金属粉末注射成型技术.

合集下载

金属粉末注射成型技术

金属粉末注射成型技术

技术应用领域
1.计算机及其辅助设施:如打印机零件、磁芯、撞针轴销、驱动零件; 2.工具:如钻头、刀头、喷嘴、枪钻、螺旋铣刀、冲头、套筒、扳手、电工工具,手工具等; 3.家用器具:如表壳、表链、电动牙刷、剪刀、风扇、高尔夫球头、珠宝链环、圆珠笔卡箍、刃具刀头等零 部件; 4.医疗机械用零件:如牙矫形架、剪刀、镊子; 5.军用零件:导弹尾翼、枪支零件、弹头、药型罩、引信用零件; 6.电器用零件:电子封装,微型马达、电子零件、传感器件; 7.机械用零件:如松棉机、纺织机、卷边机、办公机械等; 8.汽车船舶用零件:如离合器内环、拔叉套、分配器套、汽门导管、同步毂、安全气囊件等。
技术简介
其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃)用注射 成形机注入模腔内固化成形,然后用化学或热分解的方法将成形坯中的粘结剂脱除,最后经烧结致密化得到最终 产品。与传统工艺相比,具有精度高、组织均匀、性能优异,生产成本低等特点,其产品广泛应用于电子信息工 程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。因此,国 际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术” 和“21世纪的成形技术”。
金属粉末注射成型技术
将现代塑料注射成型技术引入粉末冶金领域而形成的新 型粉末冶金近净形成型技术
01 技术简介
目录
02 历史与现状
03 术应用领域
06 未来发展方向
金属粉末注射成型技术(Metal Powder Injection Molding Technology,简称MIM)是将现代塑料注射成型 技术引入粉末冶金领域而形成的一门新型粉末冶金近净形成型技术。

金属粉末的注射成型

金属粉末的注射成型

金属粉末的注射成型金属粉末的注射成型,也被称为金属粉末注射成型(Metal Powder Injection Molding,简称MIM),是一种先进的制造技术,将金属粉末与有机物相结合,通过注射成型和烧结工艺,制造出高密度、精确尺寸、复杂形状的金属零件。

在金属粉末注射成型过程中,首先将金属粉末与有机粘结剂和其他添加剂混合均匀,形成金属粉末/有机物混合物。

其次,在高压下,将混合物通过注射机注射到具有细微孔隙和管道的模具中。

模具通常采用两片结构,上模和下模之间形成的形状即为所需制造的零件形状。

注射机将足够的压力用于将混合物推进模具的每一个细微空间,以确保零件形状准确,毛边小。

注射后,模具中的混合物开始固化,形成绿色零件。

最后,通过烧结处理,去除有机物并使金属颗粒结合成整体,形成具有理想密度和力学性能的金属粉末零件。

相对于传统的金属加工方法,金属粉末注射成型具有以下优势:首先,MIM可以制造复杂形状的金属零件,包括薄壁结构、内外复杂曲面和细小结构,满足了一些特殊零件的制造需求。

其次,MIM的材料利用率高,废料少,可以减少原材料和能源的浪费。

此外,零件的尺寸稳定性好,需要的加工工序少,可以降低生产成本。

最重要的是,对于一些其他制造工艺难以实现的金属材料,例如高强度不锈钢、钨合金和钛合金,MIM可以实现高质量的制造。

然而,金属粉末注射成型也存在应用范围的限制。

首先,相对较高的制造成本使得该技术在一些低成本产品上难以应用。

其次,较大的尺寸限制了MIM在制造大尺寸、高精度的零件上的应用。

此外,与其他成型方法相比,MIM的制造周期较长,对行业响应速度要求较高的场景不适用。

尽管如此,金属粉末注射成型技术已经在汽车、电子产品、医疗器械、工具和航空航天等领域得到了广泛的应用。

随着制造技术的进步和材料属性的改进,金属粉末注射成型有望在更多领域发挥其优势,并带来更多创新的解决方案。

MIM技术介绍

MIM技术介绍

MIM技术介绍MIM技术,即金属注射成型技术(Metal Injection Molding),是一种将金属粉末与高聚合物粉末相混合,通过注射成型后烧结制成零件的先进制造技术。

