正弦函数、余弦函数的性质—周期性

合集下载

正弦函数、余弦函数的性质

正弦函数、余弦函数的性质

2 T
二、奇偶性
y
o
x
正弦函数是奇函数, 余弦函数是偶函数.
三、最大值与最小值
y
o
x
正弦函数当且仅当x 2k 且仅当x 2k

2
, k Z时取得最大值1, 当

2 余弦函数当且仅当x 2k , k Z时取得最大值1,当且仅 当x 2k , k Z时取得最小值 1.
解:(1)∵
3cos( x 2 ) 3cos x
∴自变量x只要并且至少要增加到x+2
y 3cos x, x R 的值才能重复出现.
,函数
所以,函数 y 3cos x, x R 的周期是 2
(2) sin(2 x 2 ) sin 2( x ) sin 2 x
§ 1.4.2 正弦函数、 余弦函数的性质 (一)
引入
y
o
ห้องสมุดไป่ตู้
x
周期函数: 对于函数f(x),若存在一个非零常数 ,使 T
得当x取定义域内的每一个值 都有 时, f ( x T ) f ( x)
称之, 非零常数T叫做这个函数的周期.
新课
若在周期函数 的所有周期中存 f(x) 在一个最小的正数, 则这个最小正数就 叫做f(x)的最小正周期.
, k Z时取得最小值 1;
例2、求下列函数的最 及取得最值时自 值, 变量x的集合:
(1) y cos x 1, x R; ( 2) y 3 sin 2 x, x R;
小结
1. 周期函数的定义,周期,最小正周期
2. 三角函数的奇、偶性
3. 三角函数的单调性;
作业
一、 周期性 正弦函数是周期函数2k( k Z , k 0)都 ,

