第三章 单相正弦交流电路PPT课件
合集下载
电路基础第3章 正弦交流电路共109页
3-1 正弦交流电的基本概念 正弦交流电
一、正弦交流电的特征
i
iImsi nt
Im
t
特征量:
I m : 电流幅值(最大值)
: 角频率(弧度/秒)
: 初相
1.频率与周期
i
t
T
几种描述:
▪周期 T:变化一周所需的时间 单位:秒(s)…
▪频率 f:每秒变化的次数 单位:赫兹(Hz) ...
▪角频率 ω:每秒变化的弧度 单位:弧度/秒(rad/s)
或 u3s 1i3 1 nt1 (1 4 2 )V0
例 3-2 已知二正弦电压 u 1 1s 4i3 1 nt1 (94 )0 V u 2 3s 1i3 1 nt1 (14 5 )V 0
求二者的相位差,并指出二者的关系。
解: 相位差 12=- 90°-150°= -240°
由于 12 180 ,故 12=-240 °+360 °=120°
3.相位差
i
u
t
u i
▪相位差 :两个同频率 正弦量间的初相位之差。
如: uUmsintu iImsinti
t u t i u i
两个正弦信号的相位关系
▪ 若ui 0,
称 u 超前 i 角;
u u,i
▪ 若ui 0,
称 u 滞后 i 角;
u,i i u
i
o
t
o
t
波形图
两个正弦信号的相位关系
三者间的关系: f 1 T
2 2 f
T
关于单位:
★国际单位制(SI)中,周期的单位为秒(s) ;频率的单位为1/秒,又称为赫兹(Hz); 角频率的单位为弧度/秒(rad/s)。 ★单位换算:
单相正弦交流电路ppt课件
= (I1m cos01 I 2m cos02 )2 (I1m sin 01 I 2m sin 02 )2
arctan OY arctan I1m sin 01 I 2m sin 02
OX
I1m cos 01 I 2 m cos 02
最后根据实际求出的Im和φ值,写出合成电流的瞬式表达 式。
用矢量法求合矢量
21
例:
22
纯电阻电路
应用案例——电炉电路
当开关置于低档时,500W电热丝接入电路; 当开关置于中档时,1000W电热丝接入电路; 当开关置于高档时,500W和1000W电热丝同时并联接
入电路,此时功率最大。 23
纯电容电路
1.电压和电流的关系
在纯电容电路中,电流与电压成正比
20
2.计算法 计算法的原理和作图法相同,它是根据合矢量在y轴的投
影等于和在y 轴的投影之和、在x轴的投影等于和在x轴的 投影之和的特点,用几何的方法进行计算的。参照图所示, 可以写出合成电流的最大值 Im和初相角φ的计算公式,即
I m OX 2 OY 2 (OX1 OX 2 )2 (0Y1 0Y2 )2
15
例1 : 例2 :
16
5-4 交流电的矢量表示及同频正弦量的加减运算
5.4.1 正弦交流电的旋转矢量表示法
如下图所示,图的左边为正弦交流电用旋转矢量表示。
在作直为角旋坐转标矢系量中,,它取的正起弦始量位的置最与大x轴值正Im方(向也的可夹以角用为有正效弦值) 交并流以电逆的时初针相方角向绕φ0 坐,标旋原转点角旋速转度。为在正任弦意交时流刻电,的旋角转频矢率量ω, 在y轴的投影,就等于该时刻正弦交流电的瞬时值,与O x 轴的夹角,就等于正弦交流电相位ωt+φ0。 下图的右边为这个正弦交流电的波形图,可见旋转矢量和
arctan OY arctan I1m sin 01 I 2m sin 02
OX
I1m cos 01 I 2 m cos 02
最后根据实际求出的Im和φ值,写出合成电流的瞬式表达 式。
用矢量法求合矢量
21
例:
22
纯电阻电路
应用案例——电炉电路
当开关置于低档时,500W电热丝接入电路; 当开关置于中档时,1000W电热丝接入电路; 当开关置于高档时,500W和1000W电热丝同时并联接
入电路,此时功率最大。 23
纯电容电路
1.电压和电流的关系
在纯电容电路中,电流与电压成正比
20
2.计算法 计算法的原理和作图法相同,它是根据合矢量在y轴的投
影等于和在y 轴的投影之和、在x轴的投影等于和在x轴的 投影之和的特点,用几何的方法进行计算的。参照图所示, 可以写出合成电流的最大值 Im和初相角φ的计算公式,即
I m OX 2 OY 2 (OX1 OX 2 )2 (0Y1 0Y2 )2
15
