小学奥数之容斥原理
小学奥数教程:容斥原理之数论问题_全国通用(含答案)
1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数). 二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:教学目标知识要点1.先包含——A B + 重叠部分A B 计算了2次,多加了1次; 2.再排除——A B A B +- 把多加了1次的重叠部分A B 减去.图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.7-7-4 容斥原理之数论问题在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.【例 1】 在1~100的全部自然数中,不是3的倍数也不是5的倍数的数有多少个? A B【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 如图,用长方形表示1~100的全部自然数,A 圆表示1~100中3的倍数,B 圆表示1~100中5的倍数,长方形内两圆外的部分表示既不是3的倍数也不是5的倍数的数.由1003331÷=可知,1~100中3的倍数有33个;由100520÷=可知,1~100中5的倍数有20个;由10035610÷⨯=()可知,1~100既是3的倍数又是5的倍数的数有6个.由包含排除法,3或5的倍数有:3320647+-=(个).从而不是3的倍数也不是5的倍数的数有1004753-=(个).【答案】53【巩固】 在自然数1100~中,能被3或5中任一个整除的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 1003331÷=,100520÷=,10035610÷⨯=().根据包含排除法,能被3或5中任一个整除的数有3320647+-=(个).【答案】47【巩固】 在前100个自然数中,能被2或3整除的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 如图所示,A 圆内是前100个自然数中所有能被2整除的数,B 圆内是前100个自然数中所有能被3整除的数,C 为前100个自然数中既能被2整除也能被3整除的数.前100个自然数中能被2整除的数有:100250÷=(个).由1003331÷=知,前100个自然数中能被3整除的数有:33个.由10023164÷⨯=()知,前100个自然数中既能被2整除也能被3整除的数有16个.所以A 中有50个数,B 中有33个数,C 中有16个数.因为A ,B 都包含C ,根据包含排除法得到,能被2或3整除的数有:50331667+-=(个).【答案】67【例 2】 在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 1~1000之间,5的倍数有10005⎡⎤⎢⎥⎣⎦=200个,7的倍数有10007⎡⎤⎢⎥⎣⎦=142个,因为既是5的倍数,又是7的倍数的数一定是35的倍数,所以这样的数有100035⎡⎤⎢⎥⎣⎦=28个. 所以既不能被5除尽,又不能被7除尽的数有1000-200-142+-28=686个.【答案】686【巩固】 求在1至100的自然数中能被3或7整除的数的个数.【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 记 A :1~100中3的倍数,1003331÷=,有33个;B :1~100中7的倍数,1007142÷=,有14个;A B :1~100中3和7的公倍数,即21的倍数,10021416÷=,有4个.依据公式,1~100中3的倍数或7的倍数共有3314443+-=个,则能被3或7整除的数的个数为43个.【答案】43例题精讲【例 3】 以105为分母的最简真分数共有多少个?它们的和为多少?【考点】容斥原理之数论问题 【难度】4星 【题型】解答【解析】 以105为分母的最简真分数的分子与105互质,105=3×5×7,所以也是求1到105不是3、5、7倍数的数有多少个,3的倍数有35个,5的倍数有21个,7的倍数有15个,15的倍数有7个,21的倍数有5个,35的倍数有3个,105的倍数有1个,所以105以内与105互质的数有105-35-21-15+7+5+3-1=48个,显然如果n 与105互质,那么(105-n )与n 互质,所以以105为分母的48个最简真分数可两个两个凑成1,所以它们的和为24.【答案】48个,和24【巩固】 分母是385的最简真分数有多少个?并求这些真分数的和.【考点】容斥原理之数论问题 【难度】4星 【题型】解答【解析】 385=5×7×11,不超过385的正整数中被5整除的数有77个;被7整除的数有55个;被11整除的数有35个;被77整除的数有5个;被35整除的数有11个;被55整除的数有7个;被385整除的数有1个;最简真分数的分子可以有385-77-55-35+5+11+7-1=240.对于某个分数a/385如果是最简真分数的话,那么(385-a )/385也是最简真分数,所以最简真分数可以每两个凑成整数1,所以这些真分数的和为120.【答案】240个,120个【例 4】 在1至2008这2008个自然数中,恰好是3、5、7中两个数的倍数的数共有 个.【考点】容斥原理之数论问题 【难度】3星 【题型】填空【关键词】西城实验【解析】 1到2008这2008个自然数中,3和5的倍数有200813315⎡⎤=⎢⎥⎣⎦个,3和7的倍数有20089521⎡⎤=⎢⎥⎣⎦个,5和7的倍数有20085735⎡⎤=⎢⎥⎣⎦个,3、5和7的倍数有200819105⎡⎤=⎢⎥⎣⎦个.所以,恰好是3、5、7中两个数的倍数的共有1331995195719228-+-+-=个.【答案】228个【例 5】 求1到100内有____个数不能被2、3、7中的任何一个整除。
(完整版)小学奥数-容斥原理(教师版)(可编辑修改word版)