三角函数的周期性及性质

三角函数的周期性及性质

三角函数的周期性及性质三角函数是数学中重要的一类函数,包括正弦函数、余弦函数和正切函数等。

它们具有周期性的特点,这是三角函数的一个重要性质。

本文将探讨三角函数的周期性及其相关性质。

一、正弦函数的周期性正弦函数是三角函数中最常见的一种函数。

它的图像是一条波浪线,具有周期性的特点。

正弦函数的周期是2π,也就是说,当自变量增加2π时,函数值会重复。

这是因为正弦函数的图像是在坐标系中以原点为中心的一个圆的边界上的点的纵坐标值。

正弦函数的周期性可以用数学公式来表示,即sin(x + 2π) = sin(x)。

这个公式表明,在自变量增加2π的情况下,正弦函数的值保持不变。

这是正弦函数周期性的数学表达。

二、余弦函数的周期性余弦函数也是一种常见的三角函数。

它的图像是一条波浪线,与正弦函数的图像非常相似。

余弦函数的周期也是2π,与正弦函数相同。

这是因为余弦函数的图像是在坐标系中以原点为中心的一个圆的边界上的点的横坐标值。

余弦函数的周期性可以用数学公式来表示,即cos(x + 2π) = cos(x)。

这个公式表明,在自变量增加2π的情况下,余弦函数的值保持不变。

这是余弦函数周期性的数学表达。

三、正切函数的周期性正切函数是三角函数中另一种重要的函数。

它的图像是一条无限延伸的直线,具有周期性的特点。

正切函数的周期是π,也就是说,当自变量增加π时,函数值会重复。

这是因为正切函数的图像是在坐标系中以原点为中心的一个圆的边界上的点的纵坐标值与横坐标值的比值。

正切函数的周期性可以用数学公式来表示,即tan(x + π) = tan(x)。

这个公式表明,在自变量增加π的情况下,正切函数的值保持不变。

这是正切函数周期性的数学表达。

四、三角函数的性质除了周期性外,三角函数还具有其他一些重要的性质。

其中一个是奇偶性。

正弦函数是奇函数,即sin(-x) = -sin(x),而余弦函数是偶函数,即cos(-x) = cos(x)。

这意味着正弦函数的图像关于y轴对称,而余弦函数的图像关于x轴对称。

函数周期性公式大总结

函数周期性公式大总结

函数周期性公式大总结函数是数学中一种非常重要的概念,它描述了数值之间的关系。

而函数的周期性则是函数中一种特殊的性质,它在数学推导和实际应用中具有广泛的应用价值。

本文将对函数周期性公式进行总结,以帮助读者加深对这一概念的理解。

一、正弦函数与余弦函数的周期性公式正弦函数与余弦函数是最常见的周期函数之一,它们在物理学、工程学等领域有着广泛的应用。

它们的周期性公式如下:1. 正弦函数的周期性公式:\[sin(x+2πn)=sin(x)\]其中 \(n\) 为整数。

这个公式意味着正弦函数在 \(2π\) 的整数倍的变换下保持不变。

2. 余弦函数的周期性公式:\[cos(x+2πn)=cos(x)\]同样地,这个公式说明了余弦函数在 \(2π\) 的整数倍的变换下保持不变。

二、指数函数的周期性公式指数函数是另一类常见的函数,其公式如下:\[f(x)=a^x\]其中 \(a\) 为常数,又称为底数。

指数函数不同于正弦函数和余弦函数,它通常不具备周期性。

然而,我们可以通过引入“模”的概念,使指数函数具备周期性。

3. 指数函数的周期性公式:\[a^{x+ln(a)n}=a^x\]其中 \(n\) 为整数,\(ln(x)\) 为自然对数。

这个公式说明了指数函数在 \(ln(a)\) 的整数倍的变换下保持不变。

三、对数函数的周期性公式对数函数是指数函数的逆运算,其公式如下:\[f(x)=log_{a}(x)\]其中 \(a\) 为底数。

对数函数也可以借助模的概念引入周期性。

4. 对数函数的周期性公式:\[log_{a}(x+ln(a)n)=log_{a}(x)\]其中 \(n\) 为整数,\(ln(x)\) 为自然对数。

这个公式说明了对数函数在 \(ln(a)\) 的整数倍的变换下保持不变。

四、三角函数的周期性公式除了正弦函数和余弦函数外,还有其他几种常见的三角函数,如正切函数、余切函数、正割函数和余割函数。

它们同样具备周期性,并可以通过以下公式进行表示。

1.4.2 正弦函数、余弦函数的性质

1.4.2 正弦函数、余弦函数的性质

1.4.2 正弦函数、余弦函数的性质知识点一 正弦函数、余弦函数的周期性函数的周期性1、(1)对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数叫做f (x )的最小正周期.2、A sin[(ωx +φ)+2π]=A sin(ωx +φ),A sin ⎣⎢⎡⎦⎥⎤ω⎝⎛⎭⎪⎫x +2πω+φ=A sin(ωx +φ),即f ⎝ ⎛⎭⎪⎫x +2πω=f (x ),所以f (x )=A sin(ωx +φ)(Aω≠0)是周期函数,2πω就是它的一个周期.3、由sin(x +2k π)=sin_x ,cos(x +2k π)=cos_x (k ∈Z )知,y =sin x 与y =cos x 都是周期函数,2k π(k ∈Z 且k ≠0)都是它们的周期,且它们的最小正周期都是2π.知识点二 正弦函数、余弦函数的奇偶性(1)对于y =sin x ,x ∈R ,恒有sin(-x )=-sin x ,所以正弦函数y =sin x 是奇函数,正弦曲线关于原点对称. (2)对于y =cos x ,x ∈R ,恒有cos(-x )=cos x ,所以余弦函数y =cos x 是偶函数,余弦曲线关于y 轴对称.知识点三 正弦、余弦函数的单调性[-1,1][-1,1]对于形如函数y =A sin(ωx +φ),Aω≠0时的最小正周期的求法常直接利用T =2π|ω|来求解,对于y =|A sin ωx |的周期情况常结合图象法来求解. 1、求下列函数的最小正周期. (1)y =sin ⎝ ⎛⎭⎪⎫2x +π3(x ∈R );(2)y =|sin x |(x ∈R ).2、下列函数是以π为周期的函数是( )A .y =sin xB .y =sin x +2C .y =cos2x +2D .y =cos3x -13.函数f (x )是周期函数,10是f (x )的一个周期,且f (2)=2,则f (22)=________.4.函数y =sin ⎝ ⎛⎭⎪⎫ωx +π4的最小正周期为2,则ω的值为________.类型二 三角函数的奇偶性对于三角函数奇偶性的判断,有时可根据诱导公式先将函数式化简后再判断. 判断函数奇偶性应把握好两个关键点关键点一:看函数的定义域是否关于原点对称; 关键点二:看f (x )与f (-x )的关系.1、判断下列函数的奇偶性.(1) f (x )=sin(-x )(2)f (x )=cos ⎝ ⎛⎭⎪⎫32π+2x +x 2sin x ; (3)f (x )=1-2cos x +2cos x -1.2、若函数y =cos(ωx +φ)是奇函数,则( )A .ω=0B .φ=k π(k ∈Z )C .ω=k π(k ∈Z )D .φ=k π+π2(k ∈Z )3、已知函数f (x )=ax +b sin x +1,若f (2018)=7,则f (-2018)=________.类型三 三角函数的奇偶性与周期性的综合应用1.设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π2,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数2、定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,求f ⎝ ⎛⎭⎪⎫5π3的值.2、已知函数f (x )=cos π3x ,求f (1)+f (2)+f (3)+…+f (2020)的值.3、设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2018)=________.类型四 求正弦、余弦函数的单调区间用整体替换法求函数y =A sin(ωx +φ)或y =A cos(ωx +φ)的单调区间时,如果式子中x 的系数为负数,先利用诱导公式将x 的系数变为正数再求其单调区间.求单调区间时,需将最终结果写成区间形式.1.函数y =sin2x 的单调递减区间。

三角函数正弦余弦正切的定义与性质

三角函数正弦余弦正切的定义与性质

三角函数正弦余弦正切的定义与性质三角函数是数学中的重要概念之一。

其中,正弦函数、余弦函数和正切函数是最为常见和常用的三角函数。

本文将对正弦函数、余弦函数和正切函数的定义与性质进行详细介绍。

一、正弦函数的定义与性质1. 正弦函数的定义正弦函数(Sine Function)是一个周期函数,可以表示为y = sin(x),其中x为自变量,y为函数值。

正弦函数的定义域为全体实数,值域为[-1,1]。

2. 正弦函数的性质正弦函数有以下几个重要的性质:(1)对称性:正弦函数关于原点对称,即sin(-x) = -sin(x)。

(2)周期性:正弦函数的周期为2π,即sin(x+2π) = sin(x)。

(3)奇偶性:正弦函数是奇函数,即sin(-x) = -sin(x)。

(4)单调性:在一个周期内,正弦函数是先递增后递减的,且在[0,π]上为递增函数,在[π,2π]上为递减函数。

二、余弦函数的定义与性质1. 余弦函数的定义余弦函数(Cosine Function)也是一个周期函数,可以表示为y = cos(x),其中x为自变量,y为函数值。