例1 : 例2 :
16
5-4 交流电的矢量表示及同频正弦量的加减运算
5.4.1 正弦交流电的旋转矢量表示法
如下图所示,图的左边为正弦交流电用旋转矢量表示。
在作直为角旋坐转标矢系量中,,它取的正起弦始量位的置最与大x轴值正Im方(向也的可夹以角用为有正效弦值) 交并流以电逆的时初针相方角向绕φ0 坐,标旋原转点角旋速转度。为在正任弦意交时流刻电,的旋角转频矢率量ω, 在y轴的投影,就等于该时刻正弦交流电的瞬时值,与O x 轴的夹角,就等于正弦交流电相位ωt+φ0。 下图的右边为这个正弦交流电的波形图,可见旋转矢量和
第三章单相正弦交流电路【PPT课件】PPT课件
HOME
R-L-C串联交流电路中的复数形式欧姆定律
I
U IZ
Z R j(L 1 ) C
Z:复数阻抗
实部为阻 虚部为抗
R U R
U jL U L
1
jC
U C
感抗 容抗
HOME
3.4.1 阻抗三角形
I
Z R jபைடு நூலகம் 1
C
Z 是一个复数,但并不是正弦交流
U
量,上面不能加点。
R U R
j
L
1
C
IZ
Z
R
j(L
1
C
)
Z
Z
R2
(L
1
C
)
2
tg 1
L
1
C
U
I
R
Z
>0 ,u领先i =0 ,u与i同相 <0 ,u落后i
HOME
tg 1
L
1
C
R
时L ,1C 表示u 0领先 i --电路呈感性
时L,
1 C
表示u0落后 i
--电路呈容性
当L 1C时, 0表示 u 、i同相 --电路呈电阻性
第三章单相正弦交 流电路【PPT课件】
3.4 电阻、电感、电容串联的电路
相量模型
I
jLR U R
U
1
jC
U L
U C
相量方程式:
U U R U L UC
设 I I0 (参考相量)
U R IR
则 U L I jL
U C
I
1
jC
HOME
U IR I jL I 1 jC
I
R
正弦交流电路PPT课件
电抗 X = XL—XC
阻抗 Z R2X2
阻抗角
arcU L t a U C narcX L t aX C n
U R
R
三、电路的电感性、电容性和电阻性
四、功率
视在功率——电压与电流有效值的乘积,用S 表示,单位为伏·安(VA)。
视在功率并不代表电路中消耗的功率,它常用 于表示电源设备的容量。
解题过程
常用电子仪器的使用
§3-2 正弦交流电的相量图表示法
旋转矢量与波形图的关系
有效值相量图
应用相量图时注意以下几点:
同一相量图中,各正弦交流电的频率应相同。 同一相量图中,相同单位的相量应按相同比
例画出。
一般取直角坐标轴的水平正方向为参考方向, 逆时针转动的角度为正,反之为负。
用相量表示正弦交流电后,它们的加、减运 算可按平行四边形法则进行。
视在功率S与有功功率P和无功功率Q的关系:
S P2 Q2
PSc os QSsin
cos P 称为功率因数。
S
五、电压三角形、阻抗三角形和功率三角形
阻抗三角形
电压相量图
电压三角形
功率三角形
§3-7 提高功率因数的意义和方法
计算电感性负载的有功功率,除考虑电压、
电流的大小外,还要考虑电压、电流之间的相位
QCUII2XCU XC 2
【例3-5 】 容量为40μF的电容接在的电源上,试求: (1)电容的容抗;(2)电流的有效值;(3)电流瞬时值 表达式;(4)电路的无功功率。
解题过程
§3-6 RLC串联电路
一、电容对交流电的阻碍作用
开关SA闭合后接交流 电压,灯泡微亮。再断开 SA,灯泡突然变亮。测量 R、L、C两端电压 UR 、UL、 UC ,发现:
阻抗 Z R2X2
阻抗角
arcU L t a U C narcX L t aX C n
U R
R
三、电路的电感性、电容性和电阻性
四、功率
视在功率——电压与电流有效值的乘积,用S 表示,单位为伏·安(VA)。
视在功率并不代表电路中消耗的功率,它常用 于表示电源设备的容量。
解题过程
常用电子仪器的使用
§3-2 正弦交流电的相量图表示法
旋转矢量与波形图的关系
有效值相量图
应用相量图时注意以下几点:
同一相量图中,各正弦交流电的频率应相同。 同一相量图中,相同单位的相量应按相同比
例画出。
一般取直角坐标轴的水平正方向为参考方向, 逆时针转动的角度为正,反之为负。
用相量表示正弦交流电后,它们的加、减运 算可按平行四边形法则进行。
视在功率S与有功功率P和无功功率Q的关系:
