巧用圆锥曲线的概念解几何综合题

合集下载

高考数学 圆锥曲线的概念,解题方法、题型、易误点总结 试题

高考数学 圆锥曲线的概念,解题方法、题型、易误点总结 试题

卜人入州八九几市潮王学校数学概念、方法、题型、易误点技巧总结——圆锥曲线1.圆锥曲线的两个定义:〔1〕第一定义中要重视“括号〞内的限制条件:椭圆中,与两个定点F,F的间隔的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段F F,当常数小于时,无轨迹;双曲线中,与两定点F,F的间隔的差的绝对值等于常数,且此常数一定要小于|F F|,定义中的“绝对值〞与<|F F|不可无视。

假设=|F F|,那么轨迹是以F,F为端点的两条射线,假设﹥|F F|,那么轨迹不存在。

假设去掉定义中的绝对值那么轨迹仅表示双曲线的一支。

比方:①定点,在满足以下条件的平面上动点P的轨迹中是椭圆的是A.B.C.D.〔答:C〕;②方程表示的曲线是_____〔答:双曲线的左支〕〔2〕第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母〞,其商即是离心率。

圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点间隔与此点到相应准线间隔间的关系,要擅长运用第二定义对它们进展互相转化。

如点及抛物线上一动点P〔x,y〕,那么y+|PQ|的最小值是_____〔答:2〕2.圆锥曲线的HY方程〔HY方程是指中心〔顶点〕在原点,坐标轴为对称轴时的HY位置的方程〕:〔1〕椭圆:焦点在轴上时〔〕〔参数方程,其中为参数〕,焦点在轴上时=1〔〕。

方程表示椭圆的充要条件是什么?〔ABC≠0,且A,B,C同号,A≠B〕。

比方:①方程表示椭圆,那么的取值范围为____〔答:〕;②假设,且,那么的最大值是____,的最小值是___〔答:〕〔2〕双曲线:焦点在轴上:=1,焦点在轴上:=1〔〕。

方程表示双曲线的充要条件是什么?〔ABC≠0,且A,B异号〕。

比方:①双曲线的离心率等于,且与椭圆有公一共焦点,那么该双曲线的方程_______〔答:〕;②设中心在坐标原点,焦点、在坐标轴上,离心率的双曲线C过点,那么C的方程为_______〔答:〕〔3〕抛物线:开口向右时,开口向左时,开口向上时,开口向下时。

