by SEC----
t/T 12
计算机控制系统理论与应用
5-1 反馈校正(1)
----Coperight by SEC----
? 每到一个新的采样时刻,都要通过实际 测到的输出信息对基于模型的预测输出 进行修正,然后再进行新的优化。不断 根据系统的实际输出对预测输出值作出 修正使滚动优化不但基于模型,而且利 用了反馈信息,构成闭环优化。
----Coperight by SEC----
2019/6/9
第五讲 模型预测控制
2
计算机控制系统理论与应用
----Coperight by SEC----
模型预测控制的发展背景(1)
? 现代控制理论及应用的发展与特点
– 要求 ? 精确的模型 ? 最优的性能指标 ? 系统的设计方法
– 应用 ? 航天、航空 ? 军事等领域
4
计算机控制系统理论与应用
预测控制的特点(1)
----Coperight by SEC----
? 建模方便,不需要深入了解过程内部机理 ? 非最小化描述的离散卷积和模型,有利于
提高系统的鲁棒性 ? 滚动的优化策略,较好的动态控制效果 ? 不增加理论困难,可推广到有约束条件、
大纯滞后、非最小相位及非线性等过程 ? 是一种计算机优化控制算法
第五讲 模型预测控制
11
计算机控制系统理论与应用
----Coperight by SEC----
5-1 滚动优化(在线优化) (2)
第三篇(第789章)模型预测控制及其MATLAB实现精品PPT课件
一般取
w(k j) a j y(k) (1 a j ) yr ( j 1,2,, n)
其中 为柔化系数 0 1 ;y(k)为系统实测输出 值;yr 为系统的给定值。
i 1
i j1
( j 1,2,, n)
(7-4)
上式右端的后二项即为过去输入对输出n步预估,记为
p 1
y0 (k j) ai u(k j i) a p u(k j p) i j1
将式(3-4)写成矩阵形式
( j 1,2,, n)
(7-5)
yˆ(k 1) a1
yˆ(k
(7-3)
yˆ(k j) ai u(k j i) a p u(k j p) ( j 1,2,, n)
i 1
8
由于只有过去的控制输入是已知的,因此在利用动 态模型作预估时有必要把过去的输入对未来的输出贡 献分离出来,上式可写为
j
p 1
yˆ(k j) ai u(k j i) ai u(k j i) a p u(k j p)
6
7.1.1 预测模型
从被控对象的阶跃响应出发,对象动态特性用一系 列动态系数 a1, a2 ,, ap 即单位阶跃响应在采样时刻的值 来描述,p称为模型时域长度,ap是足够接近稳态值的 系数。
图7-1 单位阶跃响应曲线
7
根据线性系统的比例和叠加性质(系数不变原理),若
在某个时刻k-i(k>=i)输入u(k-i),则 u(k i) 对输出y(k)的
第三篇 模型预测控制 及其MATLAB实现
1
第7章 预测控制理论
❖7.1 动态矩阵控制理论 ❖7.2 广义预测控制理论 ❖7.3 预测控制理论分析
2
模型预测控制(Model Predictive Control:MPC) 是20世纪80年代初开始发展起来的一类新型计算机控 制算法。该算法直接产生于工业过程控制的实际应用, 并在与工业应用的紧密结合中不断完善和成熟。模型 预测控制算法由于采用了多步预测、滚动优化和反馈 校正等控制策略,因而具有控制效果好、鲁棒性强、 对模型精确性要求不高的优点。
第7章 模型预测控制4MIMOExample ppt课件
y(t) = Cx(t) + Du(t)
2020/12/27
12
MPC Control of a DC Servomotor模型描述
sys
a=
x1 x2 x3 x4
x1 0 1 0 0
x2 -51.21 -1 2.56 0
x3 0 0 0 1
x4 128 0 -6.401 -10.2
b=
u1
x1 0
备注:下面文件单独键入运行界面 ManipulatedVariables=struct('Min',umin,'Max',umax,'Units','V'); OutputVariables(1)=struct('Min',-Inf,'Max',Inf,'Units','rad'); OutputVariables(2)=struct('Min',Vmin,'Max',Vmax,'Units','Nm'); Weights=struct('Input',uweight,'InputRate',duweight,'Output',yw
2020/12/27
7
动态矩阵控制---参数设置对性能 作用
A single input, V, one measured and fead back to the controller, qL, and one unmeasured, T.