S P2 Q2
PSc os QSsin
cos P 称为功率因数。
S
五、电压三角形、阻抗三角形和功率三角形
阻抗三角形
电压相量图
电压三角形
功率三角形
§3-7 提高功率因数的意义和方法
计算电感性负载的有功功率,除考虑电压、
电流的大小外,还要考虑电压、电流之间的相位
QCUII2XCU XC 2
【例3-5 】 容量为40μF的电容接在的电源上,试求: (1)电容的容抗;(2)电流的有效值;(3)电流瞬时值 表达式;(4)电路的无功功率。
解题过程
§3-6 RLC串联电路
一、电容对交流电的阻碍作用
开关SA闭合后接交流 电压,灯泡微亮。再断开 SA,灯泡突然变亮。测量 R、L、C两端电压 UR 、UL、 UC ,发现:
《单相正弦交流电路 》课件
《单相正弦交流电路》PPT课件
$number {01}
目录
• 引言 • 单相正弦交流电路基础知识 • 单相正弦交流电路的分析 • 单相正弦交流电路的应用 • 单相正弦交流电路实验 • 总结与展望
01 引言
课程背景
交流电在日常生活和工业生产中的应用广泛,单相正弦交流 电路作为交流电的基本形式,是电力系统的基本组成部分。
03
单相正弦交流电路的分析
纯电阻电路
总结词
电阻元件在交流电路中呈现阻抗,其大小与交流电的频率无关。
详细描述
纯电阻电路是指由电阻元件组成的交流电路。在纯电阻电路中,电流和电压同 相位,且电流的大小与电压的大小成正比。由于电阻元件对交流电的阻抗与交 流电的频率无关,因此纯电阻电路的阻抗是一个实数。
纯电容电路
测量电压、电流和功率
使用示波器、信号发生器和功 率表等测量仪器,分别测量单 相正弦交流电路中电压、电流 和功率的波形和数值。记录测 量数据并进行分析。
分析电路元件对电路特性 的影响
通过改变电阻、电容、电感等 元件的值,观察电路中电压、 电流和功率的变化,分析元件 对单相正弦交流电路特性的影 响。
总结实验结果
随着科技的发展,单相正弦交流电路在家庭用电、电动机控 制、变压器设计等领域的应用越来越广泛,掌握其基本原理 和计算方法对于电气工程师和相关从业人员至关重要。
课程目标
01
掌握单相正弦交流电路的基本概念、元件和电 路模型。
03
能够进行简单的单相正弦交流电路分析和计算,包 括阻抗、功率和相位角等参数。
02
理解了单相正弦交流电路在 日常生活和工业生产中的应
用。
下章预告
学习三相正弦交流电路的基本概 念和特点。
$number {01}
目录
• 引言 • 单相正弦交流电路基础知识 • 单相正弦交流电路的分析 • 单相正弦交流电路的应用 • 单相正弦交流电路实验 • 总结与展望
01 引言
课程背景
交流电在日常生活和工业生产中的应用广泛,单相正弦交流 电路作为交流电的基本形式,是电力系统的基本组成部分。
03
单相正弦交流电路的分析
纯电阻电路
总结词
电阻元件在交流电路中呈现阻抗,其大小与交流电的频率无关。
详细描述
纯电阻电路是指由电阻元件组成的交流电路。在纯电阻电路中,电流和电压同 相位,且电流的大小与电压的大小成正比。由于电阻元件对交流电的阻抗与交 流电的频率无关,因此纯电阻电路的阻抗是一个实数。
纯电容电路
测量电压、电流和功率
使用示波器、信号发生器和功 率表等测量仪器,分别测量单 相正弦交流电路中电压、电流 和功率的波形和数值。记录测 量数据并进行分析。
分析电路元件对电路特性 的影响
通过改变电阻、电容、电感等 元件的值,观察电路中电压、 电流和功率的变化,分析元件 对单相正弦交流电路特性的影 响。
总结实验结果
随着科技的发展,单相正弦交流电路在家庭用电、电动机控 制、变压器设计等领域的应用越来越广泛,掌握其基本原理 和计算方法对于电气工程师和相关从业人员至关重要。
课程目标
01
掌握单相正弦交流电路的基本概念、元件和电 路模型。
03
能够进行简单的单相正弦交流电路分析和计算,包 括阻抗、功率和相位角等参数。
02
理解了单相正弦交流电路在 日常生活和工业生产中的应
用。
下章预告
学习三相正弦交流电路的基本概 念和特点。
单相交流电路ppt课件
该用电器最高耐压低于电源电压的最大值,所
以不能用。
i
角频率
t
T
描述变化周期的几种方法
1. 周期 T: 变化一周所需的时间 单位:秒,毫秒..
2. 频率 f: 每秒变化的次数 单位:赫兹,千赫兹 ...
