平行四边形知识结构及知识点.doc

合集下载

(完整版)平行四边形基本知识点总结

(完整版)平行四边形基本知识点总结

(完整版)平行四边形基本知识点总结平行四边形基本知识点总结
平行四边形是一种特殊的四边形,它具有一些独特的性质和特点。

以下是平行四边形的基本知识点总结:
定义
平行四边形是指具有两组对边分别平行的四边形。

性质
1. 对边平行性质:平行四边形的两组对边分别平行。

2. 对角线性质:平行四边形的对角线互相平分,并且长度相等。

3. 内角和性质:平行四边形的内角的和为180度。

4. 外角性质:平行四边形的外角的和为360度。

5. 对边长度性质:平行四边形的对边长度相等。

6. 同底角性质:与平行四边形的一条边相邻,另一条边平行的两个内角相等。

7. 同旁内角性质:与平行四边形的两条边相邻,另一条边平行的两个内角互补。

判定方法
1. 对边平行判定:如果一个四边形中有两组对边分别平行,则它是一个平行四边形。

2. 对角线平分判定:如果一个四边形的对角线互相平分,并且长度相等,则它是一个平行四边形。

特殊类型
1. 矩形:具有四个内角都为90度的平行四边形。

2. 正方形:具有四个内角都为90度,且四条边长度相等的平
行四边形。

相关公式
1. 平行四边形的面积公式:面积 = 底边长度 ×高度。

2. 平行四边形的周长公式:周长= 2 ×(底边长度+ 侧边长度)。

以上是关于平行四边形的基本知识点总结。

通过了解这些性质
和定理,可以更好地理解和解决相关的数学问题。

平行四边形复习课件

平行四边形复习课件
证明线段相等的方法有哪些?
E A
B
D
C F
综合运用
一.如图,△ABC中,点O是边AC上一个动点,过 O作直线MN∥BC,设MN交∠BCA的平分线 于点E,交∠BCA的外角平分线于点F。
1. 探究:线段OE与OF的数量关系并加以证明; 2. 当点O在边AC上运动时, 四边形AECF是
矩形? 二.证明你的结论。
∴ 四边形BFDE是平行四边形
产品品鉴会活 动方案
汇报人姓名
A
D
O
边 矩形对边平行且相等;B
C
角 矩形的四个角都是直角;
对角线 矩形的对角线相等且互相平分;
对称性 既是中心对称图形又是轴对称图形
直角三角形的性质定理:
直角三角形斜边上的中线等于斜边的一半.
矩形的判定方法 A
D
O
B
C
1.有一个角是直角的平行四边形是矩形。
A
B
•9
4.△ABC中,D、E分别是AB、AC的中点, BC=10cm,则DE=_5__c_m__.
5. △ABC中,D、E分别是AB、AC的中点,
∠A=50°, ∠B=70°,则∠AED=_____.60°
A
A
D
E
B (4)
C
D
E
B
(5)
C
6. 如图,在周长为20cm的 ABCD中,
AB≠AD,AC,BD相交于点O,OE⊥BD
6.已知正方形ABCD中,对角线AC=10cm, P为AB上任意一点,PE⊥AC,PF⊥BD, E、F为垂足,则PE+PF=5cm 。
综合运用
已知:如图,E、F为 ABCD的对角线AC所在直线 上的两点,AE=CF,求证: BE=DF.

完整word平行四边形知识点及典型例题

完整word平行四边形知识点及典型例题

一、知识点讲解: 1.平行四边形的性质:1()两组对边分别平行;??DC)两组对边分别相等;(2??O是平行四边形?四边形ABCD)两组对角分别相等;(3??()对角线互相平分;4?AB?.)邻角互补(5?2.平行四边形的判定:DCOAB . 矩形的性质:3.1;()具有平行四边形的所有通性?CDCD??ABCD因为四边形是矩形;()四个角都是直角2??O (3)对角线相等.?ABAB是轴对称图形,它有两条对称轴. (4) 矩形的判定:4 有一个角是直角的平行四边形;(1) (2)有三个角是直角的四边形;对角线相等的平行四边形;(3)是矩形. ?四边形ABCD(4)对角线相等且互相平分的四边形.两对角线相交成60°时得等边三角形。

5. 菱形的性质:D1有通性;()具有平行四边形的所??是菱形ABCD?因为)四个边都相等;2(?OCA?(角.3)对角线垂直且平分对?6. 菱形的判定:BD?一组邻边等?(1)平行四边形??四边形ABCD是菱形.)四个边都相等2(?O?CA边形3)对角线垂直的平行四(?菱形中有一个角等于60°时,较短对角线等于边长;菱形中,若较短对角线等于边长,则有等边三角形;B菱形中,两对角线把菱形分成4个全等的直角三角形,每个直角三角形的斜边是菱形的边,两直角边分别是两对角线的一半。