巧用八种几何性质解决圆锥曲线问题

巧用八种几何性质解决圆锥曲线问题

巧用几何性质求解圆锥曲线问题一.圆锥曲线定义与几何意义结合例题1 如图,12(,0),(,0)F c F c -分别为双曲线2222:1(,0)x y a b a bΓ-=>的左、右焦点,过点1F 作直线l ,使直线l 与圆222()x c y r -+=相切于点P ,设直线l 交双曲线Γ的左右两支分别于A 、B 两点(A 、B 位于线段1F P 上),若1::2:2:1F A AB BP =,则双曲线Γ的离心率为( )A .5B 265C .2623D .263【解析】连接2AF ,2BF ,设||BP x =则1||||2F A AB x ==,即1||5PF x =,||3PA x =, 根据双曲线定义可知,12||||2BF BF a -=即21||||242BF BF a x a =-=-21||||2AF F A a -=即21||2||22AF a F A a x =+=+,直线l 与圆222()x c y r -+=相切于点P ,∴21PF PF ⊥,在12Rt F PF ∆中22222222121||||||(2)(5)425PF F F PF c x c x =-=-=-①在2Rt APF ∆中222222222||||||(22)(3)458PF AF PA a x x a x ax =-=+-=-+② 在2Rt BPF ∆中222222222|||B |||(42)()15416PF F PB x a x x a ax =-=--=+-③②③联立得222245815416a x ax x a ax -+=+-,即65x a =①②联立得2222425458c x a x ax -=-+即22244208c a x ax =++④将65x a =代入④,即222664420855c a a a a ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭整理得22535c a =即225326555c c e a a ====,选B巩固1 已知点M 是抛物线24x y =上的一动点,F 为抛物线的焦点,A 是圆C :22(1)(4)1x y -+-=上一动点,则||||MA MF +的最小值为( ) A .3B .4C .5D .6【解析】如图所示,利用抛物线的定义知:MP MF =当,,M A P 三点共线时,MA MF +的值最小,且最小值为1CP r CP -=- 抛物线的准线方程:1y =-,()1,4C ,415CP ∴=+=,()min514MA MF ∴+=-=,选B二.余弦定理在圆锥曲线中的应用例题2 如图,已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为()()12,0,,0,F c F c P -是椭圆C上一点,O 为坐标原点,若1260F PF ∠=,且223PO a =,则椭圆C 的离心率是A .22B .32C .63D .23【解析】设12,PF m PF n ==.由椭圆的定义,得2m n a +=,① 在12PF F △中,由余弦定理,得2222cos60(2)m n mn c ︒+-=,②2-①②得:()2234mn a c =-,③将③代入②,得22224833m n a c +=+ 在1POF 中,由余弦定理,得2221||2||cos PO c PO c FOP m +-⨯⨯∠=,④ 在2POF 中,由余弦定理,得2222||2||cos PO c PO c F OP n +-⨯⨯∠=,⑤④+⑤,得2222222216482||22933a m n PO c c a c +=+=+=+,化简,得2223a c =,故6e =,选C 三.圆锥曲线定义的灵活应用例题3 已知双曲线2222:1(0,0)x y E a b a b-=>>的左右焦点分别为1F ,2F ,以原点O 为圆心,1OF 为半径的圆与双曲线E 的右支相交于A ,B 两点,若四边形2AOBF 为菱形,则双曲线E 的离心率为( )A 31B 3C 2D 21【解析】如图,∵四边形2AOBF 为菱形,∴22||AF OA OF c === 又∵12F F 是圆O 的直径,∴1290F AF ∠=︒,∴()22123AF c c c =-=∴由双曲线的定义可得:122(31)AF AF a c -==-,∴3131e ==-,选A 巩固2 设点P 是以1F ,2F 为左、右焦点的双曲线2222 1(0,0)x y a b a b-=>>右支上一点,且满足120PF PF ⋅=,直线1PF 与圆2224a x y +=有且只有一个公共点,则双曲线的离心率为( )A .32B 32C 10D 10【解析】如图所示1F ,2F 为双曲线的左、右焦点,∴()1,0F c -,()2,0F c ,120PF PF ⋅=,∴12PF PF ⊥直线1PF 与圆2224a x y +=有且只有一个公共点,∴直线1PF 与圆2224a x y +=相切,设切点为E∴1OE PF ⊥,∴2OE PF ,又O 为12F F 的中点,∴E 为1PF 的中点,22PF OE a ==又1OF c =,2a OE =,∴2214a F E c =-,根据双曲线定义,222224a PF PF c a a -=-=解得10c e a =,选D 四.圆锥曲线几何意义与不等式练习例题4 直线l 过抛物线24y x =的焦点且与抛物线交于A ,B 两点,则4||||AF BF +的最小值是A .10B .9C .8D .7【解析】由抛物线标准方程可知p =2因为直线l 过抛物线24y x =的焦点,由过抛物线焦点的弦的性质可知1121AF BF p+== 所以4AF BF +()114AF BF AF BF ⎛⎫=+⋅+ ⎪ ⎪⎝⎭441BF AF AF BF ⎛⎫=+++ ⎪ ⎪⎝⎭因为AF BF 、为线段长度,都大于0,由基本不等式可知 444152BF AF BF AFAF BF AF BF ⎛⎫+++≥+⨯ ⎪ ⎪⎝⎭522≥+⨯=9,此时2BF AF =,选B 巩固3 已知P 为双曲线C :22221x y a b-=(0a >,0b >)左支上一点,1F ,2F 分别为C 的左、右焦点,M 为虚轴的一个端点,若2||MP PF +的最小值为12F F ,则C 的离心率为( )A .262+ B .26+C .426+ D .46+【解析】21||||2MP PF MP PF a+=++221222MF a b c a c +=++=即22222c a a c -+=,化简得222850c ac a -+=,即22850e e -+= 解得462e +=或462e -=,所以462e +=,选C 巩固4 已知点()4,2M --,抛物线24x y =,F 为抛物线的焦点,l 为抛物线的准线,P 为抛物线上一点,过P 作PQ l ⊥,点Q 为垂足,过P 作FQ 的垂线1l ,1l 与l 交于点R ,则QR MR +的最小值为( ) A .125+B .25C .17D .5【解析】根据抛物线定义得PF PQ =,1l FQ ⊥,则1l 为FQ 的垂直平分线FR RQ ∴=,()224125QR MR FR MR FM ∴+=+≥=++=,选D五.向量几何意义与圆锥曲线 例题5M 为双曲线()222210,0x y a b a b-=>>右支上一点,12,F F 分别是双曲线的左、右焦点,且120MF MF ⋅=,直线2MF 交y 轴于点N .若1NF M △的内切圆的半径为b ,则双曲线的离心率为( ) A .2B .3C .2D .3【解析】如图所示:因为120MF MF ⋅=,所以三角形1F MN 为直角三角形故它的内切圆半径111222MF MN NF MF MN NF r +-+-==121222MF MN MN MF MF MF a b +---====所以2e =,选A巩固5 过双曲线()222210x y a b a b-=>>右焦点F 的直线交两渐近线于A 、B 两点,若0OA AB ⋅=,O为坐标原点,且OAB 内切圆半径为31a -,则该双曲线的离心率为( ) A .233B .3C .433D .31+【解析】因为0a b >>,所以双曲线的渐近线如图所示设内切圆圆心为M ,则M 在AOB ∠平分线OF 上 过点M 分别作MN OA ⊥于N ,MT AB ⊥于T , 由FA OA ⊥得四边形MTAN 为正方形,由焦点到渐近线的距离为b 得FA b =,又OF c =, 所以OA a =,31NA MN ==- 所以3133NO OA AN a =-=--=, 所以tan 3MN b AOF a NO =∠== 得2231b e a ⎛⎫=+=⎪⎝⎭选A巩固6如图,抛物线21:2(0)C y px p =>,圆222:12p C x y ⎛⎫-+= ⎪⎝⎭,圆2C 与y 轴相切,过1C 的焦点F 的直线从上至下依此交1C ,2C 于,,,A B C D ,且||||AB BD =,O 为坐标原点,则DA 在OF 方向上的投影为( )A .2B .4C .6D .8【解析】由圆2C 与y 轴相切可知,12p = ,解得2p =,所以21:4C y x =,()222:11C x y -+= 由题意知,()1,0F ,设()()1122,,,A x y D x y 直线:AD 1x my =+,与抛物线方程联立得214x my y x=+⎧⎨=⎩ ,即2440y my --= 由韦达定理知,124y y m +=,124y y =-,则()21212242x x m y y m +=++=+,()21212116y y x x ==因为||||AB BD =,则()221,2B m m +,代入2C 得,424410m m +-=,解得2212m = 因为()()1212,,1,0DA x x y y OF =--=,所以DA 在OF 方向上的投影为()2212121221442422DA OF x x x x x x OF ⎛⎫⋅-=-=+-=⨯+-= ⎪⎝⎭,故选A巩固7 已知F 1,F 2分别为椭圆22221x y a b+=(a >b >0)的左、右焦点,P 为椭圆上一点,O 为坐标原点,且(OP +2OF )·2F P =0,|1PF |=2|2PF |,则该椭圆的离心率为A .55B .54C .53D .52【解析】如图,取P F 2的中点A ,连接OA ,∴2OA =2OF +OP ,且OA =112F P ,1 O A F P ,又∵(OP +2OF )·2F P =0, ∴OA ⊥2F P ,又1OA F P ,∴1PF ⊥2F P ,∵122PF PF =,不妨设|P F 2|=m ,则|P F 1|=2m ∵|P F 2|+|P F 1|=2a =3m ,∴|F 1F 2|=4c 2=m 2+(2m )2=5m 2,∴a c =5,∴e =5,故选C 六.三角形的心在圆锥曲线中例题6 已知14m <<,12,F F 为曲线22:144x y C m+=-的左、右焦点,点P 为曲线C 与曲线22:11E y x m -=-,在第一象限的交点,直线l 为曲线C 在点P 处的切线,若12F PF △的内心为点M ,直线1F M 与直线l 交于N 点,则点N 横坐标为( )A .1B .2C .3D .4【解析】如图由椭圆的性质可知,PN 为12F PF ∠外角的角平分线,以N 为圆心作圆与12,PF PF ,x 轴分别相切于,,Q R E所以11121222FQ F E F P PQ c EF F P PR c RF =⇒+=+⇒+=+ ()1222222222F P PR RF c RF a c RF RF a c ⇒++=+⇒=+⇒=-所以2EF a c =-,E x a =,2E N a x x ===,选B巩固8 .平面直角坐标系xOy 中,双曲线()22122:10,0x y C a b a b-=>>的渐近线与抛物线()22:20C x py p =>交于点,,O A B .若OAB ∆的垂心为2C 的焦点,则1C 的离心率为______【解析】设OA 所在的直线方程为b y x a =,则OB 所在的直线方程为by x a=- 解方程组2{2by x a x py ==得:222{2pbx apb y a==,所以点A 的坐标为2222,pb pb a a ⎛⎫ ⎪⎝⎭ 抛物线的焦点F 的坐标为:0,2p ⎛⎫⎪⎝⎭,因为F 是ABC ∆的垂心,所以1OB AF k k ⋅=- 所以2222252124pb p b b a pb a a a ⎛⎫- ⎪-=-⇒=⎪ ⎪ ⎪⎝⎭,所以2222293142c b e e a a ==+=⇒= 巩固9 已知椭圆C :22162x y +=的左、右焦点分别为1F ,2F ,如图AB 是过1F 且垂直于长轴的弦,则2ABF 的内切圆半径是________【解析】设2ABF 内切圆的半径为r ,由椭圆的方程22162x y +=其中6a =2b =222c a b -,1224F F c ==因为AB 是过1F 且垂直于长轴的弦则有222116AF AF -=,122AF AF a +==1AF =,2AF =2ABF 的周长22l AF BF AB =++==面积121142233S AB F F =⨯⨯=⨯=,由内切圆的性质可知,有123r ⨯=,解得23r = 故2ABF 内切圆的半径为23七.斜率的几何意义问题例题7 若实数x ,y 满足222210x y x y +--+=,则42y x --的取值范围为( ). A .40,3⎡⎤⎢⎥⎣⎦B .4,3⎡⎫+∞⎪⎢⎣⎭C .4,3⎛⎤-∞- ⎥⎝⎦D .4,03⎡⎫-⎪⎢⎣⎭【解析】令42y t x -=-,则24y tx t =-+,联立22242210y tx t x y x y =-+⎧⎨+--+=⎩消失y 得2222(1)(642)41290t x t t x t t ++--+-+=由题意该方程有解∴2222(642)4(1)(4129)0t t t t t ---+-+≥,解得43≥t ,选B 巩固10 已知在平面直角坐标系中,椭圆221:195x y C +=的左、右顶点分别为12,A A .直线l :()()()2121m y m x y m R -+-=+∈交椭圆于P ,Q 两点,直线1A P 和直线2A Q 相交于椭圆外一点R ,则点R 的轨迹方程为_______________.【解析】因为()()()2121m y m x y m R -+-=+∈,所以(22)10m y x x y --+--=由22010y x x y --=⎧⎨--=⎩得1x y =⎧⎨=⎩,故直线l 恒过(1,0),由题意知,直线PQ 斜率不为0 设PQ 的方程为1x ty =+,112212(,),(,)(0,0)P x y Q x y y y ><,(,)R x y联立椭圆方程,得22(59)10400t y ty ++-=则>0∆,1212224010,,5959ty y y y t t --=+=++,()12124y y y y t+=由1,,A P R 三点共线可得1133y y x x =++,由2,,A Q R 三点共线可得2233y y x x =-- 两式相除可得121222213(3)(2)3(3)(4)x y x y ty x y x y ty ---===+++12121224ty y y ty y y -+()()121122421424y y t y t y y t y t+⋅-==+⋅+,解得9x = 所以点R 在定直线9x =上,故点R 的轨迹方程为9x = 八.阿波罗尼斯圆的应用例题8 古希腊几何学家阿波罗尼斯证明过这样一个命题:平面内到两定点距离之比为常数k (0k >,1k ≠)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点A 、B 间的距离为2,动点P满足PA PB =222PA PB +的最大值为( ) A.3+B.7+C.8+D.16+【解析】以AB 中点为原点,AB 所在直线为x 轴,则()1,0A -,()10B , 设(),P x y,所以由PAPB==()2223x y -+=()222222212PBP PA B x y +⎡⎤==-+⎣⎦其中()221x y -+看作是圆()2223x y -+=上的点(),x y 到点()1,0的距离的平方, 所以其最大值为(214=+,所以222PA PB+的最大值为(248+=+ C巩固11 阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点Q 、P 的距离之比||||MQ MP λ=(0,1)λλ>≠,那么点M 的轨迹就是阿波罗尼斯圆.已知动点M 的轨迹是阿波罗尼斯圆,其方程为221x y +=,定点Q 为x 轴上一点,1,02P ⎛⎫- ⎪⎝⎭且2λ=,若点(1,1)B ,则2||||MP MB +的最小值为( )A .6B .7C .10 D.11【解析】C 设(),0Q a ,(),M x y ,根据||||MQ MP λ=和221x y +=求出a 的值 由2||||||||+=+MP MB MQ MB ,两点之间直线最短,可得2||||MP MB +的最小值为BQ 根据坐标求出BQ 即【详解】设(),0Q a ,(),M x y ,所以()22=-+MQ x a y由1,02P ⎛⎫- ⎪⎝⎭,所以2212⎛⎫=++ ⎪⎝⎭PQ x y ,因为||||MQ MP λ=且2λ=,所以()2222212-+=⎛⎫++ ⎪⎝⎭x a y x y整理可得22242133+-++=a a x y x ,又动点M 的轨迹是221x y +=,所以24203113a a +⎧=⎪⎪⎨-⎪=⎪⎩,解得2a =-,所以()2,0Q -,又=2||MQ MP 所以2||||||||+=+MP MB MQ MB因为(1,1)B ,所以2||||MP MB +的最小值为()()22121010=++-=BQ巩固12 阿波罗尼斯是古希腊著名的数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对几何问题有深刻而系统的研究,阿波罗尼斯圆是他的研究成果之一,指出的是:已知动点M 与两定点A ,B 的距离之比为()0,1λλλ>≠,那么点M 的轨迹是一个圆,称之为阿波罗尼斯圆.请解答下面问题:已知()3,0A ,()0,0O ,若直线340x y c -+=上存在点M 满足2=MA MO ,则实数c 的取值范围是( )A .()7,13-B .[]7,13-C .()11,9-D .[]11,9-【解析】点M 在直线340x y c -+=上,不妨设点M 的坐标为3,4x c x +⎛⎫⎪⎝⎭由直线340x y c -+=上存在点M 满足2=MA MO ,则()2222333444x c x c x x ⎡⎤++⎛⎫⎛⎫-+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦整理可得()2225632480x c x c +++-=()()22632100480c c ∆=+--≥()()269101370713c c c c c ⇒--≤⇒-+≤⇒-≤≤所以实数c 的取值范围为[]7,13-,选B。

方法技巧专题圆锥曲线综合问题

方法技巧专题圆锥曲线综合问题

方法技巧专题圆锥曲线综合问题圆锥曲线由于其特殊的性质,在数学中经常被用于解决各种实际问题。

本文将重点介绍圆锥曲线的综合问题,并给出解析。

在圆锥曲线的综合问题中,我们常常需要根据给定条件来确定圆锥曲线的方程、特征以及其他相关信息。

下面将介绍几个常见的圆锥曲线综合问题。

问题1:已知椭圆的中心为原点,轴长为2a和2b,其中a>b,求椭圆的方程。

解析:根据椭圆的定义可知,椭圆上任意一点到两个焦点的距离之和等于2a,即PF1,+,PF2,=2a其中P(x,y)为椭圆上的任意一点,F1(-c,0)和F2(c,0)为两个焦点。

根据坐标距离公式可得√[(x+c)^2+y^2]+√[(x-c)^2+y^2]=2a化简得[x^2/a^2]+[y^2/b^2]=1故椭圆的方程为x^2/a^2+y^2/b^2=1问题2:已知双曲线上两个焦点的坐标分别为(-c,0)和(c,0),离心率为e,求双曲线的方程。

解析:根据双曲线的定义可知,双曲线上任意一点到两个焦点的距离之差的绝对值等于2a,即PF1,-,PF2,=2a其中P(x,y)为双曲线上的任意一点,F1(-c,0)和F2(c,0)为两个焦点。

根据坐标距离公式可得√[(x+c)^2+y^2]-√[(x-c)^2+y^2]=2a化简得[x^2/a^2]-[y^2/b^2]=1故双曲线的方程为x^2/a^2-y^2/b^2=1问题3:已知抛物线的焦点为F(0,p),准线为y=-p,求抛物线的方程。