3. 角频率 ω: 每秒变化的弧度 单位:弧度/秒
f 1 2 2 f
T
T
初相位 i 2I sin t i
2 U sin( t 90 o)
有效值 U I X L
定义: X L L 感抗(Ω)
电感电路中的功率
瞬时功率 p :
i
i 2 I sin t
uL
u 2 U sin(t 90o )
p i u 2UI sin t cost
UI sin 2t
P
可逆的 能量转换
过程
+ P <0
+ P <0
i Im sin t i
I 为正弦电流的最大值 m
最大值
电量名称必须大
写,下标加 m。 如:Um、Im
在工程应用中常用有效值表示幅度。常用交流电 表指示的电压、电流读数,就是被测物理量的有效
值。标准电压220V,也是指供电电压的有效值。
热效应相当
有
效
值
T i2R dt I 2RT
概0
念
交流
中点
或零点
U A
N
U B
相电
U C
压
A 火线
线电
U AB
压
N 中线或零线
U CA
B U BC
C
火线 火线
根据KVL: U AB U A U B U BC U B U C U CA U C U A
以不能用。
i
角频率
t
T
描述变化周期的几种方法
1. 周期 T: 变化一周所需的时间 单位:秒,毫秒..
2. 频率 f: 每秒变化的次数 单位:赫兹,千赫兹 ...
3. 角频率 ω: 每秒变化的弧度 单位:弧度/秒
f 1 2 2 f
T
T
初相位 i 2I sin t i
2 U sin( t 90 o)
有效值 U I X L
定义: X L L 感抗(Ω)
电感电路中的功率
瞬时功率 p :
i
i 2 I sin t
uL
u 2 U sin(t 90o )
p i u 2UI sin t cost
UI sin 2t
P
可逆的 能量转换
过程
+ P <0
+ P <0
i Im sin t i
I 为正弦电流的最大值 m
最大值
电量名称必须大
写,下标加 m。 如:Um、Im
在工程应用中常用有效值表示幅度。常用交流电 表指示的电压、电流读数,就是被测物理量的有效
值。标准电压220V,也是指供电电压的有效值。
热效应相当
有
效
值
T i2R dt I 2RT
概0
念
交流
中点
或零点
U A
N
U B
相电
U C
压
A 火线
线电
U AB
压
N 中线或零线
U CA
B U BC
C
火线 火线
根据KVL: U AB U A U B U BC U B U C U CA U C U A
单向正弦交流电路基本知识PPT课件
3.1 正弦交流电路的基本概念
前面两章所接触到的电压和电流均为稳恒直流 电,其大小和方向均不随时间变化,称为稳恒直流 电,简称直流电。直流电的波形图如下图所示:
u、i
t 0
电子通讯技术中通常接触到电压和电流,通常 其大小随时间变化,方向不随时间变化,称为脉动 直流电,如图所示。
电压或电流的大小和方向均随时间变化时,称 为交流电,最常见的交流电是随时间按正弦规律变 化正弦电压和正弦电流。表达式为:
3.1 正弦 交流电路的 基本概念
3.2 正弦量 的有效值
3.3 交流 电路中的
本章学习目的及要求
正弦交流电路的基本理论和基本分析 方法是学习电路分析的重要内容之一,应 很好掌握。通过本章的学习,要求理解正 弦交流电的基本概念;熟悉正弦交流电的 表示方法;深刻理解相量的概念,牢固掌 握单一参数及非单一参数的一般正弦交流 电路的分析与计算方法。
u U m sin(t u )
i Im sin(t i )
u、i
t 0
3.1.1 正弦量的三要素
1. 正弦交流电的周期、频率和角频率
周期T: 正弦量完整变化一周所需要的时间。
频率f: 正弦量在单位时间内变化的周数。
周期与频率的关系:
1
f
T
角频率ω: 正弦量单位时间内变化的弧度数。
角频率与周期及频率的关系:
件上电压与电流的比值,但它与电阻有所不同,电
阻反映了元件上耗能的电特性,而感抗则是表征了
电感元件对正弦交流电流的阻碍作用,这种阻碍作
用不消耗电能,只能推迟正弦交流电流通过电感元
件的时间。
XL与频率成正比;与电感量L成正比
感抗与哪些
因素有关?