2020/12/27
8
动态矩阵控制---参数设置对性能 作用
eight);
2020/12/27
12
MPC Control of a DC Servomotor模型描述
sys
a=
x1 x2 x3 x4
x1 0 1 0 0
x2 -51.21 -1 2.56 0
x3 0 0 0 1
x4 128 0 -6.401 -10.2
b=
u1
x1 0
备注:下面文件单独键入运行界面 ManipulatedVariables=struct('Min',umin,'Max',umax,'Units','V'); OutputVariables(1)=struct('Min',-Inf,'Max',Inf,'Units','rad'); OutputVariables(2)=struct('Min',Vmin,'Max',Vmax,'Units','Nm'); Weights=struct('Input',uweight,'InputRate',duweight,'Output',yw
2020/12/27
7
动态矩阵控制---参数设置对性能 作用
A single input, V, one measured and fead back to the controller, qL, and one unmeasured, T.
2020/12/27
8
动态矩阵控制---参数设置对性能 作用
eight);
预测控制-ppt课件
预测时域
u (k+j| k)
u(k-j)
k-j
04.05.2020
控制时域
k
k+m
.
k+p
31
反馈校正
❖ 每到一个新的采样时刻,都要通过实际测到 的输出信息对基于模型的预测输出进行修正, 然后再进行新的优化。
❖ 不断根据系统的实际输出对预测输出值作出 修正使滚动优化不但基于模型,而且利用了 反馈信息,构成闭环优化。
04.05.2020
.
16
滤波、预测与控制
❖ 预测:
▪ 已知信号的过去测量值: y(k), y(k-1), ……,y(k-n) ▪ 求解未来时刻期望值:y(k+1|k) , y(k+2|k) , ……
y(k)
预估器
y(k+d|k)
▪ 预估器:y(k+1|k)= b1y(k)+b2y(k-1)+……+any(k-n) y(k+2|k)= b1y (k+1|k) +b2y(k)+……+any(k-n+1) …….
常用预测模型
脉冲响应模型(要求系统为开环稳定对象)
N
y(k) gju(k j)
j1
阶跃响应模型(要求系统为开环稳定对象)
N1
y(k) aju(kj)aNu(kN) j1
u (k) u (k) u (k 1 )
04.05.2020
.
27
输出预测
利用预测模型得到输出预测ym(k+j|k) ym(k+j|k)=f[u(k-i),y(k-i)] i =1,2,3,……..j
高预测精度。
通过滚动优化和反馈校正弥补模型精度不高的 不足,抑制扰动,提高鲁棒性。
u (k+j| k)
u(k-j)
k-j
04.05.2020
控制时域
k
k+m
.
k+p
31
反馈校正
❖ 每到一个新的采样时刻,都要通过实际测到 的输出信息对基于模型的预测输出进行修正, 然后再进行新的优化。
❖ 不断根据系统的实际输出对预测输出值作出 修正使滚动优化不但基于模型,而且利用了 反馈信息,构成闭环优化。
04.05.2020
.
16
滤波、预测与控制
❖ 预测:
▪ 已知信号的过去测量值: y(k), y(k-1), ……,y(k-n) ▪ 求解未来时刻期望值:y(k+1|k) , y(k+2|k) , ……
y(k)
预估器
y(k+d|k)
▪ 预估器:y(k+1|k)= b1y(k)+b2y(k-1)+……+any(k-n) y(k+2|k)= b1y (k+1|k) +b2y(k)+……+any(k-n+1) …….
常用预测模型
脉冲响应模型(要求系统为开环稳定对象)
N
y(k) gju(k j)
j1
阶跃响应模型(要求系统为开环稳定对象)
N1
y(k) aju(kj)aNu(kN) j1
u (k) u (k) u (k 1 )
04.05.2020
.