解析:根据抛物线的定义可知,抛物线上任意一点到焦点F和准线的距离相等,即PF=PL,其中P(x,y)为抛物线上的任意一点,L(x,-p)为抛物线上的准线上的一点。

根据坐标距离公式可得√[x^2+(y-p)^2]=√[x^2+(-p)^2]化简得y=(x^2)/(4p)故抛物线的方程为y=(x^2)/(4p)通过以上三个问题的解析,我们可以得出结论:对于给定的几何条件,用圆锥曲线方程可以很方便地求解出曲线的特征和方程。

巧用平面几何知识解圆锥曲线的问题

巧用平面几何知识解圆锥曲线的问题

巧用平面几何知识解圆锥曲线的问题提到圆锥曲线问题,大家首先想到的就是这类问题解决过程繁杂,运算量较大,教师在讲解时费劲,学生在学习时费力,但是对于某些圆锥曲线问题在解决时,如果恰当的运用平面几何知识,有时会起到化繁为简、化难为易的效果。

本文结合实例给予说明,供大家参考。

一、求长度例1、已知双曲线x2-y3/3 =1的左支上有一点p,f1、f2分别是双曲线的左、右焦点,|pf1|=2,点m为线段pf1的中点,求线段om的长度。

解析:连结pf2,则知om为△pf1f2的中位线,所以|om|=1/2|pf1|,又|pf2|-|pf1|=2a=2,所以|pf2|=4,故|om|=2,即为所求。

评注:本题借助于三角形中位线的性质,使问题解决过程变得简单而清晰。

二、求角度例2、已知抛物线y2=2px (p>0),直线l过抛物线的焦点f,交抛物线于a、b两点,过a、b分别作抛物线准线的垂线,垂足分别为a1、b1,连结a1f、b1f,求∠a1fb1的大小。

解析:如图由抛物线的定义知:|aa1|=|af|∴△aa1f为等腰三角形∴∠aa1f=∠afa1设∠aa1f=∠afa1=α又aa1f∥x轴则∠aa1=∠a1fo=α同理可得:∠bb1f=∠bfb1=∠b1fo设∠bb1f=θ则有α+α+θ+θ=180°所以α+θ=90°即∠a1fb1=90°评注:本题借助等腰三角形的性质,两平行线的性质及抛物线的定义使问题得以顺利解决。

三、求最值例3、如图ab为抛物线y= x2上的动弦,并且|ab|=a(a为常数且a≥1)求线段ab的中点m到x轴的最近距离。

解析:a、m、b三点在抛物线准线上的射影分别为a’、m’、b’,且mm’与x轴的交点为n,由图可知mm’是直角梯形 aa’b’b的中位线,则|mm’|=1/2 (|aa’|+|bb’|),又由抛物线的定义可知|aa’|=|af|,|bb’|=|bf|,所以|mm’|=1/2 (|af|+|bf|),而|af|+|bf|≥|ab|,所以|mm’|≥1/2|ab|=1/2 a,|mn|=|mm’|-1/2≥1/2 a-1/4,即中点m到x轴的最近距离为1/2 a- 1/4。

高三数学圆锥曲线综合试题答案及解析

高三数学圆锥曲线综合试题答案及解析

高三数学圆锥曲线综合试题答案及解析1.已知圆经过椭圆的右焦点和上顶点.(1)求椭圆的方程;(2)过原点的射线与椭圆在第一象限的交点为,与圆的交点为,为的中点,求的最大值.【答案】(1);(2).【解析】本题考查直线、圆、椭圆、平面向量、分式函数等基础知识,考查直线与圆锥曲线的位置关系;考查运算求解能力、推理论证能力;考查数形结合、化归与转化及函数与方程等数学思想.第一问,数形结合,令y=0,x=0即可分别求出c和b的值,从而得到椭圆的标准方程;第二问,设出直线方程和P、Q点坐标,令直线与椭圆联立得到Q点横坐标,利用向量的数量积,将P、Q点坐标代入,得到关于k的表达式,利用导数求函数的最值;法二,将进行转化,变成,再利用配方法求最值.试题解析:(1)在中,令得,即,令,得,即, 2分由,∴椭圆:. 4分(2)法一:依题意射线的斜率存在,设,设 -5分得:,∴. 6分得:,∴, 7分∴. 9分.设,,令,得.又,∴在单调递增,在单调递减. 11分∴当时,,即的最大值为. 13分法二:依题意射线的斜率存在,设,设 5分得:,∴. 6分= 9分.设,则.当且仅当即.法三:设点,,6分= . 7分又,设与联立得: . 9分令. 11分又点在第一象限,∴当时,取最大值. 13分【考点】直线、圆、椭圆、平面向量、分式函数.2.(本小题满分12分)已知曲线上的点到点的距离比它到直线的距离小2.(1)求曲线的方程;(2)曲线在点处的切线与轴交于点.直线分别与直线及轴交于点,以为直径作圆,过点作圆的切线,切点为,试探究:当点在曲线上运动(点与原点不重合)时,线段的长度是否发生变化?证明你的结论.【答案】(1).(2)当点P在曲线上运动时,线段AB的长度不变,证明见解析.【解析】(1)思路一:设为曲线上任意一点,依题意可知曲线是以点为焦点,直线为准线的抛物线,得到曲线的方程为.思路二:设为曲线上任意一点,由,化简即得.(2)当点P在曲线上运动时,线段AB的长度不变,证明如下:由(1)知抛物线的方程为,设,得,应用导数的几何意义,确定切线的斜率,进一步得切线的方程为.由,得.由,得.根据,得圆心,半径,由弦长,半径及圆心到直线的距离之关系,确定.试题解析:解法一:(1)设为曲线上任意一点,依题意,点S到的距离与它到直线的距离相等,所以曲线是以点为焦点,直线为准线的抛物线,所以曲线的方程为.(2)当点P在曲线上运动时,线段AB的长度不变,证明如下:由(1)知抛物线的方程为,设,则,由,得切线的斜率,所以切线的方程为,即.由,得.由,得.又,所以圆心,半径,.所以点P在曲线上运动时,线段AB的长度不变.解法二:(1)设为曲线上任意一点,则,依题意,点只能在直线的上方,所以,所以,化简得,曲线的方程为.(2)同解法一.【考点】抛物线的定义,导数的几何意义,直线方程,直线与抛物线的位置关系,直线与圆的位置关系.3.已知抛物线C:的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且.(1)求抛物线C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线与C相交于M,N两点,且A,M,B,N四点在同一个圆上,求直线l的方程.【答案】(1);(2)x-y-1=0或x+y-1=0.【解析】(1)设Q(x0,4),代入由中得x=,在根据抛物线的性质可得,解出p即可(2)设直线l的方程为,(m≠0)代入中得,直线的方程为,将上式代入中,并整理得.A(x1,y1),B(x2,y2),M(x3,y3),N(x4,y4),根据二次函数根与系数的关系可得y1+y2=4m,y1y2=-4,.然后求出MN的中点为E和AB的中点为D坐标的表达式,计算的表达式,根据求出m即可.试题解析:(1)设Q(x0,4),代入由中得x=,所以,由题设得,解得p=-2(舍去)或p=2.所以C的方程为.(2)依题意知直线l与坐标轴不垂直,故可设直线l的方程为,(m≠0)代入中得,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4,故AB的中点为D(2m2+1,2m),,有直线的斜率为-m,所以直线的方程为,将上式代入中,并整理得.设M(x3,y3),N(x4,y4),则.故MN的中点为E().由于MN垂直平分AB,故A,M,B,N四点在同一个圆上等价于,从而,即,化简得m2-1=0,解得m=1或m=-1,所以所求直线l的方程为x-y-1=0或x+y-1=0.【考点】1.抛物线的性质和方程;2.直线方程以及直线与曲线的位置关系.4.如图,已知椭圆的右焦点为,点是椭圆上任意一点,圆是以为直径的圆.(1)若圆过原点,求圆的方程;(2)写出一个定圆的方程,使得无论点在椭圆的什么位置,该定圆总与圆相切,请写出你的探究过程.【答案】(1)或;(2).【解析】(1)因为是圆的直径,所以当圆过原点时,一定有,由此可确定点的位置并进一步求出圆的标准方程;(2)设圆M的半径为,连结,显然有根据椭圆的标准方程知,所以,从而找到符合条件的定圆.解:(1)解法一:因为圆过原点,所以,所以是椭圆的短轴顶点,的坐标是或,于是点的坐标为或,易求圆的半径为所以圆的方程为或 6分解法二:设,因为圆过原点,所以所以,所以,所以点于是点的坐标为或,易求圆的半径所以圆的方程为或 6分(2)以原点为圆心,5为半径的定圆始终与圆相内切,定圆的方程为 8分探究过程为:设圆的半径为,定圆的半径为,因为,所以当原点为定圆圆心,半径时,定圆始终与圆相内切.(13分)【考点】1、椭圆的定义与标准方程;2、圆的定义与标准方程.5.已知,是双曲线的左,右焦点,若双曲线左支上存在一点与点关于直线对称,则该双曲线的离心率为A.B.C.D.【答案】【解析】即双曲线的一条渐近线方程.过焦点且垂直渐近线的直线方程为:,与联立,解之可得故对称中心的点坐标为();由中点坐标公式可得对称点的坐标为,将其代入双曲线的方程可得结合化简可得,故.故选.【考点】双曲线的几何性质,直线方程,两直线的位置关系.6.已知F1、F2为双曲线=1(a>0,b>0)的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足||=3||,则此双曲线的渐近线方程为________.【答案】y=±x【解析】由双曲线的性质可推得||=b,则||=3b,在△MF1O中,||=a,||=c,cos∠F1OM=-,由余弦定理可知=-,又c2=a2+b2,可得a2=2b2,即=,因此渐近线方程为y=±x.7.抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.3【答案】B【解析】设抛物线y=﹣x2上一点为(m,﹣m2),该点到直线4x+3y﹣8=0的距离为,分析可得,当m=时,取得最小值为,故选B.8.已知椭圆和椭圆的离心率相同,且点在椭圆上.(1)求椭圆的方程;(2)设为椭圆上一点,过点作直线交椭圆于、两点,且恰为弦的中点。

数学一轮复习第八章平面解析几何第九节圆锥曲线的综合问题第1课时最值范围证明问题学案含解析

数学一轮复习第八章平面解析几何第九节圆锥曲线的综合问题第1课时最值范围证明问题学案含解析

第九节圆锥曲线的综合问题最新考纲考情分析1.掌握解决直线与椭圆、抛物线的位置关系的思想方法.2.了解圆锥曲线的简单应用.3.理解数形结合的思想.1.直线与椭圆、抛物线的位置关系是近几年高考命题的热点.2.考查知识有直线与椭圆、抛物线相交,涉及弦长、中点、面积、对称、存在性问题.3.题型主要以解答题的形式出现,属中高档题。