直流情 况下感 抗为多
正弦交流电路PPT课件
06
正弦交流电路的应用实例
变压器
变压器是利用电磁感应原理,将一个电压等级的交流电能转换成另一个电压等级的交流电能 的装置。
在电力系统中,变压器是不可或缺的重要设备,用于升压或降压输电线路中的电压,以满足 用电设备和发电机的需求。
变压器还广泛应用于工业、商业和居民用电领域,用于电压变换、电流匹配和相位变换等。
家用电器如电灯、电视、 空调等都使用正弦交流电, 使得电器能够正常工作。
正弦交流电路的基本元件
电阻器
在正弦交流电路中,电阻器用于 限制电流,消耗电能并产生热量。
电感器
电感器能够阻碍电流的变化,在正 弦交流电路中用于滤波、隔离和储 能。
电容器
电容器能够储存电荷,在正弦交流 电路中用于滤波、移相和隔直。
电力系统中的电压和电流都是正弦交流 的,因此需要掌握正弦交流电路的基本
原理和计算方法。
电力系统的稳定性、安全性和经济性等 方面都与正弦交流电路密切相关。
感谢观看
THANKS
通过阻抗三角形,可以方便地计算出 电压和电流的相位差以及功率因数。
它通过三个边分别表示阻抗、电阻和 电抗,以及电压和电流的有效值。
功率分析
功率分析是正弦交流电路分析的 重要内容之一,主要关注电路中
的能量传输和消耗。
平均功率表示电路中能量传输的 平均效果,是衡量电路性能的重
要指标。
无功功率和视在功率也是正弦交 流电路中重要的功率形式,它们 分别表示了电路中的储能和容量。
电机控制
正弦交流电路在电机控制中发挥着重要作用,如交流电动机的控制。
通过改变输入到交流电动机的电压或频率,可以实现电机的启动、调速 和制动等功能。
交流电机控制技术广泛应用于工业自动化、交通运输、家用电器等领域。
电工与电子技术基础课件第三章正弦交流电
_
正弦交流电的优越性:
正半周
便于传输;易于变换
便于运算;
有利于电器设备的运行;
.....
负半周
二、正弦交流电的产生
正弦交流电通常是由交流发电机产生的。图3-2a 所示是最简单的交流发电机的示意图。发电机由定子和 转子组成,定子上有N、S两个磁极。转子是一个能转 动的圆柱形铁心,在它上面缠绕着一匝线圈,线圈的两 端分别接在两个相互绝缘的铜环上,通过电刷A、B与 外电路接通。
1 F 106 F
1pF 1012 F
图3-17 电容器的图形符号
(2) 电容器的基本性质 实验现象1
1)图3-18a是将一个电容器和一个灯泡串联起来接在直流电 源上,这时灯泡亮了一下就逐渐变暗直至不亮了,电流表的指 针在动了一下之后又慢慢回到零位。 2)当电容器上的电压和外加电源电压相等时,充电就停止了, 此后再无电流通过电容器,即电容器具有隔直流的特性,直流 电流不能通过电容器。
1.电容器的基本知识 (1)电容器——是储存电荷的容器
组成:由两块相互平行、靠得很近而 又彼此绝缘的金属板构成。
电容元件的图形符号
电容量 C q
u 1)C是衡量电容器容纳电荷本领大小的物理量。 2)电容的SI单位为法[拉], 符号为F; 1 F=1 C/V。
常采用微法(μF)和皮法(pF)作为其单位。
第一节 交流电的基本概念
一、交流电
交流电——是指大小和方向 都随时间作周期性的变化的
电动势、电压和电流的总称。
正弦交流电——接正弦规律 变化的交流电。
图3-1 电流波形图 a)稳恒直流 b)脉动直流
c)正弦波 d)方波
正弦量: 随时间按正弦规律做周期变化的量。
ui
8-单相正弦交流电路PPT模板
RLC串
并联电
路比较
单相正
弦交流
电路
由于电容元件上的电压uC比电流滞后90°,那么电容元
件的电压方程为:
m
C =
sin − 900 = Cm sin − 900
RLC串
联电路
单相正
弦交流
电路
项目相关知识
电工基础
第3 页
根据KVL定律可列出:
= R + L + c
因此可设电源电压为:
= R + L + c = m sin +
XL>XC,UL>UC,>0
XL < XC,UL<UC,<0
XL = XC,UL=UC,=0
+ L − c
1
1 + 1 − 1
C L
2
电压或
电流关
系
R2
1
=
2
=
2
2 + L − c
2
XL<XC,IL>IC,<0
XL>XC,IL<IC,>0
XL=XC,IL=IC,=0
后"Y",此时电路呈感性。
当"BC>BL" ("XL<XC")时,"B>0 ","IC>IL","Y>0",即 ሶ比 ሶ超
前"Y",此时电路呈容性。
当"BC=BL" ("XL=XC")时,"B=0 ","IC=IL","Y"="0",即 ሶ与 ሶ
最新单相正弦交流电路幻灯片
电压与电流的相位差为 (tu)(ti) = u-i=90。两个同频率正弦量的相位差等于 它们的初相差
若0,表明ui,则u比i先到达正(或负) 最大值,也先到零点,称u超前于i一个相位角 ,或者说i滞后于u一个相位角,如图3.9所示;
上一页 下一页 返 回
若=0,表明u=i,则u与i同时到达正(或负) 最大值,也同时达到零,我们称它们是同相位, 简称同相,如图3.10(a)所示;
dt
u e Ldi dt
u L d d t i L d ( I m d s it t) n L m c I o t U s m s it n 9 () (0 3-12)
由上式可知: (1)Um=LIm,即
U m U=L
Im I
线圈电感L越大,交流电频率越高,则L的值越大,
也就是对交流电流的阻碍作用越大,我们把这种“阻力”
用示波器的两个通道同时观察镇流器两端电压u1及灯 泡两端电压u2的波形。仔细调节示波器,屏幕上显示 图3.4的波形。测量时要注意:
