浅论动态规划优化模型在设备更新中的应用

浅论动态规划优化模型在设备更新中的应用

龙源期刊网 https://www.360docs.net/doc/877388806.html,

浅论动态规划优化模型在设备更新中的应用作者:朱丽娜马家余

来源:《沿海企业与科技》2006年第03期

【摘要】动态规划是研究多阶段决策过程最优化的一种方法。文章将动态规划应用于设备更新问题,以确定一种设备应多少年后更新最恰当,从而使某段时间内总收入达到最大(或总费用达到最小),为决策者制定合理规划方案提供了依据。

【关键词】动态规划;多阶段决策;设备更新

【中图分类号】T84

【文献标识码】 A

动态规划之-0-1背包问题及改进

动态规划之-0-1背包问题及改进

有N件物品和一个容量为V的背包。第i件物品的重量是w[i],价值是v[i]。求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。在选择装入背包的物品时,对于每种物品i,只能选择装包或不装包,不能装入多次,也不能部分装入,因此成为0-1背包问题。 形式化描述为:给定n个物品,背包容量C >0,重量第i件物品的重量w[i]>0, 价值v[i] >0 , 1≤i≤n.要求找一n元向量(X1,X2,…,X n,), X i∈{0,1}, 使得∑(w[i] * Xi)≤C,且∑ v[i] * Xi达最大.即一个特殊的整数规划问题。 数学描述为: 求解最优值:

设最优值m(i,j)为背包容量为j、可选择物品为i,i+1,……,n时的最优值(装入包的最大价值)。所以原问题的解为m(1,C) 将原问题分解为其子结构来求解。要求原问题的解m(1,C),可从m(n,C),m(n-1,C),m(n-2,C).....来依次求解,即可装包物品分别为(物品n)、(物品n-1,n)、(物品n-2,n-1,n)、……、(物品1,物品2,……物品n-1,物品n)。最后求出的值即为最优值m(1,C)。 若求m(i,j),此时已经求出m(i+1,j),即第i+1个物品放入和不放入时这二者的最大值。 对于此时背包剩余容量j=0,1,2,3……C,分两种情况: (1)当w[i] > j,即第i个物品重量大于背包容量j时,m(i,j)=m(i+1,j) (2)当w[i] <= j,即第i个物品重量不大于背包容量j时,这时要判断物品i放入和不放入对m的影响。 若不放入物品i,则此时m(i,j)=m(i+1,j) 若放入物品i,此时背包

快递员配送路线优化模型(完整资料).doc

【最新整理,下载后即可编辑】 快递员配送路线优化模型 摘要 如今,随着网上购物的流行,快递物流行业在面临机遇的同时也需要不断迎接新的挑战。如何能够提高物流公司的配送效率并降低配送过程中的成本,已成为急需我们解决的一个问题。下面,本文将针对某公司的一名配送员在配送货物过程中遇到的三个问题进行讨论及解答。 对于问题一,由于快递员的平均速度及在各配送点停留的时间已知,故可将最短时间转换为最短路程。在此首先通过Floyd 求最短路的算法,利用Matlab程序将仓库点和所有配送点间两两的最短距离求解出来,将出发点与配送点结合起来构造完备加权图,由完备加权图确定初始H圈,列出该初始H圈加点序的距离矩阵,然后使用二边逐次修正法对矩阵进行翻转,可以求得近似最优解的距离矩阵,从而确定近似的最佳哈密尔顿圈,即最佳配送方案。 对于问题二,依旧可以将时间问题转化为距离问题。利用问题一中所建立的模型,加入一个新的时间限制条件,即可求解出满足条件的最佳路线。 对于问题三,送货员因为快件载重和体积的限制,至少需要三次才能将快件送达。所以需要对100件快件分区,即将50个配送点分成三组。利用距离矩阵寻找两两之间的最短距离是50个配送点中最大的三组最短距离的三个点,以此三点为基点按照准则划分配送点。

关键字:Floyd算法距离矩阵哈密尔顿圈二边逐次修正法矩阵翻转 问题重述 某公司现有一配送员,,从配送仓库出发,要将100件快件送到其负责的50个配送点。现在各配送点及仓库坐标已知,货物信息、配送员所承载重物的最大体积和重量、配送员行驶的平均速度已知。 问题一:配送员将前30号快件送到并返回,设计最佳的配送方案,使得路程最短。 问题二:该派送员从上午8:00开始配送,要求前30号快件在指定时间前送到,设计最佳的配送方案。 问题三:不考虑所有快件送达的时间限制,现将100件快件全部送到并返回。设计最佳的配送方案。配送员受快件重量和体积的限制,需中途返回取快件,不考虑休息时间。 符号说明 D:n个矩阵 n V:各个顶点的集合 E:各边的集合 e:每一条边 ij w:边的权 ()e G:加权无向图 , v v:定点 i j