菱形的面积等于两对角线长积的一半。

正方形的性质:7.CDCD1)具有平行四边形的所有通性;(???四边形ABCD是正方形O角都是直角;2)四个边都相等,四个(??(.3)对角线相等垂直且平分对角?BABA正方形的判定:8.一个直角?1()平行四边形?一组邻边等??一个直角?(2)菱形??对角线相等)菱形?(3?. ABCD是正方形?四边形?一组邻边等矩形?(4)??对角线互相垂直?(5)矩形?.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三9. 1 遍的一半。

直角三角形斜边上的中线等于由矩形的性质得到直角三角形的一个性质:2.斜边的一半。

平行四边形的知识点整理(一)2024

平行四边形的知识点整理(一)2024

平行四边形的知识点整理(一)引言概述:平行四边形是一种特殊的四边形,具有一些独特的性质和特点。

了解这些知识点有助于我们在几何学中更好地理解和运用。

本文将对平行四边形的知识进行整理和总结,以帮助读者更好地掌握相关内容。

正文:一、平行四边形的定义和特点:1. 平行四边形的定义2. 平行四边形的性质和特点3. 平行四边形的内角和外角性质4. 平行四边形的对角线性质5. 平行四边形的边长和内角关系二、平行四边形的分类:1. 平行四边形的分类方法2. 等边平行四边形的性质和特点3. 矩形和正方形的性质和特点4. 菱形的性质和特点5. 平行四边形的其他特殊分类三、平行四边形的面积和周长计算:1. 平行四边形的面积计算方法2. 平行四边形的周长计算方法3. 面积和周长的相关性质和公式4. 平行四边形的面积和周长实例计算5. 平行四边形的面积和周长在实际问题中的应用四、平行四边形的相关定理和推论:1. 平行四边形的对称性定理2. 平行四边形的角平分线与边平分线定理3. 对角线互相平分的平行四边形定理4. 平行四边形的中位线定理5. 平行四边形的相关推论和应用五、平行四边形的解题方法和技巧:1. 解直角平行四边形的问题的方法和步骤2. 解面积和周长问题的技巧和注意事项3. 解平行四边形的性质问题的思路和方法4. 运用平行四边形求证和构造题的解题技巧5. 平行四边形相关问题的典型例题和解答总结:平行四边形是几何学中的重要内容,了解平行四边形的定义、性质和特点,掌握其分类、面积和周长计算方法,熟悉其相关定理和推论,并具备解题技巧和应用能力,对我们的几何学学习和问题解决能力都有很大的帮助。

通过学习本文所总结的平行四边形的知识点,相信读者会在几何学中取得更好的成绩,对未来的学习和发展起到积极的促进作用。

平行四边形知识结构及知识点优秀版

平行四边形知识结构及知识点优秀版

秀版平行四边形知识结构及知识点1、知识结构2、对称性:①平行四边形是中心对称图形,其对称中心是两条对角线的交点;②等腰梯形是轴对称图形,其对称轴是过上、下两底的中点的直线;③矩形、菱形、正方形既是轴对称图形,又是中心对称图形。

3、相关定理:①直角三角形斜边上的中线等于斜边的一半;②如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

③平行四边形的面积公式:S = 底⨯高;菱形的面积公式:S = 两条对角线积的一半。

④梯形的面积公式:S =(上底+下底)⨯高÷2 = 中位线长⨯高4、注意:⑴四边形中常见的基本图形⑵梯形问题中辅助线的常用方法(目的:转化为三角形和平行四边形或构造全等三角形)特殊四边形性质判定边角对角线边角对角线平行四边形对边平行且相等对角相等邻角互补对角线互相平分1、两组对边分别平行的四边形是平行四边形2、两组对边分别相等的四边形是平行四边形3、一组对边平行且相等的四边形是平行四边形4、两组对角分别相等的四边形是平行四边形5、两条对角线互相平分的四边形是平行四边形矩形对边平行且相等四个角都是直角对角线互相平分且相等1、有一个角是直角的平行四边形是矩形2、三个角是直角的四边形是矩形3、对角线相等的平行四边形是矩形菱形四边相等对角相等邻角互补对角线互相垂直平分,且每条对角线平分一组对角1、一组邻边相等的平行四边形是菱形2、四边相等的四边形是菱形3、对角线互相垂直的平行四边形是菱形正方形四边相等四个角都是直角对角线互相垂直平分且相等,每条对角线平分一组对角1、有一组邻边相等且有一个角是直角的平行四边形是正方形。

2、有一组邻边相等的矩形是正方形。

3、有一个角是直角的菱形是正方形。

4、对角线相等的菱形是正方形。

5、对角线互相垂直的矩形是正方形。

等腰梯形两底平行两腰相等同一底上的两个底角相等对角线相等1、两腰相等的梯形是等腰梯形。

2、在同一底上的两个底角相等的梯形是等腰梯形。

平行四边形全章知识点总结.doc

平行四边形全章知识点总结.doc

平行四边形【知识脉络】【基础知识】Ⅰ. 平行四边形(1)平行四边形性质1)平行四边形的定义:有两组对边分别平行的四边形叫做平行四边形.2)平行四边形的性质(包括边、角、对角线三方面) : AB DO C边:①平行四边形的两组对边分别平行; ②平行四边形的两组对边分别相等;角:③平行四边形的两组对角分别相等;对角线:④平行四边形的对角线互相平分.【补充】平行四边形的邻角互补;平行四边形是中心对称图形,对称中心是对角线的交点.(2)平行四边形判定1)平行四边形的判定(包括边、角、对角线三方面):A B DO CA D边:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形;角:④两组对角分别相等的四边形是平行四边形;对角线:⑤对角线互相平分的四边形是平行四边形.2)三角形中位线:连接三角形两边中点的线段叫做三角形的中位线.3)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.4)平行线间的距离:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离。

