系统辨识之经典辨识法

合集下载

系统辨识方法

系统辨识方法

系统辨识方学习总结一.系统辨识的定义关于系统辨识的定义,Zadeh是这样提出的:“系统辨识就是在输入和输出数据观测的基础上,在指定的一组模型类中确定一个与所测系统等价的模型”。

L.Ljung也给“辨识即是按规定准则在一类模型中选择一个与数据拟合得最好的模型。

出了一个定义:二.系统描述的数学模型按照系统分析的定义,数学模型可以分为时间域和频率域两种。

经典控制理论中微分方程和现代控制方法中的状态空间方程都是属于时域的范畴,离散模型中的差分方程和离散状态空间方程也如此。

一般在经典控制论中采用频域传递函数建模,而在现代控制论中则采用时域状态空间方程建模。

三.系统辨识的步骤与内容(1)先验知识与明确辨识目的这一步为执行辨识任务提供尽可能多的信息。

首先从各个方面尽量的了解待辨识的系统,例如系统飞工作过程,运行条件,噪声的强弱及其性质,支配系统行为的机理等。

对辨识目的的了解,常能提供模型类型、模型精度和辨识方法的约束。

(2)试验设计试验设计包括扰动信号的选择,采样方法和间隔的决定,采样区段(采样数据长度的设计)以及辨识方式(离线、在线及开环、闭环等的考虑)等。

主要涉及以下两个问题,扰动信号的选择和采样方法和采样间隔(3)模型结构的确定模型类型和结构的选定是决定建立数学模型质量的关键性的一步,与建模的目的,对所辨识系统的眼前知识的掌握程度密切相关。

为了讨论模型和类型和结构的选择,引入模型集合的概念,利用它来代替被识系统的所有可能的模型称为模型群。

所谓模型结构的选定,就是在指定的一类模型中,选择出具有一定结构参数的模型M。

在单输入单输出系统的情况下,系统模型结构就只是模型的阶次。

当具有一定阶次的模型的所有参数都确定时,就得到特定的系统模型M,这就是所需要的数学模型。

(4)模型参数的估计参数模型的类型和结构选定以后,下一步是对模型中的未知参数进行估计,这个阶段就称为模型参数估计。

(5)模型的验证一个系统的模型被识别出来以后,是否可以接受和利用,它在多大程度上反映出被识别系统的特性,这是必须经过验证的。

系统辨识经典辨识方法

系统辨识经典辨识方法

经典辨识方法报告1. 面积法辨识原理分子多项式为1的系统 11)(111++++=--s a sa s a s G n n nn Λ……………………………………………()由于系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。

在求得系统的放大倍数K 后,要先得到无因次阶跃响应y(t)(设τ=0)。

大多数自衡的工业过程对象的y(t)可以用下式描述来近似1)()()()(a 111=++++--t y dtt dy a dt t y d a dt t y d n n n nK ……………………………() 面积法原则上可以求出n 为任意阶的各系数。

以n=3为例,注意到1|)(,0|)(d |)(d |)(d 23====∞→∞→∞→∞→t t t t t y dtt y dt t y dt t y …………………………() 将式()的y(t)项移至右边,在[0,t]上积分,得⎰-=++t dt t y t y a dtt dy a dt t y d a 01223)](1[)()()(…………………………………() 定义⎰-=tdt t y t F 01)](1[)(……………………………………………………………()则由式()给出的条件可知,在t →∞⎰∞-=01)](1[a dt t y ……………………………………………………………()将式a 1y(t)移到等式右边,定义 )()]()([)()(a 201123t F dt t y a t F t y a dtt dy t =-=+⎰…………………………………()利用初始条件()当t →∞时)(a 22∞=F …………………………………………………………………… ()同理有a 3=F 3(∞)以此类推,若n ≥2,有a n =F n (∞)分子、分母分别为m 阶和n 阶多项式的系统当传递函数的形式如下所示时111111)()(11)(u h K m n s a s a s a s b s b s b K s G n n n n m m m m ∞=≥++++++++=----ΛΛ…………………………………定义∑∞=----+=++++++++==1111111111)()(1)(i ii m m m m n n nn s c s b s b s b s a s a s a s P s P Ks G ΛΛ………………………………由于⎰∞--=-0**)](1[)](1[dte t h t h L st …………………………………………则)](1[*t h -的Laplace 变换为: ∑∑∞=∞=-+=-=-111*1)(11)](1[i iii i i s C sC s sP s t h L ……………………………………定义一阶面积1A 为:11110011lim )](*1[lim )](*1[c sC sC t h L dt t h A i ii i i i s s =+=-=-=∑∑⎰∞=∞=-→∞→………令 )1(1)]([1*1s c s t h L +=……………………………………………………………定义二阶面积为:2122**0012)1)(1()]()([limc s c s c sc dtd h h A i i i i i i is t=++=-=∑∑⎰⎰∞=∞=-→∞τττ…同理,令 )...1(1)]([11221*1---++++=i i i s c s c s c s t h L ……………………………………定义i 阶面积为i i c A =。

系统辨识基础--经典辨识方法

系统辨识基础--经典辨识方法

其中
Lh i 1t s1c1 sc2s2 1 ci 1 si 1
h
9
进一步利用下式
e s t 1 s ts2 t2 si ti
1 ! 2 !
i!
可得 得
L1h*t 1h*testdt Misi
0
i0
Mi
0
1h*t
ti
i!
dt
1Aisi1Misi11
i1 i0
a4 4 4.1207
b1 7.5 7.50402
b2 17.5 17.5233
h
15
4.3 脉冲响应法
ut
yt
1 ut
过 程 yt
0
t
0
t
gk1hkhk1
T0
h
16
ut
过程
yt
gt,0
模型参数 调整机构
~yt +
-
模型
gt,
图4.6 “学习法”原理
h
17
由脉冲响应求过程的传递函数-一阶过程
条件
增益K
a1
噪声 情况
无测量噪 声
有测量噪 声(方差 为0.01)
采样时间 4秒 1.5秒
1.5秒
数据长度 12 30
30
1.0 0.999984 0.999965
1.00204
10.0 11.7097 10.2171
11.5776
a2
6.5 6.52053 6.49897
6.47451
参数
真值 估 计 值
h
14
例 4.2
G s4s41 1s.5 5 3 7s 21 .7 5 7 .s 52 s 7 1.5s1