容斥原理森林中住着很多动物,据说狮子大王派仙鹤去统计鸟类的种数,蝙蝠跑过去对仙鹤说;“我有翅膀,我应该是属于鸟类的。
”于是仙鹤就把蝙蝠统计到鸟类的种类里去了,结果得出森林中一共有 80 种鸟类。
狮子大王又派大象去统计野兽的种类数,蝙蝠听说又来统计兽类了,急忙跑过去对大象说;“我没有羽毛,我应该是属于兽类的。
”于是大象就把蝙蝠统计到兽类的种类里去了,结果统计出森林中一共有 60 种兽类。
最后狮子大王问:“森林中共有鸟类和兽类多少种?”狡猾的狐狸听见了仙鹤和大象的统计结果,高兴地向狮子大王汇报:“这还不简单!森林中共有鸟类和兽类 140 种。
”这个统计正确吗?同学们肯定会说:“不对!蝙蝠被算了两次,应该再减去一,是 139 种。
”这个故事说明了一个数学问题,那就是被称为“容斥原理”的包含与排除问题。
当需要计数的两类事物互相包含(有部分重复交叉)时,应把重复计数的部分排除掉。
由此我们得到逐步排除法(容斥原理):当两个计数部分有重复时,为了不重复计数,应从它们的和中减去重复部分。
容斥原理 1如果被计数的事物有 A、B 两类,那么, A 类 B 类元素个数总和= 属于 A 类元素个数+ 属于 B 类元素个数—既是 A 类又是 B 类的元素个数。
即A∪B = A+B - A∩B容斥原理 2如果被计数的事物有 A、B、C 三类,那么, A 类和 B 类和 C 类元素个数总和= A 类元素个数+ B 类元素个数+C 类元素个数—既是 A 类又是 B 类的元素个数—既是 A 类又是 C 类的元素个数—既是 B 类又是 C 类的元素个数+既是 A 类又是 B 类而且是 C 类的元素个数。
即A∪B∪C = A+B+C - A∩B - B∩C - C∩A +A∩B∩C容斥原理 1【例 1】★一次期末考试,某班有 15 人数学得满分,有 12 人语文得满分,并且有 4 人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?【解析】依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A 类元素”,“语文得满分”称为“B 类元素”,“语、数都是满分”称为“既是 A 类又是 B 类的元素”,“至少有一门得满分的同学”称为“A 类和 B 类元素个数”的总和。
小学奥数容斥原理教案
小学奥数容斥原理教课设计【篇一:四年级奥数讲义:容斥原理 (1)】四年级数学讲义奥数:容斥原理 (1)教课目的: 1、理解容斥原理,会绘图剖析此中关系,正确的找出答案。
2、培育学生的逻辑思想和数学思虑能力。
3、培育学生优异的书写习惯。
一、教课连接二、教课内容〔一〕知识介绍容斥问题波及到一个重要原理——包括与清除原理,也叫容斥原理。
即当两个计数局部有重复包括时,为了不重复计数,应从它们的和中清除重复局部。
容斥原理:对 n 个事物,假如采纳不一样的分类标准,按性质 a 分类与性质 b 分类〔如图〕,那么拥有性质 a 或性质 b 的事物的个数=na +nb -nab 。
〔二〕例题精讲 nanb例 1、一个班有 48 人,班主任在班会上问:“谁做完语文作业?请举手!〞有 37 人举手。
又问:“谁做完数学作业?请举手!〞有 42 人举手。
最后问:“谁语文、数学作业都没有做完?〞没有人举手。
求这个班语文、数学作业都达成的人数。
【思路导航】达成语文作业的有 37 人,达成数学作业的有 42 人,一共有 37+42=79 人,多于全班人数。
这是由于语文、数学作业都达成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。
所以,这个班语文、数作业都达成的有: 79-48=31 人。
例 2、某班有 36 个同学在一项测试中,答对第一题的有 25 人,答对第二题的有 23 人,两题都答对的有 15 人。
问多少个同学两题都答得不对?【剖析与解答】答对第一题的有 25 人,两题都答对的有 15 人,能够求出只答对第一题的有 25-15=10 人。
又答对第二题的有23 人,用只答对第一题的人数,加上答对第二题的人数就获得起码有一题答对的人数: 10+23=33 人。
所以,两题都答得不对的有 36-33=3 人。
例 3、某班有 56 人,参加语文比赛的有 28 人,参加数学比赛的有27 人,假如两科都没有参加的有 25 人,那么同时参加语文、数学两科比赛的有多少人?【剖析与解答】要求两科比赛同时参加的人数,应先求出起码参加一科比赛的人数: 56-25=31 人,再求两科比赛同时参加的人数:28+27-31=24 人。
五年级数学奥数教学课件:容斥原理
在100个外语教师中,懂英语的有75人,懂日语的有 45人,其中必然有既懂英语又懂日语的老师。问:只 懂英语的老师有多少人?
分析与解答
显然,两种语言都懂的人在懂英语的75人中统计 过一次,在懂日语的45人中又统计过一次。因此, 75+45=120人,比100多出的20人就是两种语 言都懂的人数。然后,从懂英语的75人中减去两 种语言都懂的20人,就是只懂英语的人数了: 75-20=55人。
书山有路勤为径
!
分析与解答
两个小组都参加的有25人,因此,至少参 加这两种小组的一个小组的人数是:
84+86-25=144人, 所以,这两个小组都不参加的人数是: 250-144=106人。
实战演练3
1,五年级有250人,其中参加象棋组的有83人,参 加乒乓球组的有86人,这两个小组都参加的有25人。 两个小组都不参加的有多少人?
1,某校的每个学生至少爱体育和文娱中的一种活动。 已知有900人爱好体育活动,有850人爱好文娱活动, 其中260人两种活动都爱好。这个学校共有学生多少 人?
2,某班在一次测验中有26人语文获优,有30人数 学获优,其中语文、数学双优的有12人,另外还有8 人语文、数学均未获优。这个班共有多少人?
搞清数量关系的逻辑关系。有些语言不易表达清楚的关系,用了 适当的图形就显得很直观、很清楚,因而容易进行计算。
五年级96名学生都订了报纸,有64人订了 少年报,有48人订了小学生报。两种报纸
都订的有多少人?