两条平行线间的距离处处相等。

Ⅱ. 矩形(1)矩形的性质1)矩形的定义:有一个角是直角的平行四边形叫做矩形.2)矩形的性质:①矩形具有平行四边形的所有性质;②矩形的四个角都是直角;③矩形的对角线相等;④矩形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线的交点.(2)矩形的判定1)矩形的判定:①有一个角是直角的平行四边形是矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形.2)证明一个四边形是矩形的步骤:方法一:先证明该四边形是平行四边形,再证一角为直角或对角线相等;方法二:若一个四边形中的直角较多,则可证三个角为直角.3)直角三角形斜边中线定理:(如右图)直角三角形斜边上的中线等于斜边的一半.Ⅲ. 菱形(1)菱形的性质1)菱形的定义:有一组邻边相等的平行四边形叫做菱形.2)菱形的性质:①菱形具有平行四边形的所有性质; ②菱形的四条边都相等; ③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角; ④菱形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线交点. 3)菱形的面积公式: 菱形的两条对角线的长分别为b a ,,则ab S 21菱形 (2)菱形的判定1)菱形的判定:①有一组邻边相等的平行四边形是菱形;②对角线互相垂直的平行四边形是菱形;③四条边都相等的四边形是菱形.2)证明一个四边形是菱形的步骤:方法一:先证明它是一个平行四边形,然后证明“一组邻边相等”或“对角线互相垂直”; 方法二:直接证明“四条边相等”.Ⅳ. 正方形(1)正方形的性质1)正方形的定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形.2)正方形的性质:正方形具有平行四边形、矩形、菱形的所有性质,即①正方形的四条边都相等;②四个角都是直角;③对角线互相垂直平分且相等,并且每条对角线平分一组对角.3)正方形既是轴对称图形,又是中心对称图形,它有四条对称轴,对角线的交点是对称中心.(2)正方形的判定1)正方形的判定:①有一组邻边相等且有一个角是直角的平行四边形是正方形;②有一组邻边相等的矩形是正方形;③对角线互相垂直的矩形是正方形;④有一个角是直角的菱形是正方形;⑤对角线相等的菱形是正方形;⑥对角线互相垂直平分且相等的四边形是正方形.。

(完整版)平行四边形(知识点、经典例题、常考题型练习),推荐文档

(完整版)平行四边形(知识点、经典例题、常考题型练习),推荐文档
由;
(3)在图 2 的 AB 边上是否存在一点 M ,使得四边形 DMEP 是平行四边形?若存在,请给予证明;
若不存在,请说明理由.
6
A
D
F
BE
C
图1
A
D
FP
BE
C
图2
【例 3】如图,在矩形 ABCD 中,已知 AD=12,AB=5,P 是 AD 边上任意一点,PE⊥BD 于 E,PF⊥AC 于 F,求 PE+PF 的值。
A
E
B
D
G F
C
【巩固】如图,在平行四边形 ABCD 中,∠B,∠D 的平分线分别交对边于点 E、F,交四边形的对角线 AC 于点 G、H。求证:AH=CG。
例 6. 已知:如图,在□ABCD 中,E、F 分别为边 AB、CD 的中点,BD 是对角线,AG∥DB 交 CB 的延长线于 G. (1) 求证:△ADE≌△CBF; (2) 若四边形 BEDF 是菱形,则四边形 AGBD 是什么特殊四边形?并证明你的结论.
1、下列说法中错误的是( )
A.四个角相等的四边形是矩形
B.四条边相等的四边形是正方形
C.对角线相等的菱形是正方形
D.对角线互相垂直的矩形是正方形
2、如果一个四边形的两条对角线互相平分,互相垂直且相等,那么这个四边形是 ( )
A.矩形
B.菱形
C.正方形
D.菱形、矩形或正方形
3、下面结论中,正确的是( )
②如果 BAC 90 ,那么四边形 AEDF 是矩形;
③如果 AD 平分 BAC ,那么四边形 AEDF 是菱形;
④如果 AD BC 且 AB AC ,那么四边形 AEDF 是菱形.
其中,正确的有
.(只填写序号)

平行四边形知识点归纳和题型归类

平行四边形知识点归纳和题型归类

平行四边形知识点归纳和题型归类平行四边形知识点归纳和题型归类要点梳理】要点一、平行四边形1.定义:有两组对边分别平行的四边形叫做平行四边形。

2.性质:(1)对边相等;(2)同位角相等;(3)相邻角互补;(4)是中心对称图形。

3.面积:S = 底 ×高。

4.判定:边:(1)有两组对边分别平行的四边形是平行四边形;(2)对边相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形。