现代控制理论第13章线性系统的经典辨识方法

现代控制理论第13章线性系统的经典辨识方法

2
第一节 脉冲响应的确定方法――相关法
1
伪随机测试信号是六十年代发展起来的一种用于系统辨识的测试信号,这咱信号的抗干扰性能强;为获得同样的信号量,对系统正常运行的干扰程度比其他测试信号低。目前已有用来做这种试验的专用设备。如果系统设备有数字计算机在线工作,伪随机测试信号可用计算机产生。实践证明,这是一种很有效的方法,特别对过渡过程时间长的系统,优点更为突出。
1
(13-2)
2
设 ,则

(13-3)
根据维纳-霍夫方程可得 如果输入 是白噪声,则可很容易求脉冲响应函数 。这时 的自相关函数为
01
03
02
这说明,对于白噪声输入, 与 只差一个常数倍。这样,只要记录 与 之值,并计算它们的互相关函数 ,可立即求得脉冲响应函数 。用白噪声辨识系统的模型方块图如图13-2所示。
概率性质2:在序列中总的游程个数平均为 个,1的游程与-1的游程大约各占一半。即大约为个 (N为奇数,表示序列的个数)。
概率性质1:在序列中1出现的次数与-1出现的次数几乎相等。
概率性质3:对于离散二位式无穷随机序列 ,它的相关函数为
01
被辨识系统的数学模型,可以分成参数和非参数模型两类。
02
参数模型 是由传递函数、微分方程或差分方程表示的数学模型。如果这些模型的阶和系数都是已知的,则数学模型是确定的。采用理论推导的方法得到的数学模型一定是参数模型。建立系统模型的工作,就是在一定的模型结构条件下,确定它的各个参数。因此,系统辨识的任务就是选定一个与实际系统相接近的数学模型,选定模型的阶,然后根据输入和输出数据,用最好的估计方法确定模型中的参数。
3
1
(13-8)
3
2

系统辨识课件方崇智

系统辨识课件方崇智

e
ˆ (假设的数学关系) f
系统的 实际输 出
(1)数学模型
• 数学模型和真实系统的区别
不可测干扰 可测 输入
u, d , f z
可测 输出
可测 输入
e
综合误差
ˆ (假设的数学关系) f
ˆ , e拟合u, z关系 u, z f
可测 输出
(1)数学模型
• 数学模型的两类形式及其用途
可测 输入
第6章 模型阶次辨识 内 容:Hankel矩阵法、F-Test定阶法。
第7章 系统辨识在实际中注意的问题
参考书:
1.方崇智、萧德云编著,《过程辨识》,清华大学出版社,北京 2.李言俊,张科编著,《系统辨识理论及应用》,国防工业出版社,北京 3.蔡季冰编著,《系统辨识》,北京理工大学出版社,北京
预修课程:自动控制原理,概率统计与随机过程
e
综合误差
可测 输出 •系统分析 •系统设计
ˆ (假设的数学关系) f
ˆ f
•预测(预测控制) •性能监测与故障诊断 •仿真
ˆ z
•在线估计和软测量 •模型评价与系统辨识
(1)数学模型
• 数学模型的近似性和外特性等价
u u
d f
e ˆ f u
z
近似性
ˆ f
ˆ z
d
u u
从黑箱角度出 发,外特性等价 (统计意义)
(1)设计辨识实验,获取实验数据
数据集是辨识的三要素之一
min J fˆ , K ( z (1)

z ( L), u(1)
u( L), )
数据集性质→影响辨识结果,u →数据集,因 此要设计辨识实验(重点设计u)
(1)设计辨识实验,获取实验数据

系统辨识的经典方法

系统辨识的经典方法

⎧T
⎨⎩τ
= 2(t2 − t1) = 2t1 − t2
对于以上结果,也可在
⎧⎪⎨tt34
≤τ,
= 0.8T

,
⎪⎩t5 = 2T +τ ,
y(t3 ) = 0 y(t4 ) = 0.55 y(t5 ) = 0.87
这几点上对实际曲线的拟合精度进行检验。
系统辨识的经典方法
频率响应法
频率响应法-1
; 阶跃响应法辨识原理
¾ 在系统上施加一个阶跃扰动信号,并测定出对象的响应随时间 而变化的曲线,然后根据该响应曲线,通过图解法而不是通过 寻求其解析公式的方法来求出系统的传递函数,这就是阶跃响 应法系统辨识。
¾ 如果系统不含积分环节,则在阶跃输入下,系统的输出将渐进 于一新的稳定状态,称系统具有自平衡特性,或自衡对象。
+ b1s + a1s
+ +
b0 a0
,
n>m
¾ 对应的频率特性可写成:
G(
jω)
=
bm ( an (
jω)m +" + b2 ( jω)2 + b1( jω)n +" + a2 ( jω)2 + a1(
jω) + b0 jω) + a0
=
(b0 − b2ω 2 (a0 − a2ω 2
+ b4ω 4 + a4ω 4
系统辨识的经典方法
肖志云
内蒙古工业大学信息工程学院自动化系
系统辨识的经典方法
1
引言
2
阶跃响应法
3
频率响应法
4
相关分析法