该技术的特点是将金属粉末颗粒与粘结剂混合,并在注射成型后通过烧结过程将粉末颗粒结合在一起形成致密的金属零件。

MIM技术是目前最流行的三维成型技术之一,它兼具了传统压力成型和金属烧结的优点。

在MIM技术中,首先将金属粉末与粘结剂按一定比例混合,形成MIM料浆。

然后,通过注射机将MIM料浆注射到金属模具中进行成型。

成型后的零件经过脱模,形成近净成型的未烧结零件。

最后,通过烧结过程,将未烧结零件在惰性气氛下加热至金属粉末的熔点以上进行烧结,粘结剂将烧结后残留物挥发,金属粉末颗粒结合在一起,形成致密的金属零件。

MIM技术的优点主要表现在以下几个方面。

首先,MIM技术可以制造形状复杂、精度高的零件,相比传统的金属加工方法更加灵活。

其次,MIM技术能够生产大批量的零件,并且具有高度的一致性,适用于需求量大的产品制造。

此外,MIM技术还可以制造超细或微型零件,满足现代微电子、医疗器械等领域对高精度零件的需求。

尽管MIM技术在低成本、高效率和高精度等方面具有明显优势,但也存在一些挑战。

首先,MIM技术对原料的要求较高,金属粉末的粒度和形状对成型效果有较大影响。

其次,粘结剂的选择和控制也是一项关键任务。

此外,由于烧结过程中需要控制温度和气氛等因素,烧结工艺相对复杂。

因此,MIM技术的成功应用需要综合考虑材料、工艺和设备等多个因素。

总的来说,MIM技术是一种高度灵活、高效率、高精度的金属成型方法,已在汽车、航空航天、电子、医疗器械等领域得到广泛应用。

随着材料科学和制造技术的不断发展,MIM技术将进一步完善和推广,为各个行业提供更多高质量的金属零件。

MIM技术作为一种金属粉末成型技术,具有独特的优势和特点,逐渐成为制造业中不可忽视的一种先进工艺。

金属粉末的注射成型

金属粉末的注射成型
纳米金属粉末
具有极高的表面积和活性,能够提高 材料的力学性能和电磁性能,为金属 粉末注射成型的发展提供了新的方向 。
材料性能与成型工艺的关系
1 2 3
流动性
金属粉末的流动性直接影响注射成型的充模能力 和制件质量,流动性好的粉末有利于提高制件的 光洁度和尺寸精度。
压缩性
金属粉末的压缩性决定了其在模具内的填充密度 和制件的致密度,压缩性好的粉末能够提高制件 的机械性能。
医疗器械领域
制造个性化医疗器械和植入物,满足医疗行业对个性化、高性能 和高安全性的需求。
感谢您的观看
THANKS
注射成型操作
将混合料加热至流动状态,注入 模具中,在压力和温度的作用下, 混合料填充模具并硬化定型。
后处理
脱脂
烧结
通过加热或化学方法将粘结剂从金属粉末 中分解、去除,以获得纯净的金属制品。
将脱脂后的金属粉末制品在高温下进行烧 结,使金属粉末颗粒之间形成冶金结合, 提高制品的强度和性能。
热处理
表面处理
度和复杂度。
新型粘结剂的开发
02
研究新型粘结剂,以提高金属粉末的粘结效果,降低成型难度
和成本。
连续注射成型技术
03
开发连续注射成型技术,实现金属粉末的连续加工,提高生产
效率和降低能耗。
新材料的应用与开发
高性能金属粉末
研究开发高性能金属粉末,如钛合金、镍基高温 合金等,以满足高端制造业的需求。
复合材料的应用
详细描述
粉末流动性问题通常表现为注射压力不足、填充不均匀、成 型时间延长等。为了解决这一问题,可以采用改善粉末粒度 分布、降低粉末含水量和加入润滑剂等方法,以提高粉末的 流动性。
成型精度问题

2024年金属粉末注射成型(MIM)市场分析报告

2024年金属粉末注射成型(MIM)市场分析报告

2024年金属粉末注射成型(MIM)市场分析报告1. 引言金属粉末注射成型(Metal Injection Molding,简称MIM)是一种先进的金属制造技术,通过将金属粉末与高聚物粉末混合,加入成型剂和活性粉末,经过注射成型、脱模和烧结等工艺步骤,最终获得具有高精度和复杂形状的金属零部件。

MIM技术具有能耗低、制造周期短以及材料利用率高等优势,因此在汽车、医疗器械、电子等领域得到了广泛应用。

2. 市场规模及趋势据市场研究机构统计,金属粉末注射成型市场在过去几年中呈现出稳定的增长趋势。

预计到2025年,全球金属粉末注射成型市场规模将达到xx.xx亿美元。

这一增长主要受到以下因素的推动:2.1 新材料开发带动需求增长随着科技的不断进步,新材料的研发取得了显著突破,为金属粉末注射成型技术提供了更广阔的应用空间。

新材料的不断涌现与市场需求之间的相互促进,推动了金属粉末注射成型市场的快速发展。

2.2 汽车和医疗器械行业的增长汽车行业和医疗器械行业是金属粉末注射成型市场的主要消费领域。

随着人们对于汽车和医疗器械品质和性能需求的不断提高,对金属粉末注射成型技术的需求也在不断增长。

预计未来几年,这两个行业的持续增长将进一步推动金属粉末注射成型市场的发展。

3. 市场竞争格局目前,金属粉末注射成型市场存在着一些主要的竞争企业,包括: - 公司A - 公司B - 公司C这些企业在产品品质、技术研发能力以及市场拓展能力等方面均具备一定优势。

随着市场竞争的加剧,这些企业将不断提升自身的竞争力,同时也面临着市场份额争夺的压力。

4. 市场机遇与挑战金属粉末注射成型市场具有广阔的发展前景,同时也面临着一些挑战。

4.1 市场机遇•创新技术的推动:随着新材料和新技术的不断出现,金属粉末注射成型市场将迎来更多的机遇。

新技术的应用将进一步拓宽市场的发展空间。

•新兴领域需求增加:随着人们对于高性能产品和高精度零部件的需求不断增加,金属粉末注射成型技术将在航空航天、能源等新兴领域中得到更广泛的应用。

金属粉末注射成型技术在轻武器制造上的应用

金属粉末注射成型技术在轻武器制造上的应用

金属粉末注射成型技术在轻武器制造上的应用摘要:本文通过对金属粉末注射成型技术进行介绍并以此实施作为基础,对比过去传统的加工方式,在加工经济性以及生产效率等各方面的差异,并通过对金属粉末注射成型技术在轻武器制造方面的成功应用案例进行分析,体现该技术在轻武器以及各类精细复杂结构零件方面所不可比拟的重要优势,也借此提出金属粉末注射成型技术在具体应用过程中需要注意并且尚未解决的问题,为将来更加深远的发展奠定基础。

关键词:金属粉末注射成型技术;轻武器制造一、金属粉末注射成型技术概述金属粉末注射成型技术和陶瓷粉末注射成型技术组成了粉末注射成型技术,主要是运用模具成型的原理,将现代塑料注射成型技术融入到粉末冶金领域而形成的一种新型粉末冶金技术。

主要特征是将金属粉末或者陶瓷粉末通过注释使得成型,通过一系列的加工处理之后形成具体型状。

金属粉末注射成型技术的主要工艺是将固体的粉末和有机粘结剂进行充分混合,在一定的条件下进行加热塑化过后注射入具体的模型内使其成型固化,该项技术作为一种可以用于制造各种精密零件的技术被广泛运用于各类航天航空以及具有精密零件制造需求的行业之中。