27
输出预测
利用预测模型得到输出预测ym(k+j|k) ym(k+j|k)=f[u(k-i),y(k-i)] i =1,2,3,……..j
高预测精度。
通过滚动优化和反馈校正弥补模型精度不高的 不足,抑制扰动,提高鲁棒性。
模型预测控制 PPT课件
现代典型过程对象的控制系统层次图
Unit1 为 传 统 结构 Unit2 为 MPC 结构
模型预测控制的基本特点
预测控制算法的核心内容:
建立内部模型 确定参考轨迹 设计控制算法 实行在线优化
预测控制算法的三要素为:
预测模型 滚动优化 反馈校正
模型预测控制的三要素
预测模型
对未来一段时间内的输出进行预测
工业自动化工具的发展(仪表)
年代 1950
1960
工业发展状况
仪表技术
化工、钢铁、纺织、造纸等,规 气动仪表,标准信号:20~100kPa
模较小;电子管时代
采用真空电子管;自动平衡型
记录仪
半导体技术;石油化工;计算机; 电动仪表,标准信号:0~10mA
大型电站;过程工业大型化
仪表控制室;模拟流程图;DDC
反馈校正
y (k+j|k)= ym(k+j|k) +e(k+j|k) e (k+j|k)= y (k|k) - ym (k|k)
反馈校正
2 3 y
u
4
yˆ(k 1) ym (k
e(k 1) yˆ(k
1
k k+1
t/T
1─k时刻的预测输出ym(k)
2─k+1时刻实际输出y (k+1)
3─预测误差e(k+1)
预测模型形式
➢ 参数模型:如微分方程、差分方程、状态方程、 传递函数等
➢ 非参数模型:如脉冲响应、阶跃响应、模糊模型、 智能模型等
预测模型
基于模型的预测示意图(P=M)
过去
未来
3
y
4
1u2ຫໍສະໝຸດ k 时刻1—控制策略Ⅰ 2—控制策略Ⅱ 3—对应于控制 策略Ⅰ的输出 4—对应于控制策略Ⅱ的输出
第5章 模型预测控制
对象的历史信息和未来输入,预测系统未来响应。
2. 滚动优化
(i) 优化目的 按照某个目标函数确定当前和未来控制作用的大小,这些控制作用 将使未来输出预测序列沿某个参考轨迹“最优地”达到期望输出设定 值 . (ii) 优化过程
不是采用一成不变的全局最优化目标,而是采用滚动式的有限时域 优化策略。优化过程不是一次离线进行,而是在线反复进行优化计 算、滚动实施,从而使模型失配、时变、干扰等引起的不确定性能及 时得到弥补,提高了系统的控制效果。
5.2 模型预测控制基本原理
一 模型预测控制的分类 1. 基于非参数模型的预测控制算法
代表性的算法有模型算法控制 (MAC) 和动态矩阵控制(DMC)。这 类算法适合处理开环稳定多变量过程约束间题的控制;
2. 基于ARMA或CARIMA等输入输出参数化模型预测控制算法
代表性的算法为广义预测控制算法(GPC)。这类算法可用于开环不 稳定、非最小相位和时变时滞等较难控制的对象,并对系统的时滞和 阶次不确定有良好的鲁棒性。但对于多变量系统,算法实施较困难。
闭环预测模型为: 目标函数可取为:
目标函数写成矩阵形式为: 极小化性能指标,即令 ,得最优控制率:
根据滚动优化原理,只实施当前控制量u2(k):
式中: 多步优化MAC的特点: 优点: (i)控制效果和鲁棒性优于单步MAC算法简单; (ii)适用于有时滞或非最小相位对象。 缺点: (i)算法较单步MAC复杂; (ii)由于以u作为控制量, 导致MAC算法不可避免地出现稳态误差.