系统辨识课件-经典的辨识方法

系统辨识课件-经典的辨识方法

ˆ (t ) Ru (t )dt Ruz ( ) g
0

此为辨识过程脉冲响应的理论依据
2 Ru ( ) u ( ) 白噪声输入时 ˆ 1 g ( ) Ruz ( ) 2 u
4.5.2 用M序列作输入信号的离散算法
第4章 经典的辨识方法
4.1 引言 ● 辨识方法的分类 ▲ 经典的辨识方法 (Classical Identification) :首先获得系统的非参数模型(频 率响应,脉冲响应,阶跃响应),通过特定方法,将非参数模型转化成参数 模型 (传递函数)。 ① 阶跃响应辨识方法 (Step Response Identification) ② 脉冲响应辨识方法 (Impulse Response Identification) ③ 频率响应辨识方法 (Frequency Response Identification) ④ 相关分析辨识方法 (Correlation Analysis Identification) ⑤ 谱分析辨识方法 (Spectral Analysis Identification) ▲ 现代的辨识方法 (Modern Identification):假定一种模型结构,通过模型与过 程之间的误差准则来确定模型的结构参数)。 ① 最小二乘类辨识方法 (Least Square Identification) ② 梯度校正辨识方法 (Gradient Correction Identification) ③概率逼近辨识方法(Probability Approximation Identification) 经典的辨识方法 1)首先得到系统的非参数模型; 2)由非参数模型转换成参数模型。
K 1 lim h1 (t )
hr (t ) [ K r 1 hr 1 ( )]d

系统辨识方法

系统辨识方法

新疆大学电气工程学院
3/13/2010
白噪声
白噪声是一种均值为零、谱密度为非零常数 的平稳随机过程。
自相关函数
Rw
(
)
2
(
)
0
0 0
谱密度 Sw (w) 2
以白噪声为输入,最小二乘辨识是无偏的
有色噪声可利用白噪声通过一个成形滤波器获 得白噪声序列的产生方法
新疆大学电气工程学院
3/13/2010
n(t)
U(t)
y(t) g(t)
z(t)
Ruz ( ) g(t)Ruu ( t)dt
0
新疆大学电气工程学院
3/13/2010
Wiener-Hopf方程表明:当系统的输入是原输入信号的自相 关函数时,系统的输出是原输入信号和它对应的输出信号的互相 关函数。
Wiener-Hopf方程是一个积分方程,要想解出脉冲响应的是很 困难的,但是当Ruu等于冲激函数时, Wiener-Hopf化简为:
C1
CP
C2
C3
4级M序列
C4
M序列
新疆大学电气工程学院
3/13/2010
最小二乘批处理方法
差分方程:
z(k)+a1z(k-1)+...+anz(k-n) b1u(k 1) b2u(k 2) ... bnu(k n) e(k)
z(k)=-a1z(k-1)-...-a n z(k-n) +b1u(k 1) b2u(k 2) ... bnu(k n) e(k)
0t t
归一化:
y(t)
0
t
(1 e T )
y(t)
1.0
0 t 0.632
t

系统辨识

系统辨识

题目:系统模型如下:)()()()()()(111t e zC t u zB t y zA ---+=其中:)(t e 为正态分布的独立序列,零均值,方差为1。

式中:21117.05.11)()(----+-==zzzC zA2115.00.1)(---+=zzzB要求如下:一、产生辨识数据;二、用辨识算法估计参数、构造模型(包括用最小二乘估计算法及一种适用有色噪声的辨识方法);三、对模型与误差进行分析。

解答: 一、产生辨识数据在系统辨识过程中,需要用到的数据包括系统的输入输出数据,以及针对具体模型产生的噪声序列。

本文用M 序列做输入,并根据题目要求,产生正态分布的白噪声序列和有色噪声序列,并通过题目设定的模型产生输出数据,从而得到全部的辨识数据。

1.1 M 序列的产生用移位寄存器的方法产生M 序列,用M 序列作为输入,作为辨识系统的输入数据,两次产生M 序列的方法见附录中标示,将两次辨识产生的M 序列结果分别表示在图1.1和图1.2中。

k取值图1.1 最小二乘递推辨识中的M 序列k取值图1.2 增广最小二乘递推辨识中的M 序列二者的稀疏差异是因为两种方法在辨识过程中需要的数据量有所不同,所以在实验中产生的M 序列长度有差异。

1.2 噪声序列的产生根据题目要求,分别产生正态分布的独立序列作为白噪声序列)(t e ,再根据题目中给出的公式构造有色噪声)()(1t e z C -,公式如下:2117.05.11)(---+-=zzzC通过MATLAB 中函数randn 的调用,并通过运算,将构造两种噪声序列表示在图1.3和图1.4中。

k噪声值图1.3 最小二乘递推辨识中的噪声序列k噪声值噪声序列图1.4 增广最小二乘递推辨识中的噪声序列同样,二者的稀疏差异是因为两种方法在辨识过程中需要的数据量有所不同,所以在实验中产生的噪声序列长度有差异。

1.3 输出数据的产生通过题目给出的系统表达式,将前面的M 序列做输入,加之以噪声序列,此处取前两次的数据输出为0,很容易通过程序运算得到输出数据。

系统辨识讲义

系统辨识讲义

一个极简单的参数方法例子
我们测得0—N采样时刻的输入输出数据,即
u (0), u (1)," , u ( N − 1), u ( N ) y (0), y (1)," , y ( N − 1), y ( N )
假定系统的模型属于如下的模型类:
y ( k ) + ay ( k − 1) = bu (k − 1) + v(k )
k =1
N
∂V (θ ) N = ∑ 2ay 2 (k − 1) + 2 y (k ) y (k − 1) − 2by (k − 1)u (k − 1) ∂a k =1 ∂V (θ ) N = ∑ 2bu 2 (k − 1) − 2 y (k )u (k − 1) − 2ay (k − 1)u (k − 1) ∂b k 等:子空间辨识
1990年代,为了克服PEM针对多变量系统辨识
时需要进行非线性优化,以及IV不能同时辨识 出噪声模型的缺点。Bart De Moor, Verhaegen 等提出了针对多变量系统的subspace identification methods。该类方法不是基于优化 某个criterion,主要用到矩阵的奇异值分解, 无需非线性优化,因而计算量较小。
1.2 模型
数学模型是用来描述系统行为的数学语
言。 非线性系统的数学模型是非线性状态方 程和输出方程。线性系统的数学模型可 以有多种相互等价的形式:状态空间方 程、传递函数、阶跃响应、差分方程等。
扰 动 输入
系统
输出
1.3 建模的两大类方法
机理分析法(first principles modeling)或称为白
何求取参数估计值。least-squares, prediction error, instrumental variable 参数估计算法的统计性质:无偏性、一致性。 如何验证所得模型的有效性?如何选择模型阶数?