二、金属粉末注射成型技术的优势金属粉末注射成型技术作为一种可以制造各种精密零件的技术,具有传统加工方法所无法比拟的巨大优势,主要有以下几种。

第可以制造各种常规粉末冶金技术难以制造的各种精密,并且形状怪异的零件,各种螺纹,锥形等等都可以高质量的制作。

第二,利用金属粉末注射成型技术所制造的相关零件,大多数零件都不需要进行二次加工,大幅度提高了材料的利用效率。

第三,对于某些具有特殊要求极其精密的零件,能够尽可能的减少误差,使其更加符合制作要求,并且零件表面较为光滑。

第四,零件制造较为稳定,并且使用性能高能够反复利用,对于各类化学材料的处理等等都不会产生太大影响。

第五,金属粉末注射成型技术应用广泛并且原材料的利用效率较高,尽可能的缩短了工艺的流程提高了制造效率。

金属粉末注射成型

金属粉末注射成型

案例四:电子产品制造
总结词
微型化、高精度、轻量化
详细描述
金属粉末注射成型在电子产品制造中发挥着重要作用,尤其 在微型化、高精度和轻量化方面具有显著优势。例如,用于 制造手机、平板电脑等消费电子产品的金属结构件和连接件 等。
05
结论
金属粉末注射成型的重要性和应用前景
金属粉末注射成型是一种重要的金属加 工技术,具有高精度、高效率、低成本 等优点,广泛应用于汽车、航空航天、
未来发展方向
新材料研究与应用
随着新材料技术的不断发展,未来将有更 多具有优异性能的金属粉末应用于金属粉
末注射成型工艺。Βιβλιοθήκη 环保与可持续发展随着环保意识的提高,未来金属粉末注射 成型将更加注重环保和可持续发展,减少
生产过程中的废弃物和能耗。
智能化与自动化
通过引入先进的传感器、控制系统和人工 智能技术,实现金属粉末注射成型的智能 化和自动化,提高生产效率和产品质量。
探索金属粉末注射成型与其他 先进制造技术的结合,实现优 势互补,提高整体制造水平。
ABCD
加强新材料的研发和应用, 以满足市场需求和推动产 业升级。
加强国际合作和技术交流,引 进先进技术和理念,推动金属 粉末注射成型技术的全球发展 。
THANK YOU
型产品。
1970年代
随着粘结剂喷射和脱脂技术的 发展,金属粉末注射成型技术
逐渐成熟。
1980年代至今
金属粉末注射成型技术不断发 展和完善,应用领域不断扩大

应用领域
电子通讯
如连接器、端子、 线圈架等;
医疗器械
如手术器械、牙科 器械等;
汽车零件
如发动机零件、变 速器零件、刹车系 统零件等;

粉末注射成型

粉末注射成型

粉末注射成型
粉末注射成型(Powder Injection Moulding,简称PIM)是一种将金属或陶瓷粉末通过加工制造成零件的技术。


个过程类似于传统的塑料注射成型,但使用的是金属或陶
瓷粉末。

整个过程包括以下步骤:
1. 材料准备:选择合适的金属或陶瓷粉末,并按照特定的
配方制备成所需的粉末混合物。

2. 注射成型:将粉末混合物装入注射机中,并通过高压将
粉末推入模具中。

模具通常是具有所需形状的两个半球体。

3. 球芯去除:等到粉末充填到模具后,球芯会自动脱落并
迅速冷却固化。

4. 焙烧:固化的零件需要经过焙烧过程,以去除残留的有
机物,并增加材料的密度和强度。

5. 精加工:将焙烧后的零件进行必要的后续加工,例如打磨、抛光等。

6. 检测和质量控制:对成品进行检测,确保其符合规定的
尺寸和质量标准。

粉末注射成型技术具有许多优点,例如可以生产形状复杂的零件,材料利用率高,生产效率高等。

它被广泛应用于汽车、医疗器械、工具等领域的零部件制造。

《金属粉末注射成型》课件

《金属粉末注射成型》课件
压缩性
金属粉末的压缩性对注射成型的充模过程和制件 质量有重要影响,压缩性好的粉末能够减小注射 压力和注射时间,提高生产效率。
松装密度与流动性关系
松装密度较高的粉末具有较好的流动性,有利于 提高制件的致密度和减小内应力。
热物理性能
金属粉末的热物理性能如熔点、热导率、热膨胀 系数等对注射成型的加热、冷却和制件性能有较 大影响,选择合适的热物理性能有助于优化注射 成型工艺和提高制件性能。
随着市场需求的多样化,金属粉末注射成 型技术将更加注重定制化和个性化生产, 满足不同客户的需求。
05
金属粉末注射成型工 艺优化
工艺参数优化
温度控制
优化温度参数,确保金属粉末在熔融和冷却过程中的 温度分布均匀,提高成型质量。
压力调整
合理设置注射和压制压力,以获得更好的密度和强度 。
注射速度与时间
优化注射速度和时间,确保金属粉末均匀填充模具并 减少内部缺陷。
科植入物等。
其他
金属粉末注射成型还可应用于 电子产品、珠宝等领域,生产
小型、复杂的金属零件。
02
金属粉末注射成型原 理
粉末制备
01
02
03
原材料选择
根据产品需求选择合适的 金属粉末,如不锈钢、钛 合金、镍基合金等。
粉末制备方法
通过化学或物理方法将原 材料细化成微米级粉末, 确保粉末的纯度、粒度和 流动性。
烧结与后处理
烧结
在保护气氛下将注射成型的金属零件 进行烧结,使金属粉末颗粒间形成冶 金结合,提高零件的强度和致密度。
后处理
根据需要,对烧结后的零件进行热处 理、机加工、表面处理等后处理操作 ,以满足产品性能和使用要求。
03
金属粉末注射成型材 料

金属粉末注射成型技术

金属粉末注射成型技术

金属粉末注射成型技术金属粉末注射成型技术(Metal Powder Injection Molding,简称MIM)是一种先进的制造工艺,结合了粉末冶金和塑料注射成型技术,广泛应用于金属零件的制造。

MIM技术以其高精度、高复杂性和高效率的特点,成为近年来制造业领域的热门技术。

一、MIM工艺简介金属粉末注射成型技术是将金属粉末与有机材料(通常为热熔型塑料)混合,经过塑化、成型、脱脂和烧结等多个工艺步骤,最终形成具有金属特性的零件。

该技术的基本步骤包括:原料准备、混合、注射成型、脱脂和烧结。

1. 原料准备金属粉末是MIM技术的关键原料,其粒径通常为10~20μm,且具有良好的流动性和可压缩性。

可以使用的金属粉末有不锈钢、合金钢、铁基合金、钛合金等。

同时,还需准备有机材料(通常是聚丙烯、聚氨酯或类似材料)作为粘结剂。

2. 混合将金属粉末和有机材料进行混合,通常采用机械搅拌或球磨的方法,确保金属粉末均匀分布在有机材料中。

3. 注射成型混合料经过塑化,放入注射成型机中进行注射成型。

注射成型机通过加热熔融的混合料,并将其注入模具中,在一定的温度和压力下形成所需的零件形状。

4. 脱脂注射成型后,零件经过脱脂工艺,将有机材料从混合料中去除。

通常使用热处理或溶剂处理方法进行脱脂。

5. 烧结脱脂后的零件被置于特定的高温环境中,金属粉末与有机材料经过烧结而成。

在烧结过程中,金属颗粒之间发生冶金结合,形成致密的金属零件。

二、MIM技术的优势金属粉末注射成型技术相比其他金属加工方式具有以下几个显著优势:1. 复杂形状MIM技术可以制造复杂形状的金属零件,包括细小孔洞、薄壁结构、内部腔体等。