数学建模-动态规划

-56- 第四章动态规划 §1 引言 1.1 动态规划的发展及研究内容 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20 世纪50 年代初R. E. Bellman 等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优性原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法—动态规划。1957 年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广 泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时 间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是 一种特殊算法(如线性规划是一种算法)。因而,它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。 例1 最短路线问题 图1 是一个线路网,连线上的数字表示两点之间的距离(或费用)。试寻求一条由A 到G 距离最短(或费用最省)的路线。 图1 最短路线问题 例2 生产计划问题 工厂生产某种产品,每单位(千件)的成本为1(千元),每次开工的固定成本为3 (千元),工厂每季度的最大生产能力为6(千件)。经调查,市场对该产品的需求量第一、二、三、四季度分别为2,3,2,4(千件)。如果工厂在第一、二季度将全年的需求都生产出来,自然可以降低成本(少付固定成本费),但是对于第三、四季度才能上市的产品需付存储费,每季每千件的存储费为0.5(千元)。还规定年初和年末这种产品均无库存。试制定一个生产计划,即安排每个季度的产量,使一年的总费用(生产成本和存储费)最少。 1.2 决策过程的分类 根据过程的时间变量是离散的还是连续的,分为离散时间决策过程(discrete-time -57- decision process)和连续时间决策过程(continuous-time decision process);根据过程的演变是确定的还是随机的,分为确定性决策过程(deterministic decision process)和随 机性决策过程(stochastic decision process),其中应用最广的是确定性多阶段决策过程。§2 基本概念、基本方程和计算方法 2.1 动态规划的基本概念和基本方程 一个多阶段决策过程最优化问题的动态规划模型通常包含以下要素。 2.1.1 阶段

算法合集之《动态规划算法的优化技巧》

动态规划算法的优化技巧 福州第三中学毛子青 [关键词] 动态规划、时间复杂度、优化、状态 [摘要] 动态规划是信息学竞赛中一种常用的程序设计方法,本文着重讨论了运用动态规划思想解题时时间效率的优化。全文分为四个部分,首先讨论了动态规划时间效率优化的可行性和必要性,接着给出了动态规划时间复杂度的决定因素,然后分别阐述了对各个决定因素的优化方法,最后总结全文 [正文] 一、引言 动态规划是一种重要的程序设计方法,在信息学竞赛中具有广泛的应用。 使用动态规划方法解题,对于不少问题具有空间耗费大、时间效率高的特点,因此人们在研究动态规划解题时更多的注意空间复杂度的优化,运用各种技巧将空间需求控制在软硬件可以承受的范围之内。但是,也有一部分问题在使用动态规划思想解题时,时间效率并不能满足要求,而且算法仍然存在优化的余地,这时,就需要考虑时间效率的优化。 本文讨论的是在确定使用动态规划思想解题的情况下,对原有的动态规划解法的优化,以求降低算法的时间复杂度,使其能够适用于更大的规模。 二、动态规划时间复杂度的分析 使用动态规划方法解题,对于不少问题之所以具有较高的时间效率,关键在于它减少了“冗余”。所谓“冗余”,就是指不必要的计算或重复计算部分,算法的冗余程度是决定算法效率的关键。动态规划在将问题规模不断缩小的同时,记录已经求解过的子问题的解,充分利用求解结果,避免了反复求解同一子问题的现象,从而减少了冗余。 但是,动态规划求解问题时,仍然存在冗余。它主要包括:求解无用的子问题,对结果无意义的引用等等。 下面给出动态规划时间复杂度的决定因素: 时间复杂度=状态总数*每个状态转移的状态数*每次状态转移的时间[1] 下文就将分别讨论对这三个因素的优化。这里需要指出的是:这三者之间不是相互独立的,而是相互联系,矛盾而统一的。有时,实现了某个因素的优化,另外两个因素也随之得到了优化;有时,实现某个因素的优化却要以增大另一因素为代价。因此,这就要求我们在优化时,坚持“全局观”,实现三者的平衡。 三、动态规划时间效率的优化 3.1 减少状态总数 我们知道,动态规划的求解过程实际上就是计算所有状态值的过程,因此状态的规模直接影响到算法的时间效率。所以,减少状态总数是动态规划优化的重要部分,本节将讨论减少状态总数的一些方法。

基于动态规划的面试时间优化模型概述

2015年天津商业大学数学建模竞赛 承诺书 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、 电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨 论与赛题有关的问题。 我们明白,抄袭不人的成果是违反竞赛规则的, 假如引用不人的成 果或其他公开的资料(包括网上查到的资料),必须按照规定的参考 文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。 如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B中选择一项填写): B 参赛队员 (打印并签名) :1. 叶恒扬 2. 施艺敏 3. 张一鸣 日期: 2015 年 4 月 27 日

基于动态规划的面试时刻优化模型 摘要 现代信息社会中,求职面试差不多成为就业的一个重要环节。科学有效的组织和安排不管对面试者依旧对组织单位、用人单位差不多上省时省力、节略成本的。因此如何紧凑、高效、省时地安排面试者按顺序完成面试具有重要研究意义。 本文综合运用运筹学、统计学、经济学、平面设计、计算机软件等知识,通过建立数学模型来求解面试的最短时刻,进一步规划最优的面试流程。 针对问题一,通过分析给定的面试时期顺序和不同意插队等特性,为满足面试时刻最短,建立了求解最短时刻的0-1非线性规划模型(见公式(1)),然后利用Lingo11.0程序(见附录1),求解出最短面试时刻为100分钟,最佳安排顺序为:3 → →,同学最早9:40 → 4→ 1 5 2 一起离开。接着利用AutoCAD2007分不绘制出同学和面试官的面试过程时刻图(见图1~2)。在此基础上,利用Excel2007制作出同学的