(1)如图3.5(a)所示,示波器两个探头的接地端必须 同时接在B点,两个探针分别接于A点和C点。否则,如果 照图3.5(b)接线会造成镇流器短路,灯泡此时仍接在 220V电源上,这是因为两个接地端在示波器内部是连在 一起的。
(1)求出各自对应的有效值
UUm 2202 22V0 22
I Im 10 2 10A 22
EEm 1102 11V0 22
上一页 下一页 返 回
(2)求出各自的有效值相量 用直角坐标式表示
U 2c 2 o 0 ) sj2 (s 2 i n 0 ) ( ( 1 1 3 j1 0)V 1 0
上一页 下一页 返 回
计算表明, I1=8A, I2=3A,而I=10A, 显然 I I1+ I2。这是因为同频率正弦量相加
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电压的有效值相量
或:
U mUm ejψUmψ
相量的模=正弦量的最大值 相量辐角=正弦量的初相角
注意:
电压的幅值相量
①相量只是表示正弦量,而不等于正弦量。
? iIm si(ω ntψ)=ImejψImψ
②只有正弦量才能用相量表示, 非正弦量不能用相量表示。
③只有同频率的正弦量才能画在同一相量图上。
U I
第3章 正弦交流电路
本章要求 1. 理解正弦量的特征及其各种表示方法; 2. 理解电路基本定律的相量形式及阻抗;
掌握计算正弦交流电路的相量分析法, 会画相量图。 3. 掌握有功功率和功率因数的计算,了解瞬时 功率、无功功率和视在功率的概念; 4.了解正弦交流电路的频率特性,串、并联谐 振的条件及特征; 5.了解提高功率因数的意义和方法。
2
3.3 电阻元件、电感元件
与电容元件 3.3.1 电阻元件。
i
描述消耗电能的性质
线性电阻 +
u
R
根据欧姆定律: uiR
_
即电阻元件上的电压与通过的电流成线性关系
金属导体的电阻与导体的尺寸及导体材料的
导电性能有关,表达式为:R l
S
电阻的能量 WtudittR2d it0
0
0
表明电能全部消耗在电阻上,转换为热能散发。
交流设备名牌标注的电压、电流均为有效值
3.1.3初相位与相位差
相位:t ψ
i iIm siω nt(ψ)
反映正弦量变化的进程。 O
ωt
初相位: 表示正弦量在 t =0时的相角。
ψt ψ t0
: 给出了观察正弦波的起点或参考点。
3.1.3 相位差 :
两同频率的正弦量之间的初相位之差。
如:u U m siω n t (ψ 1)
O
ωt
注意:
① 两同频率的正弦量之间的相位差为常数, 与计时的选择起点无关。
i i1
i2
O
t
② 不同频率的正弦量比较无意义。
3.2 正弦量的相量表示法
1.正弦量的表示方法
u
波形图
O
ωt
瞬时值表达式 uU m si nt ()
相量 U Uψ
必须 小写
重点
前两种不便于运算,重点介绍相量表示法。
2.正弦量用旋转有向线段表示
3.3.2 电感元件 描述线圈通有电流时产生磁场、 i
储存磁场能量的性质。
+
1. 物理意义 电流通过一匝线圈产生
u
-
Φ(磁通)
电流通过N匝线圈产生 ψNΦ(磁链) 电感: L ψ NΦ ( H、mH)
ii
线性电感: L为常数; 非线性电感: L不为常数 线圈的电感与线圈的尺寸、匝数以及附近的介质
U I
④相量的两种表示形式
相量式: U U ejψ U ψ U (cψ o j ssψ ) in
相量图: 把相量表示在复平面的图形
可不画坐标轴
⑤相量的书写方式
• 模用最大值表示 ,则用符号:Um、Im
• 实际应用中,模多采用有效值,符号: U 、I 如:已知 u22 si(0 ω n t4) 5V 则U m22ej0 45 V 或 U 220ej45V
角频率:决定正弦量变化快慢
幅值:决定正弦量的大小
幅值、角频率、初相角成为正弦量的三要素。
3.1.1 频率与周期
周期T:变化一周所需的时间 (s)
频率f:
f1 T
(Hz)
角频率: ω 2π 2πf (rad/s)
T
i
O
T
t
* 电网频率:我国 50 Hz ,美国 、日本 60 Hz * 高频炉频率:200 ~ 300 kHZ * 中频炉频率:500 ~ 8000 Hz * 无线通信频率: 30 kHz ~ 30GMHz
(1) 代数式A =a + jb
+j
b
r
0
A
a +1
式中: arcoψs brsinψ
ψr aar2ctab2nb
复数的模 复数的辐角
(2) 三角式
a
A r cψ o jr s sψ i r n (c ψ j o sψ is )n
由欧拉公式:
ej ψ ej ψ
coψ s
,
2
ej ψ ej ψ sinψ
设正弦量: y
uU m si( ntuψ )
u0ω
O
u1
x
U O
m
ψ
ω t1
ωt
若:有向线段长度 = U m
有向线段与横轴夹角 =
初相位
有向线段以速度ω 按逆时针方向旋转
则:该旋转有向线段每一瞬时在纵轴上的投影即表示
相应时刻正弦量的瞬时值。
3. 正弦量的相量表示
实质:用复数表示正弦量
复数表示形式 设A为复数:
2j
可得: ejψcoψsjs iψ n (3) 指数式 A rejψ
(4) 极坐标式 Ar ψ
A a j b r co jr si n r e jψ rψ
相量: 表示正弦量的复数称相量
设正弦量: uU m si(ω ntψ )
相量表示:
U UjeψUψ 相量的模=正弦量的有效值
相量辐角=正弦量的初相角
3.1 正弦电压与电流
正弦量:
随时间按正弦规律做周期变化的量。
ui
+ _it _+_u
R
i
+
_u R
_
正弦交流电的优越性:
正半周
便于传输;易于变换
便于运算;
有利于电器设备的运行;
.....