知识点一直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系判断直线l与圆锥曲线C的位置关系时,通常将直线l的方程Ax+By+C=0(A,B不同时为0)代入圆锥曲线C的方程F(x,y)=0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元方程.即错误!消去y,得ax2+bx+c=0。

(1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C相交;Δ=0⇔直线与圆锥曲线C相切;Δ<0⇔直线与圆锥曲线C相离.(2)当a=0,b≠0时,即得到一个一元一次方程,则直线l 与圆锥曲线C相交,且只有一个交点,此时,若C为双曲线,则直线l与双曲线的渐近线的位置关系是平行;若C为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则|AB|=错误!|x1-x2|=错误!·错误!=错误!·|y1-y2|=错误!·错误!.知识点二圆锥曲线中的最值与取值范围问题圆锥曲线中的最值与取值范围问题一直是高考命题的热点,各种题型都有,命题角度很广,归纳起来常见的命题角度有:1.转化为函数利用基本不等式或二次函数求最值;2.利用三角函数有界性求最值;3.数形结合利用几何性质求最值.知识点三圆锥曲线中的定值与定点问题1.这类问题一般考查直线与圆锥曲线的位置关系,一元二次方程的根与系数之间的关系,考查斜率、向量的运算以及运算能力.2.解决这类定点与定值问题的方法有两种:一是研究一般情况,通过逻辑推理与计算得到定点或定值,这种方法难度大,运算量大,且思路不好寻找;另外一种方法就是先利用特殊情况确定定点或定值,然后验证,这样在整理式子或求值时就有了明确的方向.1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)直线l与椭圆C相切的充要条件是:直线l与椭圆C只有一个公共点.(√)(2)直线l与双曲线C相切的充要条件是:直线l与双曲线C只有一个公共点.(×)(3)直线l与抛物线C相切的充要条件是:直线l与抛物线C 只有一个公共点.(×)(4)如果直线x=ty+a与圆锥曲线相交于A(x1,y1),B(x2,y2)两点,则弦长|AB|=错误!|y1-y2|.(√)解析:(2)因为直线l与双曲线C的渐近线平行时,也只有一个公共点,是相交,但并不相切.(3)因为直线l与抛物线C的对称轴平行或重合时,也只有一个公共点,是相交,但不相切.2.小题热身(1)过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有(C)A.1条B.2条C.3条D.4条解析:结合图形分析可知,满足题意的直线共有3条:直线x=0,过点(0,1)且平行于x轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x=0).(2)(2020·浙江八校联考)抛物线y=ax2与直线y=kx+b(k≠0)交于A,B两点,且这两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则(B)A.x3=x1+x2B.x1x2=x1x3+x2x3C.x1+x2+x3=0 D.x1x2+x2x3+x3x1=0解析:由错误!消去y得ax2-kx-b=0,可知x1+x2=错误!,x1x2=-错误!,令kx+b=0得x3=-错误!,所以x1x2=x1x3+x2x3.(3)已知抛物线y=ax2(a>0)的准线为l,l与双曲线x24-y2=1的两条渐近线分别交于A,B两点,若|AB|=4,则a=错误!.解析:抛物线y=ax2(a〉0)的准线l:y=-错误!,双曲线错误!-y2=1的两条渐近线分别为y=错误!x,y=-错误!x,可得x A=-错误!,x B=错误!,可得|AB|=错误!-错误!=4,解得a=错误!。

巧用圆锥曲线的概念解几何综合题

巧用圆锥曲线的概念解几何综合题

为2 b = 肋= D l E l = 2 R , 由 = 卜 e = ÷, 得2 a = 4 R , 即A B =
Ⅱ 二
4 R , A G = 2 R , 在 R t A A B G 中 , s i n c t = 嚣= 寺, 所 以 = 3 0 。 。
有兴 趣 的同学可 以思考 例 1 为什 么不能 用投影 的方 法求 2 b ?
由 e = ÷ Ⅱ = 字 , 得 C O ¥ O t = e , o s L O C F = = 【 , 乙 ÷ 口 = 孚 ,
‘ . .
=3 0。 .
例4 : 如 图在正方 体 A B C D —A B l C , D 1 中, P是 侧 面 B C B 。 C 上 的 一个 动点 , 如 果点 P到 定点 B 、 的距离 等于 它到 平面 C D C D 的 距离, 则点 P 的轨 迹为— — 。 分析 : 本 题 中 P点 到 平 面平 面 C D C D 。 距 离即为 P点到 直线 C C 。 的距 离 , 即知 P点 到 直线 C C , 的距 离等 于点 P到 点 丑 的距 离 , 由抛物线 的定义 得解 。 解: P的轨 迹为 以 . B 。 为焦点 , 以直线 C C 。 为 准线的 抛物线 。 通过 以上 4道例 题可见 , 立 体几 何 与平 面解 析 几 何 的综 合 题
, ^ 、
岽 打 的 一 个焦 点, 故 半焦 距c = F C = A C — A F = 口 一 R = 箬 一 R =
图4
分析 2 : 易知 ,点为椭 圆 的一个 焦点 ,
解: 利用 R t A O F C , C F: c , O F= R=6 , 。 =
= D c ,

平面解析几何8-7圆锥曲线的综合问题(理)

平面解析几何8-7圆锥曲线的综合问题(理)
上述两种情形联立方程组消元后,二次项系 数为0,即只能得到一个一次方程.
整理ppt
5
2.直线与圆锥曲线相交弦长问题 (1)斜率为 k 的直线与圆锥曲线交于两点 P1(x1,y1), P2(x2,y2),则所得弦长|P1P2|= 1+k2|x2-x1|或|P1P2|= 1+k12|y2-y1|,其中求|x2-x1|与|y2-y1|时,通常作如下 变 形 |x2 - x1| = x1+x22-4x1x2 , |y2 - y1| = y1+y22-4y1y2,使用韦达定理即可解决. (2)当斜率 k 不存在时,直线为 x=m 的形式,可直接 代入求出交点的纵坐标 y1、y2 得弦长|y1-y2|.
整理ppt
1
整理ppt
2
重点难点
重点:直线与圆锥曲线位置关系的判定,弦 长与距离的求法
难点:直线与圆锥曲线位置关系的判定、弦 长与中点弦问题
整理ppt
3
知识归纳
1.(1)直线与圆、椭圆的方程联立后,消去 一个未知数得到关于另一个未知数的一元二 次方程,可据判别式Δ来讨论交点个数.
相 交
答案:A
整理ppt
17
已知直线l1为曲线y=x2+x-2在点(1,0)处的 切线. l2为该曲线的另一条切线,且l1⊥l2.
(1)求直线l2的方程; (2)求由直线l1、l2和x轴所围成的三角形的面
积.
整理ppt
18
解析:(1)y′=2x+1.∴l1 的斜率 k1=3 直线 l1 的方程为 y=3x-3. 设直线 l2 过曲线 y=x2+x-2 上的点 B(b,b2+b-2), 则 l2 的方程为 y=(2b+1)x-b2-2. 因为 l1⊥l2,则有 2b+1=-13,b=-23. 所以直线 l2 的方程为 y=-13x-292. 即 3x+9y+22=0

例说巧用数学思想解决圆锥曲线综合问题

例说巧用数学思想解决圆锥曲线综合问题

例说巧用数学思想解决圆锥曲线综合问题数学是一门独特而美妙的学科,它不仅能够解决实际问题,还能够培养我们的逻辑思维能力和抽象思维能力。

在数学中,圆锥曲线是一类经典的曲线,包括椭圆、抛物线和双曲线。

在本文中,我们将讨论如何巧用数学思想解决圆锥曲线综合问题。

让我们来看一个典型的圆锥曲线问题:已知一条直线和一个焦点,如何确定一个椭圆,使得这条直线经过椭圆的两个焦点?解决这个问题的关键在于利用椭圆的几何定义和焦点的性质。