运输优化模型参考

运输 问题 摘要 本文根据运输公司提供的提货点到各个客户点的路程数据,利用线性规划的优化方法与动态优化模型——最短路径问题进行求解,得到相关问题的模型。 针对问题一 ,我们采用Dijkstra 算法,将问题转化为线性规划模型求解得出当运送员在给第二个客户卸货完成的时,若要他先给客户10送货,此时尽可能短的行使路线为: 109832V V V V V →→→→,总行程85公里。 针对问题二,我们首先利用prim 算法求解得到一棵最小生成树: 再采用Dijkstra 算法求得客户2返回提货点的最短线路为12V V →故可得到一条理想的回路是:121098436751V V V V V V V V V V V →→→→→→→→→→ 后来考虑到模型的推广性,将问题看作是哈密顿回路的问题,建立相应的线性规划模型求解,最终找到一条满足条件的较理想的的货车送货的行车路线: 121098436751V V V V V V V V V V V →→→→→→→→→→。 针对问题三,我们首先直接利用问题二得一辆车的最优回路,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,最终可为公司确定合理的一号运输方案:两辆车全程总和为295公里(见正文);然后建立线性规划模型得出二号运输方案:两辆车全程总和为290公里(见正文);最后再进一步优化所建的线性规划模型,为运输公 针对问题四,我们首先用Dijkstra 算法确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理 该方案得到运输总费用是645元。 关键字:Dijkstra 算法, prim 算法, 哈密顿回路 问题重述 某运输公司为10个客户配送货物,假定提货点就在客户1所在的位置,从第i 个客户

运输优化模型参考

运输问题 摘要 本文根据运输公司提供的提货点到各个客户点的路程数据,利用线性规划的优化方法与动态优化模型——最短路径问题进行求解,得到相关问题的模型。 针对问题一 ,我们采用Dijkstra 算法,将问题转化为线性规划模型求解得出当运送员在给第二个客户卸货完成的时,若要他先给客户10送货,此时尽可能短的行使路线为: 109832V V V V V →→→→,总行程85公里。 针对问题二,我们首先利用prim 算法求解得到一棵最小生成树: 再采用Dijkstra 算法求得客户2返回提货点的最短线路为12V V →故可得到一条理想的回路是:121098436751V V V V V V V V V V V →→→→→→→→→→ 后来考虑到模型的推广性,将问题看作是哈密顿回路的问题,建立相应的线性规划模型求解,最终找到一条满足条件的较理想的的货车送货的行车路线: 121098436751V V V V V V V V V V V →→→→→→→→→→。 针对问题三,我们首先直接利用问题二得一辆车的最优回路,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,最终可为公司确定合理的一号运输方案:两辆车全程总和为295公里(见正文);然后建立线性规划模型得出二号运输方案:两辆车全程总和为290公里(见正文);最后再进一步优化所建的线性规划模型,为运输公司 针对问题四,我们首先用Dijkstra 算法确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理 该方案得到运输总费用是645元。 关键字:Dijkstra 算法, prim 算法, 哈密顿回路 问题重述

动态规划-图论

§1动态规划模型 如图所示,给定一个线路网络,两点之间连线上的数字表示 两点间距离,试求一条从A到E的路线,使总距离为最短。Mattlab求解: 首先利用Excel建立两个工作表edge和n分别存储图的上三 角阵和顶点数量。其中edge= 99999 5 2 99999 99999 99999 99999 99999 99999 99999 99999 99999 3 7 99999 99999 99999 99999 99999 99999 99999 99999 6 3 99999 99999 99999 99999 99999 99999 99999 99999 99999 6 99999 99999 99999 99999 99999 99999 99999 99999 3 8 99999 99999 99999 99999 99999 99999 99999 99999 1 99999 99999 99999 99999 99999 99999 99999 99999 99999 3 99999 99999 99999 99999 99999 99999 99999 99999 7 99999 99999 99999 99999 99999 99999 99999 99999 99999 n=9,然后在Matlab调入以上数据。同时将自编的动态规划 软件“dynamic.m”调入当前目录之中,在Matlab命令窗口

输入dynamic,回车后则在窗口显示出路径Path 和距离distance §2 最小生成树 例1 某工厂要架设局域网联通工厂各个部门。已知工厂有7个部门,各个部门间铺设网线的距离如上图所示,计算出铺设网线的最短距离。 Matlab 的算法: 首先,将上图的邻接矩阵存储为G ,顶点数存储为N ;即:G= 99999 50 60 99999 99999 99999 99999 50 99999 99999 65 40 99999 99999 60 99999 99999 52 99999 99999 45 99999 65 52 99999 50 30 42 99999 40 99999 50 99999 70 99999 99999 99999 99999 30 70 99999 99999 99999 99999 45 42 99999 99999 99999 2 5 3 1 4 7 6 50 60 45 65 52 40 50 70 30 42