商品化预测控制软件产品:
(i). 第一代:以Adersa的IDCOM和She11 Oil的DMC为代表,算法针 对无约束多变量过程; (ii). 第二代:以Shell Oil的QDMC为代表,处理约束多变量过程的控 制问题; (iii). 第三代:产品包括Adersa的HIECOM和PFC,DMC的DMC plus 和Honeywell的RMPCT,算法增加了摆脱不可行解的办法,并具有容 错和多个目标函数等功能。
课件--模型预测控制
h1
h1
h2
PM 1
hi
i1
PM
第三节 模型算法控制(MAC) 二. 反馈校正
以当前过程输出测量值与模型计算值之差修正模型预测值
yP (k j) ym (k j) jy(k) ym (k)
N
ym (k) hiu(k i) i 1
对于P步预测
j 1, 2, , P
YP (k) Ym (k) βe(k)
主要内容 预测模型 反馈校正 参考轨迹 滚动优化
第四节 动态矩阵控制(DMC) 一. 预测模型
DMC的预测模型
渐近稳定线性被控对象的单位阶跃响应曲线
和给定值的偏差来确定当前的控制输入 预测控制:不仅利用当前的和过去的偏差值,
而且还利用预测模型来预测过程未来的偏差值。 以滚动优化确定当前的最优控制策略,使未来 一段时间内被控变量与期望值偏差最小 从基本思想看,预测控制优于PID控制
第二节 预测控制的基本原理
r(k)
+_
d(k)
在线优化 控制器
u(k)
y(k) 受控过程
+ y(k+j| k)
+
模型输出 反馈校正
动态 预测模型
y(k|k)
_ +
三要素:预测模型 滚动优化 反馈校正
第二节 预测控制的基本原理 一.预测模型(内部模型)
预测模型的功能 根据被控对象的历史信息{ u(k - j), y(k - j) |
j≥1 }和未来输入{ u(k + j - 1) | j =1, …, m} ,预测 系统未来响应{ y(k + j) | j =1, …, p} 预测模型形式 参数模型:如微分方程、差分方程 非参数模型:如脉冲响应、阶跃响应
模型预测控制ppt课件
……
多步输出预测
……
未
已
知
知
当前时刻k以后的控制量
当前时刻k以 前的控制量
多步输出预测
矩阵形式(P = M):
PP维矩阵
P1维矩阵
未知
P(N-1)维
矩阵
已知
(N-1) 1
维矩阵
多步输出预测
当P>M时:
优化控制序列
保持不变
多步输出预测
矩阵形式(P>M):
当 j > M 时, 保持不变,但控制输入仍保持u (k+M-1),所以必须考 虑脉冲响应的作用。
制:
单步MAC的等效控制结构
ysp
w(k) +
参考轨迹
-
u(k)
Gc(z-1)
h
(k)
g(z-1) z-
1
g^(z-1) z-1
+ +
-
ym(k)
y(k)
+
e(k)
标准的内模控制结构!
纯滞后对象单步MAC
纯滞后对象:
一步输出预测:
闭环预测:
纯滞后对象单步MAC
参考轨迹:
性能指标:
制,完成整个动作循环。
模型算法控制-MAC
参考轨迹 输入
u(k)
优化计算
受控对象
y(k)
Z-1
预测输出
内部模型
e(k)
模型算法控制原理框图
离散脉冲响应模型
y
gi:脉冲响应系数
g11 g2
gN
0 12
t /T N
开环稳定系统的离散脉冲响应曲线
离散脉冲响应模型