这种高精度和高复杂性的加工能力,使得MIM技术在航空航天、医疗器械、汽车零部件等领域得到广泛应用。

2. 材料多样性MIM技术可以使用多种金属粉末制造零件,涵盖广泛的金属材料,包括不锈钢、合金钢、铁基合金、钛合金等。

这使得MIM技术具有较大的材料选择范围,满足不同应用领域对材料性能的需求。

金属粉末注射成型技术(MIM)

金属粉末注射成型技术(MIM)

金属粉末注射成型技术(Metal Powder Injection Molding,简称MIM)是将现代塑料注射成形技术引入粉末冶金领域而形成的一门新型粉末冶金近净形成形技术。

其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃)用注射成形机注入模腔内固化成形,然后用化学或热分解的方法将成形坯中的粘结剂脱除,最后经烧结致密化得到最终产品。

与传统工艺相比,具有精度高、组织均匀、性能优异,生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。

因此,国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术”和“21世纪的成形技术”。

美国加州Parmatech公司于1973年发明,八十年代初欧洲许多国家以及日本也都投入极大精力开始研究该技术,并得到迅速推广。

特别是八十年代中期,这项技术实现产业化以来更获得突飞猛进的发展,每年都以惊人的速度递增。

到目前为止,美国、西欧、日本等十多个国家和地区有一百多家公司从事该工艺技术的产品开发、研制与销售工作。

日本在竞争上十分积极,并且表现突出,许多大型株式会社均参与MIM工业的推广,这些公司包括有太平洋金属、三菱制钢、川崎制铁、神户制钢、住友矿山、精工--爱普生、大同特殊钢等。

目前日本有四十多家专业从事MIM产业的公司,其MIM工业产品的销售总值早已超过欧洲并直追美国。

到目前为止,全球已有百余家公司从事该项技术的产品开发、研制与销售工作,MIM技术也因此成为新型制造业中最为活跃的前沿技术领域,被世界冶金行业的开拓性技术,代表着粉末冶金技术发展的主方向MIM技术金属粉末注射成型技术是集塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科透与交叉的产物,利用模具可注射成型坯件并通过烧结快速制造高密度、高精度、三维复杂形状的结构零件,能够快速准确地将设计思想物化为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。

MIM金属粉末注射成型技术简介

MIM金属粉末注射成型技术简介

MIM金属粉末注射成型技术简介MIM(Metal Injection Molding)金属粉末注射成型技术是一种将金属粉末与聚合物混合并注射成型的成型工艺。

这种工艺结合了传统金属粉末冶金和塑料注射成型技术的优势,可以生产出复杂形状、高精度和高强度的金属零件。

MIM工艺的基本原理是将金属粉末与适当比例的聚合物混合,并在高温下注射进模具中。

注射后,模具中的混合物经过固化和烧结两个步骤。

首先,在固化阶段,聚合物在高温下固化成强度较低的绿坯。

然后,在烧结阶段,通过加热使聚合物燃烧脱除,金属粉末颗粒在密实的绿坯中结合成金属零件。

MIM工艺具有以下几个优点。

首先,它可以实现复杂形状的金属零件的制作,包括内腔、细槽和细孔等特殊结构。

其次,MIM可以生产出精度高、表面光滑的零件。

此外,在同样强度要求下,MIM制件的重量通常比传统制造工艺更轻。

最后,MIM工艺适用于大批量生产,可以实现高效率、低成本的生产。

MIM工艺的主要应用领域包括电子、汽车、医疗、军工等行业。

在电子领域,MIM可以制作出细小的电子器件,如连接器、电池片和耳机插头等。

在汽车领域,MIM可以制作出复杂的发动机零件、传动系统部件和刹车系统组件等。

在医疗领域,MIM可以制作出高精度的人工关节、牙科器械和手术工具等。

在军工领域,MIM可以制作出高强度、耐磨的武器部件和飞行器部件等。

然而,MIM工艺也存在一些限制。

首先,MIM工艺的设备和材料成本较高,需要更高的投资。

其次,MIM的制造周期较长,通常需要数周至数月的时间。

最后,MIM工艺的材料种类有限,只适用于可烧结金属粉末,如不锈钢、合金钢和钛合金等。

总的来说,MIM金属粉末注射成型技术是一种高效、精密和经济的金属制造工艺。

随着对金属零件的需求不断增加,MIM有望在各行业中得到更广泛的应用。

未来,随着新材料的发展和工艺改进,MIM技术将进一步提升零件的性能和质量,为各行业的发展带来更多的机遇和挑战。

金属粉末注射成形工艺

金属粉末注射成形工艺

金属粉末注射成形工艺金属粉末注射成形,又被称为金属三维打印,是一种先进的制造技术,可以快速、高效地制造出复杂形状的金属零部件。

该工艺使用金属粉末作为原料,通过注射成形技术将粉末逐层堆积并熔化,最终形成所需的零部件。

金属粉末注射成形工艺主要包括以下几个步骤:1. 材料准备:首先需要选择适合的金属粉末作为原料,常用的金属粉末包括不锈钢、铝合金、钛合金等。

这些粉末需要经过筛分、分类和预处理等工艺,以保证其质量和性能。

2. 粉末注射:将经过处理的金属粉末注入注射成形机中,通过气压或机械力推动粉末向成型腔体注入,并形成具有预定形状的初模。

3. 粉末固化:在注射成形过程中,粉末通过高温或加热装置进行固化,使其达到一定的强度和硬度。

固化后的金属粉末形成一层层的堆积。

4. 层层熔化:通过高能激光束或电子束熔化技术,对已固化的粉末进行局部加热,使其熔化并与下一层的金属粉末融合在一起。

重复这个过程,直到完成整个零件的制造。

5. 后处理:完成熔化过程后,金属零件需要经过去渣、退火、热处理等后续工艺,以进一步提高零件的性能,去除残留的应力和瑕疵。

金属粉末注射成形工艺具有以下优点:1. 快速高效:相比传统的制造工艺,金属粉末注射成形工艺可以大大缩短制造周期,节约人力和时间成本。

2. 复杂形状:金属粉末注射成形技术可以制造出具有复杂形状的零部件,包括中空结构、内腔结构等。

3. 材料选择多样:金属粉末注射成形工艺可以使用多种金属粉末作为原料,满足不同材料性能和需求。

4. 资源节约:由于金属粉末注射成形工艺是按需制造,不需要额外加工或切割,可以最大限度地节约材料,减少废料产生。

然而,金属粉末注射成形工艺也存在一些挑战,如技术难度高、成本较高等。

随着技术的不断进步和成熟,相信金属粉末注射成形工艺将在未来得到更广泛的应用,成为制造业领域的新宠。

金属粉末注射成形工艺是一项颇具潜力的新兴制造技术,它在汽车、航空航天、医疗器械等许多行业都有广泛应用的前景。

金属粉末注射成型技术

金属粉末注射成型技术

金属粉末注射成型技术前言金属材料是工业制造领域中最为基础和重要的材料之一,目前制造金属零件的方法主要有:铸造、锻造、加工、焊接等。

其中,传统的金属制造方法存在着一些局限性,比如造型精度有限、生产周期长等。

为了克服这些限制并满足不同领域对金属产品更高的要求,人们逐渐发展和推广了一种被称为“金属粉末注射成型技术”的新工艺。

什么是金属粉末注射成型技术?金属粉末注射成型技术(Metal Powder Injection Molding,简称MIM)是将金属粉末和橡胶树脂混合物压制成为原型,然后将原型通过特定的注射设备放到高温致密炉中进行高温烧结,同时橡胶树脂减数挥发,形成致密的金属部件。