余弦函数的定义域为全体实数,值域为[-1,1]。

2. 余弦函数的性质余弦函数有以下几个重要的性质:(1)对称性:余弦函数关于y轴对称,即cos(-x) = cos(x)。

(2)周期性:余弦函数的周期为2π,即cos(x+2π) = cos(x)。

(3)奇偶性:余弦函数是偶函数,即cos(-x) = cos(x)。

(4)单调性:在一个周期内,余弦函数在[0,π/2]上为递减函数,在[π/2,2π]上为递增函数。

三、正切函数的定义与性质1. 正切函数的定义正切函数(Tangent Function)可以表示为y = tan(x),其中x为自变量,y为函数值。

正切函数的定义域为全体实数,但在其周期的特殊点(如π/2)处无定义。

2. 正切函数的性质正切函数有以下几个重要的性质:(1)周期性:正切函数的周期为π,即tan(x+π) = tan(x)。

5.4.2正弦余弦函数的性质课件(1)高一上学期数学人教A版

5.4.2正弦余弦函数的性质课件(1)高一上学期数学人教A版
2
6
变式训练:求下列函数的最小正周期:
+
(1)y=sin
(x∈R);
+
(2)y=3cos -
(x∈R);
(3)y=|cos x|(x∈R).
解:(1)令 y=f(x)=sin
+ +
因为 sin
所以 sin ( + ) +
+
,
=sin
+
,
=sin
+
,
即 f(x+π)=f(x).
所以函数 f(x)=sin
问题提出
问题二:图象具有周期性,函数的横、纵坐标有何特点?
2
2
32

2
A1
·
·
1 B
1
y
y
x
O
1
由正弦函数的诱导公式:
2
sin(x+2kπ) = sinx
可得:sin(2π+x)=sinx

2

·
·
B2
பைடு நூலகம்
3
2
A2
2x+2π5
2
5

sin sin
sin(2 )
=-f -
=-sin -
=sin =
.
• 反思感悟

解决三角函数的奇偶性与周期性综合问题的
方法:利用函数的周期性,可以把x+nT(n∈Z)的
函数值转化为x的函数值.利用奇偶性,可以找到x与x的函数值的关系,从而解决求值问题.
目标检测
1.(多选题)下列是定义在R上的四个函数图象的
一部分,其中是周期函数的是(