适宜对象:线性、定常、自衡系统 在输入端加入控制量
《基于模型预测控制》PPT课件
(3-3)
式中y(k)为当前时刻k的测量值。
yP (k j) ym (k j) j[y(k) ym (k)]
(3) 设定值与参考轨迹 假定设定值为yd。通常取式(3-1)的一阶指数变化形式,则有
j=1,2……p (4). 最优控制作用 设优化控制的目标函数为
yr (k j) j y(k) (1 j ) yd
N的选择显然与采样周期有关,对于给定的过程,采样周期短,则N会相应的增大。 通常可选N =20~60为宜。 ※ 输出预估时域长度P的选择 通常P越大,预测控制的鲁棒性就越强。但相应的计算量和存储量也增大。一般,P选 择等于过程单位阶跃响应达到其稳态值所需过渡时间的一半所需的采样次数。 ※控制时域长度M的选择
近年来已在化工、炼油、石油化工、冶金等企业中得到成功应用,已有商品化软件 出售。DMC算法包含预测模型、在线反馈校正、滚动优化等几部分。
10.3.3.广义预测控制
广义预测控制(Generalized Predictive Control 简称GPC)考虑过程随机噪音, 采 用易于在线辨识并能描述不稳定过程的CARMA受控自回归滑动平均模型和CARIMA受控 自回归积分滑动平均模型。
工业过程的多输入——多输出的高维 复杂系统难于建立精确的数学模型, 工业过程模型结构、参数和环境都有 大量不确定性;
工业过程都存在着非线性,只是程度 不同而已;
工业过程都存在着各种各样的约束, 而过程的最佳操作点往往在约束的边 界上等。
70年代以来,针对工业过程特点寻找 各种对模型精度要求低,控制综合质 量好,在线计算方便的优化控制算法。 预测控制是在这样的背景下发展起来 的一类新型计算机优化控制算法。
由于预测控制对于复杂工业过程的适应性,在国外许多企业得到广泛应用,取得显著 经济效益,国内亦有试点,逐步推广应用。它在工业过程有着广阔的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滚动优化
滚动进行有限时域在线优化
反馈校正
通过预测误差反馈,修正预测模型,提高预测精度
通过滚动优化和反馈校正弥补模型精度不高 的不足,抑制扰动,提高鲁棒性。
模型预测控制的优势
建模方便 不需要深入了解过程内部机理 有利于提高系统鲁棒性的控制器设计 滚动的优化策略 较好的动态控制效果 不增加理论困难 可推广到有约束条件、大纯 滞后、非最小相位及非线性等过程 是一种计算机优化控制算法
+ ym(k+j| k)
+
反馈校正
预测模型
y(k|k)
_ +
模型预测控制的基本原理
预测模型
预测模型的功能
根据被控对象的历史信息{ u(k - j), y(k -j) | j≥1 }和未来输入 { u(k + j - 1) | j =1, …, M} ,预测系统未来响应{ y(k + j) | j =1, …, P} 。
模型预测控制的发展
理论背景:
新的控制理论得到发展
➢ 现代控制理论
状态空间分析法 最优控制理论 系统辨识与参数估计
➢ 新发展的控制理论
自适应控制 非线性控制 多变量控制
➢ 得到应用:航空、机电、军事等
模型预测控制的发展
存在问题——过程工业应用差
➢ 控制理论的问题: 依赖精确模型 适合多变量控制,但算法复杂 实现困难:计算量大、鲁棒性差….