根据定义,椭圆是一条平面上的闭合曲线,其到两个焦点的距离之和为常数。

我们可以先确定椭圆的长轴和短轴的长度,然后利用这些信息来确定椭圆的位置。

假设直线与两个焦点的距离分别为d1和d2,且椭圆的长轴为a,短轴为b。

根据椭圆的几何定义,我们可以得到以下两个方程:(d1 + d2)/2 = a(d1 - d2)/2 = b通过解这个方程组,我们可以得到椭圆的长轴和短轴的长度。

然后,我们可以利用这些信息确定椭圆的位置。

在解圆锥曲线问题时,数学还能帮助我们简化问题、优化算法和找到突破口。

在解决椭圆问题时,我们可以将其转化为一个代数方程求解问题。

具体来说,我们可以构造一个关于椭圆的方程后,利用代数方法求解该方程。

这样一来,我们就能够利用代数的工具和技巧解决问题,而无需画图和几何概念。

数学还能够帮助我们理解圆锥曲线的性质和特点。

通过分析曲线的方程和参数,我们可以研究曲线的对称性、焦点位置、渐近线等特点,并利用这些特点解决问题。

在解决抛物线问题时,我们可以利用抛物线的焦点和准线的性质,将问题转化为一个求最值的问题,然后利用数学分析方法求解。

数学还能帮助我们验证和验证答案。

在解决圆锥曲线问题时,我们通常会得到一个代数方程的解。

为了验证这个解是否正确,我们可以将解代入原方程中,然后检查是否满足等式。

如果等式成立,那么我们的解是正确的;如果等式不成立,那么我们需要重新检查计算过程。

巧用数学思想可以帮助我们解决圆锥曲线综合问题。

圆锥曲线解题技巧与方法综合如何通过平移与旋转变换简化解析几何问题

圆锥曲线解题技巧与方法综合如何通过平移与旋转变换简化解析几何问题

圆锥曲线解题技巧与方法综合如何通过平移与旋转变换简化解析几何问题解析几何是数学中的一个重要分支,它通过运用几何图形和代数方法解决各种问题。

而在解析几何中,圆锥曲线是一个特别重要的概念,包括椭圆、双曲线和抛物线。

在解析几何问题中,我们可以运用平移与旋转变换的方法,来简化解答问题的过程。

本文将介绍圆锥曲线解题技巧与方法,并探讨如何通过平移与旋转变换来简化解析几何问题。

一、椭圆的解析几何问题对于椭圆的解析几何问题,我们可以运用平移与旋转变换的方法来简化解答问题的过程。

首先,我们将椭圆的中心平移到坐标原点上,这样可以将椭圆的方程形式简化为标准方程。

对于椭圆的标准方程,可以通过旋转变换来使其长轴与坐标轴重合。

通过变换后的方程,我们可以更加方便地求解椭圆的焦点、顶点、离心率等重要参数。

二、双曲线的解析几何问题对于双曲线的解析几何问题,同样可以通过平移与旋转变换来简化解答问题的过程。

首先,我们可以将双曲线的中心平移到坐标原点上,使其方程形式变为标准方程。

通过旋转变换,我们可以将双曲线的方程转化为标准方程,使其对称轴与坐标轴重合。

这样,我们就可以更方便地求解双曲线的焦点、渐近线等重要参数。

三、抛物线的解析几何问题对于抛物线的解析几何问题,同样可以利用平移与旋转变换来简化解答问题的过程。

将抛物线的焦点平移到坐标原点上,将其方程形式转化为标准方程,从而更便捷地求解抛物线的顶点、焦点、直径等重要参数。

通过旋转变换,使抛物线的方程转化为标准方程,使其对称轴与坐标轴重合,进一步简化计算过程。

四、通过平移与旋转变换简化解析几何问题的优势通过平移与旋转变换来简化解析几何问题,可以将图形的方程形式转化为标准方程,从而更方便地计算图形的重要参数。

这种方法的优势在于能够减少问题的复杂度,简化计算过程,提高解题的效率。

通过合理运用平移与旋转变换,可以将解析几何问题转变为更加简单直观的形式,使问题更易于理解和解答。

总结:对于解析几何问题中的圆锥曲线,我们可以运用平移与旋转变换的方法来简化解答问题的过程。

方法技巧专题07 圆锥曲线的概念及其几何性质(解析版)

方法技巧专题07  圆锥曲线的概念及其几何性质(解析版)

方法技巧专题7 圆锥曲线的概念及其几何性质 解析版一、 圆锥曲线的概念及其几何性质知识框架二、圆锥曲线的定义、方程【一】圆锥曲线的定义1、椭圆(1)秒杀思路:动点到两定点(距离为2c )距离之和为定值(2a )的点的轨迹;(2)秒杀公式:过抛圆的一个焦点作弦AB ,与另一个焦点F 构造FAB ∆,则FAB ∆的周长等于a 4。

(3) ①当c a 22>时,表示椭圆;②当c a 22=时,表示两定点确定的线段;③当c a 22<时,表示无轨迹。

2、双曲线(1)秒杀思路: ①双曲线上任意一点到两焦点距离之差的绝对值是常数2a ;②注意定义中两个加强条件:(I )绝对值; (II )22a c <; ③加绝对值表示两支(或两条),不加绝对值表示一支(或一条);(2)秒杀公式:过双曲线的一个焦点作弦AB (交到同一支上),与另一个焦点F 构造FAB ∆,则FAB ∆的周长等于AB a 24+。

(3) ①当22a c <时,表示双曲线; ②当22a c =时,表示以两定点为端点向两侧的射线;③当22a c >时,无轨迹; ④当20a =时表示两定点的中垂线。

3、抛物线(1)秒杀思路:到定点(焦点)距离等于到定直线(准线)距离。

所以,一般情况下,抛物线已知到焦点的距离需转化为到准线的距离,已知到准线的距离需转化为到焦点的距离。

(2)秒杀公式一:焦点在x 轴上的圆锥曲线,曲线上的点到同一个焦点的距离成等差数列,则横坐标成等差数列,反过来也成立。

(3)秒杀公式二:作过抛物线焦点且倾斜角为︒60或︒120的弦,两段焦半径分别为:32,2pp .1. 例题【例1】设P 是椭圆2212516x y +=上的点,若21,F F 是椭圆的两个焦点,则12PF PF +等于 ( )A.4B.5C.8D.10【解析】利用椭圆的定义得12PF PF +=102=a ,选D 。

【例2】已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为B A ,,线段MN 的中点在C 上,则||||AN BN += .【解析】如图,22QF BN =,12QF AN =,||||AN BN +=124)(221==+a QF QF .【例3】已知双曲线122=-y x ,点21,F F 为其两个焦点,点P 为双曲线上一点,若21PF PF ⊥,则21PF PF +的值为_______.【解析】,8,2222121=+=-r r r r 得21PF PF +=32. 【例4】设椭圆1C 的离心率为135,焦点在x 轴上且长轴长为26,若曲线2C 上的点到椭圆1C 的两个焦点的距离的差的绝对值等于8,则曲线2C 的标准方程为 ( )A.1342222=-y xB.15132222=-y xC.1432222=-y xD.112132222=-y x【解析】由双曲线定义得4=a ,5=c ,3=b ,选A 。

高考数学二轮复习第2部分专题5解析几何第3讲圆锥曲线中的综合问题课件理

高考数学二轮复习第2部分专题5解析几何第3讲圆锥曲线中的综合问题课件理
(1)求直线AP斜率的取值范围; (2)求|PA|·|PQ|的最大值.
切入点:(1)直接套用斜率公式,并借助-12<x<32求其范围; (2)先分别计算|PA|、|PQ|的长,再建立|PA|·|PQ|的函数,进而借 助导数求其最值.
[解](1)设直线AP的斜率为k,k=xx2+-1214=x-12, 因为-12<x<32, 所以-1<x-12<1, 即直线AP斜率的取值范围是(-1,1).
(与向量交汇直线过定点问题)设M点为圆C:x2+y2=4上的动 点,点M在x轴上的投影为N.动点P满足2 P→N = 3 M→N ,动点P的轨迹 为E.
(1)求E的方程; (2)设E的左顶点为D,若直线l:y=kx+m与曲线E交于A,B两 点(A,B不是左、右顶点),且满足| D→A + D→B |=| D→A - D→B |,求证:直 线l恒过定点,并求出该定点的坐标.
第二部分 讲练篇
专题五 解析几何 第3讲 圆锥曲线中的综合问题
研考题 举题固法
求圆锥曲线中的最值范围问题(5年2考) 考向1 构造不等式求最值或范围
[高考解读] 以直线与圆锥曲线的位置关系为载体,融函数与 方程,均值不等式、导数于一体,重在考查学生的数学建模、数学 运算能力和逻辑推理及等价转化能力.
[解](1)设点M(x0,y0),P(x,y),由题意可知N(x0,0), ∵2P→N= 3M→N,∴2(x0-x,-y)= 3(0,-y0), 即x0=x,y0= 23y, 又点M在圆C:x2+y2=4上,∴x20+y20=4, 将x0=x,y0= 23y代入得x42+y32=1, 即轨迹E的方程为x42+y32=1.
设C(p,q),由2qpp=+q21,-2=0
得p=q=2,所以C(2,2).