分析与解答
1,一个班的52人都在做语文和数学作业。有32人 做完了语文作业,有35人做完了数学作业。语文、 数学作业都做完的有多少人?
小学的奥数之容斥原理
容斥原理(一)【例题分析】例1. 有长8厘米,宽6厘米的长方形与边长5厘米的正方形。
如图放在桌面上,求这两个图形盖住桌面的面积?分析与解:阴影部分是直角三角形,是两个图形的重叠部分,它的面积是:(平方厘米)方法一:(平方厘米)方法二:(平方厘米)方法三:(平方厘米)答:盖住桌面的面积是67平方厘米。
例2. 六一班参加无线电小组和航模小组的共26人,其中参加无线电小组的有17人,参加航模小组的有14人,两组都参加的有多少人?分析与解:把17人和14人相加,是把两组都参加的人算了两次,所以减去总人数,就是两组都参加的人数(人)。
也可以这样解:(人)或(人)答:两组都参加的有5人。
例3. 六一班有学生46人,其中会骑自行车的有19人,会游泳的有25人,既会骑车又会游泳的有7人,既不会骑自行车又不会游泳的有多少人?分析与解:先求出46人中会骑车或会游泳的有多少人,从中减去会骑车或会游泳的人数,剩下的就是既不会骑车也不会游泳的人数。
(人)(人)答:既不会骑车又不会游泳的有9人。
例4. 某年级的课外小组分为美术、音乐、手工三个小组,参加美术小组有20人,参加音乐小组有24人,参加手工小组有31人,同时参加美术和音乐两个小组有5人,同时参加音乐和手工两个小组有6人,同时参加美术和手工两个小组的有7人,三个小组都参加的有3人,这个年级参加课外小组的同学共有多少人?分析与解:图中的5、6、7人都是两两重叠的部分,图中的3人是三个重叠的部分,要从三个组的总人数中减去重复多余的部分。
(人)答:这个年级参加课外小组的有60人。
例5. 某班在短跑、投掷和跳远三项检测中,有4人三项都未达到优秀,其他人至少有一项是优秀,下表是得优秀的情况,请你算出全班人数。
短跑投掷跳远跑跳跑投跳投三项19 21 20 9 10 6 3分析与解:根据题意画出如下图要求全班有多少人,先要求出跑、跳、投至少有一项达到优秀的人数,加上三项都未达到优秀的,就是全班人数。
小学奥数趣味学习《容斥问题》典型例题及解答
小学奥数趣味学习《容斥问题》典型例题及解答容斥原理是解决计数问题的重要方法,在计数时要求注意无一重复无一遗漏,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
常见的容斥问题有两者容斥、三者容斥两种。
数量关系:A∪B = A+B - A∩BA∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C解题思路和方法:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复。
可画文氏(韦恩)图来解题。
例题1:有两块木板各长50厘米,把两块木板钉成一块长木板,中间钉在一起的重叠部分长8厘米。
钉成的木板长 _____ 厘米。
解:1、本题考查了学生的运算能力、应用能力。
解决重叠问题时,要注意重叠的部分不能重复计算。
2、两块木板一共长50+50=100(厘米),如果钉在一起,说明原来的两个8厘米变成了一个8厘米,这样钉成的木板比100厘米少了8厘米,所以钉成的木板长100-8=92(厘米)。
例题2:有两张各长20厘米的纸条,粘贴在一起后的总长是36厘米,那么重叠部分长()厘米。
A、2B、4C、8D、16解:1、此题考查孩子的应用能力、运算能力。
孩子没有进行画图理解,只是凭自己的主观想象进行思考,没有找到总长度与重复部分长度之间的关系,在后面计算时出现错误。
2、两张纸条如果没有重叠,那么一共长20+20=40(厘米),而重叠后的长度是36厘米,短了40-36=4(厘米),说明重叠部分的长度是4厘米。
选择B。
例题3:某班在短跑、投掷和跳远三项检测中,有4人三项都未达到优秀,其他人至少有一项是优秀,下表是得优秀的情况,这个班共有多少人?解:根据题意画图2、我们可以先算出19+20+21=60(人),但是这里有被重复算的和漏算的,我们要注意减去重复的部分,加上漏算的部分。
小学奥数《容斥原理》
有的有27人,这个班有学生多少人?
容斥原理
订阅报纸的总人数是 多少?(2)两种报纸 都没订阅的有多少人?
一个班有45名学生,订阅《小学生数学报》的有15人, 订阅《今日少年报》的有10人,两种报纸都订阅的有6人。
二.有100位旅客,其中有10人既不懂英语又不 懂俄语,有75人懂英语,83人懂俄语,问既 懂英语又懂俄语的有多少人?
三.求不超过100的自然数中,不能被3、5中任 何一数整除的数的个数。
一个俱乐部里,会下中国象棋的有69人,会下 国际象棋的有52人,这两种棋都不会下的有12 人,都会下的有30人。这个俱乐部里有多少人?
. 六一班有学生46人,其中会骑自行 的有19人,会游泳的有25人,既会骑 又会游泳的有7人,既不会骑自行车 不会游泳的有多少人?
例4. 某年级的课外小组分为美术、音乐、手 工三个小组,参加美术小组有20人,参加音 乐小组有24人,参加手工小组有31人,同时 参加美术和音乐两个小组有5人,同时参加音 乐和手工两个小组有6人,同时参加美术和手 工两个小组的有7人,三个小组都参加的有3 人,这个年级参加课外小组的同学共有多少人?