三角函数正弦余弦正切

三角函数正弦余弦正切

三角函数正弦余弦正切三角函数是数学中的重要概念,包括正弦、余弦和正切。

它们在数学、物理和工程等领域有广泛的应用。

本文将对三角函数的定义、性质和应用进行详细论述。

一、正弦函数正弦函数是三角函数中的一种,表示为sin(x),其中x为角度。

正弦函数的定义域是实数集,值域为[-1, 1]。

正弦函数具有以下性质:1. 周期性:正弦函数是周期函数,其最小正周期是2π,即sin(x) = sin(x+2πk),其中k为整数。

2. 对称性:正弦函数是奇函数,即sin(-x) = -sin(x),表示在原点处关于y轴对称。

3. 奇偶性:正弦函数是奇函数,即sin(-x) = -sin(x),表示在原点处关于原点对称。

4. 单调性:在定义域内,正弦函数在每个周期内都是单调递增或单调递减的。

5. 正弦函数的图像是一个周期为2π的连续波形,以y轴为中心对称。

正弦函数在几何、物理、电路等领域有广泛的应用,如波动、振动、交流电等的描述和计算中都会用到。

二、余弦函数余弦函数是三角函数中的另一种,表示为cos(x),其中x为角度。

余弦函数的定义域是实数集,值域为[-1, 1]。

余弦函数具有以下性质:1. 周期性:余弦函数是周期函数,其最小正周期是2π,即cos(x) = cos(x+2πk),其中k为整数。

2. 对称性:余弦函数是偶函数,即cos(-x) = cos(x),表示在原点处关于y轴对称。

3. 奇偶性:余弦函数是偶函数,即cos(-x) = cos(x),表示在原点处关于原点对称。

4. 单调性:在定义域内,余弦函数在每个周期内都是单调递减的。

5. 余弦函数的图像是一个周期为2π的连续波形,以y轴为中心对称。

余弦函数在几何、物理、信号处理等领域有广泛的应用,如描述分析力学中的运动规律、计算交流电路中的电流和电压等。

三、正切函数正切函数是三角函数中的另一种,表示为tan(x),其中x为角度。

正切函数的定义域是实数集,值域为整个实数集。

三角函数的图像与性质

三角函数的图像与性质

三角函数的图像与性质三角函数是数学中的重要概念,它们的图像和性质对于初中数学学习者来说是必须掌握的内容。

在本文中,我将详细介绍三角函数的图像与性质,并给出一些例子和说明,帮助中学生和他们的父母更好地理解和应用这些知识。

一、正弦函数的图像与性质正弦函数是最基本的三角函数之一,它的图像是一条连续的曲线,呈现出周期性变化。

正弦函数的性质包括:1. 周期性:正弦函数的周期是2π,即在每个2π的区间内,正弦函数的图像重复出现。

2. 幅度:正弦函数的幅度表示波峰和波谷的最大差值,通常记为A。

幅度越大,波峰和波谷的差值越大。

3. 对称性:正弦函数的图像关于y轴对称,即f(x) = -f(-x)。

4. 奇偶性:正弦函数是奇函数,即f(x) = -f(x)。

举例说明:假设有一条正弦函数的图像,周期为2π,幅度为1。

在区间[0, 2π]内,正弦函数的图像先从0逐渐上升到1,然后下降到0,再下降到-1,最后又上升到0。

这样的周期性变化会一直重复下去。

根据正弦函数的性质,可以得出该图像关于y轴对称,且是奇函数。

二、余弦函数的图像与性质余弦函数也是一种常见的三角函数,它的图像和正弦函数有些相似,但也有一些不同之处。

余弦函数的性质包括:1. 周期性:余弦函数的周期也是2π,与正弦函数相同。

2. 幅度:余弦函数的幅度也表示波峰和波谷的最大差值,通常记为A。

与正弦函数不同的是,余弦函数的幅度表示波峰和波谷的绝对值最大差值。

3. 对称性:余弦函数的图像关于y轴对称,即f(x) = f(-x)。

4. 奇偶性:余弦函数是偶函数,即f(x) = f(x)。

举例说明:假设有一条余弦函数的图像,周期为2π,幅度为1。

在区间[0, 2π]内,余弦函数的图像先从1逐渐下降到0,然后下降到-1,再上升到0,最后又上升到1。

这样的周期性变化会一直重复下去。

根据余弦函数的性质,可以得出该图像关于y轴对称,且是偶函数。

三、正切函数的图像与性质正切函数是三角函数中的另一种重要函数,它的图像与正弦函数和余弦函数有很大的不同。

三角函数的周期性与奇偶性

三角函数的周期性与奇偶性

三角函数的周期性与奇偶性三角函数是数学中非常重要的一类函数,包括正弦函数sin(x),余弦函数cos(x),正切函数tan(x)等。

这些函数在数学、物理、工程等领域中有广泛的应用。

其中,周期性和奇偶性是三角函数的两个重要性质,下面将详细讨论这两个性质。

一、周期性1. 正弦函数sin(x)和余弦函数cos(x)的周期性:正弦函数sin(x)和余弦函数cos(x)都是周期函数,它们的周期都为2π。

也就是说,对于任意实数x,有sin(x+2π) = sin(x),cos(x+2π) =cos(x)。

这意味着当自变量x增加2π或减少2π时,函数值不变,即函数呈现出周期性的变化规律。

这样的周期性特点使得正弦函数和余弦函数在很多问题中具有重要的意义。

2. 正切函数tan(x)的周期性:正切函数tan(x)也是一个周期函数,它的周期为π。

也就是说,对于任意实数x,有tan(x+π) = tan(x)。

这意味着当自变量x增加π或减少π时,函数值保持不变。

需要注意的是,正切函数在一些特殊点(如π/2,3π/2等)处不定义,因为在这些点上正切函数的值会趋于无穷大,即函数的图像会有垂直渐进线。

二、奇偶性1. 正弦函数sin(x)的奇偶性:正弦函数sin(x)是一个奇函数,它的图像关于原点对称。

也就是说,对于任意实数x,有sin(-x) = -sin(x)。

这意味着当自变量x取相反数时,函数值的相反数与原来的函数值相等,即函数的图像关于y轴对称。

2. 余弦函数cos(x)的奇偶性:余弦函数cos(x)是一个偶函数,它的图像关于y轴对称。

也就是说,对于任意实数x,有cos(-x) = cos(x)。

这意味着当自变量x取相反数时,函数值保持不变,即函数的图像关于y轴对称。

3. 正切函数tan(x)的奇偶性:正切函数tan(x)既不是奇函数也不是偶函数,它的图像既没有关于原点的对称性,也没有关于y轴的对称性。

但是,正切函数有一个特殊的奇偶性质,即tan(-x) = -tan(x)。

正弦函数、余弦函数周期性

正弦函数、余弦函数周期性
倍角公式可以用来理解正弦函数和余弦函数的周期性,例如,通过倍角公式可以推导出正弦函数和余弦函数的半 角公式,进而理解函数的周期性。
三角函数的和差化积公式与周期性
和差化积公式
sin(a+b)和cos(a+b)可以通过sin(a)、 cos(a)、sin(b)、cos(b)的和差化积公式计 算得出。
周期性
03
在代数和微积分中,正弦函数和余弦函数也经常出现。例如,在求解微分方程 时,可以使用正弦函数和余弦函数的性质来简化问题。
在物理、工程等领域的应用
在物理学中,正弦函数和余弦函数广泛应用于振动、波动和 交流电等领域。例如,简谐振动的位移、速度和加速度都可 以用正弦函数和余弦函数来表示。
在工程领域,正弦函数和余弦函数也经常被用于解决与周期 性变化相关的问题。例如,在机械工程中,可以使用正弦函 数和余弦函数来描述旋转运动;在电子工程中,正弦函数和 余弦函数用于描述交流电的电来自和电流。在日常生活中的应用
正弦函数和余弦函数在日常生活中的应用也非常广泛。例 如,在计算投资回报率时,可以使用正弦函数和余弦函数 的性质来分析利率的变化;在气象学中,可以使用正弦函 数和余弦函数来描述气候的周期性变化。
此外,正弦函数和余弦函数还在音乐、摄影等领域有应用 。例如,在音乐中,可以使用正弦函数和余弦函数来描述 音调和节奏;在摄影中,可以使用正弦函数和余弦函数的 性质来调整图像的亮度和对比度。
02
正弦函数、余弦函数周期性 的性质
最小正周期
1 2
3
最小正周期定义
对于函数y=Asin(ωx)+b或y=Acos(ωx)+b,如果存在一个最 小的正数T,使得当x取T内的任何值时,函数值都能重复出现, 那么T就是该函数的最小正周期。

人教版高中数学必修四1.4.2正弦函数、余弦函数的性质---周期性公开课教学课件共24张PPT (共24张PPT)

人教版高中数学必修四1.4.2正弦函数、余弦函数的性质---周期性公开课教学课件共24张PPT (共24张PPT)