3 (修改)大规模状态空间中的动态规划和强化学习问题

3 大规模状态空间中的动态规划和强化学习问题 本章我们将讨论大规模状态空间中的动态规划和强化学习问题。对于这类问题,我们一般很难求得问题的精确解,只能得到问题的近似解。前面章节所介绍的一些算法,如值迭代、策略迭代和策略搜索,无法直接用于这类问题。因此,本章将函数近似引入这些算法,提出三类基于函数近似的算法版本,分别是近似值迭代、近似策略迭代和近似策略搜索。本章将从理论和实例两个角度分析算法的收敛性,讨论如何获取值函数逼近器的方法,最后比较分析三类算法的性能。 3.1 介绍 第二章详细介绍了DP/RL中三类经典算法,这三类算法都需要有精确的值函数及策略表示。一般来说,只有存储每一个状态动作对回报值的估计值才能得到精确地Q值函数,同样V值函数只有存储每一个状态的回报值的估计值才能得到;精确的策略描述也需要存储每一个状态对应的动作。如果值函数中某些变量,比如某些状态动作对、状态等,存在很多个或者无穷多个潜在值(又或者这些值是连续的),那么我们就无法精确描述对应的Q值函数或者V值函数,因此,考虑将值函数和策略通过函数近似的方式来表示。由于实际应用中大部分问题都存在大规模或者连续状态空间,因此,函数近似方法是求解动态规划和强化学习问题的基础。 逼近器主要可以分为两大类:带参的和非参的。带参的逼近器主要是从参数空间到目标函数空间的映射。映射函数及参数的个数由先验知识给定,参数的值由样本数据进行调整。典型的例子是对一组给定的基函数进行加权线性组合,其中权重就是参数。相比之下,非参的逼近器通过样本数据直接得到。本质上,非参的函数逼近器也是含带参数的,只是不像带参的函数逼近器,参数的个数及参数的值直接有样本数据决定。例如,本书中所讨论的基于核函数的逼近器就是带参数的函数逼近器,它为每一个数据点定义一个核函数,并对这些核函数做加权线性组合,其中权重就是参数。 本章主要对大规模状态空间中动态规划和强化学习问题进行广泛而深入的讨论。第二章中所介绍的三类主要算法,值迭代、策略迭代和策略搜索,将与函数近似方法相结合,获得三类新的算法,分别是近似值迭代、近似策略迭代以及近似策略搜索。本章将从理论和实例两个角度讨论算法的收敛性,并对比分析三类算法的性能。关于值函数近似与策略逼近的一些其他重要问题,本章也将给予讨论。为了帮助读者更好的阅读本章的内容,图3.1给出一个本章的内容脉络图。

运用动态规划模型解决最短路径问题

运用动态规划模型解决物流配送中的最短路径问题 王嘉俊 (盐城师范学院数学科学学院09(1)班) 摘要:随着现代社会的高速发展,物流配送成为了连接各个生产基地的枢纽,运输的成本问题也成为了企业发展的关键。运费不但与运量有关,而且与运输行走的线路相关。传统的运输问题没有考虑交通网络,在已知运价的条件下仅求出最优调运方案,没有求出最优行走路径。文中提出“网络上的物流配送问题“,在未知运价,运量确定的情况下,将运输过程在每阶段中选取最优策略,最后找到整个过程的总体最优目标,节省企业开支。 关键词:动态规划,数学模型,物流配送,最优路径 1 引言 物流配送是现代化物流系统的一个重要环节。它是指按用户的订货要求, 在配送中心进行分货、配货, 并将配好的货物及时送交收货人的活动。在物流配送业务中, 合理选择配送径路, 对加快配送速度、提高服务质量、降低配送成本及增加经济效益都有较大影响。物流配送最短径路是指物品由供给地向需求地的移动过程中, 所经过的距离最短(或运输的时间最少, 或运输费用最低) , 因此, 选定最短径路是提高物品时空价值的重要环节。[1] 经典的Dijkstra 算法和Floyd 算法思路清楚,方法简便,但随着配送点数的增加,计算的复杂性以配送点数的平方增加,并具有一定的主观性。我国学者用模糊偏好解试图改善经典方法[]5,取得了较好的效果。遗憾的是,模糊偏好解本身就不完全是客观的。文献[]6详细分析了经典方法的利弊之后,提出将邻接矩阵上三角和下三角复制从而使每条边成为双通路径,既适用于有向图也适用于无向图, 但复杂性增加了。为了避免上述方法存在的不足,本文以动态规划为理论,选择合理的最优值函数,用于解决物流配送最短路径问题。 动态规划是解决多阶段决策过程最优化问题的一种数学方法。1951年美国数学家Bellman(贝尔曼)等人根据一类多阶段决策问题的特性,提出了解决这类问题的“最优性原理”,并研究了许多实际问题,从而创建了最优化问题的一种新方法——动态规划。 动态规划在工程技术、管理、经济、工业生产、军事及现代控制工程等方面都有广泛的应用,而且由于动态规划方法有其独特之处,在解决某些实际问题时,显得更加方便有效。由于决策过程的时间参数有离散的和连续的情况,故决