如果被计数的事物有A、B、C三类,那么, A类或B类或C类元素个数= A类元素个数 + B类元素个数+C类元素个数—既是A类 又是B类的元素个数—既是A类又是C类的 元素个数—既是B类又是C类的元素个数+ 既是A类又是B类而且是C类的元素个数。
一.四(1)班有40个学生,其中25人参加数学 小组,23人参加航模小组,有19个人两个小 组都参加了,那么,有多少人两个小组都没 有参加?
小学奥数之容斥原理知识点
小学奥数之容斥原理知识点容斥原理容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。
即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b 的事物的个数=Na+Nb-Nab。
例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。
又问:“谁做完数学作业?请举手!”有42人举手。
最后问:“谁语文、数学作业都没有做完?”没有人举手。
求这个班语文、数学作业都完成的人数。
分析与解答:完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。
这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。
所以,这个班语文、数作业都完成的有:79-48=31人。
例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。
问多少个同学两题都答得不对?分析与解答:已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。
又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人。
所以,两题都答得不对的有36-33=3人。
例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?分析与解答:要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:56-25=31人,再求两科竞赛同时参加的人数:28+27-31=24人。
例4:在1到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个?分析与解答:从1到100的自然数中,减去5或6的倍数的个数。
从1到100的自然数中,5的倍数有100÷5=20个,6的倍数有16个(100÷6=16……4),其中既是5的倍数又是6的倍数(即5和6的公倍数)的数有3个(100÷30=3……10)。
容斥原理及公式的证明
=50-(28+24+18)+(10+8+5) =3(人) 答:三个场馆都参观的有3人。
或:N=Na+Nb+Nc-Nab-Nbc-Nca+Nabc。
四年级奥数之容斥原理及公示的证明
பைடு நூலகம்
A
B
N1 Na
N4
N2
Nab Nb
Nabc
Nca N6
N7
Nbc N5
Nc
N3 C
定理: |A∪B∪C|=|A|+|B|+|C|-|A∩B|-|B∩C|-|C∩A|+|A∩B∩C| 或:N=(Na+Nb+Nc)-(Nab+Nbc+Nca)+Nabc
证明:设Na、Nb、Nc分别表示图A、B、C覆盖的 面积;Nab、Nbc、Nca分别表示图A和B、B和C、C和 A共同覆盖的面积;Nabc表示图A、B、C共同覆盖的面 积。再设N1、N2、N3、N4、N5、N6、N7分别表示7个 互不覆盖区域的面积;N表示7个互不覆盖区域的面积 总和。
则:N1=Na-Nab-Nca+Nabc, N2=Nb-Nab-Nbc+Nabc, N3=Nc-Nbc-Nca+Nabc N4=Nab-Nabc N5=Nbc-Nabc N6=Nca-Nabc N7=Nabc
五年级奥数之容斥原理及公示的证明
容斥问题
某班50名学生前往上海世博会 参观丹麦、法国、西班牙三个场馆。 参观丹麦、法国、西班牙场馆的人数 分别是28、24、18人,其中既参观 丹麦馆又参观法国馆的10人,既参观 丹麦馆又参观西班牙馆的8人,既参 观法国馆又参观西班牙馆的5人。
小学奥数计数问题之容斥原理知识点
然后将④⑤⑥代入①中,整理得到 a2×4+a3=26 由于a2、a3均表示人数,可以求出它们的整数解: 当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22 又根据a23=a2-a3×2……⑤可知:a2>a3 因此,符合条件的只有a2=6,a3=2。 然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=8+6+2+7+2=25,检验所有条件均符。 故只解出第二题的学生人数a2=6人。
经典例题:
例1、某班共有30名男生,其中20人参加足球队,12人参加蓝球队,10人参加排球队.已知没一个人同时参加3个队,且每 人至少参加一个队,有6人既参加足球队又参加蓝球队,有2人既参加蓝球队又参加排球队,那么既参加足球队又参加排球队 的有()人. 考点:重叠问题. 分析:如图所示,设既参加是球队又参加排球队的人数为x,则依容斥原理,有20+12+10-6-2-x=30,解方程即可. 解答:解:如图所示,设既参加是球队又参加排球队的人数为x,则依容斥原理, 有20+12+10-6-2-x=30, 解得x=4. 故答案为:4. 点评:此题考查学生依据容斥原理解答问题的能力. 例2、在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出 第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1 人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是() 解答:根据"每个人至少答出三题中的一道题"可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2 题,只答第1、3题,只答2、3题,答1、2、3题。 分别设各类的人数为a1、a2、a3、a12、a13、a23、a123 由(1)知:a1+a2+a3+a12+a13+a23+a123=25…① 由(2)知:a2+a23=(a3+a23)×2……② 由(3)知:a12+a13+a123=a1-1……③ 由(4)知:a1=a2+a3……④ 再由②得a23=a2-a3×2……⑤ 再由③④得a12+a13+a123=a2+a3-1⑥