必做:P46 习题1.A组 第3题
B组 第3题
知者加速:探究正弦函数、 余弦函数还有哪些性质?
创设情境(一)
★今天是星期四,再过几天又是星期四? 换句话说,只要过的天数具有什么特征, 就会再次出现星期四?
创设情境(二)
正弦曲线、余弦曲线
y
1 -4 -3 -2 -
y sin x
2 3 4
o
-1
5
6
x
y
1 -4 -3 -2 -
y cosx
2 3 4 5 6
Asin x 2
A sin x 2
2 A sin x 2 f x 2 T


归纳总结
一般地,函数y A sin( x ), x R及函 数y A cos( x ), x R (其中A, , 为常 2 数, 且A 0, 0)的周期为 : T .
问题探究2
??思考 ??
y sin x,x [0, 8]是不 是周 期函 数? 为什 么?
1. 对于函数f(x),如果存在一个非零的常数T, 使得当x取定义域内的每一个值时,都有 f(x+T)=f(x),那么函数f(x)就叫做周期函数
问题探究3
正弦函数y=sinx是周期函数吗?若是, 周期是多少?
y
1
-4
-3
-2
-
o
-1

2
3
4
5
6
x
建构概念
终边相同角的三角函数值相等
y=sinx x[0,2]
sin(x+2k)=sinx, kZ

数学函数6个周期性公式推导

数学函数6个周期性公式推导

数学函数6个周期性公式推导数学函数的周期性是指函数在一定区间内以其中一种规律重复出现的性质。

下面将推导出六个常见的周期性函数公式,即正弦函数、余弦函数、正切函数、指数函数、对数函数和常函数的周期性公式:1.正弦函数的周期性公式推导:正弦函数的定义为f(x) = sin(x),其中x为实数。

根据正弦函数的属性,它的最小正周期为2π,即sin(x) = sin(x + 2π)。

进一步推导,可以得到sin(x) = sin(x + 2πk),其中k为任意整数。

因此,正弦函数的周期性公式为sin(x) = sin(x + 2πk),k为整数。

2.余弦函数的周期性公式推导:余弦函数的定义为f(x) = cos(x),其中x为实数。

根据余弦函数的属性,它的最小正周期也为2π,即cos(x) = cos(x + 2π)。

进一步推导,可以得到cos(x) = cos(x + 2πk),其中k为任意整数。

因此,余弦函数的周期性公式为cos(x) = cos(x + 2πk),k为整数。

3.正切函数的周期性公式推导:正切函数的定义为f(x) = tan(x),其中x为实数。

根据正切函数的属性,它的最小正周期为π,即tan(x) = tan(x + π)。

进一步推导,可以得到tan(x) = tan(x + πk),其中k为任意整数。

因此,正切函数的周期性公式为tan(x) = tan(x + πk),k为整数。

4.指数函数的周期性公式推导:指数函数的定义为f(x)=a^x,其中a为正实数、且a≠1,x为实数。

指数函数并没有严格的周期性,但它满足更一般的周期性性质,即f(x+T)=f(x),其中T为任意正数。

因此,指数函数的周期性公式为f(x+T)=f(x),其中T为正数。

5.对数函数的周期性公式推导:对数函数的定义为f(x) = logₐ(x),其中a为正实数、且a≠1,x为正实数。

对数函数并没有严格的周期性,但它满足更一般的周期性性质,即f(x + T) = f(x),其中T为任意正数。

新教材人教版高中数学必修第一册 5-4-2-1 正弦函数、余弦函数的性质 正弦、余弦函数的周期性

新教材人教版高中数学必修第一册 5-4-2-1  正弦函数、余弦函数的性质  正弦、余弦函数的周期性

由图象可知 T=π.
第十三页,共三十四页。
[方法技巧] 求三角函数最小正周期的常用方法
(1)公式法:将函数化为 y=Asin(ωx+φ)+B 或 y=Acos= 2π 求得. |ω|
(2)定义法:一般地,对于函数 f(x),如果存在一个非零常数 T,使得
定义域内的每一个 x 值,都满足 f(x+T)=f(x),那么非零常数 T 叫做这
第二十三页,共三十四页。
[ 典例 3] (1)下列函数中是奇函数,且最小正周期是π的函数是
()
A.y=cos|2x|
B.y=|sin 2x|
C.y=sin π2+2x
D.y=cos 32π-2x
[ 解析]
(1)y=cos|2x|是偶函数,y=|sin
2x|是偶函数,y=sin
π+2x 2

cos 2x 是偶函数,y=cos 32π-2x =-sin 2x 是奇函数,根据公式得其最小
正周期 T=π. [ 答案] (1)D
第二十四页,共三十四页。
[ 典例 3] (2)定义在 R 上的函数 f(x)既是偶函数,又是周期函数,若
f(x)的最小正周期为π,且当 x∈ 0,π2 时,f(x)=sin x,则 f
5π 3 等于(
)
A.-1 2
B.1 2
C.- 3 2
D. 3 2
[ 解析]
所以函数 f(x)=1+s1i+n xsi-n cxos2x的定义域为
x∈Rx≠2kπ+32π,k∈Z

显然定义域不关于原点对称.
故函数 f(x)=1+s1i+n xsi-n cxos2x是非奇非偶函数.
第十九页,共三十四页。
[方法技巧]
判断函数奇偶性的思路