负半周
3.1 正弦电压与电流
设正弦交流电流:
i
Im
O
2
t
T
iIm si n t 初相角:决定正弦量起始位置
3.1.2 幅值与有效值 幅值:Im、Um、Em
幅值必须大写, 下标加 m。
有效值:与交流热效应相等的直流定义为交流
电的有效值。
T
0
i2R dt
I2RT
交流 直流
则有 I 1 T i2dt
T0
有效值必
须大写
1 T
T 0
Im 2s
in2ωtdt
Im 2
同理: U U m 2
E Em 2
注意: 交流电压、电流表测量数据为有效值
电容:C q (F )
电容元件
u
电容器的电容与极板的尺寸及其间介质的
的导磁性能等有关。 L μ S N 2 l
L μS N2 (H) l
S — 线圈横截面积(m2)
l —线圈长度(m)
N —线圈匝数 μ—介质的磁导率(H/m)
i
+-
u L eL
-
+
电感元件的符号
3.3.3 电容元件
i
描述电容两端加电源后,其两个极板 +
上分别聚集起等量异号的电荷,在介质 u
C
中建立起电场,并储存电场能量的性质。 _
iIm siω n t (ψ 2)
(t 1 ) (t 2 )
ψ1 ψ2
ui u i
若 ψ1ψ20 O
电压超前电流
ψ1ψ20
电流超前电压
ui i
u
O
ωt
电压与ψ 电1 流ψ 同2相0
ui u
i
O
ωt
ψ 1ψ 290
电流超前电压90
ui u i
O
ωt
90°
ψ1ψ2180
电压与电流反相
ui u i
或:
U mUm ejψUmψ
相量的模=正弦量的最大值 相量辐角=正弦量的初相角
注意:
电压的幅值相量
①相量只是表示正弦量,而不等于正弦量。
? iIm si(ω ntψ)=ImejψImψ
②只有正弦量才能用相量表示, 非正弦量不能用相量表示。
③只有同频率的正弦量才能画在同一相量图上。
U I
第3章 正弦交流电路
本章要求 1. 理解正弦量的特征及其各种表示方法; 2. 理解电路基本定律的相量形式及阻抗;
掌握计算正弦交流电路的相量分析法, 会画相量图。 3. 掌握有功功率和功率因数的计算,了解瞬时 功率、无功功率和视在功率的概念; 4.了解正弦交流电路的频率特性,串、并联谐 振的条件及特征; 5.了解提高功率因数的意义和方法。
2
3.3 电阻元件、电感元件
与电容元件 3.3.1 电阻元件。
i
描述消耗电能的性质
线性电阻 +
u
R
根据欧姆定律: uiR
_
即电阻元件上的电压与通过的电流成线性关系
金属导体的电阻与导体的尺寸及导体材料的
导电性能有关,表达式为:R l
S
电阻的能量 WtudittR2d it0
0
0
表明电能全部消耗在电阻上,转换为热能散发。
交流设备名牌标注的电压、电流均为有效值
3.1.3初相位与相位差
相位:t ψ
i iIm siω nt(ψ)
反映正弦量变化的进程。 O
ωt
初相位: 表示正弦量在 t =0时的相角。
ψt ψ t0
: 给出了观察正弦波的起点或参考点。
3.1.3 相位差 :
两同频率的正弦量之间的初相位之差。
如:u U m siω n t (ψ 1)
O
ωt
注意:
① 两同频率的正弦量之间的相位差为常数, 与计时的选择起点无关。
i i1
i2
O
t
② 不同频率的正弦量比较无意义。
3.2 正弦量的相量表示法
1.正弦量的表示方法
u
波形图
O
ωt
瞬时值表达式 uU m si nt ()
相量 U Uψ
必须 小写
重点
前两种不便于运算,重点介绍相量表示法。
2.正弦量用旋转有向线段表示
3.3.2 电感元件 描述线圈通有电流时产生磁场、 i
储存磁场能量的性质。
+
1. 物理意义 电流通过一匝线圈产生
u
-
Φ(磁通)
电流通过N匝线圈产生 ψNΦ(磁链) 电感: L ψ NΦ ( H、mH)
ii
线性电感: L为常数; 非线性电感: L不为常数 线圈的电感与线圈的尺寸、匝数以及附近的介质
U I