(完整版)小学奥数-容斥原理(教师版)(可编辑修改word版)
容斥原理森林中住着很多动物,据说狮子大王派仙鹤去统计鸟类的种数,蝙蝠跑过去对仙鹤说;“我有翅膀,我应该是属于鸟类的。
”于是仙鹤就把蝙蝠统计到鸟类的种类里去了,结果得出森林中一共有 80 种鸟类。
狮子大王又派大象去统计野兽的种类数,蝙蝠听说又来统计兽类了,急忙跑过去对大象说;“我没有羽毛,我应该是属于兽类的。
”于是大象就把蝙蝠统计到兽类的种类里去了,结果统计出森林中一共有 60 种兽类。
最后狮子大王问:“森林中共有鸟类和兽类多少种?”狡猾的狐狸听见了仙鹤和大象的统计结果,高兴地向狮子大王汇报:“这还不简单!森林中共有鸟类和兽类 140 种。
”这个统计正确吗?同学们肯定会说:“不对!蝙蝠被算了两次,应该再减去一,是 139 种。
”这个故事说明了一个数学问题,那就是被称为“容斥原理”的包含与排除问题。
当需要计数的两类事物互相包含(有部分重复交叉)时,应把重复计数的部分排除掉。
由此我们得到逐步排除法(容斥原理):当两个计数部分有重复时,为了不重复计数,应从它们的和中减去重复部分。
容斥原理 1如果被计数的事物有 A、B 两类,那么, A 类 B 类元素个数总和= 属于 A 类元素个数+ 属于 B 类元素个数—既是 A 类又是 B 类的元素个数。
即A∪B = A+B - A∩B容斥原理 2如果被计数的事物有 A、B、C 三类,那么, A 类和 B 类和 C 类元素个数总和= A 类元素个数+ B 类元素个数+C 类元素个数—既是 A 类又是 B 类的元素个数—既是 A 类又是 C 类的元素个数—既是 B 类又是 C 类的元素个数+既是 A 类又是 B 类而且是 C 类的元素个数。
即A∪B∪C = A+B+C - A∩B - B∩C - C∩A +A∩B∩C容斥原理 1【例 1】★一次期末考试,某班有 15 人数学得满分,有 12 人语文得满分,并且有 4 人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?【解析】依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A 类元素”,“语文得满分”称为“B 类元素”,“语、数都是满分”称为“既是 A 类又是 B 类的元素”,“至少有一门得满分的同学”称为“A 类和 B 类元素个数”的总和。
五年级奥数-容斥原理最新解读
例如:一次期末考试,某班有15人数学得满分,有12 人语文得满分,并且有4人语、数都是满分,那么这个 班至少有一门得满分的同学有多少人? 分析:依题意,被计数的事物有语、数得满分两类, “数学得满分”称为“A类元素”,“语文得满分” 称为“B类元素”,“语、数都是满分”称为“既是A 类又是B类的元素”,“至少有一门得满分的同学” 称为“A类和B类元素个数”的总和。为15+12-4=23。
练1.C班的同学都至少喜欢一项运动,有37人喜欢 乒乓球,26人喜欢篮球,21人两种球都喜欢, 问C班有多少人? 解: 练2.自然数1,2,3…,99,100当中,能被3整除或能被4整除的 数共有几个?
Байду номын сангаас
解: 练3.某校参加数学竞赛的有120名男生、80名女生,语文竞赛的有 120女生,80男生,总共参赛人数有260名,其中75名男生两科都 参加了,问,只参加数学没参加语文的女生有多少?
问题1.十月国庆节,学校门口挂了一行彩 旗。小张从前数起,红旗是第8面;从后数 起,红旗是第10面。这行彩旗共多少面?
问题2.同学们排队做操,每行人数同样多。小明的位 置从左数起是第4个,从右数起是第3个,从前数起是 第5个,从后数起是第6个。做操的同学共有多少个? 问题3.把两块一样长的木板像下图这样钉在一起成 了一块木板。如果这块钉在一起的木板长120厘米, 中间重叠部分是16厘米,这两块木板各长多少厘米?
例1. A班共有40人,同学们都喜欢打篮球或者打羽毛球。 喜欢打篮球的有26人,喜欢打羽毛球的有24人,问两 种球都喜欢的同学有多少人? 解:
原理1:既是A又是B的数量=A的数量+B的数量-A或B的数量。
A或B的数量=A的数量+B的数量-既是A又是B的数量
容斥原理奥数原题
容斥原理在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
容斥原理(1)如果被计数的事物有A、B两类,那么,A类或B类元素个数= A类元素个数+B类元素个数—既是A类又是B类的元素个数。
例1一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?分析:依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B类的元素”,“至少有一门得满分的同学”称为“A类或B类元素个数”的总和。
试一试:某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电脑的有34人,二者都有的有27人,这个班有学生多少人?(并说一说你的想法。
)容斥原理(2)如果被计数的事物有A、B、C三类,那么,A类或B类或C类元素个数= A类元素个数+B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数1、某艺术团的小演奏家们每人都至少会演奏小提琴和钢琴中的一种。
他们中有32人会拉小提琴,27人会弹钢琴,小提琴和钢琴都能演奏的有11人。
这个团共有多少个小演奏家?2、一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且全班每人至少参加一个队。
问:这个班两队都参加的有多少人?3、京华小学五年级学生采集标本。
采集昆虫标本的有25人,采集植物标本的有19人,两种标本都采集的有8人。
全班学生共有40人,没有采集标本的有多少人?4、有100位旅客,其中有10人既不懂英语又不懂日语,有75人懂英语,83人懂日语。
小学奥数(3)容斥原理
某班有56人,参加语文竞赛的有28人,参加数学竞赛 的有27人,如果两科都没有参加的有25人,那么同时参加 语文、数学两科竞赛的有多少人?