注射成型过程的实标非常高,达到了85-95%。

与其他规整制造方式相比,MIM技术可制造出一些传统方法无法实现的金属部件。

同时,压缩烧结过程适用于大量制造、复杂的几何结构和高精度的细小零件。

MIM技术的工艺过程1.原材料制备:将金属粉末与橡胶树脂按配方按比例调配混合,制成金属粉末和树脂丸子。

2.注射成型:将上述丸子通过注射设备注射到有轨迹的催化剂上形成模具。

3.脱模:用加压空气将模具从漆面上分离出来。

4.热炼:采用专业热炼设备热炼金属制成物。

5.成品处理:通过各种加工手段对金属零件进行修整和抛光。

MIM技术的优势MIM技术具有以下优势:•可以生产细小的零件和高精度的特殊形状。

•最大程度上避免了应力集中的情况。

•可以制造比传统制造方式更复杂的形状、零件和组件。

•由于采用的是金属粉末生产工艺,因此可以大量节省原材料和成本。

•高生产效率,不需要进行额外的热加工或与这些工艺相似的形式。

•可适应多种金属材料的制造。

MIM技术的应用领域MIM技术在汽车、医疗设备、手表、航空航天、枪械等领域广泛应用。

其中汽车领域应用最为广泛。

例如,汽车行业中的高性能活塞、变速器、发动机零件等,都可以通过MIM技术制造,拥有更高的强度和更好的密封性能。

在枪械领域,MIM技术可以用于生产枪管、扳机、弹膛等零件。

金属粉末注射成型工艺技术

金属粉末注射成型工艺技术

金属粉末注射成型工艺技术
金属粉末注射成型工艺技术
随着科学技术的不断发展和进步,金属粉末注射成型工艺技术也变得越来越成熟,并在汽车、机械、航空、电子等工程领域应用越来越广泛。

金属粉末注射成型工艺技术的意思是指用软性金属粉末或其他聚合物粉末,通过注射成型机,将粉末压缩成固体形状,再经热处理,最终获得精加工的金属零件或部件。

金属粉末注射成型有许多优点,如能大大节约材料,降低牵引力损失,提高强度,以及易于改变模具,并可以以较低的成本生产小批量、起伏复杂的外形部件等。

金属粉末注射成型过程分为三个主要阶段:
首先,将金属粉末连续输入到注射成型机的缩压室,达到一定的压力水平,使粉末粒子紧密接触,形成原型零件。

其次,将制成的原型零件放入热处理炉中,或者是经过高温热处理后,或者是经过低温热处理后,使金属零件固化。

最后,将加工完成的零件置于机械或电子操作工作台上,进行精确的机械加工,如热处理后的外型加工、抛光、拉丝、倒角、表面处理和组装等操作。

金属粉末注射成型工艺技术应用广泛,可形成一些复杂的零件,其优点是减少材料耗损、减少牵引势损失,还可以有效提高粉末再利用率。

产品可进行多次加工或重新加工,模具变更更加便捷,产品的重量轻,可以进行精密塑造,更有利于节省能源,提高生产效率和降低成本。

但是,金属粉末注射成型工艺还有一些不足之处,如零件设
计的复杂性受到限制,对于细小孔的处理也较为困难。

金属粉末注射成型是目前金属零件制造的常用技术,相比传统的模具压力成型,它的特点在于速度快、成型周期短、能节约材料和节能,由此可知,它具有很大的现实意义和经济价值。

金属粉末注塑成型技术

金属粉末注塑成型技术

金属粉末注塑成型技术金属粉末注射成型技术(Metal Powder ※※※※ction Molding,简称MIM)是将现代塑料注射成形技术引入粉末冶金领域而形成的一门新型粉末冶金近净形成形技术。

其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃)用注射成形机注入模腔内固化成形,然后用化学或热分解的方法将成形坯中的粘结剂脱除,最后经烧结致密化得到最终产品。

与传统工艺相比,具有精度高、组织均匀、性能优异,生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。

因此,国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术”和“21世纪的成形技术”。

美国加州Parmatech公司于1973年发明,八十年代初欧洲许多国家以及日本也都投入极大精力开始研究该技术,并得到迅速推广。

特别是八十年代中期,这项技术实现产业化以来更获得突飞猛进的发展,每年都以惊人的速度递增。

到目前为止,美国、西欧、日本等十多个国家和地区有一百多家公司从事该工艺技术的产品开发、研制与销售工作。

日本在竞争上十分积极,并且表现突出,许多大型株式会社均参与MIM工业的推广,这些公司包括有太平洋金属、三菱制钢、川崎制铁、神户制钢、住友矿山、精工--爱普生、大同特殊钢等。

目前日本有四十多家专业从事MIM产业的公司,其MIM工业产品的销售总值早已超过欧洲并直追美国。

到目前为止,全球已有百余家公司从事该项技术的产品开发、研制与销售工作,MIM技术也因此成为新型制造业中最为活跃的前沿技术领域,被世界冶金行业的开拓性技术,代表着粉末冶金技术发展的主方向MIM技术金属粉末注射成型技术是集塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科透与交叉的产物,利用模具可注射成型坯件并通过烧结快速制造高密度、高精度、三维复杂形状的结构零件,能够快速准确地将设计思想物化为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。

2023年金属粉末注射成型技术行业市场发展现状

2023年金属粉末注射成型技术行业市场发展现状

2023年金属粉末注射成型技术行业市场发展现状金属粉末注射成型技术(Metal Powder Injection Moulding,缩写为MIM)是一种高精密度、高性能、复杂形状、大批量生产的金属加工技术。