角:(4)有一组对边平行,且同位角相等的四边形是平行四边形。

对角线:有一组对边相等,且互相平分的四边形是平行四边形。

要点诠释:平行线的性质:(1)平行线间的距离相等;(2)等底等高的平行四边形面积相等。

要点二、矩形1.定义:有四个角都是直角的平行四边形叫做矩形。

2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形。

3.面积:S = 长 ×宽。

4.判定:有四个角都是直角的平行四边形是矩形。

要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半。

要点三、菱形1.定义:有四个边都相等的平行四边形叫做菱形。

2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形。

3.面积:S = 对角线之积的一半。

4.判定:有一组对边平行且相等的四边形是菱形。

要点四、正方形1.定义:四条边都相等,四个角都是直角的平行四边形叫做正方形。

2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形;(5)两条对角线把正方形分成四个全等的等腰直角三角形。

3.面积:S = 边长的平方,也可以用对角线的平方的一半求解。

4.判定:(1)有一组对边平行且相等的菱形是正方形;(2)有四个角都是直角的矩形是正方形;(3)对角线互相垂直平分且相等的四边形是正方形;(4)四条边都相等,四个角都是直角的四边形是正方形。

平行四边形知识点.doc

平行四边形知识点.doc

一.平行四边形、矩形、菱形、正方形知识点梳理:一般平行四边形特殊平行四边形矩形菱形正方形图形两组对边分别平行的四边形是平行四边有一个角是直角的平行四有一组邻边相等的平行有一个角是直角,且有一组邻定形边形是矩形四边形是菱形边相等的平行四边形叫做正义方形①边:对边平行且相等除具有平行四边形的性质除具有平行四边形的性具有矩形、菱形的所有性质②角:对角相等,邻角互补外,还有质外,还有(正方形=矩形+菱形)③对角线:对角线互相平分①角:四个角都是直角①边:四条边相等①边:四条边相等性质②对角线:对角线相等, 且互相平分②对角线:对角线互相垂直平分,且每一条对角线②角:四个角是直角③对角线:对角线相等,互相平分一组对角垂直平分,每一条对角线平分一组对角;边:角:边:①对角线相等且互相垂直平①两组对边分别平行的四边形是平行四边形①有一个角是直角的平行①有一组邻边相等的平分的四边形是正方形②两组对边分别相等的四边形是平行四边形四边形是矩形行四边形是菱形②有一组邻边相等且有一个角是直③一组对边平行且相等的四边形是平行四边②有三个角是直角的四边形形是矩形定角:对角线:对角线:④对角线互相垂直的矩形是菱形②四边都相等的四边形是菱形④两组对角分别相等的四边形是平行四边形③对角线相等的平行四边③对角线互相垂直的平⑤有一个角是直角的菱形是菱形对角线:形是矩形行四边形是菱形⑥对角线相等的菱形是菱形⑤对角线互相平分的四边形是平行四边形S=ah S=ab ①S=ah①(a 为一边长,h 为这条边上的高) (a 为一边长,b 为另一边长) (a 为一边长,h 为这条边(a 为边长) ;上的高) ;面积②②(b 为对角线长)(b 、c 为两条对角线的长)对中心对称图形,对称中线是两条对角线的交点既是中心对称图形(两条对角线的交点是对称中心),又是轴对称图形有2 条对称轴,它们分别是有2 条对称轴,对称轴是有4 条对称轴,其中2 条是过称性过两组对边中点的直线两条对角线所在的直线两组对边中点的直线,另外 2条是两条对角线所在的直线平行四边形(任何四边形四边中点的连线菱形矩形正方形四边中都是一个平行四边形)线连线三角形的中位线中位线平行于第三边并且等于第三边的一半一.温故知新平行四边形的面积1)平行四边形ABCD的周长为20cm,AE⊥BC于点E,AF⊥CD于点F,AE=2cm,AF=3cm,求ABCD的面积.2)如图,四边形ABCD的对角线A C、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+C.F(1)求证:PA=PC.(2)若BD=12,AB=15,∠DBA=4°5,求四边形ABCD的面积.平行四边形与角度如图,将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,则∠AEF=度.平行四边形与线段1)如图,ABCD为平行四边形,AD=2,B E∥AC,DE交AC的延长线于F点,交BE 于E点.(1)求证:EF=DF;(2)若AC=2C,F∠ADC=6°0,A C⊥D C,求DE的长.2)已知,在 ?A B C 中,∠ A D C 、∠ D A 的D F 、A 段 B C 相 交于点 F 、E ,DF 与 AE 相交于点 G . (1)求证: A E ⊥D F ; (2)若 AD=10,AB=6,AE=4,求 DF 的长. 平合探究: 以 R t △A B C A B 、边向外△ ABD 和△ ACE ,F 为A B 的点,D E ,A B 相交于点 G ,若∠ B A C =3°0 ,论:① EF ⊥AC ;②四 A D 平形;③ AD=4AG ;④△ DBF ≌ △EFA .其中正确结二 1.,已知 M 、N 、P 、 为AB 、 B D 、CD 、A C 的中点形 MNPQ 是平行四边 形. 2. 已知形 A B C D 中,A B =C D ,E 、F 为B C 、A D 的中点, B A 、E F 线交于点 M ,C D、E F 线交于点 N :∠ AME=∠DNE.3. 如图,在△ABC中,P 是中线AD的中点,连接BP并延长交AC于E,F 为BE的中点,求证:AF∥DE.4. 如图,在□ABCD中,M是OB的中点,连接 A M并延长至P.使MP=AM,连接DP交AC于N.求证:(1)MN∥AD;(2)S 四边形MPNQ=S△OBC5. 如图,AD是△ABC的外角平分线, C D⊥AD于D,E是BC的中点.(AB+AC)12求证:(1)D E∥AB;(2)DE=6. 如图,在等腰梯形ABCD中,AB∥C D,AB>C D,AD=BC.对角线相交于点O,∠AOB=60°,且E、F 、M分别是O D、O A、BC的中点. 求证:△EFM是等边三角形.。