系统辨识的基本概念

系统辨识的基本概念

系统正确描述系统动态性能的数学摸型——就成了自 动控制 理论 和工程实践的重要组成部分。
系统辨识就是从对系统进行观察和测量所获得的信
息重提取系统数学模型的一种理论和方法。日渐成熟。
建模——成为各门学科的共同语言。
系统辨识的基本概念
2
1.1 系统和模型
1.1.1 系统
(system/process)
到95%时的调节时间。
26
系统辨识的基本概念
4、数据的零值化处理
•差分法(Isermann,1981)
•平均法
•剔除高频成分(一般采用低通滤波器)
5、模型结构辨识
模型验前结构的假定、模型结构参数的确定。
6、模型参数辨识(本课程的主要内容)
当模型结构确定后,进行的就是模型参数辨识
7、模型检验
模型检验是辨识不可缺少的步骤。常用的有“白色度”检验
18
系统辨识的基本概念
● 误差准则
L
J() f ((k))
k1
也叫等价准则、误差准则、损失函数或准则函数。
用的最多的是: f((k))2(k)
● 输出误差准则: ( k ) z ( k ) z m ( k ) z ( k )[ u ( k )]
● 输入误差准则: ( k ) u ( k ) u m ( k ) u ( k ) 1 [z ( k )]
12
系统辨识的基本概念
又置:
logP(k) logV (k) logc

y(k) z(k)
logP(k),1 logV (k),2
logc
h(k) [z(k),1]t
[1,2]
则y(k和 ) h(k)都是可观测的变量应,的对最小二乘格式

现代控制工程-第8章系统辨识

现代控制工程-第8章系统辨识

航空航天领域
总结词
系统辨识在航空航天领域中具有重要应用价值,主要用于飞行器控制、导航和监测系统 的设计和改进。
详细描述
通过对飞行器动力学特性进行系统辨识,可以精确建模飞行器的动态行为,为飞行控制 系统提供准确的数学模型。同时,系统辨识技术还可以用于导航和监测系统的误差分析
和修正,提高航空航天器的安全性和精度。
感谢您的观看
THANKS
环境监测系统
总结词
系统辨识在环境监测系统中应用广泛,主要用于建立环 境参数的数学模型,实现环境质量的实时监测和预警。
详细描述
通过系统辨识技术对环境监测数据进行处理和分析,可 以精确获取环境参数的变化趋势和规律,为环境治理和 保护提供科学依据。同时,系统辨识技术还可以用于建 立环境质量预警系统,及时发现环境异常情况并采取应 对措施,保障生态安全和人类健康。
模糊逻辑系统辨识
模糊逻辑系统辨识是基于模糊逻辑理论的系统 辨识方法。它通过建立模糊逻辑模型来描述系 统的动态行为,能够处理不确定性和模糊性。
模糊逻辑系统辨识的优势在于能够处理语言变 量和不确定信息,同时具有较强的推理能力和 鲁棒性。
然而,模糊逻辑系统辨识也存在一些挑战,例 如隶属度函数的选择和模糊规则的制定等。
提高控制性能
准确的数学模型有助于设计出性能更优的控制策略。
预测与优化
通过系统辨识,可以对未来系统行为进行预测,并优 化系统性能。
故障诊断
系统辨识可用于诊断系统故障,提高系统的可靠性和 安全性。
系统辨识的基本步骤
01
数据采集
采集系统的输入和输出数据,确保 数据的准确性和完整性。
模型建立
根据处理后的数据,选择合适的数 学模型进行建模。