要求两科竞赛同时参加的人数,应先求出至少参加一 科竞赛的人数:56-25=31人,再求两科竞赛同时参加 的人数:28+27-31=24人。
抽屉Байду номын сангаас理
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论 怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。 这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般 含义为:“如果每个抽屉代表一个集合,每一个苹果就可以 代表一个元素,假如有n+1个元素放到n个集合中去,其中必 定有一个集合里至少有两个元素。” 抽屉原理有时也被称 为鸽巢原理。它是组合数学中一个重要的原理。
容斥原理
在计数时,必须注意没有重复,没有遗漏。为了使重叠部分不被 重复计算,人们研究出一种新的计数方法,这种方法的基本思想是: 先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出 来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无 遗漏又无重复,这种计数的方法称为容斥原理。
例如:一次期末考试,某班有15人数学得满分,有12人语文得满分,
例题 木箱里装有红色球3个、黄色球5个、蓝色球7 个,若蒙眼去摸,为保证取出的球中有两个球的颜色 相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉,若要符合题意,则小 球的数目必须大于3,故至少取出4个小球才能符合要 求。
将400本书分给若干个同学,每人都不超过11张, 至少有多少名同学分到的卡片的张数相同。
我们把分得的1,2,3,…,11这11张卡片看帮11个抽屉, 把学生人数看做物体的个数。如果每个抽屉都有一个物体,那 么就需要有1+2+3+…+11=66(个)物体,即66张卡片,而 400÷66=6……4(张),每个抽屉里有6个物体,还余4个物体, 这4个物体无论怎样放,都会有一个抽屉放了7个物体,所以至 少有7名同学分得的卡片的张数是相同的。
小学奥数知识点 —— 容斥原理
容斥原理容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。
即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b的事物的个数=Na+Nb-Nab。
例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。
又问:“谁做完数学作业?请举手!”有42人举手。
最后问:“谁语文、数学作业都没有做完?”没有人举手。
求这个班语文、数学作业都完成的人数。
分析与解答完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。
这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。
所以,这个班语文、数作业都完成的有:79-48=31人。
例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。
问多少个同学两题都答得不对?分析与解答:已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。
又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人。
所以,两题都答得不对的有36-33=3人。
例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?分析与解答:要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:56-25=31人,再求两科竞赛同时参加的人数:28+27-31=24人。
例4:在1到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个?分析与解答:从1到100的自然数中,减去5或6的倍数的个数。
从1到100的自然数中,5的倍数有100÷5=20个,6的倍数有16个(100÷6=16……4),其中既是5的倍数又是6的倍数(即5和6的公倍数)的数有3个(100÷30=3……10)。
五年级奥数第七讲 容斥原理
第七讲 容斥原理(一)知识要点:容斥原理,也称重叠原理或排斥于包含原理。
它实际上是一种集合方面的问题。
如果用图形来表达,则会更直观些。
原理一 如果两个集合A 和B ,相交组成一个集合C ,那么C 的元素个数等于A和B的元素个数的和再减去A和B的公共部分元素的个数。
如下图:即:C=A+B -AB 或AB=A+B -C例1、 五丙班有48名学生参加晨练,其中有30人跑步,25人跳绳,问两项都参加了的有多少名学生? 分析:由于30+25>48,所以有人两项活动都参加了。
根据容斥原理一,跑步的相当于集合A ,跳绳的相当于集合B ,两项都参加了的相当于集合AB,而全班人数相当于集合C。
现在是已知A、B、C中元素的个数,要求AB 中元素的个数。
练习、五甲班50名学生中,有28人参加了作文兴趣小组,有37人参加了数学兴趣小组,每人至少参加了一项。
问两项都参加了的有多少人?例2、 五乙班在某次晨练中,有33人跑步,24人跳绳,8人两个活动都参加了,有3人因感冒请假未参加晨练,问该班有多少名学生?练习、五丁班参加了帮助一、二年级同学搞大扫除的活动。
已知有32人帮助了一年级同学,有25人帮助了二年级同学,有13人既帮助了一年级又帮助了二年级同学,还有10人留在自己的教室里大扫除。
问五丁班共有多少人?例3、1至60的自然数中,2的倍数的数和3的倍数的数一共有多少个?练习、在1至300的自然数中,2的倍数的数和5的倍数的数一共有多少个? AB A B ABA B = + - C例4、30名运动员中,有25人会打篮球,有20人会打排球,有4人篮球、排球都不会打。