正弦函数、余弦函数的性质

正弦函数、余弦函数的性质

正弦函数、余弦函数的性质【知识点分析】一、周期函数的定义函数)(x f y =,定义域为I ,当I x ∈时,都有)()(x f T x f =+,其中T 是一个非零的常数,则)(x f y =是周期函数,T 是它的一个周期.知识点分析:1.定义是对I 中的每一个x 值来说的,只有个别的x 值满足)()(x f T x f =+或只差个别的x 值不满足)()(x f T x f =+都不能说T 是)(x f y =的一个周期.2.对于周期函数来说,如果所有的周期中存在一个最小的正数,就称它为最小正周期,三角函数中的周期一般都指最小正周期.(1)正弦函数、余弦函数的值域为[]1,1-,是指整个正弦函数、余弦函数或一个周期内的正弦曲线、余弦曲线,如果定义域不是全体实数,那么正弦函数、余弦函数的值域就可能不是[]1,1-,因而求正弦函数、余弦函数的值域时,要特别注意其定义域.(2)求正弦函数的单调区间时,易错点有二:一是单调区间容易求反,要注意增减区间的求法,如求sin()y x =-的单调递增区间时,应先将sin()y x =-变换为sin y x =-再求解,相义域内,因此求单调区间时,必须先求定义域.三、正弦型函数sin()y A x ωϕ=+和余弦型函数cos()(,0)y A x A ωϕω=+>的性质.函数sin()y A x ωϕ=+与函数cos()y A x ωϕ=+可看作是由正弦函数sin y x =,余弦函数cos y x =复合而成的复合函数,因此它们的性质可由正弦函数sin y x =,余弦函数cos y x =类似地得到:(1)定义域:R(2)值域:[],A A -(3)单调区间:求形如sin()y A x ωϕ=+与函数cos()(,0)y A x A ωϕω=+>的函数的单调区间可以通过解不等式的方法去解答,即把x ωϕ+视为一个“整体”,分别与正弦函数sin y x =,余弦函数cos y x =的单调递增(减)区间对应解出x ,即为所求的单调递增(减)区间.比如:由)(2222Z k k x k ∈+≤+≤-ππϕωππ解出x 的范围所得区间即为增区间,由)(23222Z k k x k ∈+≤+≤+ππϕωππ解出x 的范围,所得区间即为减区间. (4)奇偶性:正弦型函数sin()y A x ωϕ=+和余弦型函数cos()(,0)y A x A ωϕω=+>不一定具备奇偶性.对于函数sin()y A x ωϕ=+,当()k k z ϕπ=∈时为奇函数,当()2k k z πϕπ=±∈时为偶函数;对于函数cos()y A x ωϕ=+,当()k k z ϕπ=∈时为偶函数,当()2k k z πϕπ=±∈时为奇函数.知识点分析:判断函数sin()y A x ωϕ=+,cos()y A x ωϕ=+的奇偶性除利用定义和有关结论外,也可以通过图象直观判断,但不能忽视“定义域关于原点对称”这一前提条件.(5)周期:函数sin()y A x ωϕ=+及函数cos()y A x ωϕ=+的周期与解析式中自变量x 的系数有关,其周期为2T πω=.(6)对称轴和对称中心与正弦函数sin y x =比较可知,当()2x k k z πωϕπ+=±∈时,函数sin()y A x ωϕ=+取得最大值(或最小值),因此函数sin()y A x ωϕ=+的对称轴由()2x k k z πωϕπ+=±∈解出,其对称中心的横坐标()x k k z ωϕπ+=∈,即对称中心为,0()k k z πϕω-⎛⎫∈ ⎪⎝⎭.同理,cos()y A x ωϕ=+的对称轴由()x k k z ωϕπ+=∈解出,对称中心的横坐标由()x k k z πωϕπ+=±∈解出.知识点分析:若x R ∉,则函数sin()y A x ωϕ=+和函数cos()y A x ωϕ=+不一定有对称轴和对称中心. 【例题及练习】类型一:正弦函数、余弦函数的定义域与值域例1.求函数y =例2.求函数lg(2sin 1)y x =-的定义域例3.求下列函数的值域: (1)y=3―2sin x(2)2sin 23y x π⎛⎫=+ ⎪⎝⎭,,66x ππ⎡⎤∈-⎢⎥⎣⎦;(3)cos 2cos 1x y x -=-.例4.求y=cos 2x+4sin x ―2的值域.类型二:正弦函数、余弦函数的单调性例5.(2016 浙江温州期末)设函数()sin(2)3f x a x b π=++(1)若a >0,求f (x )的单调递增区间;(2)当[0,]4x π∈时,f (x )的值域为[1,3],求a ,b 的值.例6。