④相量的两种表示形式
相量式: U U ejψ U ψ U (cψ o j ssψ ) in
相量图: 把相量表示在复平面的图形
可不画坐标轴
⑤相量的书写方式
• 模用最大值表示 ,则用符号:Um、Im
• 实际应用中,模多采用有效值,符号: U 、I 如:已知 u22 si(0 ω n t4) 5V 则U m22ej0 45 V 或 U 220ej45V
角频率:决定正弦量变化快慢
幅值:决定正弦量的大小
幅值、角频率、初相角成为正弦量的三要素。
3.1.1 频率与周期
周期T:变化一周所需的时间 (s)
频率f:
f1 T
(Hz)
角频率: ω 2π 2πf (rad/s)
T
i
O
T
t
* 电网频率:我国 50 Hz ,美国 、日本 60 Hz * 高频炉频率:200 ~ 300 kHZ * 中频炉频率:500 ~ 8000 Hz * 无线通信频率: 30 kHz ~ 30GMHz
(1) 代数式A =a + jb
+j
b
r
0
A
a +1
式中: arcoψs brsinψ
ψr aar2ctab2nb
复数的模 复数的辐角
(2) 三角式
a
A r cψ o jr s sψ i r n (c ψ j o sψ is )n
由欧拉公式:
ej ψ ej ψ
coψ s
,
2
ej ψ ej ψ sinψ
设正弦量: y
uU m si( ntuψ )
u0ω
O
u1
x
U O
m
ψ
ω t1
ωt
若:有向线段长度 = U m
有向线段与横轴夹角 =
初相位
有向线段以速度ω 按逆时针方向旋转
则:该旋转有向线段每一瞬时在纵轴上的投影即表示
相应时刻正弦量的瞬时值。
3. 正弦量的相量表示
实质:用复数表示正弦量
复数表示形式 设A为复数:
2j
可得: ejψcoψsjs iψ n (3) 指数式 A rejψ
(4) 极坐标式 Ar ψ
A a j b r co jr si n r e jψ rψ
相量: 表示正弦量的复数称相量
设正弦量: uU m si(ω ntψ )
相量表示:
U UjeψUψ 相量的模=正弦量的有效值
相量辐角=正弦量的初相角
3.1 正弦电压与电流
正弦量:
随时间按正弦规律做周期变化的量。
ui
+ _it _+_u
R
i
+
_u R
_
正弦交流电的优越性:
正半周
便于传输;易于变换
便于运算;
有利于电器设备的运行;
.....
负半周
3.1 正弦电压与电流
设正弦交流电流:
i
Im
O
2
t
T
iIm si n t 初相角:决定正弦量起始位置
3.1.2 幅值与有效值 幅值:Im、Um、Em
幅值必须大写, 下标加 m。
有效值:与交流热效应相等的直流定义为交流
电的有效值。
T
0
i2R dt
I2RT
交流 直流
则有 I 1 T i2dt
T0
有效值必
须大写
1 T
T 0
Im 2s
in2ωtdt
Im 2
同理: U U m 2
E Em 2
注意: 交流电压、电流表测量数据为有效值
电容:C q (F )
电容元件
u
电容器的电容与极板的尺寸及其间介质的
的导磁性能等有关。 L μ S N 2 l
L μS N2 (H) l
S — 线圈横截面积(m2)
l —线圈长度(m)
N —线圈匝数 μ—介质的磁导率(H/m)
i
+-
u L eL
-
+
电感元件的符号
3.3.3 电容元件
i
描述电容两端加电源后,其两个极板 +
上分别聚集起等量异号的电荷,在介质 u
C
中建立起电场,并储存电场能量的性质。 _
iIm siω n t (ψ 2)
(t 1 ) (t 2 )
ψ1 ψ2
ui u i
若 ψ1ψ20 O
电压超前电流
ψ1ψ20
电流超前电压
ui i
u
O
ωt
电压与ψ 电1 流ψ 同2相0
ui u
i
O
ωt
ψ 1ψ 290
电流超前电压90
ui u i
O
ωt
90°
ψ1ψ2180
电压与电流反相
ui u i