证明圆的切线经典例题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证明圆的切线方法及例题

证明圆的切线常用的方法有:

一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.

例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.

求证:EF与⊙O相切.

证明:连结OE,AD.

∵AB是⊙O的直径,

∴AD⊥BC.

又∵AB=BC,

∴∠3=∠4.

∴BD=DE,∠1=∠2.

又∵OB=OE,OF=OF,

∴△BOF≌△EOF(SAS).

∴∠OBF=∠OEF.

∵BF与⊙O相切,

∴OB⊥BF.

∴∠OEF=900.

∴EF与⊙O相切.

说明:此题是通过证明三角形全等证明垂直的例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切.

证明一:作直径AE,连结EC.

∵AD是∠BAC的平分线,

∴∠DAB=∠DAC.

∵PA=PD,

∴∠2=∠1+∠DAC.

∵∠2=∠B+∠DAB,

∴∠1=∠B.

又∵∠B=∠E,

∴∠1=∠E

∵AE是⊙O的直径,

∴AC⊥EC,∠E+∠EAC=900.

∴∠1+∠EAC=900.

即OA⊥PA.

∴PA与⊙O相切.

证明二:延长AD交⊙O于E,连结OA,OE.

∵AD是∠BAC的平分线,

∴BE=CE,

∴OE⊥BC.

∴∠E+∠BDE=900.

∵OA=OE,

∴∠E=∠1.

⌒⌒

⌒⌒

∵PA=PD,

∴∠PAD=∠PDA.

又∵∠PDA=∠BDE,

∴∠1+∠PAD=900

即OA⊥PA.

∴PA与⊙O相切

说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用. 例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M

求证:DM与⊙O相切.

证明一:连结OD.

∵AB=AC,

∴∠B=∠C.

∵OB=OD,

∴∠1=∠B.

∴∠1=∠C.

∴OD∥AC.

∵DM⊥AC,

∴DM⊥OD.

∴DM与⊙O相切

证明二:连结OD,AD.

∵AB是⊙O的直径,

∴AD⊥BC.

又∵AB=AC,

∴∠1=∠2.

∵DM⊥AC,

∴∠2+∠4=900

∵OA=OD,

∴∠1=∠3.

∴∠3+∠4=900.

即OD⊥DM.

∴DM是⊙O的切线

说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂直的,解题中注意充分利用已知及图上已知.

例4 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB 的延长线上.

求证:DC是⊙O的切线

证明:连结OC、BC.

∵OA=OC,

∴∠A=∠1=∠300.

∴∠BOC=∠A+∠1=600.

又∵OC=OB,

∴△OBC是等边三角形.

∴OB=BC.

∵OB=BD,

∴OB=BC=BD.

∴OC⊥CD.

∴DC是⊙O的切线.

说明:此题是根据圆周角定理的推论3证明垂直的,此题解法颇多,但这种方法较好.

D

C

D

例5 如图,AB 是⊙O 的直径,CD ⊥AB ,且OA 2=OD ·OP. 求证:PC 是⊙O 的切线. 证明:连结OC

∵OA 2=OD ·OP ,OA=OC , ∴OC 2=OD ·OP ,

OC

OP

OD OC

. 又∵∠1=∠1, ∴△OCP ∽△ODC. ∴∠OCP=∠ODC. ∵CD ⊥AB , ∴∠OCP=900. ∴PC 是⊙O 的切线.

说明:此题是通过证三角形相似证明垂直的

例6 如图,ABCD 是正方形,G 是BC 延长线上一点,AG 交BD 于E ,交CD 于F. 求证:CE 与△CFG 的外接圆相切.

分析:此题图上没有画出△CFG 的外接圆,但△CFG 是直角三角形,圆心在斜边FG 的中点,为此我们取FG 的中点O ,连结OC ,证明CE ⊥OC 即可得解.

证明:取FG 中点O ,连结OC.

∵ABCD 是正方形,

∴BC ⊥CD ,△CFG 是Rt △ ∵O 是FG 的中点, ∴O 是Rt △CFG 的外心. ∵OC=OG , ∴∠3=∠G ,

∵AD ∥BC , ∴∠G=∠4.

∵AD=CD ,DE=DE ,

∠ADE=∠CDE=450, ∴△ADE ≌△CDE (SAS ) ∴∠4=∠1,∠1=∠3. ∵∠2+∠3=900, ∴∠1+∠2=900.

即CE ⊥OC.

∴CE 与△CFG 的外接圆相切

二、若直线l 与⊙O 没有已知的公共点,又要证明l 是⊙O 的切线,只需作OA ⊥l ,A 为垂足,证明OA 是⊙O 的半径就行了,简称:“作垂直;证半径”

例7 如图,AB=AC ,D 为BC 中点,⊙D 与AB 切于E 点. 求证:AC 与⊙D 相切.

证明一:连结DE ,作DF ⊥AC ,F 是垂足. ∵AB 是⊙D 的切线, ∴DE ⊥AB. ∵DF ⊥AC , ∴∠DEB=∠DFC=900. ∵AB=AC ,

∴∠B=∠C.

又∵BD=CD ,

∴△BDE ≌△CDF (AAS ) ∴DF=DE.

相关文档
最新文档