正弦函数和余弦函数的性质

正弦函数和余弦函数的性质

正弦函数和余弦函数的性质
1 正弦函数及其性质
正弦函数也称曲线函数,是坐标系中把角度和弧度的定义用一般的数学形式来表示的函数。

正弦函数的视觉影响可以归结为一条垂直于极轴的曲线。

正弦函数的特征有:
1. 正弦函数是一个周期函数,它的周期是2π,也就是说,它在每个2π的区间里会重复出现相同的函数形式。

2. 正弦函数具有范围称属性,它的值始终在-1和1之间,也就是它以0为中心围绕-1和1旋转2π。

3. 正弦函数具有导数特性,它的导数与其幅值成反比关系,公式为(d/dx)*sin(x)=cos(x)。

2 余弦函数及其性质
余弦函数是正弦函数的镜面对称函数,它以直角坐标系中的水平轴(y轴)为镜面中心反射得到的。

正弦函数和余弦函数有以下相同的性质:
1. 都是周期函数,周期性问题都是2π,且在每个2π的区间里重复出现函数形式相同的函数形式。

2. 都具有范围称属性,它们的值始终在 -1 和 1 之间。

3. 具有导数特性,余弦函数的导数与它的幅值成反比关系,公式为(d/dx)*cos(x)=-sin(x)。

就正弦函数和余弦函数的性质而言,它们都有着类似的特征,这突出了它们是一种互补的函数关系。

正弦函数和余弦函数具有极大的应用性,广泛应用于力学,信号处理,通信等领域。

三角函数的周期性与性质

三角函数的周期性与性质

三角函数的周期性与性质三角函数是高中数学中的一个重要概念,它在解决几何问题和分析问题中具有广泛的应用。

在本文中,我们将探讨三角函数的周期性和性质。

一、三角函数的周期性三角函数可以分为正弦函数、余弦函数、正切函数等。

其中,正弦函数和余弦函数的最小正周期都是2π,而正切函数的最小正周期是π。

这意味着,在这个周期内,函数的值会重复。

1. 正弦函数的周期性正弦函数的最小正周期是2π,即sin(x + 2π) = sin(x)。

这意味着,如果我们将自变量x增加2π,函数的值不会改变。

例如,sin(0) = sin(2π) = 0,sin(π/2) = sin(5π/2) = 1。

2. 余弦函数的周期性余弦函数的最小正周期也是2π,即cos(x + 2π) = cos(x)。

换句话说,如果我们将自变量x增加2π,函数的值保持不变。

例如,cos(0) =cos(2π) = 1,cos(π/2) = cos(5π/2) = 0。

3. 正切函数的周期性正切函数的最小正周期是π,即tan(x + π) = tan(x)。

这意味着,如果我们将自变量x增加π,函数的值保持不变。

例如,tan(0) = tan(π) = 0,tan(π/4) = tan(5π/4) = 1。

二、三角函数的性质除了周期性之外,三角函数还具有一些有趣的性质,下面我们将介绍其中的几个。

1. 奇偶性正弦函数是奇函数,即sin(-x) = -sin(x);余弦函数是偶函数,即cos(-x) = cos(x);正切函数是奇函数,即tan(-x) = -tan(x)。