平行四边形及特殊平行四边形知识点(经典完整版)

平行四边形及特殊平行四边形知识点(经典完整版)

正方形与平行四边形、矩形、菱形之间的关系有怎样的包含关系?请填入下图中. 二、几种特殊四边形的常用说理方法与解题思路分析
(1)判定矩形的常用方法(3种)
①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的有一个角为直角.
②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.
③说明四边形ABCD的三个角是直角.
(2)判定菱形的常用方法(3种)
①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.
②先说明四边形ABCD为平行四边形,再说明对角线互相垂直.
③说明四边形ABCD的四条边相等.
(3)判定正方形的常用方法。

5第五讲平行四边形初步

5第五讲平行四边形初步

第五讲平行四边形初步第一部分知识梳理一、平行四边形的性质1.两组对边分别_____ 的四边形叫做平行四边形.它用符号“口“表示,平行四边形ABCD 记作__________ 。

2.平行四边形的两组对边分别_______ 且_____ ;平行四边形的两组对角分别______ : 两邻角______ :平行四边形的对角线_______ :平行四边形的面积=底边长x _________ .3.在L UBCD中,若ZA-Z5=40°,贝lJZA= _________ , ZB= _________ .4.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为 ____________ .5.若L UBCD的对角线AC平分ZDAB,则对角线AC与BD的位置关系是_________ ・6.如图,LL坊CD中,CE丄AB,垂足为£,如果ZA = 115°,则ZBCE= ____________ .7. _______________________________________________________________ 如图,在LL拐CD 中,DB=DC、ZA=65。

,CE丄BD 于E,则ZBCE= _____________________二、平行四边形的判定1.平行四边形的判左方法有:从边的条件有:①两组对边__________ 的四边形是平行四边形;②两组对边________ 的四边形是平行四边形;③一组对边_________ 的四边形是平行四边形.从对角线的条件有:④两条对角线__________ 的四边形是平行四边形.从角的条件有:⑤两组对角______ 的四边形是平行四边形.注意:一组对边平行另一组对边相等的四边形_____ 是平行四边形.(填“一左"或“不一泄”)第二部分例题与解题思路方法归纳知识点一平行四边形的性质【例题1】如图,在平行四边形ABCD中,E为BC中点,AE的延长线与DC的延长线相交于点F.(1)证明:ZDFA=ZFAB;(2)证明:A ABE^AFCE・K选题意图》此题主要考查平行四边形的性质和判左以及全等三角形的证明,使学生能够灵活运用平行四边形知识解决有关问题.K解题思路3(1)利用平行四边形的两组对边分别平行即可得到两角相等:(2)利用上题证得的结论及平行四边形对边相等即可证明两三角形全等.K参考答案》证明:(1)•••在平行四边形ABCD中,•••DF〃AB,AZDFA=ZFAB;(2) TE为BC中点,•••EC=EB・Z.DFA =乙FABAlztAABE 与A FCE中,厶CEF = Z-BEAfEB = ECAAABE^AFCE.【课堂训练题】1.如图,在口ABCD中,E为BC的中点,连接DE.延长DE交AB的延长线于点F・求证:K参考答案』解:由ABCD是平行四边形得AB〃CD,AZCDE=ZF, ZC=ZEBF・又TE为BC的中点,AADEC^AFEB,:.DC=FB ・又TAB二CD,AAB=BF ・2.如图,在平行四边形ABCD中,ZBAD=32°.分别以BC、CD为边向外作A BCE和A DCF,使BE=BC, DF=DC, ZEBC=ZCDF,延长AB交边EC于点G,点G在E、C两点之间, 连接AE、AF.(1)求证:A ABE^AFDA:K参考答案月证明:(I)在平行四边形ABCD中,AB二DC, 又VDF=DC>A AB=D F・同理EB=AD.在平行四边形ABCD中,ZABC=ZADC,又TZEBOZCDF,AZABE=ZADF.AAABE^AFDA ・(2)VAABE^AFDA, AZAEB=ZDAF ・VZEBG=ZEAB+ZAEB, AZEBG=ZDAF+ZEAB, VAE 丄AF,••• ZEAF=90°.VZBAD=32°,••• ZDAF+ZEAB=90° - 32°=58°.AZEBG=58°.知识点二平行四边形的面积相关【例题2】阅读下而操作过程,回答后而问题:在一次数学实践探究活动中,小强过A、C 两点画直线AC把平行四边形ABCD分割成两个部分(如图(a)),小刚过AB、AC的中点画直线EF,把平行四边形ABCD也分割成两个部分(如图(b));(1) __________________________________________ 这两种分割方法中而积之间的关系为:Si S2, S3 _____________________________________ S4;(2)根据这两位同学的分割方法,你认为把平行四边形分割成满足以上而积关系的直线有条,请在图(c)的平行四边形中画岀一种:(3)由上述实验操作过程,你发现了什么规律?[[选题意图》平行四边形的两条对角线交于一点,这个点是平行四边形的中心,也是两条对角线的中点,经过中心的任意一条直线可将平行四边形分成完全重合的两个图形.&解题思路3(1)都是相等关系,因为AC, EF都经过平行四边形的对称中心,故分得的两部分的而积相等;(2)有无数条,因为经过对称中心的直线有无数条:(3)经过平行四边形对称中心的宜线把平行四边形的而积分成相等的两份.g参考答案》解:(1) Si=S2, S3=S4:(2)无数,如图,所以直线过0即可;(3)经过平行四边形对称中心的任意直线,都可以把平行四边形分成满足条件的图形.【课堂训练题】1 •已知平行四边形ABCD的周长为36cm,过D作AB,BC边上的髙DE、DF,且DE = 4齿cm,DF = 5嶺cm、求平行四边形ABCD的面积・K参考答案》解:设AB=x,则BC=18-x,由AB・DE=BC・DF代入数值得:4\/3x = 5\/3 (18・x),解之x=10,所以平行四边形ABCD的面积为40^3.2.如图,在平行四边形ABCD中.EF〃BC, GH〃AB, EF、GH的交点P在BD上。