路径成本优化模型

第 3 章港口集卡路径成本优化模型 3.1 港口集卡作业模式分析 3.1.1面向“作业路”的传统集卡作业模式 目前,我国大部分港口采用龙门吊装卸工艺,其中岸桥、集卡、龙门吊是完成集装箱装卸的主要机械设备,岸桥负责对到港的船舶进行装卸作业,龙门吊对堆场的集装箱进行进出场作业,集卡衔接码头前沿岸桥和后方堆场龙门吊的之间工作,是港口集装箱进口、出口、转堆作业过程中的重要运输设备,其主要在岸桥与堆场之间及堆场各箱区之间作水平运输。这些集装箱装卸设备只有相互协调、相互配合才能够保证集装箱装卸作业的顺利进行,否则会出现装卸设备等待现象和拥堵现象,降低设备资源的利用率和港口的物流能力。 但大部分港口目前仍采用传统的集卡作业模式,即面向“作业路” 的集卡作业模式。该模式可描述为:港口工作人员根据装卸集装箱的业务量配置岸桥,且按照一定的比例为每台岸桥分配一定数量的集卡,从而形成由几辆集卡所组成的一组固定集卡为某一台特定的岸桥服务。在整个集装箱的装卸作业过程中,集卡在预先设定的固定路线上行驶,岸桥、集卡和龙门吊形成固定作业线路运载集装箱。在集装箱的进口作业中,首先由岸桥将船舶上需进口的集装箱放到等待卸船的空集卡上,然后装载进口集装箱的集卡沿固定路线行驶,并到指定的堆场箱区卸下集装箱,最后空车行驶到岸桥下等待下一个卸船作业。同样在装船作业中,首先龙门吊将堆场箱区内的出口集装箱放在空集卡上,然后由集卡运输出口集装箱行驶到岸桥下等待装船作业,装船结束后集卡再空载行驶到堆场箱区进行下一个装船作业[56, 70]。 一般面向“作业路”的集卡作业模式会根据岸桥的配置数量安排需要服务的集卡数量,通常一台岸桥需要配置5~6 辆集卡,则所需集卡的总数量为装船和卸船岸桥总数的5 倍或6 倍[82]。这种面向“作业路”的传统集卡作业模式下司机操作简单、便于管理、沿固定作业路线不易出错,但是随着信息技术的进步、港口物流业的发展,这一模式逐渐暴露出缺点,阻碍港口物流效率的提高。其存在的弊端表现在以下几个方面:首先,如果某条作业路上集卡对岸桥的配置量是个已知的固定值,若集卡配置量少可能会导致岸桥等待集卡的现象,降低码头前沿的作业效率;相反,若集卡配置量过多又会产生资源的浪费、资源利用率低下;此作业路下可能会出现集卡排队等待的现象,而此时其它作业路可能集卡缺少,造成整个港口集卡资源的不合理利用,影响港口的整体运作效率。其次,在面向“作业路”的作业模式下,集卡为某一特定的岸桥服务,当集卡

智能公交动态调度优化模型

Abstract An intelligent bus dispatching system can better meet people's travel needs.The optimized algorithm takes advantage of advanced technology and equipments.However,in recent years the development of Chinese intelligent bus dispatching systems is not satisfactory with an.excessive attention to advanced technology but less to practicality.Dynamic scheduling has yet to be fully exploited.In this paper,intelligent transportation scheduling systems and scheduling characteristics are analyzed. The information about dynamic transportation and vehicle locations is acquired and merged.An optimization model for intelligent dispatching of buses is proposed on basis of real data.This model is under the support of GPS positioning,communications,computers and other technologies,where intelligent algorithms are used in bus operation and dispatching and both passengers satisfaction and company profit are considered.The method of collecting data automatically and the algorithm of this model are presented.This model is shown to be able to significantly improve the rate of bus full loading,shorten the waiting time of passengers,and reduce the total vehicle trips,with an evident effect of optimized dispatching. Keywords intelligent transportation;optional model;dynamic dispatching;intelligent bus;Matlab software 0引言 伴随经济社会的发展,中国城市交通问题日益突出。交 通问题的出现,严重影响了城市的生产生活,而且从长远来看,影响了城市功能的发挥,制约了城市的健康发展。国际上城市交通发展的经验证明,解决城市交通问题,关键是要树立城市公共交通在城市交通体系中的主导地位,大力优先发展公共交通,建立先进的公共交通系统APTS (Advanced Public Traffic System )[1],实现公交调度智能化,提高道路通行 能力和公交运营管理水平。 近年来,由于科学技术的进步和政府对公交投入力度的加大,中国智能公共交通调度系统初现端倪,已经有杭州、上海、北京等地安装了电子站牌,车载GPS 定位设备,实现了车辆的实时跟踪、定位,公交车与调度室的双向通讯,以及电子站牌上实时显示下班车位置信息等功能。青岛、贵阳、石家庄等城市在实现公交系统智能化管理方面,已经有了一系列有益的探索[2]。但是,这些系统普遍存在先进的系统与静态、原始的调度方法共存现象,未能充分利用智能系统提供的动态 智能公交动态调度优化模型 摘要 利用先进的技术和设备实现公交的优化调度,充分满足人们的出行需要,是智能公交系统发展的目标。然而近年来中国智 能公交发展在一定程度上出现过于追求先进性、忽略实用性、运营效果不理想、动态调度尚待充分开发等问题。结合中国智能公交系统现状,通过对智能公交调度系统和调度特点深入分析,在GPS 定位、通信、计算机等技术的支持下,将动态交通状态信息与车辆定位信息有效融合,将智能化算法引入到公交运营调度中,建立了基于实时动态数据,兼顾乘客满意度和企业效益的动态调度优化模型。并且阐述了模型数据的自动采集方法、模型Matlab 程式化的解法。结果表明,该模型可以显著提高公交车辆满载率、缩短乘客等车时间和减少车辆总班次,优化调度效果明显。 关键词智能交通;优化模型;动态调度;智能公交;Matlab 软件 中图分类号U494.22,TP29文献标识码A 文章编号1000-7857(2009)17-0069-04 李志强,周建立,张毅 河南科技大学车辆和动力工程学院,河南洛阳471003 An Optimization Model for Dynamic Intelligent Dispatching of Buses 收稿日期:2009-05-11 基金项目:河南教育厅自然科学基金项目(200510464028);河南科技大学科研基金项目(2004ZY030,2006ZY027)作者简介:李志强,经济师,研究方向为智能交通,电子信箱:liqiangsqjt@https://www.360docs.net/doc/877388806.html, LI Zhiqiang,ZHOU Jianli,ZHANG Yi Vehicle &Motive Power Engineering College,Henan University of Science and Technology,Luoyang 471003,Henan Province,China