高考数学一轮复习 第8章 平面解析几何 解答题专项突破(五)圆锥曲线的综合问题创新教学案(含解析)新

高考数学一轮复习 第8章 平面解析几何 解答题专项突破(五)圆锥曲线的综合问题创新教学案(含解析)新

解答题专项突破(五) 圆锥曲线的综合问题圆锥曲线是平面解析几何的核心内容,每年高考必有一道解答题,常以求圆锥曲线的标准方程、研究直线与圆锥曲线的位置关系为主,涉及题型有定点、定值、最值、X 围、探索性问题等,此类命题起点较低,但在第(2)问中一般都有较为复杂的运算,对考生解决问题的能力要求较高,通常以压轴题的形式呈现.热点题型1 圆锥曲线中的定点问题典例1(2019·高考)抛物线C :x 2=-2py 经过点(2,-1). (1)求抛物线C 的方程及其准线方程.(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =-1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.解题思路 (1)根据抛物线C 过点(2,-1),列方程求p ,得抛物线C 的方程,进而得出其准线方程.(2)设直线l 的方程,与抛物线C 的方程联立,用根与系数的关系推出关于M ,N 两点坐标的等量关系,设所求定点坐标为(0,n ),利用DA →·DB →=0列方程式求n的值.规X 解答 (1)由抛物线C :x 2=-2py 经过点(2,-1),得22=-2p (-1),解得p =2.所以抛物线C 的方程为x 2=-4y ,其准线方程为y =1. (2)证明:抛物线C 的焦点为F (0,-1). 设直线l 的方程为y =kx -1(k ≠0).由⎩⎪⎨⎪⎧y =kx -1,x 2=-4y ,得x 2+4kx -4=0.设M (x 1,y 1),N (x 2,y 2),那么x 1x 2=-4. 直线OM 的方程为y =y 1x 1x .令y =-1,得点A 的横坐标x A =-x 1y 1.同理得点B 的横坐标x B =-x 2y 2.设点D (0,n ),那么DA→=⎝ ⎛⎭⎪⎫-x 1y 1,-1-n , DB→=⎝ ⎛⎭⎪⎫-x 2y 2,-1-n , DA →·DB→=x 1x 2y 1y2+(n +1)2 =x 1x 2⎝ ⎛⎭⎪⎫-x 214⎝ ⎛⎭⎪⎫-x 224+(n +1)2 =16x 1x 2+(n +1)2 =-4+(n +1)2.令DA →·DB →=0,即-4+(n +1)2=0,得n =1或n =-3. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,-3).典例2(2019·某某模拟)Q 为圆x 2+y 2=1上一动点,Q 在x 轴,y 轴上的射影分别为点A ,B ,动点P 满足BA→=AP →,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点⎝ ⎛⎭⎪⎫0,-35的直线与曲线C 交于M ,N 两点,判断以MN 为直径的圆是否过定点?假设是,求出定点的坐标;假设不是,请说明理由.解题思路 (1)设Q (x 0,y 0),P (x ,y ),利用所给条件建立两点坐标之间的关系,利用Q 在圆上可得x ,y 的方程,即为所求.(2)设定点为H ,及直线l 的方程,与椭圆方程联立,利用根与系数的关系,及HM →·HN→=0,得出恒等式,求得定点的坐标. 规X 解答 (1)设Q (x 0,y 0),P (x ,y ),那么x 20+y 20=1,由BA →=AP →,得⎩⎨⎧x 0=x2,y 0=-y ,代入x 20+y 20=1,得x 24+y 2=1,故曲线C 的方程为x 24+y 2=1.(2)假设存在满足条件的定点,由对称性可知,该定点在y 轴上,设定点为H (0,m ),当直线l 的斜率存在时,设直线l 的方程为y =kx -35, 由⎩⎪⎨⎪⎧y =kx -35,x 24+y 2=1,得(1+4k 2)x 2-245kx -6425=0,设M (x 1,y 1),N (x 2,y 2), 那么x 1+x 2=24k 51+4k 2,x 1x 2=-64251+4k 2,∴y 1+y 2=k (x 1+x 2)-65=-651+4k2,y 1y 2=⎝ ⎛⎭⎪⎫kx 1-35⎝ ⎛⎭⎪⎫kx 2-35=k 2x 1x 2-35k (x 1+x 2)+925=9-100k 2251+4k 2, ∵HM →=(x 1,y 1-m ),HN →=(x 2,y 2-m ), ∴HM →·HN →=x 1x 2+y 1y 2-m (y 1+y 2)+m 2=100m 2-1k 2+25m 2+30m -55251+4k2=0,∵对任意的k 恒成立,∴⎩⎪⎨⎪⎧100m 2-1=0,25m 2+30m -55=0,解得m =1,即定点为H (0,1),当直线l 的斜率不存在时,以MN 为直径的圆也过定点(0,1). 综上,以MN 为直径的圆过定点(0,1). 热点题型2 圆锥曲线中的定值问题典例1 如图,在平面直角坐标系xOy 中,点F ⎝ ⎛⎭⎪⎫12,0,直线l :x =-12,点P 在直线l 上移动,R 是线段FP 与y 轴的交点,RQ ⊥FP ,PQ ⊥l .(1)求动点Q 的轨迹C 的方程;(2)设圆M 过A (1,0),且圆心M 在曲线C 上,TS 是圆M 在y 轴上截得的弦,当M 运动时,弦长|TS |是否为定值?请说明理由.解题思路 (1)R 是线段FP 的中点,且RQ ⊥FP →RQ 是线段PF 的垂直平分线→|PQ |=|QF |→点Q 的轨迹是以F 为焦点,l 为准线的抛物线→确定焦准距,根据抛物线的焦点坐标,求出抛物线的方程.(2)①求|TS |的依据:a =2r 2-d 2,其中a 为弦长,r 为圆的半径,d 为圆心到弦所在直线的距离.②策略:设曲线C 上点M (x 0,y 0),用相关公式求r ,d ;用x 0,y 0满足的等量关系消元.规X 解答 (1)依题意知,点R 是线段FP 的中点, 且RQ ⊥FP ,∴RQ 是线段FP 的垂直平分线. ∵点Q 在线段FP 的垂直平分线上, ∴|PQ |=|QF |,又|PQ |是点Q 到直线l 的距离,故动点Q 的轨迹是以F 为焦点,l 为准线的抛物线,其方程为y 2=2x (x >0). (2)弦长|TS |为定值.理由如下:取曲线C 上点M (x 0,y 0),M 到y 轴的距离为d =|x 0|=x 0,圆的半径r =|MA |=x 0-12+y 20, 那么|TS |=2r 2-d 2=2y 20-2x 0+1,∵点M 在曲线C 上, ∴x 0=y 202,∴|TS |=2y 20-y 20+1=2,是定值.典例2(2019·某某三模)给定椭圆C :x 2a 2+y 2b 2=1(a >b >0),称圆心在原点O ,半径为a2+b2的圆为椭圆C的“准圆〞.假设椭圆C的一个焦点为F(2,0),其短轴上的一个端点到F的距离为 3.(1)求椭圆C的方程和其“准圆〞方程;(2)假设点P是椭圆C的“准圆〞上的动点,过点P作椭圆的切线l1,l2交“准圆〞于点M,N.证明:l1⊥l2,且线段MN的长为定值.解题思路(1)根据椭圆的几何性质求a,c,再用b2=a2-c2求b,可得椭圆C 的方程,进而可依据定义写出其“准圆〞方程.(2)分以下两种情况讨论:①l1,l2中有一条斜率不存在;②l1,l2斜率存在.对于①,易知切点为椭圆的顶点;对于②,可设出过P与椭圆相切的直线,并与椭圆方程联立后消元,由Δ=0推出关于椭圆切线斜率的方程,利用根与系数的关系进行证明.规X解答(1)∵椭圆C的一个焦点为F(2,0),其短轴上的一个端点到F的距离为 3.∴c=2,a=3,∴b=a2-c2=1,∴椭圆方程为x23+y2=1,∴“准圆〞方程为x2+y2=4.(2)证明:①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,那么l1:x=±3,当l1:x=3时,l1与“准圆〞交于点(3,1),(3,-1),此时l2为y=1(或y=-1),显然直线l1,l2垂直;同理可证当l 1:x =-3时,直线l 1,l 2垂直. ②当l 1,l 2斜率存在时,设点P (x 0,y 0),其中x 20+y 20=4.设经过点P (x 0,y 0)与椭圆相切的直线为 y =t (x -x 0)+y 0,∴由⎩⎨⎧y =t x -x 0+y 0,x 23+y 2=1,得(1+3t 2)x 2+6t (y 0-tx 0)x +3(y 0-tx 0)2-3=0.由Δ=0化简整理,得(3-x 20)t 2+2x 0y 0t +1-y 20=0,∵x 20+y 20=4,∴有(3-x 20)t 2+2x 0y 0t +(x 20-3)=0.设l 1,l 2的斜率分别为t 1,t 2,∵l 1,l 2与椭圆相切,∴t 1,t 2满足上述方程(3-x 20)t 2+2x 0y 0t +(x 20-3)=0,∴t 1·t 2=-1,即l 1,l 2垂直. 综合①②知,l 1⊥l 2.∵l 1,l 2经过点P (x 0,y 0),又分别交其“准圆〞于点M ,N ,且l 1,l 2垂直. ∴线段MN 为“准圆〞x 2+y 2=4的直径,|MN |=4, ∴线段MN 的长为定值.热点题型3 圆锥曲线中的证明问题典例1抛物线C :x 2=2py (p >0),过焦点F 的直线交C 于A ,B 两点,D 是抛物线的准线l 与y 轴的交点.(1)假设AB ∥l ,且△ABD 的面积为1,求抛物线的方程;(2)设M 为AB 的中点,过M 作l 的垂线,垂足为N .证明:直线AN 与抛物线相切.解题思路 (1)判断△ABD 的形状,求|FD |,|AB |.由△ABD 的面积为1,列方程求p ,得抛物线的方程.(2)将直线AB 的方程与抛物线C 的方程联立,消去y 并整理,结合根与系数的关系用k ,p 表示M ,N 的坐标.求k AN :①斜率公式,②导数的几何意义,两个角度求斜率相等,证明相切.规X 解答 (1)∵AB ∥l ,∴△ABD 为等腰三角形,且FD ⊥AB ,又|FD |=p ,|AB |=2p .∴S △ABD =p 2=1.∴p =1,故抛物线C 的方程为x 2=2y .(2)证明:显然直线AB 的斜率存在,设其方程为y =kx +p 2,A ⎝ ⎛⎭⎪⎫x 1,x 212p ,B ⎝ ⎛⎭⎪⎫x 2,x 222p .由⎩⎨⎧y =kx +p 2,x 2=2py消去y 整理得,x 2-2kpx -p 2=0.∴x 1+x 2=2kp ,x 1x 2=-p 2. ∴M ⎝ ⎛⎭⎪⎫kp ,k 2p +p 2,N ⎝ ⎛⎭⎪⎫kp ,-p 2.∴k AN =x 212p +p 2x 1-kp=x 212p +p 2x 1-x 1+x 22=x 21+p 22px 1-x 22=x 21-x 1x 22p x 1-x 22=x 1p .又x 2=2py ,∴y ′=xp .∴抛物线x 2=2py 在点A 处的切线的斜率k ′=x 1p . ∴直线AN 与抛物线相切.典例2(2019·某某二模)设O 为坐标原点,动点M 在椭圆C :x 2a 2+y 2=1(1<a <5)上,该椭圆的左顶点A 到直线x -y +5=0的距离为322.(1)求椭圆C 的标准方程;(2)假设线段MN 平行于y 轴,满足(ON →-2OM →)·MN →=0,动点P 在直线x =23上,满足ON →·NP→=2.证明:过点N 且垂直于OP 的直线过椭圆C 的右焦点F . 解题思路 (1)根据椭圆的左顶点A 到直线x -y +5=0的距离为322,列关于a 的等量关系求解,得椭圆C 的方程.(2)设出M ,N ,P 的坐标(注意M 与N 的横坐标相同,P 的横坐标).先用(ON →-2OM →)·MN →=0和ON →·NP →=2推出坐标之间的关系,再利用这些等量关系证明NF →·OP→=0. 规X 解答 (1)设左顶点A 的坐标为(-a,0), ∵|-a +5|2=322,∴|a -5|=3,解得a =2或a =8(舍去), ∴椭圆C 的标准方程为x 24+y 2=1.(2)证明:由题意,设M (x 0,y 0),N (x 0,y 1),P (23,t ),且y 1≠y 0,由(ON →-2OM →)·MN →=0,可得(x 0-2x 0,y 1-2y 0)·(0,y 1-y 0)=0,整理可得y 1=2y 0,由ON →·NP →=2,可得(x 0,2y 0)·(23-x 0,t -2y 0)=2,整理,得23x 0+2y 0t =x 20+4y 20+2=6,由(1)可得F (3,0), ∴NF →=(3-x 0,-2y 0), ∴NF →·OP →=(3-x 0,-2y 0)·(23,t )=6-23x 0-2y 0t =0, ∴NF ⊥OP ,故过点N 且垂直于OP 的直线过椭圆C 的右焦点F . 热点题型4 圆锥曲线中的最值与X 围问题典例1(2019·某某二模)设F 为抛物线C :y 2=2px 的焦点,A 是C 上一点,F A 的延长线交y 轴于点B ,A 为FB 的中点,且|FB |=3.(1)求抛物线C 的方程;(2)过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于M ,N 两点,直线l 2与C 交于D ,E 两点,求四边形MDNE 面积的最小值.解题思路(1)由题意画出图形,结合条件列式求得p ,那么抛物线C 的方程可求.(2)由直线l 1的斜率存在且不为0,设其方程为y =k (x -1),与抛物线方程联立,求出|MN |,同理可求|DE |⎝ ⎛⎭⎪⎫实际上,在|MN |的表达式中用-1k 代替k 即可,可得四边形MDNE 的面积表达式,再利用基本不等式求最值.规X 解答 (1)如图,∵A 为FB 的中点,∴A 到y 轴的距离为p4, ∴|AF |=p 4+p 2=3p 4=|FB |2=32,解得p =2. ∴抛物线C 的方程为y 2=4x . (2)由直线l 1的斜率存在且不为0, 设其方程为y =k (x -1). 由⎩⎪⎨⎪⎧y =k x -1,y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0.∵Δ>0,设M (x 1,y 1),N (x 2,y 2),∴x 1+x 2=2+4k 2,那么|MN |=x 1+x 2+2=4⎝ ⎛⎭⎪⎫1+1k 2; 同理设D (x 3,y 3),E (x 4,y 4),∴x 3+x 4=2+4k 2, 那么|DE |=x 3+x 4+2=4(1+k 2).∴四边形MDNE 的面积S =12|MN |·|DE |=8⎝ ⎛⎭⎪⎫2+k 2+1k 2≥32.当且仅当k =±1时,四边形MDNE 的面积取得最小值32.典例2 如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A (2,0),左、右焦点分别为F 1,F 2,过点A 且斜率为12的直线与y 轴交于点P ,与椭圆交于另一个点B ,且点B 在x 轴上的射影恰好为点F 1.(1)求椭圆C 的标准方程;(2)过点P 且斜率大于12的直线与椭圆交于M ,N 两点(|PM |>|PN |),假设S △P AM ∶S △PBN =λ,某某数λ的取值X 围.解题思路 (1)求点B 的坐标→根据k AB =12列方程→由题意得a =2,a 2=b 2+c 2,解方程组求a ,b ,c ,写出椭圆C 的标准方程.(2)S △P AM ∶S △PBN =λ――→面积公式PM →与PN →的关系→点M ,N 坐标之间的关系→直线MN 的方程与椭圆C 的方程联立,消去y 整理→用根与系数的关系得出点M ,N 的坐标之间的关系式→推出λ与k 的关系,并根据k >12求X 围,找到λ所满足的不等式,求出λ的取值X 围.规X 解答 (1)因为BF 1⊥x 轴,所以点B ⎝ ⎛⎭⎪⎫-c ,-b 2a ,所以⎩⎪⎨⎪⎧ a =2,b 2a a +c=12,a 2=b 2+c2⇒⎩⎪⎨⎪⎧a =2,b =3,c =1,所以椭圆C 的标准方程是x 24+y 23=1. (2)因为S △P AM S △PBN=12|P A |·|PM |·sin ∠APM12|PB |·|PN |·sin ∠BPN=2·|PM |1·|PN |=λ⇒|PM ||PN |=λ2(λ>2), 所以PM→=-λ2PN →. 由(1)可知P (0,-1),设直线MN :y =kx -1⎝ ⎛⎭⎪⎫k >12,M (x 1,y 1),N (x 2,y 2),联立方程,得⎩⎨⎧y =kx -1,x 24+y 23=1,化简得,(4k 2+3)x 2-8kx -8=0.得⎩⎪⎨⎪⎧x 1+x 2=8k 4k 2+3,x 1x 2=-84k 2+3.(*)又PM →=(x 1,y 1+1),PN →=(x 2,y 2+1), 有x 1=-λ2x 2,将x 1=-λ2x 2代入(*)可得,2-λ2λ=16k 24k 2+3.因为k >12,所以16k 24k 2+3=163k 2+4∈(1,4),那么1<2-λ2λ<4且λ>2⇒4<λ<4+2 3.综上所述,实数λ的取值X 围为(4,4+23). 热点题型5 圆锥曲线中的探索性问题典例1(2019·某某一模)抛物线E :y 2=4x ,圆C :(x -3)2+y 2=1.(1)假设过抛物线E的焦点F的直线l与圆C相切,求直线l的方程;(2)在(1)的条件下,假设直线l交抛物线E于A,B两点,x轴上是否存在点M(t,0)使∠AMO=∠BMO(O为坐标原点)?假设存在,求出点M的坐标;假设不存在,请说明理由.解题思路(1)求得抛物线的焦点,设出直线l的方程,运用直线l和圆C相切的条件:d=r,解方程可得所求直线方程.(2)设出A,B的坐标,联立直线l的方程和抛物线E的方程,运用根与系数的关系和直线的斜率公式,依据∠AMO=∠BMO,即k AM+k BM=0列方程化简整理,解方程可得t,即得点M的坐标,从而得到结论.规X解答(1)由题意,得抛物线的焦点F(1,0),当直线l的斜率不存在时,过F的直线不可能与圆C相切,所以直线l的斜率存在.设直线l的斜率为k,方程为y=k(x-1),即kx-y-k=0,由圆心(3,0)到直线l的距离为d=|3k-k|1+k2=2|k|1+k2,当直线l与圆C相切时,d=r=1,解得k=±3 3,即直线l的方程为y=±33(x-1).(2)由(1),当直线l的方程为y=33(x-1)时,设A(x1,y1),B(x2,y2),联立抛物线E的方程可得x2-14x+1=0,那么x 1+x 2=14,x 1x 2=1,x 轴上假设存在点M (t,0)使∠AMO =∠BMO , 即有k AM +k BM =0, 得y 1x 1-t+y 2x 2-t =0, 即y 1(x 2-t )+y 2(x 1-t )=0, 由y 1=33(x 1-1),y 2=33(x 2-1), 可得2x 1x 2-(x 1+x 2)-(x 1+x 2-2)t =0,即2-14-12t =0,即t =-1,M (-1,0)符合题意;当直线l 的方程为y =-33(x -1)时,由对称性可得M (-1,0)也符合条件. 所以存在定点M (-1,0)使∠AMO =∠BMO .典例2(2019·某某模拟)点A (0,-1),B (0,1),P 为椭圆C :x 22+y 2=1上异于点A ,B 的任意一点.(1)求证:直线P A ,PB 的斜率之积为-12;(2)是否存在过点Q (-2,0)的直线l 与椭圆C 交于不同的两点M ,N ,使得|BM |=|BN |?假设存在,求出直线l 的方程;假设不存在,请说明理由.解题思路(1)设点P (x ,y )(x ≠0),代入椭圆方程,由直线的斜率公式,即可得证. (2)假设存在直线l 满足题意.显然当直线斜率不存在时,直线与椭圆C 不相交,讨论直线的斜率是否为0,联立直线方程和椭圆方程,运用根与系数的关系和两直线垂直的条件:由|BM |=|BN |想到在△BMN 中,边MN 所在直线的斜率与MN边上的中线所在直线的斜率之积为-1,可得所求直线方程.规X 解答 (1)证明:设点P (x ,y )(x ≠0), 那么x 22+y 2=1,即y 2=1-x 22, ∴k P A ·k PB =y +1x ·y -1x =y 2-1x 2 =⎝ ⎛⎭⎪⎫1-x 22-1x 2=-12,故得证.(2)假设存在直线l 满足题意.显然当直线斜率不存在时,直线与椭圆C 不相交.①当直线l 的斜率k ≠0时,设直线l 为y =k (x +2),联立椭圆方程x 2+2y 2=2,化简得(1+2k 2)x 2+8k 2x +8k 2-2=0, 由Δ=64k 4-4(1+2k 2)(8k 2-2)>0, 解得-22<k <22(k ≠0), 设点M (x 1,y 1),N (x 2,y 2),那么⎩⎪⎨⎪⎧x 1+x 2=-8k 21+2k 2,x 1x 2=8k 2-21+2k2,∴y 1+y 2=k (x 1+x 2)+4k =k ·-8k 21+2k 2+4k =4k 1+2k 2, 取MN 的中点H ,即H ⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,那么y1+y22-1x1+x22·k=-1,即2k1+2k2-1-4k21+2k2·k=-1,化简得2k2+2k+1=0,无实数解,故舍去.②当k=0时,M,N为椭圆C的左、右顶点,显然满足|BM|=|BN|,此时直线l的方程为y=0.综上可知,存在直线l满足题意,此时直线l的方程为y=0.。