它的出现大大拓展了金属制品的应用领域,现在已经广泛应用于汽车、电子、医疗、军工等领域。

本文将结合市场需求、生产规模、技术难度与进展等方面,分析金属粉末注射成型技术的发展现状。

一、市场需求随着科技的不断进步,人类对高精密度、高性能、复杂形状、大批量生产的金属加工技术的需求不断增加。

金属粉末注射成型技术正好满足了这些需求,因此市场需求十分旺盛。

特别是在汽车、电子、医疗、军工等领域,金属粉末注射成型技术的应用必不可少。

二、生产规模金属粉末注射成型技术是一种集成了粉末冶金成型和塑料注射成型的先进技术。

这种技术不仅可以生产精密度高、性能好的金属制品,而且可以大批量生产。

所以,金属粉末注射成型技术已经成为生产高精密度、高性能零部件的常用制造工艺之一。

目前,全球金属粉末注射成型技术的生产规模不断扩大。

其中,欧洲、美洲和亚洲是最主要的生产地区。

在中国,金属粉末注射成型技术的应用也越来越广泛,已经成为了国内制造业的重要组成部分。

三、技术难度及进展金属粉末注射成型技术涉及到粉末制备、成型、烧结等一系列复杂的加工过程,技术难度较大。

尤其是对材料的要求极为严格,材料的质量、粒度和分布直接决定了制品的质量。

因此,金属粉末注射成型技术在成形过程中会出现浸润不良、气孔、缩孔、偏差等问题,这些问题都需要通过优化工艺和提高设备精度来解决。

目前,全球相关技术公司对金属粉末注射成型技术的研究不断深入,不断推出新技术。

比如,近年来出现了高温烧结和真空热处理等新工艺;全球金属粉末注射成型技术的设备也逐渐向高效、智能化、自动化方向发展,为提高成品质量和生产效率提供了很好的保障。

综上所述,随着科技的进步和市场需求的不断增加,金属粉末注射成型技术在全球的发展前景非常广阔。

金属的粉末注射成型技术

金属的粉末注射成型技术

金属的粉末注射成型技术
金属粉末注射成型技术(Metal Powder Injection Molding,简称MIM)是发展至今最先进的一种小批量生产要求精密复杂零件的高技术技术。

MIM技术是一种热致凝固的成型技术,能够在低温(一般在200-300℃)及低压(一般为50-150MPa之间)的条件下进行加工,将外形精密、规格复杂的金属粉末挤压成型,利用高温热致凝固成型而制得复杂的金属零件。

MIM技术的主要流程主要包括材料制备、模具制备和成型烧结三个部分。

材料制备包括:混合、消粒、压制、搅拌及造粒等工序。

MIM技术所用金属粉末材料分两大类:一类是质量比较稳定的内部结构欠晶的粉末,铁、钢、铜;另一类是其他一些稀有金属,如钛、硼、银、锆、钨等,其含金量比较高。

金属粉末的粒径大小以及水合作用均对模具的质量有明显影响。

模具制备,是将金属粉状混合物填充进模具,用特殊的装置,以精确的压力、温度将粉末材料填缩成固体零件形状的工序,其又分为热凝固成型和气凝固成型,热凝固成型技术中,常用的有塑性凝固注射成型、凝固热压成型、凝固热熔成型。

最后是成型烧结,在高温等环境下,通过去除材料体内的组分,形成固态聚合物状态,从而达到陶瓷晶体的烧结。

金属粉末注射成型技术

金属粉末注射成型技术

金属粉末注射成型技术金属粉末注射成型(Metal Powder Injection Molding,简称MIM)技术是一种通过将金属粉末与热塑性聚合物射出成型技术相结合,制造复杂形状的金属制品。

MIM技术结合了传统的注射成型和金属粉末冶金技术的优点,能够高效、精确地制造出形状复杂的金属部件。

下面将从工艺原理、材料特点、工艺流程以及应用领域等方面详细介绍MIM技术。

一、工艺原理MIM技术主要包括四个步骤,即粉末混合、注射成型、烧结和后处理。

首先,将金属粉末与增塑剂、溶剂等辅助剂混合均匀,形成可塑性的混合料。

然后,将混合料装入注射机中,通过高压力将混合料注射至模具腔穴中,得到近成型的部件。

接下来,通过烧结工艺,将成型的部件进行加热,使金属粉末颗粒之间相互扩散,实现部件的致密化和结合。

最后,进行去脱模、表面处理等后处理工艺,使得最终制品达到所需的精度和表面质量。

二、材料特点MIM技术可以制造多种金属的制品,包括不锈钢、钛合金、铜合金、铁合金等。

这些材料具有良好的机械性能、耐磨、耐腐蚀等特点,可以满足各种应用领域的需求。

金属粉末的粒度一般在5-20μm之间,可以根据制品要求进行选择。

此外,MIM制品可以采用多种表面处理工艺,如抛光、电镀、喷涂等,进一步提高产品的表面质量和装饰效果。

三、工艺流程MIM技术的工艺流程相对复杂,包括原料准备、混合、注射、烧结和后处理等环节。

首先,需要根据制品要求选择合适的金属粉末和添加剂,并对其进行筛选和处理。

然后,将金属粉末与增塑剂、溶剂等辅助剂进行混合,形成可塑性的混合料。

接下来,将混合料装入注射机中,通过高压力将混合料注射至模具腔穴中。

然后,将近成型的部件进行烧结,使其实现致密化和结合。

最后,通过去脱模、除渣、表面处理等后处理工艺,得到最终的金属部件。

四、应用领域MIM技术的应用领域非常广泛,包括电子通讯、汽车工业、医疗器械、军工等领域。

在电子通讯领域,MIM技术可以制造小型高精度的连接器、插件等零部件,满足电子设备不断减小体积和提高性能的需求。

金属粉末注射成型工艺技术

金属粉末注射成型工艺技术

金属粉末注射成型工艺技术一、引言金属粉末注射成型是一种先进的制造工艺技术,它通过将金属粉末与添加剂混合,然后在高温和高压的条件下注射到模具中,最终形成所需的金属零件。

这种工艺技术具有高精度、复杂形状和优良性能的特点,被广泛应用于航空航天、汽车制造、医疗器械等领域。

本文将全面、详细地探讨金属粉末注射成型工艺技术。

二、金属粉末注射成型的工艺流程金属粉末注射成型工艺技术的流程可以分为以下几个步骤:2.1 粉末制备在金属粉末注射成型工艺中,粉末的质量和性能对最终产品的质量和性能有着重要影响。