(完整版)平行四边形体和平行四棱柱体知识点复习整理

(完整版)平行四边形体和平行四棱柱体知识点复习整理

(完整版)平行四边形体和平行四棱柱体知
识点复习整理
平行四边形体和平行四棱柱体知识点复整理
平行四边形体
平行四边形体是一个空间图形,它的底面和顶面是平行四边形,并且底面和顶面之间的所有侧面都是平行四边形。

主要特点:
- 底面和顶面是平行四边形
- 所有侧面都是平行四边形
常见的平行四边形体包括长方体和正方体。

长方体
长方体是一个平行四边形体,它的底面和顶面是长方形,并且
底面和顶面之间的所有侧面都是矩形。

特点:
- 底面和顶面是长方形
- 所有侧面都是矩形
正方体
正方体是一个平行四边形体,它的底面和顶面是正方形,并且
底面和顶面之间的所有侧面都是正方形。

特点:
- 底面和顶面是正方形
- 所有侧面都是正方形
平行四棱柱体
平行四棱柱体是一个空间图形,它的底面和顶面是平行四边形,并且底面和顶面之间的所有侧面都是矩形。

主要特点:
- 底面和顶面是平行四边形
- 所有侧面都是矩形
平行四棱柱体可以根据底面的形状分类,例如矩形平行四棱柱体、正方形平行四棱柱体等。

矩形平行四棱柱体
矩形平行四棱柱体是一个平行四棱柱体,它的底面和顶面是矩形,并且底面和顶面之间的所有侧面都是矩形。

特点:
- 底面和顶面是矩形
- 所有侧面都是矩形
正方形平行四棱柱体
正方形平行四棱柱体是一个平行四棱柱体,它的底面和顶面是正方形,并且底面和顶面之间的所有侧面都是矩形。

特点:
- 底面和顶面是正方形
- 所有侧面都是矩形。

第一单元《平行四边形》知识点

第一单元《平行四边形》知识点

第一单元《平行四边形》知识点
本文档旨在介绍第一单元《平行四边形》的知识点。

1. 平行四边形的定义
平行四边形是指具有两组对边平行的四边形。

四个角均为直角的平行四边形称为矩形。

2. 平行四边形的性质
- 平行四边形的对边相等。

- 平行四边形的对角线相交于一点,并且该点到四个顶点的距离相等。

- 平行四边形的邻边互补,即相邻两边之和等于180度。

- 平行四边形的对角线等分对角线角。

3. 平行四边形的分类
根据边长和角度的不同,平行四边形可以分为以下几类:
- 矩形:具有四个内角均为直角的平行四边形。

- 正方形:具有四条边长相等且四个内角均为直角的平行四边形。

- 长方形:具有两组对边相等且四个内角均为直角的平行四边形。

- 平行四边形:为一般性的平行四边形,具有两组对边平行但
不一定角度相等或边长相等。

4. 平行四边形的应用
平行四边形的概念在几何学和实际生活中有广泛的应用。

例如,在建筑设计中,平行四边形常被用作地板砖、窗户和门的形状。


数学中,平行四边形的性质也与向量、矩阵和平面几何等领域密切
相关。

以上是第一单元《平行四边形》的知识点概述。

对于每个具体
的内容,我们将在课堂上进行深入讲解和练。

- 完 -。

平行四边形知识点归纳

平行四边形知识点归纳

一.定义:两组对边分别平行的四边形叫做平行四边形。

(用字母表示时,一定要按顺时针或逆时针方向注明各顶点,否则是错误的。

)二.判定:1.两组对边分别平行的四边形是平行四边形(定义判定法) ;2.一组对边平行且相等的四边形是平行四边形;3.两组对边分别相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形。