控制理论与控制工程专题
模型预测控制 Model Predictive Control
MPC
模型预测控制
模型预测控制的发展 模型预测控制的基本特点 模型预测控制的基本原理 模型预测控制的基本算法
模型预测控制的发展
时代背景:
20世纪70年代 ➢ 工业生产规模不断扩大 ➢ 对生产过程要求不断提高:质量、性能、安全…… ➢ 复杂性:非线性、时变性、耦合、时滞…… ➢ 控制仪表获得很大发展
工业自动化工具的发展(仪表)
年代 1950
1960
工业发展状况
仪表技术
化工、钢铁、纺织、造纸等,规 气动仪表,标准信号:20~100kPa
模较小;电子管时代
采用真空电子管;自动平衡型
记录仪
半导体技术;石油化工;计算机; 电动仪表,标准信号:0~10mA
大型电站;过程工业大型化
仪表控制室;模拟流程图;DDC
现代典型过程对象的控制系统层次图
Unit1 为 传 统 结构 Unit2 为 MPC 结构
模型预测控制的基本特点
预测控制算法的核心内容:
建立内部模型 确定参考轨迹 设计控制算法 实行在线优化
预测控制算法的三要素为:
预测模型 滚动优化 反馈校正
模型预测控制的三要素
预测模型
对未来一段时间内的输出进行预测
Markov矩阵
对输出的预测
利用预测模型得到输出预测 ym(k+j|k) ym(k+j|k)=f [u(k-i), y(k-i)]
i =1, 2, 3, …, j
滚动优化
控制目的
▪ 通过某一性能指标J 的最优, 确定未来的控制作用
u(k+j|k)。指标J希望模型预测输出尽可能趋近于
预测模型形式
➢ 参数模型:如微分方程、差分方程、状态方程、 传递函数等
➢ 非参数模型:如脉冲响应、阶跃响应、模糊模型、 智能模型等
预测模型
基于模型的预测示意图(P=M)
过去
未来
3
y
4
1
u
2
k 时刻
1—控制策略Ⅰ 2—控制策略Ⅱ 3—对应于控制 策略Ⅰ的输出 4—对应于控制策略Ⅱ的输出
预测模型(P > M)
模型预测控制的未来发展
多变量预测控制系统的稳定性、鲁棒性 线性系统 自适应预测—理论性较强 非线性预测控制系统 内部模型用神经网络( ANN )描述 针对预测控制的特点开展研究 国内外先进控制软件包开发所采用 分布式预测控制
模型预测控制的基本原理
r(k)
ห้องสมุดไป่ตู้+_
d(k)
u(k)
y(k)
在线优化
受控过程
y(k) Cx(k)
脉冲传递函数
G(z) y(z) CzI A 1 B
u(z)
由于
(zI A) (I z1 Az2 A2 z3 ) I
即 (zI A)1 z1I z2 A z3 A2
因而
G(z) C
A j1z j B
hj zj
j1
j 1
其中
hj CA j1B
➢ 工程实际的问题: 受控过程越来越复杂,难以建模 不确定因素多 能源危机 经济效益
• 70年代
开始关注工业过程复杂性控制问题 串级控制、前馈控制等在过程控制中得到应用 现代控制理论仍很少在过程控制领域应用
• 80年代
Richalet和Cutler两人几乎同时报道研究成果 MPHC(模型预测启发式控制) DMC(动态矩阵控制)
模型预测控制的优势
对模型要求不高 鲁棒性可调 可处理约束 (操作变量 MV、被控变量CV) 可处理 “方”、“瘦”、“胖”,进行自动转换 可实现多目标优化(包括经济指标) 可处理特殊系统:非最小相位系统、伪积分系统、 零增益系统
模型预测控制的弱势
开环控制+滚动优化的实施需要闭环特性的分析, 甚至是标称稳定性的分析 在线计算量较大。目前广泛应用于慢过程对象的 控制问题上 非线性对象,需要额外的在线计算 需要辨识模型,分析干扰,确定性能指标,整个 问题集合了众多信息
模型预测控制正式问世 Cutler 壳牌石油公司 多变量模型预测控制软件 Richalet 专利转让 Setpoint公司 多变量控制器
模型预测控制的基本特点
➢ 首先在工程实践获得成功应用 ➢ 是经典和现代控制理论的结合
反馈控制 最优控制 (滚动优化+反馈校正); ➢ 是处理过程控制中多变量约束控制问题的最有效方法 ➢ 典型代表:MAC、DMC和GPC
过去 y(k-j) u(k-j)
当前
未来
y1 (k+j|k) y2 (k+j|k)
预测时域P u1 (k+j|k) u2 (k+j|k)
控制时域M
k-j
k
k+m
k+p
常用模型预测的形式
差分方程
n
m
y(k) ai y(k i) bju(k j)
i 1
j 1
状态方程
x(k 1) Ax(k) Bu(k)
1970
集成电路技术;微处理器;能源 电动仪表,标准信号:4~20mA
危机;工业现代化;微机广泛应 CAD;自动机械工具;机器人;DCS;
用
PLC
1980 办公自动化;数字化技术;通讯、 数字化仪表;智能化仪表;先进控制
网络技术;重视环境
软件
1990后 智能控制;工业控制高要求
现场总线;分析仪器的在线应用;优 化控制
滚动进行有限时域在线优化
反馈校正
通过预测误差反馈,修正预测模型,提高预测精度
通过滚动优化和反馈校正弥补模型精度不高 的不足,抑制扰动,提高鲁棒性。
模型预测控制的优势
建模方便 不需要深入了解过程内部机理 有利于提高系统鲁棒性的控制器设计 滚动的优化策略 较好的动态控制效果 不增加理论困难 可推广到有约束条件、大纯 滞后、非最小相位及非线性等过程 是一种计算机优化控制算法
+ ym(k+j| k)
+
反馈校正
预测模型
y(k|k)
_ +
模型预测控制的基本原理
预测模型
预测模型的功能
根据被控对象的历史信息{ u(k - j), y(k -j) | j≥1 }和未来输入 { u(k + j - 1) | j =1, …, M} ,预测系统未来响应{ y(k + j) | j =1, …, P} 。
模型预测控制的发展
理论背景:
新的控制理论得到发展
➢ 现代控制理论
状态空间分析法 最优控制理论 系统辨识与参数估计
➢ 新发展的控制理论
自适应控制 非线性控制 多变量控制
➢ 得到应用:航空、机电、军事等
模型预测控制的发展
存在问题——过程工业应用差
➢ 控制理论的问题: 依赖精确模型 适合多变量控制,但算法复杂 实现困难:计算量大、鲁棒性差….