这意味着,正弦函数关于原点对称,而余弦函数和正切函数关于y轴对称。

2. 周期性我们已经知道三角函数具有周期性,但是需要注意的是,除了最小正周期之外,三角函数还具有其他周期。

例如,正弦函数的周期是2π,它的周期也可以是4π、6π等。

这是因为sin(x + 2nπ) = sin(x),其中n是任意整数。

三角函数与指数对数函数的性质与应用

三角函数与指数对数函数的性质与应用

三角函数与指数对数函数的性质与应用三角函数和指数对数函数是高中数学中常见且重要的数学函数。

它们在数学领域具有丰富的性质和广泛的应用。

本文将分别介绍三角函数和指数对数函数的性质以及它们在实际生活中的应用。

一、三角函数的性质与应用1. 正弦函数正弦函数是三角函数中最基本的函数之一。

正弦函数的定义域为实数集,值域为[-1,1]。

它有以下性质:(1)周期性:正弦函数的图像呈周期性振荡,周期为2π。

(2)对称性:正弦函数是奇函数,即满足f(-x)=-f(x)。

(3)最值:正弦函数在某些特定点处取得最大值1和最小值-1。

正弦函数在自然界和实际生活中有着广泛的应用。

比如在物理学中,正弦函数可以用来描述振动、波动和周期性现象。

另外,在航空航天领域,正弦函数可以用来计算飞行物体的轨迹和振动的频率。

2. 余弦函数余弦函数是三角函数中与正弦函数密切相关的函数。

余弦函数的定义域为实数集,值域也是[-1,1]。

它有以下性质:(1)周期性:余弦函数的图像也呈周期性振荡,周期为2π。

(2)对称性:余弦函数是偶函数,即满足f(-x)=f(x)。

(3)最值:余弦函数在某些特定点处取得最大值1和最小值-1。

余弦函数在数学、物理等领域有着广泛的应用。

例如在几何中,余弦函数可以用来计算两向量的夹角;在天文学中,余弦函数可以用来计算星球的亮度。

3. 正切函数正切函数是三角函数中最常见且重要的函数之一。

正切函数的定义域为实数集,但是在x=π/2+πk(k∈Z)处无定义。

它有以下性质:(1)周期性:正切函数的图像同样具有周期性,周期为π。

(2)奇偶性:正切函数是奇函数,即满足f(-x)=-f(x)。

(3)极值点:正切函数在某些特定点处没有极值。

正切函数在工程学、物理学等领域有着广泛的应用。

例如在工程测量中,正切函数可以用来计算角度的大小和测量高度。

二、指数对数函数的性质与应用1. 指数函数指数函数是以底数为常数的变底数函数。

指数函数的定义域为实数集,值域为正实数集。

三角函数的周期与性质知识点总结

三角函数的周期与性质知识点总结

三角函数的周期与性质知识点总结三角函数是数学中重要的一类函数,包括正弦函数、余弦函数和正切函数。

它们在数学、物理和工程等领域具有广泛的应用。

本文将总结三角函数的周期和性质知识点,帮助读者更好地理解和应用这些函数。

一、正弦函数的周期与性质正弦函数是最基本的三角函数之一,表示为sin(x)。

其图像呈现周期性变化,周期为2π。

这意味着,在0到2π的范围内,正弦函数的图像会重复出现。

正弦函数具有以下性质:1. 正弦函数的取值范围介于-1和1之间,即-1 ≤ sin(x) ≤ 1。

2. 正弦函数在x = 0, π, 2π等点处达到最小值或最大值。

3. 正弦函数是奇函数,即满足sin(-x) = -sin(x)。

4. 正弦函数是周期函数,具有平移对称性,即sin(x + 2π) = sin(x)。

二、余弦函数的周期与性质余弦函数是另一种常见的三角函数,表示为cos(x)。

余弦函数的图像也具有周期性变化,周期同样为2π。

余弦函数的周期性与正弦函数类似,但两者的相位差为π/2。

余弦函数具有以下性质:1. 余弦函数的取值范围同样介于-1和1之间,即-1 ≤ cos(x) ≤ 1。

2. 余弦函数在x = π/2, π, 3π/2等点处达到最小值或最大值。

3. 余弦函数是偶函数,即满足cos(-x) = cos(x)。

4. 余弦函数是周期函数,具有平移对称性,即cos(x + 2π) = cos(x)。

三、正切函数的周期与性质正切函数是三角函数中的另一种重要函数,表示为tan(x)。

正切函数的图像没有固定的周期,它的图像在每个π的间隔内重复出现。

正切函数具有以下性质:1. 正切函数的取值范围为整个实数集,即tan(x)的值可以是任意实数。

2. 正切函数在x = π/2, 3π/2, 5π/2等点处不存在定义,因为在这些点处其值趋近于正无穷或负无穷。

3. 正切函数是奇函数,即满足tan(-x) = -tan(x)。

4. 正切函数的图像具有周期性变化,tan(x + π) = tan(x)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

T ?
2
2
解: f x Asin x
Asin x 2 Asin x 2
Asin
x
2
f
x
2
T
2
归纳:
一般地,函数y Asin(x ), x R及函
数y Acos(x ), x R(其中A,,为常
数,且A
0,
>
0)的周期为 : T
2
.
推广:
(3) y 2sin(1 x ), x R
26
解:(1) ∵对任意实数 x有
f(x ) 3 cos x 3 cos(x 2 ) f(x 2 )
cos x 是以2π为周期的周期函数.
(2) Q sin(2x) sin(2x 2 )
sin2(x ),
y sin 2x 是以π为周期的周期函数.
即 f(x k • 2 ) f(x )
余弦函数y cos x(x R )是周期函数,周期是 k • 2 ,
性质1:正弦函数y=sinx,余弦函数y=cosx 都是周期函数,且它们的周期为k • 2(k z,k 0) 最小正周期是 2
例2:求下列函数的周期:
(1) y 3cosx, x R (2) y sin 2x, x R
A、y sin 1 x 2
C、y cosx
B、y cos x 2
D、y cos2x
(2)函数 y sinx 的最小正周期为__2___。
(3)已知函数 y
_6__
sin(x
3
),
0
的周期为
3
,则
课堂小结 ----本节课所学知识方法:
(1)周期函数、周期及最小正周期的概念. (2)正(余)弦函数的周期. (3)函数 y=Asin(ωx+φ) 及y=Acos(ωx+φ) (其中A ,ω,φ为常数,且 A≠0, ω>0 )的
2.我们学习的函数具有周期现象吗?如果有, 我们就说它是周期函数,具有周期性。
今天我们就来研究正弦函数和余弦函数的 周期性。
知识回顾. 正弦函数、余弦函数的图象 思考1:正弦函数、余弦函数有周期现象吗?
诱导公式:
y
正弦曲线
-4 -3
-2
1
- o
-1
2
3
4
5 6 x
y
-4 -3
-2
1
- o
-1
余弦曲线
2
3
4
5 6 x
一、周期函数 一般地,对于函数f(x),如果存在一个非零
的常数T,使得当x取定义域内的每一个值时,都 有f(x+T)=f(x),那么函数f(x)就叫做周期函数, 非零常数T叫做这个函数的周期。 最小正周期
对于一个周期函数f(x),如果在它所有的周期 中存在一个最小的正数,那么这个最小的正数就 叫做f(x)的最小正周期。
周期现象
1.每间隔相同的时间就会出现相同的现象称 为周期现象.
2.现实生活中有很多周期现象: 每隔一年,春天就重复一次,因此“春去春 又回”是周期现象,一年是它的周期;奥运会每 隔四年就重复一次,因此开奥运会为周期现象, 4年是它的周期等等。
思考?
1.今天是2017年11月29日,星期三,那么7 天后是星期几?21天后呢?为什么?这是 周期现象吗?
说明:我们现在谈到三角函数周期时,如果不加 特别说明,一般都是指的最小正周期。
二、三角函数的周期性:
-2 X
y y=sinx(x∈R)
0X
x+2π
x
2
X+2π x+4π
4
自自变变量量xx增增加加22ππ的时整,函数数倍值时不,函断数重值复不地断出重现复。 地出现。
正弦函数y sin x(x R)
周期是:
(4)求周期的方法:;定义法、公式法
作业:达标练习
y
· · · · · · -2 x -
ห้องสมุดไป่ตู้
o x+2π
2x+4π 3
x
4
x 结合图像:在定义域内任取一个 ,
由诱导公式可知: sin(x k • 2 ) sin x
即 f(x k • 2 ) f(x )
正弦函数 y sin x(x R)是周期函数,周期是k • 2 ,
由诱导公式可知: cos(x k • 2 ) cos x
(3) Q 2 sin( 1 x ) 2 sin( 1 x 2 )
26
26
2
sin
1 2
(x
4
)
6
,
y 2sin(1 x )
26 是以4π为周期的周期函数.
函数
周期
2
y 3cosx
T 2
1
2
y sin 2x
T
2
y 2sin(1 x )
26
T 4
2
1
y Asin(x )
课堂练习:
P36 练习1
练习2:求下列函数的周期
(1)y
sin
3 x,x
4
R
T
2
3
2
4 3
8
3
4
(2)y cos(4x ),x R
(3)y
1 cos x,x
2
R
T 2
42
T 2 2
1
(4)y
sin(
1 3
x
),x
4
R
T
2
1
2
3 6
3
当堂检测
(1)下列函数中,最小正周期是 的函数是(D )
相关文档
最新文档