6.连接任意四边形各边的中点所得图形是平行四边形。

三.性质:1.平行四边形的两组对边分别相等2.平行四边形的两组对角分别相等3.平行四边形的邻角互补4.平行四边形的对角线互相平分5.平行线间的高距离处处相等6.连接任意平行四边形各边的中点所得图形是平行四边形。

(注意矩形时为菱形,菱形是为矩形,正方形时为正方形)7.过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。

8.平行四边形不是轴对称图形,但平行四边形是中心对称图形(对称中心为对角线交点) 。

9.平行四边形中,四边的平方和等于对角线的平方和。

10.平行四边形对角线把平行四边形面积分成四等份。

11.平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。

四.辅助线1.连接对角线或平移对角线。

2.过顶点作对边的垂线构成直角三角形。

3.连接对角线交点与一边中点,或过对角线交点作一边的平行线,构成线段平行或中位线。

4.连接顶点与对边上一点的线段或延长这条线段,构造等面积三角形。

5.过顶点作对角线的垂线,构成线段平行或三角形全等。

五.关于等腰梯形1.性质( 1 )等腰梯形在同一底上的两个角相等( 2 )等腰梯形的两条对角线相等2.判定( 1 )在同一底上的两个角相等的梯形是等腰梯形( 2 )对角线相等的梯形是等腰梯形3.推论经过梯形一腰的中点与底平行的直线,必平分另一腰4.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半 L = ( a+b )÷25.梯形面积 =中位线×高。

第18章 《平行四边形》知识点及考点典例

第18章 《平行四边形》知识点及考点典例

第十八章《平行四边形》知识点及考点典例一、平行四边形1、平行四边形的概念两组对边分别__________的四边形叫做平行四边形。

2、平行四边形的性质(1)平行四边形的邻角_______,对角_______。

(2)平行四边形的对边_______且________。

推论:夹在两条平行线间的平行线段_______。

(3)平行四边形的对角线_________。

(4)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积。

3、平行四边形的判定(1)定义:两组对边分别________的四边形是平行四边形(2)定理1:两组对角分别_________的四边形是平行四边形(3)定理2:两组对边分别_________的四边形是平行四边形(4)定理3:对角线___________的四边形是平行四边形(5)定理4:一组对边_________的四边形是平行四边形二、矩形1、矩形的概念有一个角是_______的平行四边形叫做矩形。

2、矩形的性质(1)具有平行四边形的一切性质(边、角、对角线);(2)矩形的四个角都是_______;(3)矩形的对角线_______;(4)矩形是______对称图形。

3、矩形的判定(1)定义:有一个角是________的平行四边形是矩形。

(2)定理1:有___________是直角的四边形是矩形。

(3)定理2:对角线相等的_______________是矩形。

4、矩形的面积S矩形=长×宽=ab三、菱形1、菱形的概念有一组___________的平行四边形叫做菱形2、菱形的性质(1)具有平行四边形的一切性质(边、角、对角线);(2)菱形的________边相等(3)菱形的对角线________,并且每一条对角线平分一组对角(4)菱形是________对称图形3、菱形的判定(1)定义:有一组___________的平行四边形是菱形(2)定理1:___________都相等的四边形是菱形(3)定理2:对角线___________的平行四边形是菱形4、菱形的面积S菱形=底边长×高=两条对角线乘积的一半四、正方形1、正方形的概念有一组邻边相等并且有一个角是直角的______________叫做正方形。

(完整版)平行四边形、矩形、菱形、正方形知识点梳理.doc

(完整版)平行四边形、矩形、菱形、正方形知识点梳理.doc

平行四边形、矩形、菱形、正方形知识点总结1.平行四边形、矩形、菱形、正方形的性质:(并会用几何语言叙述)平行四边形矩形菱形正方形图形1.对边1.对边1.对边且 1.对边且且;且;四条边都;四条边都;2.对角; 2.对角2.对2.对角且四邻角;且四个角都是角;个角都是;性质 3.对角线;3.对角线3.对角线;3.对角线且且每条对;每角条对角线线;;面积2.识别方法小结:(1)识别平行四边形的方法:(下划线上填写文字,几何语言要结合图形去叙述)①两组对边的四边形是平行四边形;______________+________________=几何语言:②两组相等的四边形是平行四边形;______________+________________=几何语言:③两组对角的四边形是平行四边形;______________+________________=几何语言:④对角线的四边形是平行四边形;______________+________________=几何语言:⑤一组对边的四边形是平行四边形。