因此,粉末的制备是关键的一步。

通常采用的方法包括机械合金化、电解还原、气相沉积等。

2.2 粉末混合在粉末制备完成后,需要将金属粉末与添加剂进行混合。

添加剂的作用是提高粉末的流动性和可压性,从而更好地填充模具。

2.3 注射成型混合好的金属粉末和添加剂被注入注射成型机中,然后在高温和高压的条件下注射到模具中。

注射成型过程中,金属粉末会充分热塑,填充整个模具腔。

2.4 烧结注射成型后的零件需要进行烧结处理,以提高其密度和机械性能。

烧结过程中,金属粉末颗粒之间会发生结合,形成致密的结构。

2.5 后处理经过烧结处理后的零件可能需要进行后处理,如去除表面氧化层、研磨抛光等,以提高表面质量和精度。

三、金属粉末注射成型的优势和应用金属粉末注射成型工艺技术具有以下优势:3.1 高精度金属粉末注射成型可以制造出复杂形状的零件,并且具有较高的尺寸精度和表面质量。

3.2 材料利用率高金属粉末注射成型可以有效利用原材料,减少材料浪费。

3.3 机械性能优良经过烧结处理的金属粉末注射成型零件具有较高的密度和机械性能,可以满足各种工程应用的需求。

金属粉末注射成型工艺技术在许多领域得到了广泛应用:3.4 航空航天领域金属粉末注射成型可以制造出轻量化、高强度的零件,满足航空航天领域对材料性能和质量的要求。

3.5 汽车制造领域金属粉末注射成型可以制造出复杂形状的汽车零件,提高汽车的性能和安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属粉末注射成型(Metal Powder Injection Molding,简称MIM技术是将现代塑料注射成型技术引入粉末冶金领域而形成的一门新型粉末冶金近净成形技术。

其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃用注射成型机注入模腔内固化成型,然后用化学或热分解的方法将成型坯中的粘结剂脱除,最后经烧结致密化得到最终产品。

与传统工艺相比,MIM具有精度高、组织均匀、性能优异、生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。

国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术”和“21世纪的成形技术”。

MIM技术由美国加州Parmatech公司于1973年发明,八十年代初欧洲许多国家以及日本也都投入极大精力开始研究该技术,并使其得到迅速推广,特别是在八十年代中期该技术实现产业化以来,更获得了突飞猛进的发展,产量每年都以惊人速度递增。

到目前为止,美国、西欧、日本等十多个国家和地区有一百多家公司从事该工艺技术的产品开发、研制与销售工作。

日本在竞争上十分积极,并且表现突出,许多大型株式会社均参与MIM工艺的推广应用,这些公司包括太平洋金属、三菱制钢、川崎制铁、神户制钢、住友矿山、精工-爱普生、大同特殊钢等。

目前日本有四十多家专业从事MIM产业的公司,其MIM产品的销售总值早已超过欧洲并直追美国。

MIM技术已成为新型制造业中最为活跃的前沿技术领域,是世界冶金行业的开拓性技术,代表着粉末冶金技术发展的主方向。

金属粉末注射成型技术是塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科渗透与交叉的产物,利用模具可注射成型坯件并通过烧结快速制造高密度、高精度、三维复杂形状的结构零件,能够快速、准确地将设计思想物化为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。

该工艺技术不仅具有常规粉末冶金工艺工序少、无切削或少切削、经济效益高等优点,而且克服了传统粉末冶金工艺制品材质不均匀、机械性能低、薄壁成型困难、结构复杂等缺点,特别适合于大批量生产小型、复杂以及具有特殊要求的金属零件。

2.MIM的工艺流程MIM的工艺流程为:金属粉末+粘结剂→混炼→注射成型→脱脂→烧结→后处理。

(1金属粉末MIM工艺所用的金属粉末颗粒尺寸一般在0.5~20μm。

从理论上讲,颗粒越细,比表面积也越大,越易于成型和烧结。

而传统的粉末冶金工艺则采用大于40μm的较粗粉末。

(2有机粘结剂有机粘结剂的作用是粘结金属粉末颗粒,使混合料在注射机料筒中加热后具有流变性和润滑性,即粘结剂是带动粉末流动的载体。

因此,粘结剂的选择是整个粉末注射成型的关键。

对有机粘结剂的要求为:①用量少,用较少的粘结剂能使混合料产生较好的流变性;②不反应,在去除粘结剂的过程中与金属粉末不起任何化学反应;③易去除,在制品内不残留碳。

(3混料把金属粉末与有机粘结剂均匀掺混在一起,使各种原料成为注射成型用混合料。

混合料的均匀程度直接影响其流动性,从而影响注射成型工艺参数以及最终材料的密度及其它性能。

(4注射成型本步工艺过程与塑料注射成型工艺过程在原理上是一致的,其设备条件也基本相同。

在注射成型过程中,混合料在注射机料筒内被加热成具有流变性的塑性物料,并在适当的注射压力下注入模具中,成型出毛坯。

注射成型毛坯在外观上应均匀一致,从而使制品在烧结过程中均匀收缩。

(5萃取成型毛坯在烧结前必须去除毛坯内所含有的有机粘结剂,该过程称为萃取。

萃取工艺必须保证粘结剂从毛坯的不同部位沿着颗料之间的微小通道逐渐排出,而不降低毛坯的强度。

粘结剂的排除速率一般遵循扩散方程。

(6烧结烧结能使多孔的脱脂毛坯收缩密化成为具有一定组织和性能的制品。

尽管制品的性能与烧结前的许多工艺因素有关,但在许多情况下,烧结工艺对最终制品的金相组织和性能有着很大甚至决定性的影响。

(7后处理对于尺寸要求较为精密的零件,需要进行必要的后处理。

这工序与常规金属制品的热处理工序相同。

3.MIM的工艺特点及与其它加工工艺的比较:MIM使用的原料粉末粒径在2~15μm,而传统粉末冶金的原料粉末粒径大多在50~100μm;MIM工艺的成品密度较高,相对密度达95%~98%,而传统粉末冶金工艺相对密度仅为80%~85%(主要原因是MIM工艺使用微细粉末; MIM的产品重量通常小于400克,传统粉末冶金的产品重量为十到数百克;MIM 的产品形状可以是三维复杂形状,传统粉末冶金的产品形状通常为二维简单形状。

MIM工艺具有传统粉末冶金工艺的优点,而其形状自由度高是传统粉末冶金工艺所不能达到的。

传统粉末冶金工艺受到模具强度和填充密度的影响,成型形状大多为二维圆柱型。

传统的精密铸造脱燥工艺为一种制作复杂形状产品的有效技术,近年来使用陶芯辅助,可以完成狭缝、深孔的制造,但受到陶芯强度以及铸液流动性的限制,该工艺仍存在某些技术难题。