动态规划

动态规划的特点及其应用 摘要:本文的主要内容就是分析它的特点。第一部分首先探究了动态规划的本质,因为动态规划的特点是由它的本质所决定的。第二部分从动态规划的设计和实现这两个角度分析了动态规划的多样性、模式性、技巧性这三个特点。第三部分将动态规划和递推、搜索、网络流这三个相关算法作了比较,从中探寻动态规划的一些更深层次的特点。文章在分析动态规划的特点的同时,还根据这些特点分析了我们在解题中应该怎样利用这些特点,怎样运用动态规划。这对我们的解题实践有一定的指导意义。本文介绍了动态规划的基本思想和基本步骤,通过实例研究了利用动态规划设计算法的具体途径,讨论了动态规划的一些实现技巧,并将动态规划和其他一些算法作了比较,最后还简单介绍了动态规划的数学理论基础和当前最新的研究成果。 关键词: 动态规划,阶段 1 引言 动态规划是运筹学的一个分支,是求解决策过程最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman 等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 2 动态规划的基本思想 一般来说,只要问题可以划分成规模更小的子问题,并且原问题的最优解中包含了子问题的最优解(即满足最优子化原理),则可以考虑用动态规划解决。动态规划的实质是分治思想和解决冗余,因此,动态规划是一种将问题实例分解

数学建模路线优化问题

选路的优化模型 摘要: 本题是一个有深刻背景的NPC问题,文章分析了分组回路的拓扑结构,并构造了多个模型,从多个侧面对具体问题进行求解。最短树结构模型给出了局部寻优的准则算法模型体现了由简到繁,确保较优的思想而三个层次分明的表述模型证明了这一类问题共有的性质。在此基础上我们的结果也是比较令人满意的。如对第一题给出了总长为599.9,单项长为216的分组,第二题给出了至少分四组的证明。最后,我们还谈到了模型的优缺点及推广思想。 一、问题描述 “水大无情,人命关天”为考察灾情,县领导决定派人及早将各乡(镇),村巡视一遍。巡视路线为从县政府所在地出发,走遍各乡(镇),村又回到县政府所在地的路线。 1.若分三组巡视,试设计总路程最短且各组尽可能均衡的巡视路线。 2.假定巡视人员在各乡(镇)停留时间为T=2小时,在各村停留时间为t =1 小时, 汽车行驶速度为V=35公里/时,要在24小时内巡视完,至少分成几组;给出这 种分组下你认为最佳的巡视路线。 3.上述关于T,t和V的假定下,如果巡视人员足够多,完成巡视的最短时间是多 少?给出在这种最短时间完成巡视的要求下,你认为最佳的巡视路线。 4.巡视组数已定(如三组)要求尽快完成巡视,讨论T,t和V改变时最佳路线的 影响(图见附录)。 二、问题假设 1、乡(镇)村只考察一次,多次经过时只计算一次停留时间。 2、非本县村不限制通过。 3、汽车的行驶速度始终一致。 三、符号说明 第i 人走的回路Ti=vv i(i) v2(i)v n(i) Ti=00表示第i人在0点没移动 四、模型建立