Matlab的系统辨识和参数估计方法

Matlab的系统辨识和参数估计方法

Matlab的系统辨识和参数估计方法一、引言Matlab是一种强大的计算机软件,被广泛应用于各个领域的科学研究和工程实践。

在信号处理、控制系统设计等领域,系统的辨识和参数估计是一项重要的任务。

本文将介绍Matlab中常用的系统辨识和参数估计方法,包括参数辨识、频域辨识、时域辨识等方面。

同时,还将探讨这些方法的优势和局限性。

二、参数辨识参数辨识是一种推断系统输入和输出之间关系的方法。

Matlab提供了多种参数辨识工具箱,例如System Identification Toolbox。

其中,最常用的方法包括最小二乘法、极大似然法、递归最小二乘法等。

最小二乘法是一种经典的参数估计方法,通过最小化测量值与预测值之间的差异来估计参数。

Matlab中的lsqcurvefit函数可以用于最小二乘拟合曲线。

例如,通过拟合一组数据点得到一个最优的曲线,可以估计曲线的参数。

极大似然法是一种基于概率统计的参数估计方法,通过最大化观测数据出现的似然函数来估计参数。

Matlab中的mle函数可以用于极大似然估计。

例如,在某个信号的概率密度函数已知的情况下,可以通过观测到的样本来估计概率密度函数的参数。

递归最小二乘法是一种递归更新参数的方法,可以在随时间变化的系统中实时地进行参数估计。

Matlab中的rls函数可以用于递归最小二乘估计。

例如,在自适应滤波中,可以通过递归最小二乘法来实时估计信号的参数。

三、频域辨识频域辨识是一种基于频谱分析的参数估计方法,可以在频率域中确定系统的特性。

Matlab提供了多种频域辨识工具箱,例如System Identification Toolbox和Signal Processing Toolbox。

其中,最常用的方法包括功率谱密度估计、自相关函数法、协方差法等。

功率谱密度估计是一种常用的频域参数估计方法,可以估计信号在不同频率上的能量分布。

Matlab中的pwelch函数可以用于功率谱密度估计。

系统辨识与建模

系统辨识与建模

4. 现代控制(Modern Control) (1950- )
苏联Pontryagin发表“最优过程数学理论”,提出极大值原理 (1956) 美国Bellman在RAND Coporation数学部的支持下,发表著名的 Dynamic Programming,建立最优控制的基础(1957)
70年代的自校正控制和自适应控制; 80年代针对系统不确定状况的鲁棒控制; 90年代基于智能信息处理的智能控制理论。
Watt用离心式调速器控 制蒸汽机的速度(1788年)
中国,埃及和巴比伦 出现自动计时漏壶
上壶滴水到下面的受水 壶,液面使浮箭升起以
张衡发明水运浑象,自 动测量地震的候风地动 仪(132年) MIT Radiation Laboratory研 究的SCR-584雷达控制系统
阿波罗宇宙飞船要成功登上月球, 必需要求飞船为软着陆,即飞船到达月 球表面的向下速度为零,飞船运行过程 中燃料消耗最小,飞行时间最短等等 (最优控制)
战机追击中,敌机飞行轨迹, 我机是无法预知的,我机的飞行控 制系统能准确迅速地跟踪敌机将敌 机击毁(自适应跟踪控制)。
美国F-22隐形战斗机在执行任务时 要避开敌方雷达搜索,同时根据地形变 化进行控制,具有自学习的功能(智能 控制)。
4.


渊源


根轨迹法和频率域法为代表的经典控制理论已不能胜 任将控制技术提到更高的水平的要求。 状态空间法、动态规划以及极大值原理为代表的现代 控制理论发展的需要。 数字计算机的广泛使用,为辨识系统所需进行的计算 提供了有效的工具,使辨识算法的实现成为可能。 系统工程主要是用定量方法来研究大系统的一门学科, 其基础工作也是建立数学模型。 生物计量学以及经济计量学等都要用到系统辨识技术。 它们有一套自己的辨识和估计的模式。 信息理论中很重要的一个内容是滤波,滤波的前提也 需要先构成模型。 在许多科学和工程领域内,能否定量分析和建立所研 究问题的数学模型,已成为衡量该领域认识水平的一 个尺度。

系统辨识经典辨识方法

系统辨识经典辨识方法

经典辨识方法报告1. 面积法辨识原理分子多项式为1的系统 11)(111++++=--s a s a s a s G n n n n ……………………………………………()由于系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。

在求得系统的放大倍数K 后,要先得到无因次阶跃响应y(t)(设τ=0)。

大多数自衡的工业过程对象的y(t)可以用下式描述来近似1)()()()(a 111=++++--t y dtt dy a dt t y d a dt t y d n n n n……………………………() 面积法原则上可以求出n 为任意阶的各系数。

以n=3为例,注意到1|)(,0|)(d |)(d |)(d 23====∞→∞→∞→∞→t t t t t y dtt y dt t y dt t y …………………………() 将式()的y(t)项移至右边,在[0,t]上积分,得⎰-=++t dt t y t y a dtt dy a dt t y d a 01223)](1[)()()(…………………………………() 定义⎰-=tdt t y t F 01)](1[)(……………………………………………………………()则由式()给出的条件可知,在t →∞⎰∞-=01)](1[a dt t y ……………………………………………………………()将式a 1y(t)移到等式右边,定义)()]()([)()(a 201123t F dt t y a t F t y a dtt dy t =-=+⎰…………………………………() 利用初始条件()当t →∞时)(a 22∞=F …………………………………………………………………… ()同理有a 3=F 3(∞)以此类推,若n ≥2,有a n =F n (∞) 分子、分母分别为m 阶和n 阶多项式的系统当传递函数的形式如下所示时111111)()(11)(u h K m n s a s a s a s b s b s b K s G n n n n m m m m ∞=≥++++++++=---- …………………………………定义∑∞=----+=++++++++==1111111111)()(1)(i iim m m m n n nn s c s b s b s b s a s a s a s P s P Ks G ………………………………由于⎰∞--=-0**)](1[)](1[dte t h t h L st …………………………………………则)](1[*t h -的Laplace 变换为: ∑∑∞=∞=-+=-=-111*1)(11)](1[i iii i i s C sC s sP s t h L ……………………………………定义一阶面积1A 为:11110011lim )](*1[lim )](*1[c s C sC t h L dt t h A i ii i i i s s =+=-=-=∑∑⎰∞=∞=-→∞→………令)1(1)]([1*1s c s t h L +=……………………………………………………………定义二阶面积为:2122**0012)1)(1()]()([limc s c s c sc dtd h h A i ii i i i is t=++=-=∑∑⎰⎰∞=∞=-→∞τττ…同理,令 )...1(1)]([11221*1---++++=i i i s c s c s c s t h L ……………………………………定义i 阶面积为i i c A =。

系统辨识之经典辨识法

系统辨识之经典辨识法

系统辨识作业一学院信息科学与工程学院专业控制科学与工程班级控制二班姓名学号2018 年 11 月系统辨识所谓辨识就是通过测取研究对象在认为输入作用的输出响应,或正常运行时的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。