控制理论与控制工程专题
模型预测控制 Model Predictive Control
MPC
模型预测控制
模型预测控制的发展 模型预测控制的基本特点 模型预测控制的基本原理 模型预测控制的基本算法
模型预测控制的发展
时代背景:
20世纪70年代 ➢ 工业生产规模不断扩大 ➢ 对生产过程要求不断提高:质量、性能、安全…… ➢ 复杂性:非线性、时变性、耦合、时滞…… ➢ 控制仪表获得很大发展
工业自动化工具的发展(仪表)
年代 1950
1960
工业发展状况
仪表技术
化工、钢铁、纺织、造纸等,规 气动仪表,标准信号:20~100kPa
模较小;电子管时代
采用真空电子管;自动平衡型
记录仪
半导体技术;石油化工;计算机; 电动仪表,标准信号:0~10mA
大型电站;过程工业大型化
仪表控制室;模拟流程图;DDC
现代典型过程对象的控制系统层次图
Unit1 为 传 统 结构 Unit2 为 MPC 结构
模型预测控制的基本特点
预测控制算法的核心内容:
建立内部模型 确定参考轨迹 设计控制算法 实行在线优化
预测控制算法的三要素为:
预测模型 滚动优化 反馈校正
模型预测控制的三要素
预测模型
对未来一段时间内的输出进行预测
Markov矩阵
对输出的预测
利用预测模型得到输出预测 ym(k+j|k) ym(k+j|k)=f [u(k-i), y(k-i)]
i =1, 2, 3, …, j
滚动优化
控制目的
▪ 通过某一性能指标J 的最优, 确定未来的控制作用
u(k+j|k)。指标J希望模型预测输出尽可能趋近于
预测模型形式
➢ 参数模型:如微分方程、差分方程、状态方程、 传递函数等
➢ 非参数模型:如脉冲响应、阶跃响应、模糊模型、 智能模型等
预测模型
基于模型的预测示意图(P=M)
过去
未来
3
y
4
1
u
2
k 时刻
1—控制策略Ⅰ 2—控制策略Ⅱ 3—对应于控制 策略Ⅰ的输出 4—对应于控制策略Ⅱ的输出
预测模型(P > M)
模型预测控制的未来发展
多变量预测控制系统的稳定性、鲁棒性 线性系统 自适应预测—理论性较强 非线性预测控制系统 内部模型用神经网络( ANN )描述 针对预测控制的特点开展研究 国内外先进控制软件包开发所采用 分布式预测控制
模型预测控制的基本原理
r(k)
ห้องสมุดไป่ตู้+_
d(k)
u(k)
y(k)
在线优化
受控过程
y(k) Cx(k)
脉冲传递函数
G(z) y(z) CzI A 1 B
u(z)
由于
(zI A) (I z1 Az2 A2 z3 ) I
即 (zI A)1 z1I z2 A z3 A2
因而
G(z) C
A j1z j B
hj zj
j1
j 1
其中
hj CA j1B
➢ 工程实际的问题: 受控过程越来越复杂,难以建模 不确定因素多 能源危机 经济效益
• 70年代
开始关注工业过程复杂性控制问题 串级控制、前馈控制等在过程控制中得到应用 现代控制理论仍很少在过程控制领域应用
• 80年代
Richalet和Cutler两人几乎同时报道研究成果 MPHC(模型预测启发式控制) DMC(动态矩阵控制)
模型预测控制的优势
对模型要求不高 鲁棒性可调 可处理约束 (操作变量 MV、被控变量CV) 可处理 “方”、“瘦”、“胖”,进行自动转换 可实现多目标优化(包括经济指标) 可处理特殊系统:非最小相位系统、伪积分系统、 零增益系统
模型预测控制的弱势
开环控制+滚动优化的实施需要闭环特性的分析, 甚至是标称稳定性的分析 在线计算量较大。目前广泛应用于慢过程对象的 控制问题上 非线性对象,需要额外的在线计算 需要辨识模型,分析干扰,确定性能指标,整个 问题集合了众多信息
模型预测控制正式问世 Cutler 壳牌石油公司 多变量模型预测控制软件 Richalet 专利转让 Setpoint公司 多变量控制器
模型预测控制的基本特点
➢ 首先在工程实践获得成功应用 ➢ 是经典和现代控制理论的结合
反馈控制 最优控制 (滚动优化+反馈校正); ➢ 是处理过程控制中多变量约束控制问题的最有效方法 ➢ 典型代表:MAC、DMC和GPC
过去 y(k-j) u(k-j)
当前
未来
y1 (k+j|k) y2 (k+j|k)
预测时域P u1 (k+j|k) u2 (k+j|k)
控制时域M
k-j
k
k+m
k+p
常用模型预测的形式
差分方程
n
m
y(k) ai y(k i) bju(k j)
i 1
j 1
状态方程
x(k 1) Ax(k) Bu(k)
1970
集成电路技术;微处理器;能源 电动仪表,标准信号:4~20mA
危机;工业现代化;微机广泛应 CAD;自动机械工具;机器人;DCS;
用
PLC
1980 办公自动化;数字化技术;通讯、 数字化仪表;智能化仪表;先进控制
网络技术;重视环境
软件
1990后 智能控制;工业控制高要求
现场总线;分析仪器的在线应用;优 化控制