在这一节里,我们将提出若干个模型及其特点分析,不涉及对题目的求解。 最简树结构模型 在这个模型中我们依靠利用最短树的特殊结构所给出的准则,进行局部寻优,在一个不大的图里,我们较易得到较优解。 (a)分片 准则1利用最短树的长度可大致的估算出路程长,在具体操作中,各片中 的最短路程长度不宜相差太大。 准则 2 尽可能将最短树连成一个回路,这可保证局部上路程是较短的。 (b)片内调整 a2 a3 a4 a5 a6假设a3 a4有路相连 细准1对于右图的最短树结构,最好的走法是a 若a3 a4 进去重复走的话,它与上述的走法路程差w(a3, a2)+w(a2 ,a5)+w(a4, a5)—w(a3, a4)。由两点间最小原则上式是大于0的优劣可见 细准2若有如图所示结构,一般思想是:将中间树枝上的点串到两旁树枝,以便连成回路。 五、模型求解 问题一该问题完全可以用均衡模型表述 用算法模型 1 经过局部优化手工多次比较我们能够给出的最佳结果为第一组路径为 0—P—28—27—26—N—24—23—22-17—16—1—15—1—18—K—21—20—25— M--0 长191.1 经5 镇6 村 第二组路径为 0—2—5—6—L—19—J—11--G—13—14—H—12—F—10—F—9—E—8—E—7—6—5—2—0 长216.5 经6 镇11 村第三组路径为O—2—3—D—4—D—3—C—B—1—A—34—35—33—31—32—30—Q—29 —R 长192.3 经6 镇11 村总长S=599.9 公里 由算法2 给出的为 1组0—P—29—R—31—33—A—34—35—32—30—Q—28—27—26—N—24—33—22—23—N—2 6—P—0 5 乡13 村长215.2 公里 2组0—M—25—21—K—17—16—I—15—I—18—K—21—25—20—L—19—J—11—G—13—14 —O 5 乡11 村长256.2 公里 3组 O—2—5—6—7—E—9--F—12--H--—12—F—10—F—9—E-8—4—0—7—6—M—5-2—3—L —13—1—0 8 乡11 村长256.3 公里 总长727.7 公里

运筹学之动态规划(东南大学)汇总

引言——由一个问题引出的算法 考虑以下问题 [例1] 最短路径问题 现有一张地图,各结点代表城市,两结点间连线代表道路,线上数字表示城市间的距离。如图1所示,试找出从结点A到结点E的最短距离。 图 1 我们可以用深度优先搜索法来解决此问题,该问题的递归式为 其中是与v相邻的节点的集合,w(v,u表示从v到u的边的长度。 具体算法如下: 开始时标记所有的顶点未访问过,MinDistance(A就是从A到E的最短距离。 这个程序的效率如何呢?我们可以看到,每次除了已经访问过的城市外,其他城市都要访问,所以时间复杂度为O(n!,这是一个“指数级”的算法,那么,还有没有更好的算法呢? 首先,我们来观察一下这个算法。在求从B1到E的最短距离的时候,先求出从C2到E的最短距离;而在求从B2到E的最短距离的时候,又求了一遍从C2到E的最短距离。也就是说,从C2到E的最短距离我们求了两遍。同样可以发现,在求从C1、C2到E的最短距离的过程中,从D1到E的最短距离也被求了两遍。而在整个程序中,从D1到E的最短距离被求了四遍。如果在求解的过程中,同时将求得的最短距离"记录在案",随时调用,就可以避免这种情况。于是,可以改进该算法,将每次求出的从v到E的最短距离记录下来,在算法中递归地求MinDistance(v时先检查以前是否已经求过了MinDistance(v,如果求过了则不用重新求一遍,只要查找以前的记录就可以了。这样,由于所有的点有n个,因此不同的状态数目有n 个,该算法的数量级为O(n。 更进一步,可以将这种递归改为递推,这样可以减少递归调用的开销。 请看图1,可以发现,A只和Bi相邻,Bi只和Ci相邻,...,依此类推。这样,我们可以将原问题的解决过程划分为4个阶段,设