浅析巧用圆锥曲线的概念例解几何综合题

浅析巧用圆锥曲线的概念例解几何综合题

‘ D






因为椭 圆关 于 Y轴对称 , 点 尸在 Y轴上 , 所 以只 需 考 虑 > 0
图l
数 学



的情形 .
一 圈 一 一 目
一 困
例3 : 如图, AA D P为正 三角 形 , 四边形 A B C D 为正 方形 , 平 面
当 0




P A D上平 面 A B C D 。M 为 平 面 A B C D 内的 一 动 点 , 且 满 足 MP:
MB, 则 点 M 在正 方形 A B C D 内 的轨 迹 为 ( 0为正 方 形 A B C D的中
27 k一6
心) —


。( 把你认 为 正确 的序 号填上 )

9 +4



图2

分析 : 由M P= M B知 P点 在 线 段 P B 的垂 直 平 分 面上 ( 即过
船 的中点且 垂直 于线 段 P B的平 面 ) 又 P点在 正 方 形 A B C D内, 故 点 P 的轨 迹 为一条 线段 。 解: 由以上分析知, 点 P的轨迹为一条线段 , 排除③④, 对① , 当吖在 C D 的中点 时 , 利 用平面 P A D上平面 A B C D, 作P H. k A D
于 日, 得P 日上平 面 A B C D, 在R t △P 枷f n , 设A B= a , 可求 得 P Mo =




口 , 在R t AB C Mo , 求得 B M o = 口 , 故①, 类似地当M在 D处时,

巧用圆锥曲线的定义解题

巧用圆锥曲线的定义解题
教材 探析
6 2

巧 用 圆锥 曲线 的定 义解题
■ 程淑 玲
求轨 迹 方 程 例 1 坐 标 满 足 方程  ̄ 一10 I —Y+ /( )+Y = 3 的 点 P( ' 的轨 迹 为 ( I ,, ) ) 。 () A 抛物线 () B 双曲线 ( ) 圆 C椭 ( ) 条 直线 D两 分析 : 按常规思路 , 先化简方程, 若 应 过程 较 长 ,