辨识的内容主要包括四个方面:①实验设计;②模型结构辨识;③模型参数辨识;④模型检验。

辨识的一般步骤:根据辨识目的,利用先验知识,初步确定模型结构;采集数据;然后进行模型参数和结构辨识;最终验证获得的最终模型。

根据辨识方法所涉及的模型形式来说,辨识方法可以分为两类:一类是非参数模型辨识方法,另一类是参数模型辨识方法。

其中,非参数模型辨识方法又称为经典的辨识方法,它主要获得的是模型是非参数模型。

在假定过程是线性的前提下,不必事先确定模型的具体结构,广泛适用于一些复杂的过程。

经典辨识方法有很多,其中包括阶跃响应法、脉冲响应法、相关分析法和普分析法等等,本次实验所采用的辨识方法为阶跃响应法和脉冲响应法。

1.阶跃响应法阶跃响应法是一种常用非参数模型辨识方法。

常用的方法有近似法、半对数法、切线法、两点法和面积法等。

本次作业采用面积法求传递函数。

1.1面积法①当系统的传递函数无零点时,即系统传递函数如下:G(S) = a a a a+a a−1a a1−1+⋯+a1a+1(1-1) 系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。

在求得系统的放大倍数K后,要得到无因次阶跃响应y(t)(设τ=0),其中y(t)用下式描述:a a a(a)a−1(a)a a aa a a aa (1-2) 面积法原则上可以求出n为任意阶的个系数。

以n为3为例。

有:a3a(a) a2a(a) aa(a){aa|a→∞ = aa|a→∞ = aa|a→∞ = 0a(a)|a→∞ = 1将式(1)中的y(t)移至右边,在[0,t]上积分,得a2a(a)a3 aa aa (1-4) 定义:a1(a) = ∫0a[1 − a(a)]aa (1-5) 由式(1-3)条件可知,当t→∞时,a aa (1-6)同理,定义a2aa (1-7)由式(1-,3)条件可知,当t→∞时,a aa (1-8)因此,可得a a(a) = ∫0a[a a−1(a) − a a−1a(a)] dt (1-9)a a= a a(∞) (1-10)②当系统的传递函数存在零点时,传递函数如下:=kG(s)b s mmn +ba s mn-1-1s mn-1-1 ++LL ++a sbs1+1+1,(n m)(1-11)1a s n +其中,K h= ( ) / U0定义1G(s)=KP(s)其中,P(s) = b sa s n mn ++ba s mn-1-1s mn-1-1++LL ++a sbs11 +1+1 = +1 i=1 C s i i(1-12)m根据[1−h*(t)]的Laplace变换,求出一阶面积A1,确定L[h(*1 t ]),并定义二阶面积A2 ,以此类推,得到i 阶面积A i 。

系统辨识之经典辨识法

系统辨识之经典辨识法

.系统辨识作业一学院信息科学与工程学院专业控制科学与工程班级控制二班姓名学号2018 年 11 月系统辨识所谓辨识就是通过测取研究对象在认为输入作用的输出响应,或正常运行时的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。

辨识的内容主要包括四个方面:①实验设计;②模型结构辨识;③模型参数辨识;④模型检验。

辨识的一般步骤:根据辨识目的,利用先验知识,初步确定模型结构;采集数据;然后进行模型参数和结构辨识;最终验证获得的最终模型。

根据辨识方法所涉及的模型形式来说,辨识方法可以分为两类:一类是非参数模型辨识方法,另一类是参数模型辨识方法。

其中,非参数模型辨识方法又称为经典的辨识方法,它主要获得的是模型是非参数模型。

在假定过程是线性的前提下,不必事先确定模型的具体结构,广泛适用于一些复杂的过程。

经典辨识方法有很多,其中包括阶跃响应法、脉冲响应法、相关分析法和普分析法等等,本次实验所采用的辨识方法为阶跃响应法和脉冲响应法。

1.阶跃响应法阶跃响应法是一种常用非参数模型辨识方法。

常用的方法有近似法、半对数法、切线法、两点法和面积法等。

本次作业采用面积法求传递函数。

1.1面积法①当系统的传递函数无零点时,即系统传递函数如下:G(S) = a a a a+a a−1a a1−1+⋯+a1a+1(1-1) 系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。

在求得系统的放大倍数K后,要得到无因次阶跃响应y(t)(设τ=0),其中y(t)用下式描述:a a a(a)a−1(a)a a aa a a aa (1-2) 面积法原则上可以求出n为任意阶的个系数。

以n为3为例。

有:a3a(a) a2a(a) aa(a){aa|a→∞ = aa|a→∞ = aa|a→∞ = 0a(a)|a→∞ = 1将式(1)中的y(t)移至右边,在[0,t]上积分,得a2a(a)a3 aa aa (1-4) 定义:a1(a) = ∫0a[1 − a(a)]aa (1-5) 由式(1-3)条件可知,当t→∞时,a aa (1-6)同理,定义a2aa (1-7)由式(1-,3)条件可知,当t→∞时,a aa (1-8)因此,可得a a(a) = ∫0a[a a−1(a) − a a−1a(a)] dt (1-9)a a= a a(∞) (1-10)②当系统的传递函数存在零点时,传递函数如下:=kG(s)b s mmn +ba s mn-1-1s mn-1-1 ++LL ++a sbs1+1+1,(n m)(1-11)1a s n +其中,K h= ( ) / U0定义1G(s)=KP(s)其中,P(s) = b sa s n mn ++ba s mn-1-1s mn-1-1++LL ++a sbs11 +1+1 = +1 i=1 C s i i(1-12)m根据[1−h*(t)]的Laplace变换,求出一阶面积A1,确定L[h(*1 t ]),并定义二阶面积A2 ,以此类推,得到i 阶面积A i 。