问:(1)篮球、排球都会打的运动员有多少人?(2)只会打篮球的运动员有多少人?(3)只会打排球的运动员有多少人?练习、五年级有艺术特长生共47人,其中有31人会唱歌,有25人会跳舞,有7人既不会唱歌也不会跳舞。
问:(1)唱歌、跳舞都会的有多少人?(2)只会唱歌的有多少人?(3)只会跳舞的有多少人?作业1、在对100个家庭所做的调查中发现,有18个家庭有汽车,有65个家庭有自行车,有33个家庭两样都没有。
小学奥数之容斥原理
小学奥数之容斥原理容斥原理例1:给定长8厘米,宽6厘米的长方形和边长5厘米的正方形,求这两个图形覆盖桌面的面积。
分析与解:两个图形的重叠部分是一个直角三角形,可以用三种方法求出它的面积:方法一:方法二:方法三:最终答案为67平方厘米。
例2:六一班共有26名学生参加了无线电小组和航模小组,其中有17人参加了无线电小组,14人参加了航模小组,有多少人参加了两个小组?分析与解:如果直接将17人和14人相加,会把两个小组都参加的人算两次,因此需要用容斥原理来计算。
具体地,两个小组都参加的人数等于总人数减去只参加一个小组的人数:另一种方法是:最终答案为5人。
例3:六一班共有46名学生,其中19人会骑自行车,25人会游泳,7人既会骑车又会游泳,有多少人既不会骑自行车也不会游泳?分析与解:首先计算会骑车或会游泳的人数,然后减去既会骑车又会游泳的人数,就得到了既不会骑车也不会游泳的人数:最终答案为9人。
例4:某年级的课外小组分为美术、音乐、手工三个小组,参加美术小组有20人,参加音乐小组有24人,参加手工小组有31人,同时参加美术和音乐两个小组的有5人,同时参加音乐和手工两个小组的有6人,同时参加美术和手工两个小组的有7人,三个小组都参加的有3人,这个年级参加课外小组的同学共有多少人?分析与解:用容斥原理计算总人数,需要减去重复多余的部分。
具体地,先计算参加至少一个小组的人数,然后减去同时参加两个小组的人数,再加上同时参加三个小组的人数:最终答案为60人。
例5:某班有若干学生参加了短跑、投掷和跳远三项检测,其中有4人三项都未达到优秀,其他人至少有一项是优秀。
给定各项检测中达到优秀的人数,求全班人数。
分析与解:用容斥原理计算全班人数,需要减去三项都未达到优秀的人数。
具体地,先计算跑、跳、投至少有一项达到优秀的人数,然后加上三项都未达到优秀的人数:最终答案为42人。
例6:求分母为105的最简真分数的个数。
分析与解:分母为105的最简真分数,可以表示成$a/105$ 的形式,其中 $a$ 是比105小的正整数,且 $a$ 和105互质。
五年级奥数容斥问
五年级奥数容斥问题:容斥原理(1)如果被计数的事物有a、b两类,那么,a类或b类元素个数= a类元素个数+b类元素个数—既是a类又是b类的元素个数。
容斥原理(2)如果被计数的事物有a、b、c三类,那么,a类或b类或c类元素个数= a类元素个数+b类元素个数+c类元素个数—既是a类又是b类的元素个数—既是a类又是c类的元素个数—既是b类又是c类的元素个数+既是a类又是b类而且是c类的元素个数1、艺术小学举行学生画展,其中18幅画不是六年级的,20幅画不是五年级的,现在知道五、六年级共展出22幅画。
问其他年级展出多少幅?分析:18幅不是六年级,那就是五年级和其他年级的,20幅不是五年级,就是六年级和其他年级,已知五六年级展出22幅,所以其他年级展出就是八幅。
(18+20-22)/2=8(幅)2、某地区100个外语教师中,每人至少懂英语和日语中的一种语言。
已知懂英语的75人,懂日语的有45人。
问只懂英语的有几人?分析;两种语言都懂的人为;懂英语的和懂日语和减外语教师总数。
只懂英语的就是75减两种都懂得了。
75+45-100=20(人)75-20=55(人)3、在1至100的整数中,能被2整除或能被3整除的数共有几个?分析:100中,能被2整除的有100/2=50个,能被3整除的有100/3=33个,同时能被2和3整除的100/6=16个,注意这16个包括在能被2和3整除的,要去掉。
就是100内能被或3整除的。
50+33-16=67个4、全班50人,不会骑自行车的有23人,不会滑旱冰的有35人,两样都会的有4人,两样都不会的有多少人?分析:骑自行车:27人会滑旱冰:15人都会:4人都不会的:50-(27+15-4)=12人画个图就可以看出来了,4个人是多加的,所以要减去。
5、六年级有52人,其中喜欢绘画的36人,喜欢书法的有42人,喜欢唱歌的有48人,喜欢跳舞的有34人,这个班最少有多少学生对这四项活动都喜欢?分析:52-36=16个人不喜欢绘画,52-42=10个人不喜欢书法,52-48=4个人不喜欢唱歌,52-34=18个人不喜欢跳舞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
容斥原理(一)
【例题分析】
例1. 有长8厘米,宽6厘米的长方形与边长5厘米的正方形。
如图放在桌面上,求这两个图形盖住桌面的面积?
分析与解:阴影部分是直角三角形,是两个图形的重叠部分,它的面积是:
(平方厘米)
方法一:(平方厘米)
方法二:(平方厘米)
方法三:(平方厘米)
答:盖住桌面的面积是67平方厘米。
例2. 六一班参加无线电小组和航模小组的共26人,其中参加无线电小组的有17人,参加航模小组的有14人,两组都参加的有多少人?
分析与解:把17人和14人相加,是把两组都参加的人算了两次,所以减去总人数,就是两组都参加的人数(人)。
也可以这样解:(人)
或(人)
答:两组都参加的有5人。
例3. 六一班有学生46人,其中会骑自行车的有19人,会游泳的有25人,既会骑车又会游泳的有7人,既不会骑自行车又不会游泳的有多少人?
分析与解:先求出46人中会骑车或会游泳的有多少人,从中减去会骑车或会游泳的人数,剩下的就是既不会骑车也不会游泳的人数。
(人)
(人)
答:既不会骑车又不会游泳的有9人。
例4. 某年级的课外小组分为美术、音乐、手工三个小组,参加美术小组有20人,参加音乐小组有24人,参加手工小组有31人,同时参加美术和音乐两个小组有5人,同时参加音乐和手工两个小组有6人,同时参加美术和手工两个小组的有7人,三个小组都参加的有3人,这个年级参加课外小组的同学共有多少人?