动态路径优化算法及相关技术

》本文对在GIS(地理信息系统)环境下求解动态路径优化算法及相关技术 进行了研究。最短路径问题是网络分析中的基本的问题,它作为许多领域中选择 最优值的一个基本却又是一个十分重要的问题。特别是在交通诱导系统中占有重 要地位。本文分析了GIS环境下动态路径优化算法的特点,对GIS环境下城市 路网的最优路径选择问题的关键技术进行了研究和验证。 》考虑现实世界中随着城市路网规模的日益增大和复杂程度不断增加的情况,充分利用GIS 的特点,探讨了通过限制搜索区域求解最短路径的策略,大大减少了搜索的时间。 》另一方面,计算机技术的进步,地理信息系统(GIS)得到了飞速的发展。地理信息系统是采集、存储、管理、检索、分析和描述整个或部分地球表面与空间地理分布数据的空间信息系统。它是一种能把图形管理系统和数据管理系统有机地结合起来的信息技术,既管理对象的位置又管理对象的其它属性,而且位置和其它属性是自动关联的。它最基本的功能是将分散收集到的各种空间、非空间信息输入到计算机中,建立起有相互联系的数据库。当外界情况发生变化时,只要更改局部的数据,就可维持数据库的有效性和现实性[3][4],GIS为动态路径优化问题的研究提供了良好的环境。目前GIS带动的产业急剧膨胀,已经应用到各个方面。网络分析作为地理信息系统最主要的功能之一,在电子导航、交通旅游、城市规划以及电力、通讯等各种管网、管线的布局设计中发挥了重要的作用[5]。文献[6][7]说明了GIS 在城市道路网中的应用情况。而路网分析中基本问题之一是动态路径优化问题。所谓动态路径,不仅仅指一般地理意义上的距离最短,还可以应用到其他的参数,如时间、费用、流量等。相应的,动态路径问题就成为最快路径问题、最低费用问题等。 》GIS因为其强大的数据分析功能、空间分析功能,已被广泛应用于各种系统中与空间信息有密切关系的各个方面.各种在实际中的系统如电力系统,光缆系统涉及到最佳、最短抢修等问题都可以折合到交通网络中来进行分析,故而交通网络中最短路径算法就可以广泛的应用于其它很多的最佳、最短抢修或者报警系统中去[5]。最短路径问题是GIS网络分析功能的应用。最短路径问题可分为单源最短路径问题及所有节点间最短路径问题,其中单源最短路径更具有普遍意义[9]。 》2.1地理信息系统的概念 地理信息系统(Geographical Information System,简称GIS)是一种将空间位置信息和属性数据结合在一起的系统,是一种为了获取、存储、检索、分析和显示空间定位数据而建立的计算机化的数据库管理系统(1998年,美国国家地理信息与分析中心定义)[4]。这里的空间定位数据是指采用不同方式的遥感和非遥感手段所获得的数据,它有多种数据类型,包括地图、遥感、统计数据等,它们的共同特点都有确定的空间位置。地理信息系统的处理对象是空间实体,其处理过程正是依据空间实体的空间位置和空间关系进行的[25]。地理信息系统的外在表现为计算机软硬件系统,其内涵却是由计算机程序和地理数据组织而成的地理空间信息模型。当具有一定地理学知识的用户使用地理空间分析非空间分析等处理工具输入输出GIS数据库信息系统时,他所面对的数据不再是毫无意义的,而是把客观世界抽象为模型化的空间数据。用户可以按照应用的目的观测这个现实世界模型的各个方面的内容,取得自然过程的分析和预测的信息,用于管理和决策,这就是地理信息系统的意义。一个逻辑缩小的、高度信息化的地理系统,从视觉、计量和逻辑上对地理系统在功能上进行模拟,信息流动以及信息流动的结果,完全由计算机程序的运行和数据的变换来仿真。地理学家可以在地理信息系统支持下提取地理系统各个不同侧面、不同层次的空间和时间特征,也可以快速地模拟自然过程演变成思维过程的结果,取得地理预测或“实验”的结果,选择优化方案,用于管理与决策[26]。 一个完整的GIS主要有四个部分构成,即计算机硬件系统、计算机软件系统、地理数据(或空间数据)和系统管理操作人员。其核心部分是计算机系统(硬件和软件),地理数据反映

第十八章动态优化模型

第十八章 动态优化模型 动态过程的另一类问题是所谓的动态优化问题,这类问题一般要归结为求最优控制函数使某个泛函达到极值。当控制函数可以事先确定为某种特殊的函数形式时,问题又简化为求普通函数的极值。求解泛函极值问题的方法主要有变分法和最优控制理论方法。 §1 变分法简介 变分法是研究泛函极值问题的一种经典数学方法,有着广泛的应用。下面先介绍变分法的基本概念和基本结果,然后介绍动态系统最优控制问题求解的必要条件和最大值原理。 1.1 变分法的基本概念 1.1.1 泛函 设S 为一函数集合,若对于每一个函数S t x ∈)(有一个实数J 与之对应,则称J 是对应在S 上的泛函,记作))((t x J 。S 称为J 的容许函数集。 通俗地说,泛函就是“函数的函数”。 例如对于xy 平面上过定点),(11y x A 和),(22y x B 的每一条光滑曲线)(x y ,绕x 轴旋转得一旋转体,旋转体的侧面积是曲线)(x y 的泛函))((x y J 。由微积分知识不难写出 dx x y x y x y J x x )('1)(2))((2 12?+=π (1) 容许函数集可表示为 })( ,)(],,[)(|)({2211211y x y y x y x x C x y x y S ==∈= (2) 最简单的一类泛函表为 ?=2 1 ),,())((t t dt x x t F t x J (3) 被积函数F 包含自变量t ,未知函数x 及导数x 。(1)式是最简泛函。 1.1.2 泛函的极值 泛函))((t x J 在S t x ∈)(0取得极小值是指,对于任意一个与)(0t x 接近的 S t x ∈)(,都有))(())((0t x J t x J ≥。所谓接近,可以用距离ε<))(),((0t x t x d 来度量,而距离定义为 |})()(||,)()({|max ))(),((0002 1t x t x t x t x t x t x d t t t --=≤≤ 泛函的极大值可以类似地定义。)(0t x 称为泛函的极值函数或极值曲线。 1.1.3 泛函的变分 如同函数的微分是增量的线性主部一样,泛函的变分是泛函增量的线性主部。作为泛函的自变量,函数)(t x 在)(0t x 的增量记为 )()()(0t x t x t x -=δ 也称函数的变分。由它引起的泛函的增量记作 ))(())()((00t x J t x t x J J -+=?δ 如果J ?可以表为 ))(),(())(),((00t x t x r t x t x L J δδ+=?

相关文档
最新文档