系统辨识

系统辨识

B(Z 1 ) D(Z 1 ) U(k)+ (1)可占用存储量基石较多(2)对有色噪声参数估计 (K )。 A(Z 1 ) A(Z 1 )
有偏差具有收敛性(3)对未知的直流分量敏感 18 简述辅助变量法的模型结构及特点
ห้องสมุดไป่ตู้
B(Z 1 ) y(k)= U(k)+ e(k )(1)估计值是否一致(2)初态选取不合适就不可能收敛(3) A(Z 1 )
B(Z 1 ) B(Z 1 ) D(Z 1 ) U(k)+ . 辅助变量法: y ( k ) = U(k)+ ( K ) A(Z 1 ) A(Z 1 ) A(Z 1 ) B(Z 1 ) U(k)+e(k) A(Z 1 )
e(k) 。相关最小二乘法:y(k)=
4. 简述在系统中的阶次给定或已知的情况下,如何选择参数估计方法。 ①估计结果的性能包括模型精度和收敛性质。 ②计算能力指计算时间和存储量。 ③选择验前 假设验前因子 5 简述最小二乘法一次完成算法的缺陷。 ①占用内存大不适用于在线辨识。 ②数据量越多估计的精度就越高。 ③每增加一个观测值从 新计算 [ T ]1 。④如果出现 列相关就不能用该方法。 6 在经典辨识中,分别阐述自衡对象和非自衡对象的放大倍数,并说明主要参数的含义。 自衡放大倍数 K=
1.能够满足估计算法的假设条件。2、是否可以进一步降阶。 简答题 1. 说明模型的一些主要表现形式。 ①直觉模型:就是存储人脑中系统特性靠直觉控制系统变化。②物理模型:是实际系统缩小 复制品。③图表模型。④数学模型 2. 简述最小二乘参数估计值的统计性质 ①无偏性:用来衡量估计值是否围绕真值波动。②有效性:指一个算法方差如果是最小的我 们就说是最有效的。③一致性;就是以概规 1 收敛于真值。④渐进正态性 3. 分别写出增广最小二乘法、辅助变量法、相关最小二乘法的模型结构 增广最小二乘法:y(k)=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.系统辨识作业一学院信息科学与工程学院专业控制科学与工程班级控制二班姓名学号2018 年 11 月系统辨识所谓辨识就是通过测取研究对象在认为输入作用的输出响应,或正常运行时的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。

辨识的内容主要包括四个方面:①实验设计;②模型结构辨识;③模型参数辨识;④模型检验。

辨识的一般步骤:根据辨识目的,利用先验知识,初步确定模型结构;采集数据;然后进行模型参数和结构辨识;最终验证获得的最终模型。

根据辨识方法所涉及的模型形式来说,辨识方法可以分为两类:一类是非参数模型辨识方法,另一类是参数模型辨识方法。

其中,非参数模型辨识方法又称为经典的辨识方法,它主要获得的是模型是非参数模型。

在假定过程是线性的前提下,不必事先确定模型的具体结构,广泛适用于一些复杂的过程。

经典辨识方法有很多,其中包括阶跃响应法、脉冲响应法、相关分析法和普分析法等等,本次实验所采用的辨识方法为阶跃响应法和脉冲响应法。

1.阶跃响应法阶跃响应法是一种常用非参数模型辨识方法。

常用的方法有近似法、半对数法、切线法、两点法和面积法等。

本次作业采用面积法求传递函数。

1.1面积法①当系统的传递函数无零点时,即系统传递函数如下:G(S) = +−11−1+⋯+1+1(1-1) 系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。

在求得系统的放大倍数K后,要得到无因次阶跃响应y(t)(设τ=0),其中y(t)用下式描述:()−1()(1-2) 面积法原则上可以求出n为任意阶的个系数。

以n为3为例。

有:3() 2() (){|→∞=|→∞= |→∞= 0()|→∞= 1将式(1)中的y(t)移至右边,在[0,t]上积分,得2()3 (1-4) 定义:1() = ∫0[1 −()] (1-5) 由式(1-3)条件可知,当t→∞时,(1-6) 同理,定义2 (1-7)由式(1-,3)条件可知,当t→∞时,(1-8) 因此,可得() = ∫0[ −1() − −1()] dt (1-9)= (∞) (1-10)②当系统的传递函数存在零点时,传递函数如下:=kG(s)b s mmn +ba s mn-1-1s mn-1-1 ++LL ++a sbs11 +1+1,(n m)(1-a s n +其中,K h= ( ) / U0定义1G(s)=KP(s)其中,P(s) = b sa s n mn ++ba s mn-1-1s mn-1-1 ++LL ++a sbs11 +1+1 = +1 i=1 C s i i(1-12)m根据[1−h*(t)]的Laplace变换,求出一阶面积A1,确定L[h(*1 t ]),并定义二阶面积A2 ,以此类推,得到i 阶面积A i 。

进一步利用e−st 拉氏变换,得到L[1−h*(t ])=M s i i ,进而得到A i 的值:i=0Ai = 01−h*(t) (i 1)!−−t)i−1dt +tj−=20 A i−−j101−h*(t)−j!t) j dt(1-13) (根据A C i = i ,可得:+ −1 −1 + ⋯ + 1 + 1= (+ −1 −1 + ⋯ + 1 + 1)(1 + ∑∞=1 )。

比较上式两边s的各次幂,便可得到a, b, A之间的关系,如下:b1 A n A n−1 L A n m− +1−1 A n+1b 2 A n+1 A n L A n m− +2A n+2 =−M L L L L Mb m A n m+ −1 A n m+ −2 L A n A n m+b1a1110 LL 0 00 0b M2 +AA12(1-1a2 = A1M L L L L L Mb m A na n A n−1 A n−2 L A1 10由此可知,根据式(1-12)、(1-13)、(1-14)便可得到辨识传递函数的参数a, b。

1.2实验过程1.2.1无零点模型系统假设系统的传递函数模型为G(s) = 2 1 ,为无零点的模型,利用10+6.5+1Matlab 编程,分别在没有噪声和有噪声两种情况下进行辨识,比较辨识结果。