分析与解:图中的5、6、7人都是两两重叠的部分,图中的3人是三个重叠的部分,要从三个组的总人数中减去重复多余的部分。
(人)
答:这个年级参加课外小组的有60人。
例5. 某班在短跑、投掷和跳远三项检测中,有4人三项都未达到优秀,其他人至少有一项是优秀,下表是得优秀的情况,请你算出全班人数。
短跑投掷跳远跑跳跑投跳投三项
19 21 20 9 10 6 3
分析与解:根据题意画出如下图
要求全班有多少人,先要求出跑、跳、投至少有一项达到优秀的人数,加上三项都未达到优秀的,就是全班人数。
(人)
(人)
答:全班有42人。
例6. 分母是105的最简真分数有多少个?
分析与解:这些分数是最简真分数,所以分子应小于105,只能是1—104中的自然数,而且分子与105要互质。
因为,所以分母不能是3的倍数或5的倍数或7的倍数。
所以,要求有多少个最简真分数,实际上就是求1—104这104个自然数中不能被3、5、7整除的数有多少个。
因此要先求出能被3整除或能被5整除或能被7整除的数有多少个。
能被3整除的数:(个)
能被5整除的数:(个)
能被7整除的数:(个)
能同时被3和5整除的数:
能同时被3和7整除的数:
能同时被5和7整除的数:
(个)
(个)
答:分母是105的最简真分数有48个。
【模拟试题】(答题时间:30分钟)
1. 有三个面积各为50平方厘米的圆放在桌面上,两两相交的面积分别是8、10、12平方厘米,三个圆相交的面积是5平方厘米,求三个圆盖住桌面的面积?
2. 某区有100名外语教师懂英语或日语,其中懂英语的有75名,既懂英语又懂日语的有20人。
只懂日语的有多少名?
3. 某班数学测验时有10人得优,英语得优有12人,两门都得优有3人,两门都没得优的有26人。
全班有多少人?
4. 六年级一班春游,带矿泉水的有18人,带水果的有16人,这两种至少带一种的有28人,求两种都带的有多少人?
5. 在1至100的自然数中,不能被2整除的数或不能被3整除或不能被5整除的数共有多少个?
容斥原理(二)
【例题分析】
例1. 有25人参加跳远达标赛,每人跳三次,每人至少有一次达到优秀。
第一次达到优秀的有10人,第二次达到优秀的有13人,第三次达到优秀的有15人,三次都达到优秀的只有1人。
只有两次达到优秀的有多少人?
分析与解:“每人至少有一次达到优秀”说明没有三次都没达到优秀的。
要求只有两次达到优秀的人数,就是求重叠两层的部分(图中阴影部分)。
(人)
答:只有两次达到优秀的有11人。
例2. 在一个炎热的夏日,几个小朋友去冷饮店,每人至少要了一样冷饮,其中有6人要了冰棍,6人要了汽水,4人要了雪碧,只要冰棍和汽水的有3人,只要冰棍和雪碧的没有,只要汽水和雪碧的有1人;三样都要的有1人。
问:共有几个小朋友去了冷饮店?
分析与解:根据题意画图。
方法一:(人)
方法二:(人)
答:共有10个小朋友去了冷饮店。
例3. 有28人参加田径运动会,每人至少参加两项比赛。
已知有8人没参加跑的项目,参加投掷项目的人数与参加跑和跳两项的人数都是17人。
问:只参加跑和投掷两项的有多少人?
分析与解:“每人至少参加两项比赛”说明没有不参加的,也没有参加一项比赛的,我们可以在下图中参加一项的区域用0表示。
(人)
答:只参加跑和投掷两项的有3人。
例4. 某校六年级二班有49人参加了数学、英语、语文学习小组,其中数学有30人参加,英语有20人参加,语文小组有10人。
老师告诉同学既参加数学小组又参加语文小组的有3人,既参加数学又参加英语和既参加英语又参加语文的人数均为质数,而三种全参加的只有1人,求既参加英语又参加数学小组的人数。
分析与解:根据已知条件画出图。
三圆盖住的总体为49人,假设既参加数学又参加英语的有x人,既参加语文又参加英语的有y人,可以列出这样的方程:
整理后得:
由于x、y均为质数,因而这两个质数中必有一个偶质数2,另一个质数为7。
答:既参加英语又参加数学小组的为2人或7人。
例5. 某班同学参加升学考试,得满分的人数如下:数学20人,语文20人,英语20人,数学、英语两科满分者8人,数学、语文两科满分者7人,语文、英语两科满分者9人,三科都没得满分者3人。
问这个班最多多少人?最少多少人?
分析与解:根据题意画图。
设三科都得满分者为x
全班人数
整理后:全班人数=39+x
39+x表示全班人数,当x取最大值时,全班人数就最多,当x取最小值时,全班人数就最少。
x是数学、语文、英语三科都得满分的同学,因而x中的人数一定不超过两科得满分的人数,即且,由此我们得到。
另一方面x最小可能是0,即没有三科都得满分的。
当x取最大值7时,全班有人,当x取最小值0时,全班有
39人。
答:这个班最多有46人,最少有39人。
【模拟试题】(答题时间:30分钟)
1. 六年级共有96人,两种刊物每人至少订其中一种,有的人订《少年报》,有的人订《数学报》,两种刊物都订的有多少人?
2. 小明和小龙两家合住一套房子,门厅、厨房和厕所为公用,在登记住房面积时,两家登记表如下表(单位:平方米)
姓名居室门厅厨房厕所总面积小明14 12 8 4 38
小龙20 12 8 4 44
他们住的一套房子共有多少平方米?
3. 某班45名同学参加体育测试,其中百米得优者20人,跳远得优者18人,又知百米、跳远都得优者7人,跳高、百米得优者6人,跳高、跳远均得优者8
人,跳高得优者22人,全班只有1名同学各项都没达优秀,求三项都是优秀的人数。