8这 说 明 点 既 在 双 曲 线 ,
一 1 =1 。 6 上
又直 ,3 ̄于 原 程 化 学一 在线, 4 , 方 可 为 =3 是

1 由此 得 =l , 0或 = 一 ( 根 , 去 ) 6增 舍 。 三 、 于解 决与 圆锥 曲线 焦点 有关 的 f题 用 . - I
l =
蛉 建 鼗
一 李 雪芬
写作训练 , 而 言之 , 是教会学 生写作文 , 简 就 教 会学生用语言文字进行表 达与交流 , 教学生 去创造 性 地 表 述 对 自我 及 世 界 的 认 识 。 中 国古 人 有 “ 为 言 心声 ” 之写作古训 , 白居 易亦有“ 文章合为时而著 , 歌 诗合 为事 而作 ” 的言 论 , 主席 更 是 说 过 :文章 是 一 毛 “ 定的社会生活在人头脑中反 映的产物 。这也就是说 ” 文 章 的实 质 就 是 反 映 写 作 者 自己对 事 物 的 理解 与看 法 的 , 表 达 自己对 人 与 事 物 的 态度 与感 情 的 , 为 是 是 现实生活服务 的。学生 写作文也得 遵循 以上 原则 。 因此 , 对已有一定 文字基础和 初步写作 能力的初 中 生进行科学严格 的训练 , 使他们能写出观点鲜 明、 情 感饱满 、 真实生动地反映客观现实本来面 目的文章 , 是初中阶段写作训练 的目标。 为了达到这一 目标 , 首先 要训练 的就是学生选 通 过 观 察 与 体 验 , 了 材 料 , 下来 就应 该 对 材 有 接 料进行 大胆 的取舍 、 剪裁 , 并深入挖掘事物中蕴含 的 深意。 纵观近几年各地 中考作文 , 题作文居多 , 话 虽然 体 裁题 材不 限 , 作 范 围很 宽 , 大 多 数 学 生 的写 作 写 但 仍以记 叙为主, 合运用 了描写 、 论 、 情等表 达 综 议 抒 方 式 。要 写 好 这 类 文 章 , 必 须 对 现 有 材 料 进 行 挖 就 掘, 因为 有 些 事 物 的含 义 , 常不 是 一 眼 就 能 看 清 楚 常 的, 需要开动脑筋 , 往深处挖掘。即使一张全优的成 绩单 , 也不能只看到它表 面的分数 , 而应该 “ 节外 生 枝” 地想一想 , 优 的成绩 单后 面是 否有 坚强 的意 全 志、 不馁 的精神 , 是否 有废寝忘食 、 孜不倦 的勤学 孜 苦练 , 否有几个感人肺腑 的故事 。 是 世间万物都是普 遍联系 的, 多事物 的意义正 很

巧用圆锥曲线的定义解题

巧用圆锥曲线的定义解题
焦 点 , 实半 轴 长 为 1的 双 曲线 ( - 3 一 且 x ) :1 ( 上 见
当 M 为 F 的延 长线 与 椭 圆的 B 交点 时 , : 有

\\
(MBf l 1 —
1 一~2/o ) v1 .
故 lI + 1 /A1 MB1 V 的最 大值 为 1+ 2 最小 值 为 i - . o , 0 2
距 离相等. 由抛 物 线 定 义 可 知 , l 3时 , 迹 为 顶 点 在 原 当 < 轨
点 , A( 。) 焦 点 的 抛 物 线 的 一 部 分 , 程 为 y 一4 ( ≤ 以 1O 为 方 。 xO <3; ) 当 ≥ 3时 候 , 样 可 得 点 P 的 轨 迹 方 程 为 一 同


线 为 l若 过 F且 垂 直 于 轴 的 弦 AB 的 长 等 于 F 到 l的距 , 离 , 该椭 圆的离心率. 求
解 : 陶 1 过 A 作 AC上 l 如 , 于
东 生
C, 由 题 意 知 I 则 ACl I — ABl ,
又 ‘ ABI 2 AFI . 由 椭 圆 { 一 l ,‘ .
劂 锥 曲线 的 定 义 揭 示 _它 们 的 几 何 本 质 属 性 , 是 推 导 r 它
f x( ≤ x< 3 , 4 O )

方 程 或 性 质 的依 据 , 是 解 题 常 用 的 一 把 钥 匙 . 用 圆 锥 曲线 也 利
的定 义 解 题 能 够 捕 捉 题 设 信 息 同 有 的 本 质 属 性 , 时 能 达 到 有
‘ .
… …… … …_ 。
。 DI Fl C A E B ,
f Bl A ’ ,
例2 知 (。 B ,在 圆 2 寺一 内M 已 点A4 ) (2 椭 + 2 l , ,和'2 )

圆锥曲线的综合问题课件

圆锥曲线的综合问题课件

圆锥曲线在生活中的应用和价值
展望未来研究方向
探索圆锥曲线在各个领域的应用前景
关注圆锥曲线研究的最新进展和趋势
深入研究圆锥曲线的性质和几何特征
探讨圆锥曲线与其他数学分支的联系与融合
汇报人:
感谢观看
立体与圆锥曲线的交点求解方法
典型例题的解析与讨论
立体与圆锥曲线的最值问题
定义:最值问题是指求解某个函数在一定范围内的最大值或最小值
解题方法:常用的解题方法有代数法、几何法、三角法等
注意事项:在解题过程中需要注意函数的定义域、取值范围等限制条件
分类:根据不同的分类标准,可以分为不同的类型
06
圆锥曲线在实际问题中的应用
椭圆
双曲线
抛物线
圆锥曲线的一般方程
03
圆锥曲线与直线的综合问题
直线与圆锥曲线的关系
直线与圆锥曲线的基本性质
直线与圆锥曲线的位置关系
直线与圆锥曲线的交点求解
直线与圆锥曲线的综合应用
直线与圆锥曲线的交点问题
直线与圆锥曲线的基本性质
直线与圆锥曲线的交点求解方法
直线与圆锥曲线交点的应用
直线与圆锥曲线交点问题的注意事项
,a click to unlimited possibilities
圆锥曲线的综合问题课件
目录
01
添加目录标题
02
圆锥曲线的定义和性质
03
圆锥曲线与直线的综合问题
04
圆锥曲线与平面的综合问题
05
圆锥曲线与立体的综合问题06圆锥来自线在实际问题中的应用07
总结与展望
01
添加章节标题
02
圆锥曲线的定义和性质
直线与圆锥曲线的最值问题

用圆锥曲线定义解决高考解析几何问题

用圆锥曲线定义解决高考解析几何问题
于发 展学 生 的创 新思 维 能力 .
2 + 1, 2:+ 1 2‘+ 1 2 + 1. + 1, 2 2。+ 1
故 知 6小 时 后 细 胞 存 活 2 +1 5个 . =6
三 、 炼 方 法 , 拓 思 路 , 化 运 用 提 开 强

通 过 问题 设 计 . 杨 辉 三 角 去 审 视 、 用 提
到 线 = 丢的 离 准 一 距
分别是 d 、 1 6 由 ,

勾 股定 理 , 路清 晰 , 算简 便 , 较解 法 1简单. 思 运 远 例 2 ( 3年上 海题 ) 9 动点 P到直 线 +4= 0 的距离 减去 它 到 M( , ) 2 0 的距离 之 差 等 于 2, 点 则
例 5 一 条信 息 , 一 人 得 知 后 用 一 小 时 将 若 信 息传 给两 个 人 , 两 个人 又用 一 小 时 各 传 给 未 这 知此 信 息 的另 两个 人 , 此 下去 , 由 要传 遍 一 个 1 0 0
万人 口的城 市 , 要 的时 间约 为 ( ) 需 .
( 三 个 月 A) ( 1 C)0天 ( 一 个 月 B) ( 2 J时 D)0/ 、



解 法 2 ‘ (I F —l 1 ! a . P I ‘ I J p ) =4 =4 由勾股 定 理得
I PF I !+ I I

解 法 1 由 双 曲 线 方 程 知 Ⅱ=2 b . , =1
‘ . .
! =( c : 2 , 2) 0
c=±3- 此 l j ! = - , 因 ,, l 2 3,
维普资讯
20 0 2年 第 8期
结 论 . 不 仅 使 学 生 的 双 基 得 有 效 的训 练 . 有 助 这 还

高三数学一轮复习圆锥曲线的综合问题

高三数学一轮复习圆锥曲线的综合问题

备考例题 3
已知
F1,F2
为椭圆x2+y2=1(a>b>0)的左、右焦点,A a2 b2
是椭圆上位于第一象限内的一点,点
B
也在椭圆上,且满足O→A+O→B=
0(O 为坐标原点),且A→F2·F→1F2=0,若椭圆的离心率等于 2. 2
(1)求直线 AB 的方程;
(2)若△ABF2 的面积为 4 2,求椭圆的方程;
则 P 到直线 y= 2x 的距离为 2
|2
2cosθ-2 6
2sinθ|=4 3
6|cos(θ+π)|≤4 43
6<4,故椭圆上不存在点 M 使△MAB 面积为 8
3.
2
题型四
圆锥曲线与其他知识交汇的问 题
1-ky0-1+ky0
∴kEF=yxEE- -yxFF=(1-kky
-k 0)2-(1+ky
0)2
k2
k2
2
= k =- 1 (定值), -4ky0 2y0
k2 所以直线 EF 的斜率为定值.
题型二 最值与范围问题
①正确理解圆锥曲线的定义、标 思维提 准方程;
示 ②联立方程组,对有关参数进行 讨论.
[解] (1)∵F0(c,0),F1(0, b2-c2),F2(0,- b2-c2),
∴|F0F1|= (b2-c2)+c2=b=1,
|F1F2|=2 b2-c2=1⇒c2=3, 4
于是 a=1 (x≥0) 7
所求“果圆”的方程为 y2+4x2=1 (x≤0)
.
m2 m2-1
(2)设 Q(x1,y1), ∵P(m,y0),P→F=λF→Q,
2
1-m=λ(x1-1)
∴2

-y0=λy1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巧用圆锥曲线的概念解几何综合题-中学数学论文
巧用圆锥曲线的概念解几何综合题
张烊
(句容市实验高级中学,江苏镇江212400)
摘要:立体几何在高中数学教程中分为立体几何初步(苏教版必修2)和空间向量与立体几何(苏教版选修2-1)两部分内容,立体几何初步主要内容为空间几何体和点、线、面之间的位置关系;空间向量与立体几何主要内容为空间向量的概念与运算以及用空间向量解决空间中的线面位置关系的判定与空间角的计算问题。

本文通过几道例题巧用圆锥曲线的概念解几何综合题。

关键词:高中数学;圆锥曲线的概念;解几何综合题;举例
中图分类号:G633文献标识码:A文章编号:1005-6351(2013)-04-0076-01 我们知道立体几何与解析几何的综合应该为空间解析几何,即通过建立空间直角坐标系,用坐标和向量来研究空间中的点、线、面的位置关系与度量关系,这些却不在高中数学教程之内。

解:P的轨迹为以B1为焦点,以直线CC1为准线的抛物线。

通过以上4道例题可见,立体几何与平面解析几何的综合题虽然不能代表高考的热点,甚至给人的感觉好像是“边缘问题”,但它充分体现了知识点的交汇,借助于对立体几何的空间想象,巧用圆锥曲线的概念解题.通过对以上问题的探索让学生经历有关概念的概括过程、定理的发现和推导过程、应用数学解决问题的思考过程,真正体现了新课程改革的“三维目标”,即让学生在数学学习的过程中,打好坚实的“双基”,学会“数学地思维”,认识数学的科学、人文价值,养成
理性精神。

相关文档
最新文档