一般而言,该工艺制造大、中型零件较为合适,制造复杂形状的小型零件则以MIM工艺较为合适。

压铸工艺用于铝和锌合金等熔点低、铸液流动性良好的材料,该工艺的产品因材料的限制,其强度、耐磨性、耐蚀性均有一定限度。

MIM工艺可以加工的原材料则较多。

精密铸造工艺虽然近年来其产品的精度和复杂度均有所提高,但仍比不上脱蜡工艺和MIM工艺。

粉末锻造是一项重要的发展,已适用于连杆的量产制造。

但是一般而言,锻造工程中热处理的成本和模具的寿命还是有问题,仍待进一步解决。

传统机械加工工艺靠自动化而提升其加工能力,在效果和精度上有极大的进步,但在基本程序上仍脱不开以逐步加工(车、刨、铣、磨、钻孔、抛光等来完成零件形状的加工。

机械加工方法的加工精度远优于其他加工方法,但是因为材料的有效利用率低,且其形状的完成受限于设备与刀具,有些零件无法用机械加工完成。

相反,MIM可以有效利用材料,不受限制,对于小型、高难度形状的精密零件的制造,MIM工艺比较机械加工而言,其成本较低且效率高,具有很强的竞争力。

MIM技术并非与传统加工方法竞争,而是弥补传统加工方法在技术上的不足或无法制作的缺陷。

MIM技术可以在传统加工方法制作的零件领域上发挥其特长。

4.MIM工艺在零部件制造方面的技术优势(1可成型高度复杂结构的结构零件注射成型工艺技术利用注射机注射成型产品毛坯,保证物料充分充满模具型腔,也就保证了零件高复杂结构的实现。

以往在传统加工技术中先作成个别元件再组合成组件的方式,在使用MIM技术时可以考虑整合成完整的单一零件,大大减少步骤,简化加工程序。

MIM与其他金属加工方法比较,制品尺寸精度高,不必进行二次加工或只需少量精加工。

注射成型工艺可直接成型薄壁、复杂结构件,制品形状已接近最终产品要求,零件尺寸公差一般保持在±0.1~± 0.3左右,特别对于降低难于进行机械加工的硬质合金的加工成本,减少贵重金属的加工损失尤其具有重要意义。

(2制品微观组织均匀、密度高、性能好在压制加工过程中,由于模壁与粉末以及粉末与粉末之间的摩擦力,使得压制压力分布不均匀,也就导致了压制毛坯在微观组织上不均匀,这样就会造成压制粉末冶金件在烧结过程中收缩不均匀,因此不得不降低烧结温度以减少这种效应,从而使制品孔隙度大、材料致密性差、密度低,严重影响制品的机械性能。

反之,注射成型工艺是一种流体成型工艺,粘接剂的存在保障了粉末的均匀排布,从而可消除毛坯微观组织上的不均匀,进而使烧结制品密度可达到其材料的理论密度。

一般情况下,压制产品的密度最高只能达到理论密度的85%。

制品的高致密性可使强度增加,韧性加强,延展性、导电导热性得到改善,磁性能提高。

(3效率高,易于实现大批量和规模化生产MIM技术使用的金属模具,其寿命和工程塑料注射成型具模具相当。

由于使用金属模具,MIM适合于零件的大批量生产。

由于利用注射机成型产品毛坯,极大地提高了生产效率,降低了生产成本,而且注射成型产品的一致性、重复性好,从而为大批量和规模化工业生产提供了保证。

(4适用材料范围宽,应用领域广阔(铁基,低合金,高速钢,不锈钢,克阀合金,硬质合金可用于注射成型的材料非常广泛,原则上任何可高温浇结的粉末材料均可由MIM工艺制造成零件,包括传统制造工艺中的难加工材料和高熔点材料。

此外, MIM也可以根据用户要求进行材料配方研究,制造任意组合的合金材料,将复合材料成型为零件。

注射成型制品的应用领域已遍及国民经济各领域,具有广阔的市场前景。

(5MIM工艺采用微米级细粉末,既能加速烧结收缩,有助于提高材料的力学性能,延长材料的疲劳寿命,又能改善耐、抗应力腐蚀及磁性能。

5.MIM技术的应用领域(1计算机及其辅助设施:如打印机零件、磁芯、撞针轴销、驱动零件等;(2工具:如钻头、刀头、喷嘴、枪钻、螺旋铣刀、冲头、套筒、扳手、电工工具,手工具等;(3家用器具:如表壳、表链、电动牙刷、剪刀、风扇、高尔夫球头、珠宝链环、圆珠笔卡箍、刃具刀头等零部件;(4医疗机械用零件:如牙矫形架、剪刀、镊子等;(5军用零件:导弹尾翼、枪支零件、弹头、药型罩、引信用零件等;(6电器用零件:电子封装,微型马达、电子零件、传感器件等;(7机械用零件:如松棉机、纺织机、卷边机、办公机械等;(8汽车船舶用零件:如离合器内环、拔叉套、分配器套、汽门导管、同步毂、安全气囊件等。

金属粉末注射成形技术研究进展金属注射成形(Metal Powder Injection Molding,简称MIM是传统粉末冶金技术和塑料注射成形技术相结合的一种高新技术。

MIM始于20世纪70年代末,过去由于缺少合适的粉末及原料价格太高、知识平台不完善、技术不成熟、人们了解和市场接受时间不长、生产(包括模具制造周期太长、投资不够等原因,其发展和应用较为缓慢。

为解决MIM技术的难点,促进MIM技术实用化,80年代中期美国制定了一个高级粉末加工计划,研究内容涵括了与注射成形有关的18个课题。

随后日本、德国等也积极开展MIM的开发研究。

随着MIM研究的不断深入以及新型粘结剂的开发、制粉技术和脱脂工艺的不断进步,到90年代初已实现产业化。

经过20多年的努力,目前MIM已成为国际粉末冶金领域发燕尾服迅速、最有前途的一种新型近净成形技术,被誉为“国际最热门的金属零部件成形技术”之一。

1 MIM工艺和技术特点MIM的基本工艺如图1所示。

它首先是选择符合MIM要求和金属粉末和粘结剂,然后在一定温度下采用适当的方法将粉末和粘结剂混炼成均匀的注射成形喂料,经制粒后在注射成形机上注射成形,获得的成形坯经脱脂处理后烧结致密化最终产品。

MIM工艺包括产品设计、模具设计、质量检测、混炼、注射、脱脂、烧结、二次加工等8个重要环节。

相关文档
最新文档