1.没有噪声时,程序如下:clear;%==================获得原传递函数方程=======================% num=[1];den=[10 6.5 1];%=====================产生阶跃采样序列======================% T=0.2; %采样周期 t=0:T:30; %采样时间 L=length(t); %数据长度h=step(num,den,t); %原传递函数的阶跃响应K=h(L) %系统增益%======================面积法求解参数======================% s1=0; for i=1:Ls1=s1+(1-h(i))*T; F(i)=s1; end a1=s1; s2=0;for i=1:L s2=s2+(F(i)-a1*h(i))*T; end a2=s2;num1=[1]; den1=[a2 a1 1];disp('原传递函数为:')G1=tf(num,den)disp('通过辨识得到的传递函数为:')G2=tf(num1,den1)%=============原传递函数和辨识函数的阶跃响应对比图=============% step(G1,'b-',G2,'r-.')title('原系统与辨识后所得到系统阶跃响应对比') legend('原响应曲线','辨识响应曲线') (1)当采样周期T=0.2秒,采样时间t=30s时,行程序后得到原传递函数G1和辨识得到的传递函数G2如图1.1:原系统和辨识后系统的阶跃响应对比图如下:图1.2(2)当采样周期T=0.2秒,采样时间t=50s时,行程序后得到原传递函数G1和辨识得到的传递函数G2如下:图1.3原系统和辨识后系统的阶跃响应对比图如下:(3)当采样周期T=0.02秒,采样时间t=50s时,行程序后得到原传递函数G1 和辨识得到的传递函数G2如下:Array图1.5原系统和辨识后系统的阶跃响应对比图如下:2.有噪声的情况下,系统程序如下:主程序还是用面积法,在程序中添加以下代码:%产生期望为0,方差为0.01的噪声figure(1) w=randn(1,L); % 建立服从正态分布的随机矩阵。

w=w/std(w);w=w-mean(w);qw=0;fc=0.01;w=qw+sqrt(fc)*w;%=====================阶跃采样序列中加入白噪声==================% h=h+w; plot(t,w);(1)加入的噪声如下图所示:图1.7(2)当采样周期T=0.02s,采样时间t=50s时,辨识结果如下:图1.8原系统与辨识系统阶跃响应如图所示:结合上述无测量噪声和有测量噪声两种情况下的辨识结果,列出如下所示的表格:表1-1结果可知,在相同的采样周期下,适当的增加采样时间,可以提高辨识精度,尤其是对增益的提高有很大影响;而在相同的采样时间下,适当的减小采样时间,对于系统参数的辨识精度有很大的提高。

因此,可以发现合理采样时间和数据长度,可以提高辨识的精度,令辨识后的传递函数系数与原传递函数系数更接近,差距小,从而得到满意的辨识结果。

通过对比无测量噪声和有测量噪声两种情况下的辨识结果,我们可以发现在白噪声的情况下,曲线拟合较无噪声情况下要差,说明白噪声对于面积法辨识系统存在较大的干扰,会对辨识结果产生一定的影响。

1.2.2有零点模型系统17.52+7.5+1 假设系统的传递函数为G(s) = 43+52+8+1,为有零点的模型,其中n=3,m=2, 用面积法需要求解1~5,利用Matlab 编程,分别在没有噪声和有噪声两种情况下进行辨识,比较辨识结果。

(1)没有噪声时,程序如下:clear;%==================获得原传递函数方程=======================% num=[17.5 7.5 1];den=[4 5 8 1];%=====================产生阶跃采样序列======================% T=0.02; %采样周期 t=0:T:100; %采样时间 L=length(t); %数据长度y=step(num,den,t); k=y(L) %系统增益%======================面积法求解参数======================% sum1=0; for i=1:L-1;sum1=sum1+(1-(y(i)+y(i+1))/2)*T;A(i)=sum1; end A1=sum1 sum2=0;for i=1:L-1;sum2=sum2+(A(i)-A1*(y(i)+y(i+1))/2)*T;B(i)=sum2; end A2=sum2 sum3=0; fori=1:L-1;sum3=sum3+(B(i)-A2*(y(i)+y(i+1))/2)*T;C(i)=sum3; end A3=sum3 sum4=0;for i=1:L-1;sum4=sum4+(C(i)-A3*(y(i)+y(i+1))/2)*T;D(i)=sum4; end A4=sum4 sum5=0; fori=1:L-1; sum5=sum5+(D(i)-A4*(y(i)+y(i+1))/2)*T; endA5=sum5%==============根据所得A(i),利用公式求取a、b=================%M=(-1)*(inv([A3,A2;A4,A3]))*[A4;A5];b1=M(1,1); b2=M(2,1);N=[1 0 0;A1 1 0;A2 A1 1]*[b1;b2;0]+[A1;A2;A3];a1=N(1,1); a2=N(2,1); a3=N(3,1);%================根据所求a、b,得到辨识后传递函数==============% num1=[b2 b1 1]; den1=[a3 a2 a1 1];disp('原传递函数为:')G1=tf(num,den)disp('通过辨识得到的传递函数为:')G2=tf(num1,den1)%=============原传递函数和辨识函数的阶跃响应对比图=============%step(G1,'b-',G2,'r-.')title('原系统与辨识后所得到系统阶跃响应对比') legend('原响应曲线','辨识响应曲线') 当采样时间取0.02秒,数据长度为100时,辨识结果如下:原系统与辨识后的系统阶跃响应对比图:当采样时间为0.02,数据长度为400时,系统辨识结果如下:图1-12原系统与辨识后的系统阶跃响应对比图:图1-13当采样时间为0.2秒,数据长度为400时,系统辨识结果如下:图1-14 原系统与辨识后的系统阶跃响应对比图:综上所述,结果如表表1-2结果可知,对于存在有零点的系统来说,通过面积法辨识系统必须合理的选择分子分母的阶次,否则不能得出正确的辨识结果。

相关文档
最新文档