______________+________________=几何语言:(2)识别矩形的方法:如图:①有一个角是的平行四边形是矩形;_________________+_______________=几何语言:②对角线的平行四边形是矩形;_________________+_______________=几何语言:③有三个角的四边形是矩形;_________________+_______________=几何语言:(3)识别菱形的方法:①有一组邻边的是菱形;_________________+_______________=几何语言:②对角线的平行四边形是菱形;_________________+_______________=几何语言:③四边都相等的是菱形;_________________+_______________=几何语言:(4)识别正方形的方法:+=①有一组邻边相等且有一个角是直角的是正方形;_____________+____________+___________=几何语言:②对角线的平行四边形是正方形;_____________+____________+___________=几何语言:③有一组邻边相等的是正方形;_____________+_______________=几何语言:④对角线互相垂直的是正方形;_____________+________________=几何语言:⑤有一个角是直角的是正方形;_____________+_________________=几何语言:⑥对角线相等的是正方形;_____________+_______________=几何语言:⑦对角线互相垂直平分且相等的是正方形。

平行四边形全章知识点总结

平行四边形全章知识点总结

平行四边形全章知识点总结1.定义:2.性质:(1)相对边相等:平行四边形的相对边长度相等。

(2)相对角相等:平行四边形的相对角度相等。

(3)对角线互相平分:平行四边形的对角线互相平分。

(4)内角和为180度:平行四边形的所有内角的和等于180度。

3.定理:(1)同位角定理:平行线与直线相交时,同位角是相等的。

(2)内错角定理:平行线与直线相交时,内错角是相等的。

(3)平行线定理:如果一个直线与两条平行线相交,那么这两条平行线上对应的角度相等。

(4)平行四边形角度定理:如果一个四边形是平行四边形,那么它的相邻内角补角。

4.证明:(1)证明相对边相等:可以通过利用平行线的性质来证明两对边相等。

(2)证明相对角相等:可以通过同位角定理和内错角定理来证明相对角相等。

(3)证明对角线互相平分:可以通过使用平行线的性质和内错角定理来证明对角线互相平分。

(4)证明内角和为180度:可以通过使用内错角定理和平行线定理来证明内角和为180度。

5.应用:(1)计算平行四边形的面积:平行四边形的面积可以通过底边的长度乘以高来计算。

(2)判断平行四边形:根据边的长度和角度的相等性质,可以判断一个四边形是否为平行四边形。

(3)应用于几何问题:平行四边形常常出现在几何问题中,例如解决面积、长度和角度等问题时。

通过对平行四边形的定义、性质、定理、证明和应用的总结,我们可以更好地理解和应用平行四边形的知识。

掌握平行四边形的相关知识,不仅能够提高我们解决几何问题的能力,还可以在实际生活中应用该知识,并且能够帮助我们理解和应用其他几何形状的知识。

因此,对平行四边形的学习和理解是我们几何学习的重要一步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形知识结构及知识点
1、知识结构
2、对称性:
① 平行四边形是中心对称图形,其对称中心是两条对角线的交点;
② 等腰梯形是轴对称图形,其对称轴是过上、下两底的中点的直线;
③ 矩形、菱形、正方形既是轴对称图形,又是中心对称图形。

3、相关定理:
① 直角三角形斜边上的中线等于斜边的一半;
② 如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

③平行四边形的面积公式:S = 底高;菱形的面积公式:S =两条对角线积的一半。

④梯形的面积公式: S =(上底 +下底)高 2 = 中位线长高
4、注意:
⑴ 四边形中常见的基本图形
⑵梯形问题中辅助线的常用方法( 目的:转化为三角形和平行四边形或构造全等三角形)
特殊性质判定
四边形边角对角线边角对角线
1、两组对边分别平
行的四边形是平行
平行四边形
四边形
对边对角相等
2、两组对边分别相
4、两组对角
5、两条对角
对角线分别相等的线互相平分
平行等的四边形是平行
互相平分四边形是平的四边形是且相等四边形
邻角互补行四边形平行四边形
3、一组对边平行且
相等的四边形是平
行四边形
1、有一个角
是直角的平
矩形行四边形是
3、对角线
对边四个角矩形
对角线相等的平行平行
互相平分四边形是且相等都是直角2、三个角是
且相等矩形
直角的四边
形是矩形
对角线1、一组邻边相等的3、对角线
菱形
四边对角相等互相垂直
平行四边形是菱形互相垂直的平分 ,
平行四边形且每条对
相等邻角互补2、四边相等的四边是菱形
角线平分
形是菱形
一组对角
对角线1、有一组邻边相等4、对角线
互相垂直且有一个角是直角
相等的菱形
正方形的平行四边形是正
四边四个角平分且3、有一个角是正方形。

方形。

相等 , 是直角的菱
相等都是直角每条对角
2、有一组邻边相等形是正方形。

5、对角线互
线平分相垂直的矩
一组对角的矩形是正方形。

形是正方形。

等腰两底2、在同一底
梯形平行同一底对角线1、两腰相等的上的两个底3、对角线上的两个梯形是等腰梯形。

角相等的梯相等的梯形两腰底角相等相等形是等腰梯是等腰梯形
相等形。

相关文档
最新文档